]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/sunrpc/xprtrdma/verbs.c
Merge remote-tracking branches 'asoc/topic/sgtl5000', 'asoc/topic/simple', 'asoc...
[mirror_ubuntu-bionic-kernel.git] / net / sunrpc / xprtrdma / verbs.c
1 /*
2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the BSD-type
8 * license below:
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 *
14 * Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 *
17 * Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials provided
20 * with the distribution.
21 *
22 * Neither the name of the Network Appliance, Inc. nor the names of
23 * its contributors may be used to endorse or promote products
24 * derived from this software without specific prior written
25 * permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * verbs.c
42 *
43 * Encapsulates the major functions managing:
44 * o adapters
45 * o endpoints
46 * o connections
47 * o buffer memory
48 */
49
50 #include <linux/interrupt.h>
51 #include <linux/slab.h>
52 #include <linux/prefetch.h>
53 #include <linux/sunrpc/addr.h>
54 #include <linux/sunrpc/svc_rdma.h>
55 #include <asm/bitops.h>
56 #include <linux/module.h> /* try_module_get()/module_put() */
57
58 #include "xprt_rdma.h"
59
60 /*
61 * Globals/Macros
62 */
63
64 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
65 # define RPCDBG_FACILITY RPCDBG_TRANS
66 #endif
67
68 /*
69 * internal functions
70 */
71
72 static struct workqueue_struct *rpcrdma_receive_wq;
73
74 int
75 rpcrdma_alloc_wq(void)
76 {
77 struct workqueue_struct *recv_wq;
78
79 recv_wq = alloc_workqueue("xprtrdma_receive",
80 WQ_MEM_RECLAIM | WQ_UNBOUND | WQ_HIGHPRI,
81 0);
82 if (!recv_wq)
83 return -ENOMEM;
84
85 rpcrdma_receive_wq = recv_wq;
86 return 0;
87 }
88
89 void
90 rpcrdma_destroy_wq(void)
91 {
92 struct workqueue_struct *wq;
93
94 if (rpcrdma_receive_wq) {
95 wq = rpcrdma_receive_wq;
96 rpcrdma_receive_wq = NULL;
97 destroy_workqueue(wq);
98 }
99 }
100
101 static void
102 rpcrdma_qp_async_error_upcall(struct ib_event *event, void *context)
103 {
104 struct rpcrdma_ep *ep = context;
105
106 pr_err("RPC: %s: %s on device %s ep %p\n",
107 __func__, ib_event_msg(event->event),
108 event->device->name, context);
109 if (ep->rep_connected == 1) {
110 ep->rep_connected = -EIO;
111 rpcrdma_conn_func(ep);
112 wake_up_all(&ep->rep_connect_wait);
113 }
114 }
115
116 /**
117 * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC
118 * @cq: completion queue (ignored)
119 * @wc: completed WR
120 *
121 */
122 static void
123 rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc)
124 {
125 /* WARNING: Only wr_cqe and status are reliable at this point */
126 if (wc->status != IB_WC_SUCCESS && wc->status != IB_WC_WR_FLUSH_ERR)
127 pr_err("rpcrdma: Send: %s (%u/0x%x)\n",
128 ib_wc_status_msg(wc->status),
129 wc->status, wc->vendor_err);
130 }
131
132 static void
133 rpcrdma_receive_worker(struct work_struct *work)
134 {
135 struct rpcrdma_rep *rep =
136 container_of(work, struct rpcrdma_rep, rr_work);
137
138 rpcrdma_reply_handler(rep);
139 }
140
141 /* Perform basic sanity checking to avoid using garbage
142 * to update the credit grant value.
143 */
144 static void
145 rpcrdma_update_granted_credits(struct rpcrdma_rep *rep)
146 {
147 struct rpcrdma_msg *rmsgp = rdmab_to_msg(rep->rr_rdmabuf);
148 struct rpcrdma_buffer *buffer = &rep->rr_rxprt->rx_buf;
149 u32 credits;
150
151 if (rep->rr_len < RPCRDMA_HDRLEN_ERR)
152 return;
153
154 credits = be32_to_cpu(rmsgp->rm_credit);
155 if (credits == 0)
156 credits = 1; /* don't deadlock */
157 else if (credits > buffer->rb_max_requests)
158 credits = buffer->rb_max_requests;
159
160 atomic_set(&buffer->rb_credits, credits);
161 }
162
163 /**
164 * rpcrdma_receive_wc - Invoked by RDMA provider for each polled Receive WC
165 * @cq: completion queue (ignored)
166 * @wc: completed WR
167 *
168 */
169 static void
170 rpcrdma_receive_wc(struct ib_cq *cq, struct ib_wc *wc)
171 {
172 struct ib_cqe *cqe = wc->wr_cqe;
173 struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep,
174 rr_cqe);
175
176 /* WARNING: Only wr_id and status are reliable at this point */
177 if (wc->status != IB_WC_SUCCESS)
178 goto out_fail;
179
180 /* status == SUCCESS means all fields in wc are trustworthy */
181 if (wc->opcode != IB_WC_RECV)
182 return;
183
184 dprintk("RPC: %s: rep %p opcode 'recv', length %u: success\n",
185 __func__, rep, wc->byte_len);
186
187 rep->rr_len = wc->byte_len;
188 ib_dma_sync_single_for_cpu(rep->rr_device,
189 rdmab_addr(rep->rr_rdmabuf),
190 rep->rr_len, DMA_FROM_DEVICE);
191
192 rpcrdma_update_granted_credits(rep);
193
194 out_schedule:
195 queue_work(rpcrdma_receive_wq, &rep->rr_work);
196 return;
197
198 out_fail:
199 if (wc->status != IB_WC_WR_FLUSH_ERR)
200 pr_err("rpcrdma: Recv: %s (%u/0x%x)\n",
201 ib_wc_status_msg(wc->status),
202 wc->status, wc->vendor_err);
203 rep->rr_len = RPCRDMA_BAD_LEN;
204 goto out_schedule;
205 }
206
207 static int
208 rpcrdma_conn_upcall(struct rdma_cm_id *id, struct rdma_cm_event *event)
209 {
210 struct rpcrdma_xprt *xprt = id->context;
211 struct rpcrdma_ia *ia = &xprt->rx_ia;
212 struct rpcrdma_ep *ep = &xprt->rx_ep;
213 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
214 struct sockaddr *sap = (struct sockaddr *)&ep->rep_remote_addr;
215 #endif
216 struct ib_qp_attr *attr = &ia->ri_qp_attr;
217 struct ib_qp_init_attr *iattr = &ia->ri_qp_init_attr;
218 int connstate = 0;
219
220 switch (event->event) {
221 case RDMA_CM_EVENT_ADDR_RESOLVED:
222 case RDMA_CM_EVENT_ROUTE_RESOLVED:
223 ia->ri_async_rc = 0;
224 complete(&ia->ri_done);
225 break;
226 case RDMA_CM_EVENT_ADDR_ERROR:
227 ia->ri_async_rc = -EHOSTUNREACH;
228 dprintk("RPC: %s: CM address resolution error, ep 0x%p\n",
229 __func__, ep);
230 complete(&ia->ri_done);
231 break;
232 case RDMA_CM_EVENT_ROUTE_ERROR:
233 ia->ri_async_rc = -ENETUNREACH;
234 dprintk("RPC: %s: CM route resolution error, ep 0x%p\n",
235 __func__, ep);
236 complete(&ia->ri_done);
237 break;
238 case RDMA_CM_EVENT_ESTABLISHED:
239 connstate = 1;
240 ib_query_qp(ia->ri_id->qp, attr,
241 IB_QP_MAX_QP_RD_ATOMIC | IB_QP_MAX_DEST_RD_ATOMIC,
242 iattr);
243 dprintk("RPC: %s: %d responder resources"
244 " (%d initiator)\n",
245 __func__, attr->max_dest_rd_atomic,
246 attr->max_rd_atomic);
247 goto connected;
248 case RDMA_CM_EVENT_CONNECT_ERROR:
249 connstate = -ENOTCONN;
250 goto connected;
251 case RDMA_CM_EVENT_UNREACHABLE:
252 connstate = -ENETDOWN;
253 goto connected;
254 case RDMA_CM_EVENT_REJECTED:
255 connstate = -ECONNREFUSED;
256 goto connected;
257 case RDMA_CM_EVENT_DISCONNECTED:
258 connstate = -ECONNABORTED;
259 goto connected;
260 case RDMA_CM_EVENT_DEVICE_REMOVAL:
261 connstate = -ENODEV;
262 connected:
263 dprintk("RPC: %s: %sconnected\n",
264 __func__, connstate > 0 ? "" : "dis");
265 atomic_set(&xprt->rx_buf.rb_credits, 1);
266 ep->rep_connected = connstate;
267 rpcrdma_conn_func(ep);
268 wake_up_all(&ep->rep_connect_wait);
269 /*FALLTHROUGH*/
270 default:
271 dprintk("RPC: %s: %pIS:%u (ep 0x%p): %s\n",
272 __func__, sap, rpc_get_port(sap), ep,
273 rdma_event_msg(event->event));
274 break;
275 }
276
277 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
278 if (connstate == 1) {
279 int ird = attr->max_dest_rd_atomic;
280 int tird = ep->rep_remote_cma.responder_resources;
281
282 pr_info("rpcrdma: connection to %pIS:%u on %s, memreg '%s', %d credits, %d responders%s\n",
283 sap, rpc_get_port(sap),
284 ia->ri_device->name,
285 ia->ri_ops->ro_displayname,
286 xprt->rx_buf.rb_max_requests,
287 ird, ird < 4 && ird < tird / 2 ? " (low!)" : "");
288 } else if (connstate < 0) {
289 pr_info("rpcrdma: connection to %pIS:%u closed (%d)\n",
290 sap, rpc_get_port(sap), connstate);
291 }
292 #endif
293
294 return 0;
295 }
296
297 static void rpcrdma_destroy_id(struct rdma_cm_id *id)
298 {
299 if (id) {
300 module_put(id->device->owner);
301 rdma_destroy_id(id);
302 }
303 }
304
305 static struct rdma_cm_id *
306 rpcrdma_create_id(struct rpcrdma_xprt *xprt,
307 struct rpcrdma_ia *ia, struct sockaddr *addr)
308 {
309 struct rdma_cm_id *id;
310 int rc;
311
312 init_completion(&ia->ri_done);
313
314 id = rdma_create_id(&init_net, rpcrdma_conn_upcall, xprt, RDMA_PS_TCP,
315 IB_QPT_RC);
316 if (IS_ERR(id)) {
317 rc = PTR_ERR(id);
318 dprintk("RPC: %s: rdma_create_id() failed %i\n",
319 __func__, rc);
320 return id;
321 }
322
323 ia->ri_async_rc = -ETIMEDOUT;
324 rc = rdma_resolve_addr(id, NULL, addr, RDMA_RESOLVE_TIMEOUT);
325 if (rc) {
326 dprintk("RPC: %s: rdma_resolve_addr() failed %i\n",
327 __func__, rc);
328 goto out;
329 }
330 wait_for_completion_interruptible_timeout(&ia->ri_done,
331 msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1);
332
333 /* FIXME:
334 * Until xprtrdma supports DEVICE_REMOVAL, the provider must
335 * be pinned while there are active NFS/RDMA mounts to prevent
336 * hangs and crashes at umount time.
337 */
338 if (!ia->ri_async_rc && !try_module_get(id->device->owner)) {
339 dprintk("RPC: %s: Failed to get device module\n",
340 __func__);
341 ia->ri_async_rc = -ENODEV;
342 }
343 rc = ia->ri_async_rc;
344 if (rc)
345 goto out;
346
347 ia->ri_async_rc = -ETIMEDOUT;
348 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
349 if (rc) {
350 dprintk("RPC: %s: rdma_resolve_route() failed %i\n",
351 __func__, rc);
352 goto put;
353 }
354 wait_for_completion_interruptible_timeout(&ia->ri_done,
355 msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1);
356 rc = ia->ri_async_rc;
357 if (rc)
358 goto put;
359
360 return id;
361 put:
362 module_put(id->device->owner);
363 out:
364 rdma_destroy_id(id);
365 return ERR_PTR(rc);
366 }
367
368 /*
369 * Exported functions.
370 */
371
372 /*
373 * Open and initialize an Interface Adapter.
374 * o initializes fields of struct rpcrdma_ia, including
375 * interface and provider attributes and protection zone.
376 */
377 int
378 rpcrdma_ia_open(struct rpcrdma_xprt *xprt, struct sockaddr *addr, int memreg)
379 {
380 struct rpcrdma_ia *ia = &xprt->rx_ia;
381 int rc;
382
383 ia->ri_id = rpcrdma_create_id(xprt, ia, addr);
384 if (IS_ERR(ia->ri_id)) {
385 rc = PTR_ERR(ia->ri_id);
386 goto out1;
387 }
388 ia->ri_device = ia->ri_id->device;
389
390 ia->ri_pd = ib_alloc_pd(ia->ri_device);
391 if (IS_ERR(ia->ri_pd)) {
392 rc = PTR_ERR(ia->ri_pd);
393 pr_err("rpcrdma: ib_alloc_pd() returned %d\n", rc);
394 goto out2;
395 }
396
397 switch (memreg) {
398 case RPCRDMA_FRMR:
399 if (frwr_is_supported(ia)) {
400 ia->ri_ops = &rpcrdma_frwr_memreg_ops;
401 break;
402 }
403 /*FALLTHROUGH*/
404 case RPCRDMA_MTHCAFMR:
405 if (fmr_is_supported(ia)) {
406 ia->ri_ops = &rpcrdma_fmr_memreg_ops;
407 break;
408 }
409 /*FALLTHROUGH*/
410 default:
411 pr_err("rpcrdma: Unsupported memory registration mode: %d\n",
412 memreg);
413 rc = -EINVAL;
414 goto out3;
415 }
416
417 return 0;
418
419 out3:
420 ib_dealloc_pd(ia->ri_pd);
421 ia->ri_pd = NULL;
422 out2:
423 rpcrdma_destroy_id(ia->ri_id);
424 ia->ri_id = NULL;
425 out1:
426 return rc;
427 }
428
429 /*
430 * Clean up/close an IA.
431 * o if event handles and PD have been initialized, free them.
432 * o close the IA
433 */
434 void
435 rpcrdma_ia_close(struct rpcrdma_ia *ia)
436 {
437 dprintk("RPC: %s: entering\n", __func__);
438 if (ia->ri_id != NULL && !IS_ERR(ia->ri_id)) {
439 if (ia->ri_id->qp)
440 rdma_destroy_qp(ia->ri_id);
441 rpcrdma_destroy_id(ia->ri_id);
442 ia->ri_id = NULL;
443 }
444
445 /* If the pd is still busy, xprtrdma missed freeing a resource */
446 if (ia->ri_pd && !IS_ERR(ia->ri_pd))
447 ib_dealloc_pd(ia->ri_pd);
448 }
449
450 /*
451 * Create unconnected endpoint.
452 */
453 int
454 rpcrdma_ep_create(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia,
455 struct rpcrdma_create_data_internal *cdata)
456 {
457 struct ib_cq *sendcq, *recvcq;
458 unsigned int max_qp_wr;
459 int rc;
460
461 if (ia->ri_device->attrs.max_sge < RPCRDMA_MAX_IOVS) {
462 dprintk("RPC: %s: insufficient sge's available\n",
463 __func__);
464 return -ENOMEM;
465 }
466
467 if (ia->ri_device->attrs.max_qp_wr <= RPCRDMA_BACKWARD_WRS) {
468 dprintk("RPC: %s: insufficient wqe's available\n",
469 __func__);
470 return -ENOMEM;
471 }
472 max_qp_wr = ia->ri_device->attrs.max_qp_wr - RPCRDMA_BACKWARD_WRS - 1;
473
474 /* check provider's send/recv wr limits */
475 if (cdata->max_requests > max_qp_wr)
476 cdata->max_requests = max_qp_wr;
477
478 ep->rep_attr.event_handler = rpcrdma_qp_async_error_upcall;
479 ep->rep_attr.qp_context = ep;
480 ep->rep_attr.srq = NULL;
481 ep->rep_attr.cap.max_send_wr = cdata->max_requests;
482 ep->rep_attr.cap.max_send_wr += RPCRDMA_BACKWARD_WRS;
483 ep->rep_attr.cap.max_send_wr += 1; /* drain cqe */
484 rc = ia->ri_ops->ro_open(ia, ep, cdata);
485 if (rc)
486 return rc;
487 ep->rep_attr.cap.max_recv_wr = cdata->max_requests;
488 ep->rep_attr.cap.max_recv_wr += RPCRDMA_BACKWARD_WRS;
489 ep->rep_attr.cap.max_recv_wr += 1; /* drain cqe */
490 ep->rep_attr.cap.max_send_sge = RPCRDMA_MAX_IOVS;
491 ep->rep_attr.cap.max_recv_sge = 1;
492 ep->rep_attr.cap.max_inline_data = 0;
493 ep->rep_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
494 ep->rep_attr.qp_type = IB_QPT_RC;
495 ep->rep_attr.port_num = ~0;
496
497 dprintk("RPC: %s: requested max: dtos: send %d recv %d; "
498 "iovs: send %d recv %d\n",
499 __func__,
500 ep->rep_attr.cap.max_send_wr,
501 ep->rep_attr.cap.max_recv_wr,
502 ep->rep_attr.cap.max_send_sge,
503 ep->rep_attr.cap.max_recv_sge);
504
505 /* set trigger for requesting send completion */
506 ep->rep_cqinit = ep->rep_attr.cap.max_send_wr/2 - 1;
507 if (ep->rep_cqinit <= 2)
508 ep->rep_cqinit = 0; /* always signal? */
509 INIT_CQCOUNT(ep);
510 init_waitqueue_head(&ep->rep_connect_wait);
511 INIT_DELAYED_WORK(&ep->rep_connect_worker, rpcrdma_connect_worker);
512
513 sendcq = ib_alloc_cq(ia->ri_device, NULL,
514 ep->rep_attr.cap.max_send_wr + 1,
515 0, IB_POLL_SOFTIRQ);
516 if (IS_ERR(sendcq)) {
517 rc = PTR_ERR(sendcq);
518 dprintk("RPC: %s: failed to create send CQ: %i\n",
519 __func__, rc);
520 goto out1;
521 }
522
523 recvcq = ib_alloc_cq(ia->ri_device, NULL,
524 ep->rep_attr.cap.max_recv_wr + 1,
525 0, IB_POLL_SOFTIRQ);
526 if (IS_ERR(recvcq)) {
527 rc = PTR_ERR(recvcq);
528 dprintk("RPC: %s: failed to create recv CQ: %i\n",
529 __func__, rc);
530 goto out2;
531 }
532
533 ep->rep_attr.send_cq = sendcq;
534 ep->rep_attr.recv_cq = recvcq;
535
536 /* Initialize cma parameters */
537 memset(&ep->rep_remote_cma, 0, sizeof(ep->rep_remote_cma));
538
539 /* RPC/RDMA does not use private data */
540 ep->rep_remote_cma.private_data = NULL;
541 ep->rep_remote_cma.private_data_len = 0;
542
543 /* Client offers RDMA Read but does not initiate */
544 ep->rep_remote_cma.initiator_depth = 0;
545 if (ia->ri_device->attrs.max_qp_rd_atom > 32) /* arbitrary but <= 255 */
546 ep->rep_remote_cma.responder_resources = 32;
547 else
548 ep->rep_remote_cma.responder_resources =
549 ia->ri_device->attrs.max_qp_rd_atom;
550
551 /* Limit transport retries so client can detect server
552 * GID changes quickly. RPC layer handles re-establishing
553 * transport connection and retransmission.
554 */
555 ep->rep_remote_cma.retry_count = 6;
556
557 /* RPC-over-RDMA handles its own flow control. In addition,
558 * make all RNR NAKs visible so we know that RPC-over-RDMA
559 * flow control is working correctly (no NAKs should be seen).
560 */
561 ep->rep_remote_cma.flow_control = 0;
562 ep->rep_remote_cma.rnr_retry_count = 0;
563
564 return 0;
565
566 out2:
567 ib_free_cq(sendcq);
568 out1:
569 return rc;
570 }
571
572 /*
573 * rpcrdma_ep_destroy
574 *
575 * Disconnect and destroy endpoint. After this, the only
576 * valid operations on the ep are to free it (if dynamically
577 * allocated) or re-create it.
578 */
579 void
580 rpcrdma_ep_destroy(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
581 {
582 dprintk("RPC: %s: entering, connected is %d\n",
583 __func__, ep->rep_connected);
584
585 cancel_delayed_work_sync(&ep->rep_connect_worker);
586
587 if (ia->ri_id->qp) {
588 rpcrdma_ep_disconnect(ep, ia);
589 rdma_destroy_qp(ia->ri_id);
590 ia->ri_id->qp = NULL;
591 }
592
593 ib_free_cq(ep->rep_attr.recv_cq);
594 ib_free_cq(ep->rep_attr.send_cq);
595 }
596
597 /*
598 * Connect unconnected endpoint.
599 */
600 int
601 rpcrdma_ep_connect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
602 {
603 struct rdma_cm_id *id, *old;
604 int rc = 0;
605 int retry_count = 0;
606
607 if (ep->rep_connected != 0) {
608 struct rpcrdma_xprt *xprt;
609 retry:
610 dprintk("RPC: %s: reconnecting...\n", __func__);
611
612 rpcrdma_ep_disconnect(ep, ia);
613
614 xprt = container_of(ia, struct rpcrdma_xprt, rx_ia);
615 id = rpcrdma_create_id(xprt, ia,
616 (struct sockaddr *)&xprt->rx_data.addr);
617 if (IS_ERR(id)) {
618 rc = -EHOSTUNREACH;
619 goto out;
620 }
621 /* TEMP TEMP TEMP - fail if new device:
622 * Deregister/remarshal *all* requests!
623 * Close and recreate adapter, pd, etc!
624 * Re-determine all attributes still sane!
625 * More stuff I haven't thought of!
626 * Rrrgh!
627 */
628 if (ia->ri_device != id->device) {
629 printk("RPC: %s: can't reconnect on "
630 "different device!\n", __func__);
631 rpcrdma_destroy_id(id);
632 rc = -ENETUNREACH;
633 goto out;
634 }
635 /* END TEMP */
636 rc = rdma_create_qp(id, ia->ri_pd, &ep->rep_attr);
637 if (rc) {
638 dprintk("RPC: %s: rdma_create_qp failed %i\n",
639 __func__, rc);
640 rpcrdma_destroy_id(id);
641 rc = -ENETUNREACH;
642 goto out;
643 }
644
645 old = ia->ri_id;
646 ia->ri_id = id;
647
648 rdma_destroy_qp(old);
649 rpcrdma_destroy_id(old);
650 } else {
651 dprintk("RPC: %s: connecting...\n", __func__);
652 rc = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr);
653 if (rc) {
654 dprintk("RPC: %s: rdma_create_qp failed %i\n",
655 __func__, rc);
656 /* do not update ep->rep_connected */
657 return -ENETUNREACH;
658 }
659 }
660
661 ep->rep_connected = 0;
662
663 rc = rdma_connect(ia->ri_id, &ep->rep_remote_cma);
664 if (rc) {
665 dprintk("RPC: %s: rdma_connect() failed with %i\n",
666 __func__, rc);
667 goto out;
668 }
669
670 wait_event_interruptible(ep->rep_connect_wait, ep->rep_connected != 0);
671
672 /*
673 * Check state. A non-peer reject indicates no listener
674 * (ECONNREFUSED), which may be a transient state. All
675 * others indicate a transport condition which has already
676 * undergone a best-effort.
677 */
678 if (ep->rep_connected == -ECONNREFUSED &&
679 ++retry_count <= RDMA_CONNECT_RETRY_MAX) {
680 dprintk("RPC: %s: non-peer_reject, retry\n", __func__);
681 goto retry;
682 }
683 if (ep->rep_connected <= 0) {
684 /* Sometimes, the only way to reliably connect to remote
685 * CMs is to use same nonzero values for ORD and IRD. */
686 if (retry_count++ <= RDMA_CONNECT_RETRY_MAX + 1 &&
687 (ep->rep_remote_cma.responder_resources == 0 ||
688 ep->rep_remote_cma.initiator_depth !=
689 ep->rep_remote_cma.responder_resources)) {
690 if (ep->rep_remote_cma.responder_resources == 0)
691 ep->rep_remote_cma.responder_resources = 1;
692 ep->rep_remote_cma.initiator_depth =
693 ep->rep_remote_cma.responder_resources;
694 goto retry;
695 }
696 rc = ep->rep_connected;
697 } else {
698 struct rpcrdma_xprt *r_xprt;
699 unsigned int extras;
700
701 dprintk("RPC: %s: connected\n", __func__);
702
703 r_xprt = container_of(ia, struct rpcrdma_xprt, rx_ia);
704 extras = r_xprt->rx_buf.rb_bc_srv_max_requests;
705
706 if (extras) {
707 rc = rpcrdma_ep_post_extra_recv(r_xprt, extras);
708 if (rc) {
709 pr_warn("%s: rpcrdma_ep_post_extra_recv: %i\n",
710 __func__, rc);
711 rc = 0;
712 }
713 }
714 }
715
716 out:
717 if (rc)
718 ep->rep_connected = rc;
719 return rc;
720 }
721
722 /*
723 * rpcrdma_ep_disconnect
724 *
725 * This is separate from destroy to facilitate the ability
726 * to reconnect without recreating the endpoint.
727 *
728 * This call is not reentrant, and must not be made in parallel
729 * on the same endpoint.
730 */
731 void
732 rpcrdma_ep_disconnect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
733 {
734 int rc;
735
736 rc = rdma_disconnect(ia->ri_id);
737 if (!rc) {
738 /* returns without wait if not connected */
739 wait_event_interruptible(ep->rep_connect_wait,
740 ep->rep_connected != 1);
741 dprintk("RPC: %s: after wait, %sconnected\n", __func__,
742 (ep->rep_connected == 1) ? "still " : "dis");
743 } else {
744 dprintk("RPC: %s: rdma_disconnect %i\n", __func__, rc);
745 ep->rep_connected = rc;
746 }
747
748 ib_drain_qp(ia->ri_id->qp);
749 }
750
751 static void
752 rpcrdma_mr_recovery_worker(struct work_struct *work)
753 {
754 struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer,
755 rb_recovery_worker.work);
756 struct rpcrdma_mw *mw;
757
758 spin_lock(&buf->rb_recovery_lock);
759 while (!list_empty(&buf->rb_stale_mrs)) {
760 mw = list_first_entry(&buf->rb_stale_mrs,
761 struct rpcrdma_mw, mw_list);
762 list_del_init(&mw->mw_list);
763 spin_unlock(&buf->rb_recovery_lock);
764
765 dprintk("RPC: %s: recovering MR %p\n", __func__, mw);
766 mw->mw_xprt->rx_ia.ri_ops->ro_recover_mr(mw);
767
768 spin_lock(&buf->rb_recovery_lock);
769 }
770 spin_unlock(&buf->rb_recovery_lock);
771 }
772
773 void
774 rpcrdma_defer_mr_recovery(struct rpcrdma_mw *mw)
775 {
776 struct rpcrdma_xprt *r_xprt = mw->mw_xprt;
777 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
778
779 spin_lock(&buf->rb_recovery_lock);
780 list_add(&mw->mw_list, &buf->rb_stale_mrs);
781 spin_unlock(&buf->rb_recovery_lock);
782
783 schedule_delayed_work(&buf->rb_recovery_worker, 0);
784 }
785
786 static void
787 rpcrdma_create_mrs(struct rpcrdma_xprt *r_xprt)
788 {
789 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
790 struct rpcrdma_ia *ia = &r_xprt->rx_ia;
791 unsigned int count;
792 LIST_HEAD(free);
793 LIST_HEAD(all);
794
795 for (count = 0; count < 32; count++) {
796 struct rpcrdma_mw *mw;
797 int rc;
798
799 mw = kzalloc(sizeof(*mw), GFP_KERNEL);
800 if (!mw)
801 break;
802
803 rc = ia->ri_ops->ro_init_mr(ia, mw);
804 if (rc) {
805 kfree(mw);
806 break;
807 }
808
809 mw->mw_xprt = r_xprt;
810
811 list_add(&mw->mw_list, &free);
812 list_add(&mw->mw_all, &all);
813 }
814
815 spin_lock(&buf->rb_mwlock);
816 list_splice(&free, &buf->rb_mws);
817 list_splice(&all, &buf->rb_all);
818 r_xprt->rx_stats.mrs_allocated += count;
819 spin_unlock(&buf->rb_mwlock);
820
821 dprintk("RPC: %s: created %u MRs\n", __func__, count);
822 }
823
824 static void
825 rpcrdma_mr_refresh_worker(struct work_struct *work)
826 {
827 struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer,
828 rb_refresh_worker.work);
829 struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt,
830 rx_buf);
831
832 rpcrdma_create_mrs(r_xprt);
833 }
834
835 struct rpcrdma_req *
836 rpcrdma_create_req(struct rpcrdma_xprt *r_xprt)
837 {
838 struct rpcrdma_buffer *buffer = &r_xprt->rx_buf;
839 struct rpcrdma_req *req;
840
841 req = kzalloc(sizeof(*req), GFP_KERNEL);
842 if (req == NULL)
843 return ERR_PTR(-ENOMEM);
844
845 INIT_LIST_HEAD(&req->rl_free);
846 spin_lock(&buffer->rb_reqslock);
847 list_add(&req->rl_all, &buffer->rb_allreqs);
848 spin_unlock(&buffer->rb_reqslock);
849 req->rl_cqe.done = rpcrdma_wc_send;
850 req->rl_buffer = &r_xprt->rx_buf;
851 INIT_LIST_HEAD(&req->rl_registered);
852 return req;
853 }
854
855 struct rpcrdma_rep *
856 rpcrdma_create_rep(struct rpcrdma_xprt *r_xprt)
857 {
858 struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data;
859 struct rpcrdma_ia *ia = &r_xprt->rx_ia;
860 struct rpcrdma_rep *rep;
861 int rc;
862
863 rc = -ENOMEM;
864 rep = kzalloc(sizeof(*rep), GFP_KERNEL);
865 if (rep == NULL)
866 goto out;
867
868 rep->rr_rdmabuf = rpcrdma_alloc_regbuf(ia, cdata->inline_rsize,
869 GFP_KERNEL);
870 if (IS_ERR(rep->rr_rdmabuf)) {
871 rc = PTR_ERR(rep->rr_rdmabuf);
872 goto out_free;
873 }
874
875 rep->rr_device = ia->ri_device;
876 rep->rr_cqe.done = rpcrdma_receive_wc;
877 rep->rr_rxprt = r_xprt;
878 INIT_WORK(&rep->rr_work, rpcrdma_receive_worker);
879 return rep;
880
881 out_free:
882 kfree(rep);
883 out:
884 return ERR_PTR(rc);
885 }
886
887 int
888 rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt)
889 {
890 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
891 int i, rc;
892
893 buf->rb_max_requests = r_xprt->rx_data.max_requests;
894 buf->rb_bc_srv_max_requests = 0;
895 atomic_set(&buf->rb_credits, 1);
896 spin_lock_init(&buf->rb_mwlock);
897 spin_lock_init(&buf->rb_lock);
898 spin_lock_init(&buf->rb_recovery_lock);
899 INIT_LIST_HEAD(&buf->rb_mws);
900 INIT_LIST_HEAD(&buf->rb_all);
901 INIT_LIST_HEAD(&buf->rb_stale_mrs);
902 INIT_DELAYED_WORK(&buf->rb_refresh_worker,
903 rpcrdma_mr_refresh_worker);
904 INIT_DELAYED_WORK(&buf->rb_recovery_worker,
905 rpcrdma_mr_recovery_worker);
906
907 rpcrdma_create_mrs(r_xprt);
908
909 INIT_LIST_HEAD(&buf->rb_send_bufs);
910 INIT_LIST_HEAD(&buf->rb_allreqs);
911 spin_lock_init(&buf->rb_reqslock);
912 for (i = 0; i < buf->rb_max_requests; i++) {
913 struct rpcrdma_req *req;
914
915 req = rpcrdma_create_req(r_xprt);
916 if (IS_ERR(req)) {
917 dprintk("RPC: %s: request buffer %d alloc"
918 " failed\n", __func__, i);
919 rc = PTR_ERR(req);
920 goto out;
921 }
922 req->rl_backchannel = false;
923 list_add(&req->rl_free, &buf->rb_send_bufs);
924 }
925
926 INIT_LIST_HEAD(&buf->rb_recv_bufs);
927 for (i = 0; i < buf->rb_max_requests + RPCRDMA_MAX_BC_REQUESTS; i++) {
928 struct rpcrdma_rep *rep;
929
930 rep = rpcrdma_create_rep(r_xprt);
931 if (IS_ERR(rep)) {
932 dprintk("RPC: %s: reply buffer %d alloc failed\n",
933 __func__, i);
934 rc = PTR_ERR(rep);
935 goto out;
936 }
937 list_add(&rep->rr_list, &buf->rb_recv_bufs);
938 }
939
940 return 0;
941 out:
942 rpcrdma_buffer_destroy(buf);
943 return rc;
944 }
945
946 static struct rpcrdma_req *
947 rpcrdma_buffer_get_req_locked(struct rpcrdma_buffer *buf)
948 {
949 struct rpcrdma_req *req;
950
951 req = list_first_entry(&buf->rb_send_bufs,
952 struct rpcrdma_req, rl_free);
953 list_del(&req->rl_free);
954 return req;
955 }
956
957 static struct rpcrdma_rep *
958 rpcrdma_buffer_get_rep_locked(struct rpcrdma_buffer *buf)
959 {
960 struct rpcrdma_rep *rep;
961
962 rep = list_first_entry(&buf->rb_recv_bufs,
963 struct rpcrdma_rep, rr_list);
964 list_del(&rep->rr_list);
965 return rep;
966 }
967
968 static void
969 rpcrdma_destroy_rep(struct rpcrdma_ia *ia, struct rpcrdma_rep *rep)
970 {
971 rpcrdma_free_regbuf(ia, rep->rr_rdmabuf);
972 kfree(rep);
973 }
974
975 void
976 rpcrdma_destroy_req(struct rpcrdma_ia *ia, struct rpcrdma_req *req)
977 {
978 rpcrdma_free_regbuf(ia, req->rl_sendbuf);
979 rpcrdma_free_regbuf(ia, req->rl_rdmabuf);
980 kfree(req);
981 }
982
983 static void
984 rpcrdma_destroy_mrs(struct rpcrdma_buffer *buf)
985 {
986 struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt,
987 rx_buf);
988 struct rpcrdma_ia *ia = rdmab_to_ia(buf);
989 struct rpcrdma_mw *mw;
990 unsigned int count;
991
992 count = 0;
993 spin_lock(&buf->rb_mwlock);
994 while (!list_empty(&buf->rb_all)) {
995 mw = list_entry(buf->rb_all.next, struct rpcrdma_mw, mw_all);
996 list_del(&mw->mw_all);
997
998 spin_unlock(&buf->rb_mwlock);
999 ia->ri_ops->ro_release_mr(mw);
1000 count++;
1001 spin_lock(&buf->rb_mwlock);
1002 }
1003 spin_unlock(&buf->rb_mwlock);
1004 r_xprt->rx_stats.mrs_allocated = 0;
1005
1006 dprintk("RPC: %s: released %u MRs\n", __func__, count);
1007 }
1008
1009 void
1010 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf)
1011 {
1012 struct rpcrdma_ia *ia = rdmab_to_ia(buf);
1013
1014 cancel_delayed_work_sync(&buf->rb_recovery_worker);
1015
1016 while (!list_empty(&buf->rb_recv_bufs)) {
1017 struct rpcrdma_rep *rep;
1018
1019 rep = rpcrdma_buffer_get_rep_locked(buf);
1020 rpcrdma_destroy_rep(ia, rep);
1021 }
1022 buf->rb_send_count = 0;
1023
1024 spin_lock(&buf->rb_reqslock);
1025 while (!list_empty(&buf->rb_allreqs)) {
1026 struct rpcrdma_req *req;
1027
1028 req = list_first_entry(&buf->rb_allreqs,
1029 struct rpcrdma_req, rl_all);
1030 list_del(&req->rl_all);
1031
1032 spin_unlock(&buf->rb_reqslock);
1033 rpcrdma_destroy_req(ia, req);
1034 spin_lock(&buf->rb_reqslock);
1035 }
1036 spin_unlock(&buf->rb_reqslock);
1037 buf->rb_recv_count = 0;
1038
1039 rpcrdma_destroy_mrs(buf);
1040 }
1041
1042 struct rpcrdma_mw *
1043 rpcrdma_get_mw(struct rpcrdma_xprt *r_xprt)
1044 {
1045 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1046 struct rpcrdma_mw *mw = NULL;
1047
1048 spin_lock(&buf->rb_mwlock);
1049 if (!list_empty(&buf->rb_mws)) {
1050 mw = list_first_entry(&buf->rb_mws,
1051 struct rpcrdma_mw, mw_list);
1052 list_del_init(&mw->mw_list);
1053 }
1054 spin_unlock(&buf->rb_mwlock);
1055
1056 if (!mw)
1057 goto out_nomws;
1058 return mw;
1059
1060 out_nomws:
1061 dprintk("RPC: %s: no MWs available\n", __func__);
1062 schedule_delayed_work(&buf->rb_refresh_worker, 0);
1063
1064 /* Allow the reply handler and refresh worker to run */
1065 cond_resched();
1066
1067 return NULL;
1068 }
1069
1070 void
1071 rpcrdma_put_mw(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mw *mw)
1072 {
1073 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1074
1075 spin_lock(&buf->rb_mwlock);
1076 list_add_tail(&mw->mw_list, &buf->rb_mws);
1077 spin_unlock(&buf->rb_mwlock);
1078 }
1079
1080 static struct rpcrdma_rep *
1081 rpcrdma_buffer_get_rep(struct rpcrdma_buffer *buffers)
1082 {
1083 /* If an RPC previously completed without a reply (say, a
1084 * credential problem or a soft timeout occurs) then hold off
1085 * on supplying more Receive buffers until the number of new
1086 * pending RPCs catches up to the number of posted Receives.
1087 */
1088 if (unlikely(buffers->rb_send_count < buffers->rb_recv_count))
1089 return NULL;
1090
1091 if (unlikely(list_empty(&buffers->rb_recv_bufs)))
1092 return NULL;
1093 buffers->rb_recv_count++;
1094 return rpcrdma_buffer_get_rep_locked(buffers);
1095 }
1096
1097 /*
1098 * Get a set of request/reply buffers.
1099 *
1100 * Reply buffer (if available) is attached to send buffer upon return.
1101 */
1102 struct rpcrdma_req *
1103 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers)
1104 {
1105 struct rpcrdma_req *req;
1106
1107 spin_lock(&buffers->rb_lock);
1108 if (list_empty(&buffers->rb_send_bufs))
1109 goto out_reqbuf;
1110 buffers->rb_send_count++;
1111 req = rpcrdma_buffer_get_req_locked(buffers);
1112 req->rl_reply = rpcrdma_buffer_get_rep(buffers);
1113 spin_unlock(&buffers->rb_lock);
1114 return req;
1115
1116 out_reqbuf:
1117 spin_unlock(&buffers->rb_lock);
1118 pr_warn("RPC: %s: out of request buffers\n", __func__);
1119 return NULL;
1120 }
1121
1122 /*
1123 * Put request/reply buffers back into pool.
1124 * Pre-decrement counter/array index.
1125 */
1126 void
1127 rpcrdma_buffer_put(struct rpcrdma_req *req)
1128 {
1129 struct rpcrdma_buffer *buffers = req->rl_buffer;
1130 struct rpcrdma_rep *rep = req->rl_reply;
1131
1132 req->rl_niovs = 0;
1133 req->rl_reply = NULL;
1134
1135 spin_lock(&buffers->rb_lock);
1136 buffers->rb_send_count--;
1137 list_add_tail(&req->rl_free, &buffers->rb_send_bufs);
1138 if (rep) {
1139 buffers->rb_recv_count--;
1140 list_add_tail(&rep->rr_list, &buffers->rb_recv_bufs);
1141 }
1142 spin_unlock(&buffers->rb_lock);
1143 }
1144
1145 /*
1146 * Recover reply buffers from pool.
1147 * This happens when recovering from disconnect.
1148 */
1149 void
1150 rpcrdma_recv_buffer_get(struct rpcrdma_req *req)
1151 {
1152 struct rpcrdma_buffer *buffers = req->rl_buffer;
1153
1154 spin_lock(&buffers->rb_lock);
1155 req->rl_reply = rpcrdma_buffer_get_rep(buffers);
1156 spin_unlock(&buffers->rb_lock);
1157 }
1158
1159 /*
1160 * Put reply buffers back into pool when not attached to
1161 * request. This happens in error conditions.
1162 */
1163 void
1164 rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep)
1165 {
1166 struct rpcrdma_buffer *buffers = &rep->rr_rxprt->rx_buf;
1167
1168 spin_lock(&buffers->rb_lock);
1169 buffers->rb_recv_count--;
1170 list_add_tail(&rep->rr_list, &buffers->rb_recv_bufs);
1171 spin_unlock(&buffers->rb_lock);
1172 }
1173
1174 /*
1175 * Wrappers for internal-use kmalloc memory registration, used by buffer code.
1176 */
1177
1178 /**
1179 * rpcrdma_alloc_regbuf - kmalloc and register memory for SEND/RECV buffers
1180 * @ia: controlling rpcrdma_ia
1181 * @size: size of buffer to be allocated, in bytes
1182 * @flags: GFP flags
1183 *
1184 * Returns pointer to private header of an area of internally
1185 * registered memory, or an ERR_PTR. The registered buffer follows
1186 * the end of the private header.
1187 *
1188 * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for
1189 * receiving the payload of RDMA RECV operations. regbufs are not
1190 * used for RDMA READ/WRITE operations, thus are registered only for
1191 * LOCAL access.
1192 */
1193 struct rpcrdma_regbuf *
1194 rpcrdma_alloc_regbuf(struct rpcrdma_ia *ia, size_t size, gfp_t flags)
1195 {
1196 struct rpcrdma_regbuf *rb;
1197 struct ib_sge *iov;
1198
1199 rb = kmalloc(sizeof(*rb) + size, flags);
1200 if (rb == NULL)
1201 goto out;
1202
1203 iov = &rb->rg_iov;
1204 iov->addr = ib_dma_map_single(ia->ri_device,
1205 (void *)rb->rg_base, size,
1206 DMA_BIDIRECTIONAL);
1207 if (ib_dma_mapping_error(ia->ri_device, iov->addr))
1208 goto out_free;
1209
1210 iov->length = size;
1211 iov->lkey = ia->ri_pd->local_dma_lkey;
1212 rb->rg_size = size;
1213 rb->rg_owner = NULL;
1214 return rb;
1215
1216 out_free:
1217 kfree(rb);
1218 out:
1219 return ERR_PTR(-ENOMEM);
1220 }
1221
1222 /**
1223 * rpcrdma_free_regbuf - deregister and free registered buffer
1224 * @ia: controlling rpcrdma_ia
1225 * @rb: regbuf to be deregistered and freed
1226 */
1227 void
1228 rpcrdma_free_regbuf(struct rpcrdma_ia *ia, struct rpcrdma_regbuf *rb)
1229 {
1230 struct ib_sge *iov;
1231
1232 if (!rb)
1233 return;
1234
1235 iov = &rb->rg_iov;
1236 ib_dma_unmap_single(ia->ri_device,
1237 iov->addr, iov->length, DMA_BIDIRECTIONAL);
1238 kfree(rb);
1239 }
1240
1241 /*
1242 * Prepost any receive buffer, then post send.
1243 *
1244 * Receive buffer is donated to hardware, reclaimed upon recv completion.
1245 */
1246 int
1247 rpcrdma_ep_post(struct rpcrdma_ia *ia,
1248 struct rpcrdma_ep *ep,
1249 struct rpcrdma_req *req)
1250 {
1251 struct ib_device *device = ia->ri_device;
1252 struct ib_send_wr send_wr, *send_wr_fail;
1253 struct rpcrdma_rep *rep = req->rl_reply;
1254 struct ib_sge *iov = req->rl_send_iov;
1255 int i, rc;
1256
1257 if (rep) {
1258 rc = rpcrdma_ep_post_recv(ia, ep, rep);
1259 if (rc)
1260 return rc;
1261 req->rl_reply = NULL;
1262 }
1263
1264 send_wr.next = NULL;
1265 send_wr.wr_cqe = &req->rl_cqe;
1266 send_wr.sg_list = iov;
1267 send_wr.num_sge = req->rl_niovs;
1268 send_wr.opcode = IB_WR_SEND;
1269
1270 for (i = 0; i < send_wr.num_sge; i++)
1271 ib_dma_sync_single_for_device(device, iov[i].addr,
1272 iov[i].length, DMA_TO_DEVICE);
1273 dprintk("RPC: %s: posting %d s/g entries\n",
1274 __func__, send_wr.num_sge);
1275
1276 if (DECR_CQCOUNT(ep) > 0)
1277 send_wr.send_flags = 0;
1278 else { /* Provider must take a send completion every now and then */
1279 INIT_CQCOUNT(ep);
1280 send_wr.send_flags = IB_SEND_SIGNALED;
1281 }
1282
1283 rc = ib_post_send(ia->ri_id->qp, &send_wr, &send_wr_fail);
1284 if (rc)
1285 goto out_postsend_err;
1286 return 0;
1287
1288 out_postsend_err:
1289 pr_err("rpcrdma: RDMA Send ib_post_send returned %i\n", rc);
1290 return -ENOTCONN;
1291 }
1292
1293 /*
1294 * (Re)post a receive buffer.
1295 */
1296 int
1297 rpcrdma_ep_post_recv(struct rpcrdma_ia *ia,
1298 struct rpcrdma_ep *ep,
1299 struct rpcrdma_rep *rep)
1300 {
1301 struct ib_recv_wr recv_wr, *recv_wr_fail;
1302 int rc;
1303
1304 recv_wr.next = NULL;
1305 recv_wr.wr_cqe = &rep->rr_cqe;
1306 recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov;
1307 recv_wr.num_sge = 1;
1308
1309 ib_dma_sync_single_for_cpu(ia->ri_device,
1310 rdmab_addr(rep->rr_rdmabuf),
1311 rdmab_length(rep->rr_rdmabuf),
1312 DMA_BIDIRECTIONAL);
1313
1314 rc = ib_post_recv(ia->ri_id->qp, &recv_wr, &recv_wr_fail);
1315 if (rc)
1316 goto out_postrecv;
1317 return 0;
1318
1319 out_postrecv:
1320 pr_err("rpcrdma: ib_post_recv returned %i\n", rc);
1321 return -ENOTCONN;
1322 }
1323
1324 /**
1325 * rpcrdma_ep_post_extra_recv - Post buffers for incoming backchannel requests
1326 * @r_xprt: transport associated with these backchannel resources
1327 * @min_reqs: minimum number of incoming requests expected
1328 *
1329 * Returns zero if all requested buffers were posted, or a negative errno.
1330 */
1331 int
1332 rpcrdma_ep_post_extra_recv(struct rpcrdma_xprt *r_xprt, unsigned int count)
1333 {
1334 struct rpcrdma_buffer *buffers = &r_xprt->rx_buf;
1335 struct rpcrdma_ia *ia = &r_xprt->rx_ia;
1336 struct rpcrdma_ep *ep = &r_xprt->rx_ep;
1337 struct rpcrdma_rep *rep;
1338 int rc;
1339
1340 while (count--) {
1341 spin_lock(&buffers->rb_lock);
1342 if (list_empty(&buffers->rb_recv_bufs))
1343 goto out_reqbuf;
1344 rep = rpcrdma_buffer_get_rep_locked(buffers);
1345 spin_unlock(&buffers->rb_lock);
1346
1347 rc = rpcrdma_ep_post_recv(ia, ep, rep);
1348 if (rc)
1349 goto out_rc;
1350 }
1351
1352 return 0;
1353
1354 out_reqbuf:
1355 spin_unlock(&buffers->rb_lock);
1356 pr_warn("%s: no extra receive buffers\n", __func__);
1357 return -ENOMEM;
1358
1359 out_rc:
1360 rpcrdma_recv_buffer_put(rep);
1361 return rc;
1362 }