]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/sunrpc/xprtrdma/transport.c
xprtrdma: Spread reply processing over more CPUs
[mirror_ubuntu-bionic-kernel.git] / net / sunrpc / xprtrdma / transport.c
1 /*
2 * Copyright (c) 2014-2017 Oracle. All rights reserved.
3 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the BSD-type
9 * license below:
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 *
15 * Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 *
18 * Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials provided
21 * with the distribution.
22 *
23 * Neither the name of the Network Appliance, Inc. nor the names of
24 * its contributors may be used to endorse or promote products
25 * derived from this software without specific prior written
26 * permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 */
40
41 /*
42 * transport.c
43 *
44 * This file contains the top-level implementation of an RPC RDMA
45 * transport.
46 *
47 * Naming convention: functions beginning with xprt_ are part of the
48 * transport switch. All others are RPC RDMA internal.
49 */
50
51 #include <linux/module.h>
52 #include <linux/slab.h>
53 #include <linux/seq_file.h>
54 #include <linux/sunrpc/addr.h>
55 #include <linux/smp.h>
56
57 #include "xprt_rdma.h"
58
59 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
60 # define RPCDBG_FACILITY RPCDBG_TRANS
61 #endif
62
63 /*
64 * tunables
65 */
66
67 static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE;
68 unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE;
69 static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE;
70 static unsigned int xprt_rdma_inline_write_padding;
71 unsigned int xprt_rdma_memreg_strategy = RPCRDMA_FRMR;
72 int xprt_rdma_pad_optimize;
73
74 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
75
76 static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE;
77 static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE;
78 static unsigned int min_inline_size = RPCRDMA_MIN_INLINE;
79 static unsigned int max_inline_size = RPCRDMA_MAX_INLINE;
80 static unsigned int zero;
81 static unsigned int max_padding = PAGE_SIZE;
82 static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS;
83 static unsigned int max_memreg = RPCRDMA_LAST - 1;
84
85 static struct ctl_table_header *sunrpc_table_header;
86
87 static struct ctl_table xr_tunables_table[] = {
88 {
89 .procname = "rdma_slot_table_entries",
90 .data = &xprt_rdma_slot_table_entries,
91 .maxlen = sizeof(unsigned int),
92 .mode = 0644,
93 .proc_handler = proc_dointvec_minmax,
94 .extra1 = &min_slot_table_size,
95 .extra2 = &max_slot_table_size
96 },
97 {
98 .procname = "rdma_max_inline_read",
99 .data = &xprt_rdma_max_inline_read,
100 .maxlen = sizeof(unsigned int),
101 .mode = 0644,
102 .proc_handler = proc_dointvec_minmax,
103 .extra1 = &min_inline_size,
104 .extra2 = &max_inline_size,
105 },
106 {
107 .procname = "rdma_max_inline_write",
108 .data = &xprt_rdma_max_inline_write,
109 .maxlen = sizeof(unsigned int),
110 .mode = 0644,
111 .proc_handler = proc_dointvec_minmax,
112 .extra1 = &min_inline_size,
113 .extra2 = &max_inline_size,
114 },
115 {
116 .procname = "rdma_inline_write_padding",
117 .data = &xprt_rdma_inline_write_padding,
118 .maxlen = sizeof(unsigned int),
119 .mode = 0644,
120 .proc_handler = proc_dointvec_minmax,
121 .extra1 = &zero,
122 .extra2 = &max_padding,
123 },
124 {
125 .procname = "rdma_memreg_strategy",
126 .data = &xprt_rdma_memreg_strategy,
127 .maxlen = sizeof(unsigned int),
128 .mode = 0644,
129 .proc_handler = proc_dointvec_minmax,
130 .extra1 = &min_memreg,
131 .extra2 = &max_memreg,
132 },
133 {
134 .procname = "rdma_pad_optimize",
135 .data = &xprt_rdma_pad_optimize,
136 .maxlen = sizeof(unsigned int),
137 .mode = 0644,
138 .proc_handler = proc_dointvec,
139 },
140 { },
141 };
142
143 static struct ctl_table sunrpc_table[] = {
144 {
145 .procname = "sunrpc",
146 .mode = 0555,
147 .child = xr_tunables_table
148 },
149 { },
150 };
151
152 #endif
153
154 static const struct rpc_xprt_ops xprt_rdma_procs;
155
156 static void
157 xprt_rdma_format_addresses4(struct rpc_xprt *xprt, struct sockaddr *sap)
158 {
159 struct sockaddr_in *sin = (struct sockaddr_in *)sap;
160 char buf[20];
161
162 snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr));
163 xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL);
164
165 xprt->address_strings[RPC_DISPLAY_NETID] = RPCBIND_NETID_RDMA;
166 }
167
168 static void
169 xprt_rdma_format_addresses6(struct rpc_xprt *xprt, struct sockaddr *sap)
170 {
171 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sap;
172 char buf[40];
173
174 snprintf(buf, sizeof(buf), "%pi6", &sin6->sin6_addr);
175 xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL);
176
177 xprt->address_strings[RPC_DISPLAY_NETID] = RPCBIND_NETID_RDMA6;
178 }
179
180 void
181 xprt_rdma_format_addresses(struct rpc_xprt *xprt, struct sockaddr *sap)
182 {
183 char buf[128];
184
185 switch (sap->sa_family) {
186 case AF_INET:
187 xprt_rdma_format_addresses4(xprt, sap);
188 break;
189 case AF_INET6:
190 xprt_rdma_format_addresses6(xprt, sap);
191 break;
192 default:
193 pr_err("rpcrdma: Unrecognized address family\n");
194 return;
195 }
196
197 (void)rpc_ntop(sap, buf, sizeof(buf));
198 xprt->address_strings[RPC_DISPLAY_ADDR] = kstrdup(buf, GFP_KERNEL);
199
200 snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap));
201 xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL);
202
203 snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap));
204 xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL);
205
206 xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma";
207 }
208
209 void
210 xprt_rdma_free_addresses(struct rpc_xprt *xprt)
211 {
212 unsigned int i;
213
214 for (i = 0; i < RPC_DISPLAY_MAX; i++)
215 switch (i) {
216 case RPC_DISPLAY_PROTO:
217 case RPC_DISPLAY_NETID:
218 continue;
219 default:
220 kfree(xprt->address_strings[i]);
221 }
222 }
223
224 void
225 rpcrdma_conn_func(struct rpcrdma_ep *ep)
226 {
227 schedule_delayed_work(&ep->rep_connect_worker, 0);
228 }
229
230 void
231 rpcrdma_connect_worker(struct work_struct *work)
232 {
233 struct rpcrdma_ep *ep =
234 container_of(work, struct rpcrdma_ep, rep_connect_worker.work);
235 struct rpcrdma_xprt *r_xprt =
236 container_of(ep, struct rpcrdma_xprt, rx_ep);
237 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
238
239 spin_lock_bh(&xprt->transport_lock);
240 if (++xprt->connect_cookie == 0) /* maintain a reserved value */
241 ++xprt->connect_cookie;
242 if (ep->rep_connected > 0) {
243 if (!xprt_test_and_set_connected(xprt))
244 xprt_wake_pending_tasks(xprt, 0);
245 } else {
246 if (xprt_test_and_clear_connected(xprt))
247 xprt_wake_pending_tasks(xprt, -ENOTCONN);
248 }
249 spin_unlock_bh(&xprt->transport_lock);
250 }
251
252 static void
253 xprt_rdma_connect_worker(struct work_struct *work)
254 {
255 struct rpcrdma_xprt *r_xprt = container_of(work, struct rpcrdma_xprt,
256 rx_connect_worker.work);
257 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
258 int rc = 0;
259
260 xprt_clear_connected(xprt);
261
262 dprintk("RPC: %s: %sconnect\n", __func__,
263 r_xprt->rx_ep.rep_connected != 0 ? "re" : "");
264 rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia);
265 if (rc)
266 xprt_wake_pending_tasks(xprt, rc);
267
268 dprintk("RPC: %s: exit\n", __func__);
269 xprt_clear_connecting(xprt);
270 }
271
272 static void
273 xprt_rdma_inject_disconnect(struct rpc_xprt *xprt)
274 {
275 struct rpcrdma_xprt *r_xprt = container_of(xprt, struct rpcrdma_xprt,
276 rx_xprt);
277
278 pr_info("rpcrdma: injecting transport disconnect on xprt=%p\n", xprt);
279 rdma_disconnect(r_xprt->rx_ia.ri_id);
280 }
281
282 /*
283 * xprt_rdma_destroy
284 *
285 * Destroy the xprt.
286 * Free all memory associated with the object, including its own.
287 * NOTE: none of the *destroy methods free memory for their top-level
288 * objects, even though they may have allocated it (they do free
289 * private memory). It's up to the caller to handle it. In this
290 * case (RDMA transport), all structure memory is inlined with the
291 * struct rpcrdma_xprt.
292 */
293 static void
294 xprt_rdma_destroy(struct rpc_xprt *xprt)
295 {
296 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
297
298 dprintk("RPC: %s: called\n", __func__);
299
300 cancel_delayed_work_sync(&r_xprt->rx_connect_worker);
301
302 xprt_clear_connected(xprt);
303
304 rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia);
305 rpcrdma_buffer_destroy(&r_xprt->rx_buf);
306 rpcrdma_ia_close(&r_xprt->rx_ia);
307
308 xprt_rdma_free_addresses(xprt);
309
310 xprt_free(xprt);
311
312 dprintk("RPC: %s: returning\n", __func__);
313
314 module_put(THIS_MODULE);
315 }
316
317 static const struct rpc_timeout xprt_rdma_default_timeout = {
318 .to_initval = 60 * HZ,
319 .to_maxval = 60 * HZ,
320 };
321
322 /**
323 * xprt_setup_rdma - Set up transport to use RDMA
324 *
325 * @args: rpc transport arguments
326 */
327 static struct rpc_xprt *
328 xprt_setup_rdma(struct xprt_create *args)
329 {
330 struct rpcrdma_create_data_internal cdata;
331 struct rpc_xprt *xprt;
332 struct rpcrdma_xprt *new_xprt;
333 struct rpcrdma_ep *new_ep;
334 struct sockaddr *sap;
335 int rc;
336
337 if (args->addrlen > sizeof(xprt->addr)) {
338 dprintk("RPC: %s: address too large\n", __func__);
339 return ERR_PTR(-EBADF);
340 }
341
342 xprt = xprt_alloc(args->net, sizeof(struct rpcrdma_xprt),
343 xprt_rdma_slot_table_entries,
344 xprt_rdma_slot_table_entries);
345 if (xprt == NULL) {
346 dprintk("RPC: %s: couldn't allocate rpcrdma_xprt\n",
347 __func__);
348 return ERR_PTR(-ENOMEM);
349 }
350
351 /* 60 second timeout, no retries */
352 xprt->timeout = &xprt_rdma_default_timeout;
353 xprt->bind_timeout = RPCRDMA_BIND_TO;
354 xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
355 xprt->idle_timeout = RPCRDMA_IDLE_DISC_TO;
356
357 xprt->resvport = 0; /* privileged port not needed */
358 xprt->tsh_size = 0; /* RPC-RDMA handles framing */
359 xprt->ops = &xprt_rdma_procs;
360
361 /*
362 * Set up RDMA-specific connect data.
363 */
364
365 sap = (struct sockaddr *)&cdata.addr;
366 memcpy(sap, args->dstaddr, args->addrlen);
367
368 /* Ensure xprt->addr holds valid server TCP (not RDMA)
369 * address, for any side protocols which peek at it */
370 xprt->prot = IPPROTO_TCP;
371 xprt->addrlen = args->addrlen;
372 memcpy(&xprt->addr, sap, xprt->addrlen);
373
374 if (rpc_get_port(sap))
375 xprt_set_bound(xprt);
376
377 cdata.max_requests = xprt->max_reqs;
378
379 cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */
380 cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */
381
382 cdata.inline_wsize = xprt_rdma_max_inline_write;
383 if (cdata.inline_wsize > cdata.wsize)
384 cdata.inline_wsize = cdata.wsize;
385
386 cdata.inline_rsize = xprt_rdma_max_inline_read;
387 if (cdata.inline_rsize > cdata.rsize)
388 cdata.inline_rsize = cdata.rsize;
389
390 cdata.padding = xprt_rdma_inline_write_padding;
391
392 /*
393 * Create new transport instance, which includes initialized
394 * o ia
395 * o endpoint
396 * o buffers
397 */
398
399 new_xprt = rpcx_to_rdmax(xprt);
400
401 rc = rpcrdma_ia_open(new_xprt, sap);
402 if (rc)
403 goto out1;
404
405 /*
406 * initialize and create ep
407 */
408 new_xprt->rx_data = cdata;
409 new_ep = &new_xprt->rx_ep;
410 new_ep->rep_remote_addr = cdata.addr;
411
412 rc = rpcrdma_ep_create(&new_xprt->rx_ep,
413 &new_xprt->rx_ia, &new_xprt->rx_data);
414 if (rc)
415 goto out2;
416
417 /*
418 * Allocate pre-registered send and receive buffers for headers and
419 * any inline data. Also specify any padding which will be provided
420 * from a preregistered zero buffer.
421 */
422 rc = rpcrdma_buffer_create(new_xprt);
423 if (rc)
424 goto out3;
425
426 /*
427 * Register a callback for connection events. This is necessary because
428 * connection loss notification is async. We also catch connection loss
429 * when reaping receives.
430 */
431 INIT_DELAYED_WORK(&new_xprt->rx_connect_worker,
432 xprt_rdma_connect_worker);
433
434 xprt_rdma_format_addresses(xprt, sap);
435 xprt->max_payload = new_xprt->rx_ia.ri_ops->ro_maxpages(new_xprt);
436 if (xprt->max_payload == 0)
437 goto out4;
438 xprt->max_payload <<= PAGE_SHIFT;
439 dprintk("RPC: %s: transport data payload maximum: %zu bytes\n",
440 __func__, xprt->max_payload);
441
442 if (!try_module_get(THIS_MODULE))
443 goto out4;
444
445 dprintk("RPC: %s: %s:%s\n", __func__,
446 xprt->address_strings[RPC_DISPLAY_ADDR],
447 xprt->address_strings[RPC_DISPLAY_PORT]);
448 return xprt;
449
450 out4:
451 xprt_rdma_free_addresses(xprt);
452 rc = -EINVAL;
453 out3:
454 rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia);
455 out2:
456 rpcrdma_ia_close(&new_xprt->rx_ia);
457 out1:
458 xprt_free(xprt);
459 return ERR_PTR(rc);
460 }
461
462 /**
463 * xprt_rdma_close - Close down RDMA connection
464 * @xprt: generic transport to be closed
465 *
466 * Called during transport shutdown reconnect, or device
467 * removal. Caller holds the transport's write lock.
468 */
469 static void
470 xprt_rdma_close(struct rpc_xprt *xprt)
471 {
472 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
473 struct rpcrdma_ep *ep = &r_xprt->rx_ep;
474 struct rpcrdma_ia *ia = &r_xprt->rx_ia;
475
476 dprintk("RPC: %s: closing xprt %p\n", __func__, xprt);
477
478 if (test_and_clear_bit(RPCRDMA_IAF_REMOVING, &ia->ri_flags)) {
479 xprt_clear_connected(xprt);
480 rpcrdma_ia_remove(ia);
481 return;
482 }
483 if (ep->rep_connected == -ENODEV)
484 return;
485 if (ep->rep_connected > 0)
486 xprt->reestablish_timeout = 0;
487 xprt_disconnect_done(xprt);
488 rpcrdma_ep_disconnect(ep, ia);
489 }
490
491 static void
492 xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port)
493 {
494 struct sockaddr_in *sap;
495
496 sap = (struct sockaddr_in *)&xprt->addr;
497 sap->sin_port = htons(port);
498 sap = (struct sockaddr_in *)&rpcx_to_rdmad(xprt).addr;
499 sap->sin_port = htons(port);
500 dprintk("RPC: %s: %u\n", __func__, port);
501 }
502
503 /**
504 * xprt_rdma_timer - invoked when an RPC times out
505 * @xprt: controlling RPC transport
506 * @task: RPC task that timed out
507 *
508 * Invoked when the transport is still connected, but an RPC
509 * retransmit timeout occurs.
510 *
511 * Since RDMA connections don't have a keep-alive, forcibly
512 * disconnect and retry to connect. This drives full
513 * detection of the network path, and retransmissions of
514 * all pending RPCs.
515 */
516 static void
517 xprt_rdma_timer(struct rpc_xprt *xprt, struct rpc_task *task)
518 {
519 dprintk("RPC: %5u %s: xprt = %p\n", task->tk_pid, __func__, xprt);
520
521 xprt_force_disconnect(xprt);
522 }
523
524 static void
525 xprt_rdma_connect(struct rpc_xprt *xprt, struct rpc_task *task)
526 {
527 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
528
529 if (r_xprt->rx_ep.rep_connected != 0) {
530 /* Reconnect */
531 schedule_delayed_work(&r_xprt->rx_connect_worker,
532 xprt->reestablish_timeout);
533 xprt->reestablish_timeout <<= 1;
534 if (xprt->reestablish_timeout > RPCRDMA_MAX_REEST_TO)
535 xprt->reestablish_timeout = RPCRDMA_MAX_REEST_TO;
536 else if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO)
537 xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
538 } else {
539 schedule_delayed_work(&r_xprt->rx_connect_worker, 0);
540 if (!RPC_IS_ASYNC(task))
541 flush_delayed_work(&r_xprt->rx_connect_worker);
542 }
543 }
544
545 /* Allocate a fixed-size buffer in which to construct and send the
546 * RPC-over-RDMA header for this request.
547 */
548 static bool
549 rpcrdma_get_rdmabuf(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
550 gfp_t flags)
551 {
552 size_t size = RPCRDMA_HDRBUF_SIZE;
553 struct rpcrdma_regbuf *rb;
554
555 if (req->rl_rdmabuf)
556 return true;
557
558 rb = rpcrdma_alloc_regbuf(size, DMA_TO_DEVICE, flags);
559 if (IS_ERR(rb))
560 return false;
561
562 r_xprt->rx_stats.hardway_register_count += size;
563 req->rl_rdmabuf = rb;
564 xdr_buf_init(&req->rl_hdrbuf, rb->rg_base, rdmab_length(rb));
565 return true;
566 }
567
568 static bool
569 rpcrdma_get_sendbuf(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
570 size_t size, gfp_t flags)
571 {
572 struct rpcrdma_regbuf *rb;
573
574 if (req->rl_sendbuf && rdmab_length(req->rl_sendbuf) >= size)
575 return true;
576
577 rb = rpcrdma_alloc_regbuf(size, DMA_TO_DEVICE, flags);
578 if (IS_ERR(rb))
579 return false;
580
581 rpcrdma_free_regbuf(req->rl_sendbuf);
582 r_xprt->rx_stats.hardway_register_count += size;
583 req->rl_sendbuf = rb;
584 return true;
585 }
586
587 /* The rq_rcv_buf is used only if a Reply chunk is necessary.
588 * The decision to use a Reply chunk is made later in
589 * rpcrdma_marshal_req. This buffer is registered at that time.
590 *
591 * Otherwise, the associated RPC Reply arrives in a separate
592 * Receive buffer, arbitrarily chosen by the HCA. The buffer
593 * allocated here for the RPC Reply is not utilized in that
594 * case. See rpcrdma_inline_fixup.
595 *
596 * A regbuf is used here to remember the buffer size.
597 */
598 static bool
599 rpcrdma_get_recvbuf(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
600 size_t size, gfp_t flags)
601 {
602 struct rpcrdma_regbuf *rb;
603
604 if (req->rl_recvbuf && rdmab_length(req->rl_recvbuf) >= size)
605 return true;
606
607 rb = rpcrdma_alloc_regbuf(size, DMA_NONE, flags);
608 if (IS_ERR(rb))
609 return false;
610
611 rpcrdma_free_regbuf(req->rl_recvbuf);
612 r_xprt->rx_stats.hardway_register_count += size;
613 req->rl_recvbuf = rb;
614 return true;
615 }
616
617 /**
618 * xprt_rdma_allocate - allocate transport resources for an RPC
619 * @task: RPC task
620 *
621 * Return values:
622 * 0: Success; rq_buffer points to RPC buffer to use
623 * ENOMEM: Out of memory, call again later
624 * EIO: A permanent error occurred, do not retry
625 *
626 * The RDMA allocate/free functions need the task structure as a place
627 * to hide the struct rpcrdma_req, which is necessary for the actual
628 * send/recv sequence.
629 *
630 * xprt_rdma_allocate provides buffers that are already mapped for
631 * DMA, and a local DMA lkey is provided for each.
632 */
633 static int
634 xprt_rdma_allocate(struct rpc_task *task)
635 {
636 struct rpc_rqst *rqst = task->tk_rqstp;
637 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
638 struct rpcrdma_req *req;
639 gfp_t flags;
640
641 req = rpcrdma_buffer_get(&r_xprt->rx_buf);
642 if (req == NULL)
643 return -ENOMEM;
644
645 flags = RPCRDMA_DEF_GFP;
646 if (RPC_IS_SWAPPER(task))
647 flags = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
648
649 if (!rpcrdma_get_rdmabuf(r_xprt, req, flags))
650 goto out_fail;
651 if (!rpcrdma_get_sendbuf(r_xprt, req, rqst->rq_callsize, flags))
652 goto out_fail;
653 if (!rpcrdma_get_recvbuf(r_xprt, req, rqst->rq_rcvsize, flags))
654 goto out_fail;
655
656 dprintk("RPC: %5u %s: send size = %zd, recv size = %zd, req = %p\n",
657 task->tk_pid, __func__, rqst->rq_callsize,
658 rqst->rq_rcvsize, req);
659
660 req->rl_cpu = smp_processor_id();
661 req->rl_connect_cookie = 0; /* our reserved value */
662 rpcrdma_set_xprtdata(rqst, req);
663 rqst->rq_buffer = req->rl_sendbuf->rg_base;
664 rqst->rq_rbuffer = req->rl_recvbuf->rg_base;
665 return 0;
666
667 out_fail:
668 rpcrdma_buffer_put(req);
669 return -ENOMEM;
670 }
671
672 /**
673 * xprt_rdma_free - release resources allocated by xprt_rdma_allocate
674 * @task: RPC task
675 *
676 * Caller guarantees rqst->rq_buffer is non-NULL.
677 */
678 static void
679 xprt_rdma_free(struct rpc_task *task)
680 {
681 struct rpc_rqst *rqst = task->tk_rqstp;
682 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
683 struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
684
685 if (test_bit(RPCRDMA_REQ_F_BACKCHANNEL, &req->rl_flags))
686 return;
687
688 dprintk("RPC: %s: called on 0x%p\n", __func__, req->rl_reply);
689
690 if (test_bit(RPCRDMA_REQ_F_PENDING, &req->rl_flags))
691 rpcrdma_release_rqst(r_xprt, req);
692 rpcrdma_buffer_put(req);
693 }
694
695 /**
696 * xprt_rdma_send_request - marshal and send an RPC request
697 * @task: RPC task with an RPC message in rq_snd_buf
698 *
699 * Caller holds the transport's write lock.
700 *
701 * Return values:
702 * 0: The request has been sent
703 * ENOTCONN: Caller needs to invoke connect logic then call again
704 * ENOBUFS: Call again later to send the request
705 * EIO: A permanent error occurred. The request was not sent,
706 * and don't try it again
707 *
708 * send_request invokes the meat of RPC RDMA. It must do the following:
709 *
710 * 1. Marshal the RPC request into an RPC RDMA request, which means
711 * putting a header in front of data, and creating IOVs for RDMA
712 * from those in the request.
713 * 2. In marshaling, detect opportunities for RDMA, and use them.
714 * 3. Post a recv message to set up asynch completion, then send
715 * the request (rpcrdma_ep_post).
716 * 4. No partial sends are possible in the RPC-RDMA protocol (as in UDP).
717 */
718 static int
719 xprt_rdma_send_request(struct rpc_task *task)
720 {
721 struct rpc_rqst *rqst = task->tk_rqstp;
722 struct rpc_xprt *xprt = rqst->rq_xprt;
723 struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
724 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
725 int rc = 0;
726
727 if (!xprt_connected(xprt))
728 goto drop_connection;
729
730 /* On retransmit, remove any previously registered chunks */
731 if (unlikely(!list_empty(&req->rl_registered)))
732 r_xprt->rx_ia.ri_ops->ro_unmap_sync(r_xprt,
733 &req->rl_registered);
734
735 rc = rpcrdma_marshal_req(r_xprt, rqst);
736 if (rc < 0)
737 goto failed_marshal;
738
739 if (req->rl_reply == NULL) /* e.g. reconnection */
740 rpcrdma_recv_buffer_get(req);
741
742 /* Must suppress retransmit to maintain credits */
743 if (req->rl_connect_cookie == xprt->connect_cookie)
744 goto drop_connection;
745 req->rl_connect_cookie = xprt->connect_cookie;
746
747 set_bit(RPCRDMA_REQ_F_PENDING, &req->rl_flags);
748 if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req))
749 goto drop_connection;
750
751 rqst->rq_xmit_bytes_sent += rqst->rq_snd_buf.len;
752 rqst->rq_bytes_sent = 0;
753 return 0;
754
755 failed_marshal:
756 if (rc != -ENOTCONN)
757 return rc;
758 drop_connection:
759 xprt_disconnect_done(xprt);
760 return -ENOTCONN; /* implies disconnect */
761 }
762
763 void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq)
764 {
765 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
766 long idle_time = 0;
767
768 if (xprt_connected(xprt))
769 idle_time = (long)(jiffies - xprt->last_used) / HZ;
770
771 seq_puts(seq, "\txprt:\trdma ");
772 seq_printf(seq, "%u %lu %lu %lu %ld %lu %lu %lu %llu %llu ",
773 0, /* need a local port? */
774 xprt->stat.bind_count,
775 xprt->stat.connect_count,
776 xprt->stat.connect_time,
777 idle_time,
778 xprt->stat.sends,
779 xprt->stat.recvs,
780 xprt->stat.bad_xids,
781 xprt->stat.req_u,
782 xprt->stat.bklog_u);
783 seq_printf(seq, "%lu %lu %lu %llu %llu %llu %llu %lu %lu %lu %lu ",
784 r_xprt->rx_stats.read_chunk_count,
785 r_xprt->rx_stats.write_chunk_count,
786 r_xprt->rx_stats.reply_chunk_count,
787 r_xprt->rx_stats.total_rdma_request,
788 r_xprt->rx_stats.total_rdma_reply,
789 r_xprt->rx_stats.pullup_copy_count,
790 r_xprt->rx_stats.fixup_copy_count,
791 r_xprt->rx_stats.hardway_register_count,
792 r_xprt->rx_stats.failed_marshal_count,
793 r_xprt->rx_stats.bad_reply_count,
794 r_xprt->rx_stats.nomsg_call_count);
795 seq_printf(seq, "%lu %lu %lu %lu %lu %lu\n",
796 r_xprt->rx_stats.mrs_recovered,
797 r_xprt->rx_stats.mrs_orphaned,
798 r_xprt->rx_stats.mrs_allocated,
799 r_xprt->rx_stats.local_inv_needed,
800 r_xprt->rx_stats.empty_sendctx_q,
801 r_xprt->rx_stats.reply_waits_for_send);
802 }
803
804 static int
805 xprt_rdma_enable_swap(struct rpc_xprt *xprt)
806 {
807 return 0;
808 }
809
810 static void
811 xprt_rdma_disable_swap(struct rpc_xprt *xprt)
812 {
813 }
814
815 /*
816 * Plumbing for rpc transport switch and kernel module
817 */
818
819 static const struct rpc_xprt_ops xprt_rdma_procs = {
820 .reserve_xprt = xprt_reserve_xprt_cong,
821 .release_xprt = xprt_release_xprt_cong, /* sunrpc/xprt.c */
822 .alloc_slot = xprt_alloc_slot,
823 .release_request = xprt_release_rqst_cong, /* ditto */
824 .set_retrans_timeout = xprt_set_retrans_timeout_def, /* ditto */
825 .timer = xprt_rdma_timer,
826 .rpcbind = rpcb_getport_async, /* sunrpc/rpcb_clnt.c */
827 .set_port = xprt_rdma_set_port,
828 .connect = xprt_rdma_connect,
829 .buf_alloc = xprt_rdma_allocate,
830 .buf_free = xprt_rdma_free,
831 .send_request = xprt_rdma_send_request,
832 .close = xprt_rdma_close,
833 .destroy = xprt_rdma_destroy,
834 .print_stats = xprt_rdma_print_stats,
835 .enable_swap = xprt_rdma_enable_swap,
836 .disable_swap = xprt_rdma_disable_swap,
837 .inject_disconnect = xprt_rdma_inject_disconnect,
838 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
839 .bc_setup = xprt_rdma_bc_setup,
840 .bc_up = xprt_rdma_bc_up,
841 .bc_maxpayload = xprt_rdma_bc_maxpayload,
842 .bc_free_rqst = xprt_rdma_bc_free_rqst,
843 .bc_destroy = xprt_rdma_bc_destroy,
844 #endif
845 };
846
847 static struct xprt_class xprt_rdma = {
848 .list = LIST_HEAD_INIT(xprt_rdma.list),
849 .name = "rdma",
850 .owner = THIS_MODULE,
851 .ident = XPRT_TRANSPORT_RDMA,
852 .setup = xprt_setup_rdma,
853 };
854
855 void xprt_rdma_cleanup(void)
856 {
857 int rc;
858
859 dprintk("RPCRDMA Module Removed, deregister RPC RDMA transport\n");
860 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
861 if (sunrpc_table_header) {
862 unregister_sysctl_table(sunrpc_table_header);
863 sunrpc_table_header = NULL;
864 }
865 #endif
866 rc = xprt_unregister_transport(&xprt_rdma);
867 if (rc)
868 dprintk("RPC: %s: xprt_unregister returned %i\n",
869 __func__, rc);
870
871 rpcrdma_destroy_wq();
872
873 rc = xprt_unregister_transport(&xprt_rdma_bc);
874 if (rc)
875 dprintk("RPC: %s: xprt_unregister(bc) returned %i\n",
876 __func__, rc);
877 }
878
879 int xprt_rdma_init(void)
880 {
881 int rc;
882
883 rc = rpcrdma_alloc_wq();
884 if (rc)
885 return rc;
886
887 rc = xprt_register_transport(&xprt_rdma);
888 if (rc) {
889 rpcrdma_destroy_wq();
890 return rc;
891 }
892
893 rc = xprt_register_transport(&xprt_rdma_bc);
894 if (rc) {
895 xprt_unregister_transport(&xprt_rdma);
896 rpcrdma_destroy_wq();
897 return rc;
898 }
899
900 dprintk("RPCRDMA Module Init, register RPC RDMA transport\n");
901
902 dprintk("Defaults:\n");
903 dprintk("\tSlots %d\n"
904 "\tMaxInlineRead %d\n\tMaxInlineWrite %d\n",
905 xprt_rdma_slot_table_entries,
906 xprt_rdma_max_inline_read, xprt_rdma_max_inline_write);
907 dprintk("\tPadding %d\n\tMemreg %d\n",
908 xprt_rdma_inline_write_padding, xprt_rdma_memreg_strategy);
909
910 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
911 if (!sunrpc_table_header)
912 sunrpc_table_header = register_sysctl_table(sunrpc_table);
913 #endif
914 return 0;
915 }