]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/sunrpc/xprtsock.c
ASoC: ux500: Restore platform DAI assignments
[mirror_ubuntu-artful-kernel.git] / net / sunrpc / xprtsock.c
1 /*
2 * linux/net/sunrpc/xprtsock.c
3 *
4 * Client-side transport implementation for sockets.
5 *
6 * TCP callback races fixes (C) 1998 Red Hat
7 * TCP send fixes (C) 1998 Red Hat
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10 *
11 * Rewrite of larges part of the code in order to stabilize TCP stuff.
12 * Fix behaviour when socket buffer is full.
13 * (C) 1999 Trond Myklebust <trond.myklebust@fys.uio.no>
14 *
15 * IP socket transport implementation, (C) 2005 Chuck Lever <cel@netapp.com>
16 *
17 * IPv6 support contributed by Gilles Quillard, Bull Open Source, 2005.
18 * <gilles.quillard@bull.net>
19 */
20
21 #include <linux/types.h>
22 #include <linux/string.h>
23 #include <linux/slab.h>
24 #include <linux/module.h>
25 #include <linux/capability.h>
26 #include <linux/pagemap.h>
27 #include <linux/errno.h>
28 #include <linux/socket.h>
29 #include <linux/in.h>
30 #include <linux/net.h>
31 #include <linux/mm.h>
32 #include <linux/un.h>
33 #include <linux/udp.h>
34 #include <linux/tcp.h>
35 #include <linux/sunrpc/clnt.h>
36 #include <linux/sunrpc/addr.h>
37 #include <linux/sunrpc/sched.h>
38 #include <linux/sunrpc/svcsock.h>
39 #include <linux/sunrpc/xprtsock.h>
40 #include <linux/file.h>
41 #ifdef CONFIG_SUNRPC_BACKCHANNEL
42 #include <linux/sunrpc/bc_xprt.h>
43 #endif
44
45 #include <net/sock.h>
46 #include <net/checksum.h>
47 #include <net/udp.h>
48 #include <net/tcp.h>
49
50 #include <trace/events/sunrpc.h>
51
52 #include "sunrpc.h"
53
54 static void xs_close(struct rpc_xprt *xprt);
55 static void xs_tcp_set_socket_timeouts(struct rpc_xprt *xprt,
56 struct socket *sock);
57
58 /*
59 * xprtsock tunables
60 */
61 static unsigned int xprt_udp_slot_table_entries = RPC_DEF_SLOT_TABLE;
62 static unsigned int xprt_tcp_slot_table_entries = RPC_MIN_SLOT_TABLE;
63 static unsigned int xprt_max_tcp_slot_table_entries = RPC_MAX_SLOT_TABLE;
64
65 static unsigned int xprt_min_resvport = RPC_DEF_MIN_RESVPORT;
66 static unsigned int xprt_max_resvport = RPC_DEF_MAX_RESVPORT;
67
68 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
69
70 #define XS_TCP_LINGER_TO (15U * HZ)
71 static unsigned int xs_tcp_fin_timeout __read_mostly = XS_TCP_LINGER_TO;
72
73 /*
74 * We can register our own files under /proc/sys/sunrpc by
75 * calling register_sysctl_table() again. The files in that
76 * directory become the union of all files registered there.
77 *
78 * We simply need to make sure that we don't collide with
79 * someone else's file names!
80 */
81
82 static unsigned int min_slot_table_size = RPC_MIN_SLOT_TABLE;
83 static unsigned int max_slot_table_size = RPC_MAX_SLOT_TABLE;
84 static unsigned int max_tcp_slot_table_limit = RPC_MAX_SLOT_TABLE_LIMIT;
85 static unsigned int xprt_min_resvport_limit = RPC_MIN_RESVPORT;
86 static unsigned int xprt_max_resvport_limit = RPC_MAX_RESVPORT;
87
88 static struct ctl_table_header *sunrpc_table_header;
89
90 /*
91 * FIXME: changing the UDP slot table size should also resize the UDP
92 * socket buffers for existing UDP transports
93 */
94 static struct ctl_table xs_tunables_table[] = {
95 {
96 .procname = "udp_slot_table_entries",
97 .data = &xprt_udp_slot_table_entries,
98 .maxlen = sizeof(unsigned int),
99 .mode = 0644,
100 .proc_handler = proc_dointvec_minmax,
101 .extra1 = &min_slot_table_size,
102 .extra2 = &max_slot_table_size
103 },
104 {
105 .procname = "tcp_slot_table_entries",
106 .data = &xprt_tcp_slot_table_entries,
107 .maxlen = sizeof(unsigned int),
108 .mode = 0644,
109 .proc_handler = proc_dointvec_minmax,
110 .extra1 = &min_slot_table_size,
111 .extra2 = &max_slot_table_size
112 },
113 {
114 .procname = "tcp_max_slot_table_entries",
115 .data = &xprt_max_tcp_slot_table_entries,
116 .maxlen = sizeof(unsigned int),
117 .mode = 0644,
118 .proc_handler = proc_dointvec_minmax,
119 .extra1 = &min_slot_table_size,
120 .extra2 = &max_tcp_slot_table_limit
121 },
122 {
123 .procname = "min_resvport",
124 .data = &xprt_min_resvport,
125 .maxlen = sizeof(unsigned int),
126 .mode = 0644,
127 .proc_handler = proc_dointvec_minmax,
128 .extra1 = &xprt_min_resvport_limit,
129 .extra2 = &xprt_max_resvport
130 },
131 {
132 .procname = "max_resvport",
133 .data = &xprt_max_resvport,
134 .maxlen = sizeof(unsigned int),
135 .mode = 0644,
136 .proc_handler = proc_dointvec_minmax,
137 .extra1 = &xprt_min_resvport,
138 .extra2 = &xprt_max_resvport_limit
139 },
140 {
141 .procname = "tcp_fin_timeout",
142 .data = &xs_tcp_fin_timeout,
143 .maxlen = sizeof(xs_tcp_fin_timeout),
144 .mode = 0644,
145 .proc_handler = proc_dointvec_jiffies,
146 },
147 { },
148 };
149
150 static struct ctl_table sunrpc_table[] = {
151 {
152 .procname = "sunrpc",
153 .mode = 0555,
154 .child = xs_tunables_table
155 },
156 { },
157 };
158
159 #endif
160
161 /*
162 * Wait duration for a reply from the RPC portmapper.
163 */
164 #define XS_BIND_TO (60U * HZ)
165
166 /*
167 * Delay if a UDP socket connect error occurs. This is most likely some
168 * kind of resource problem on the local host.
169 */
170 #define XS_UDP_REEST_TO (2U * HZ)
171
172 /*
173 * The reestablish timeout allows clients to delay for a bit before attempting
174 * to reconnect to a server that just dropped our connection.
175 *
176 * We implement an exponential backoff when trying to reestablish a TCP
177 * transport connection with the server. Some servers like to drop a TCP
178 * connection when they are overworked, so we start with a short timeout and
179 * increase over time if the server is down or not responding.
180 */
181 #define XS_TCP_INIT_REEST_TO (3U * HZ)
182
183 /*
184 * TCP idle timeout; client drops the transport socket if it is idle
185 * for this long. Note that we also timeout UDP sockets to prevent
186 * holding port numbers when there is no RPC traffic.
187 */
188 #define XS_IDLE_DISC_TO (5U * 60 * HZ)
189
190 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
191 # undef RPC_DEBUG_DATA
192 # define RPCDBG_FACILITY RPCDBG_TRANS
193 #endif
194
195 #ifdef RPC_DEBUG_DATA
196 static void xs_pktdump(char *msg, u32 *packet, unsigned int count)
197 {
198 u8 *buf = (u8 *) packet;
199 int j;
200
201 dprintk("RPC: %s\n", msg);
202 for (j = 0; j < count && j < 128; j += 4) {
203 if (!(j & 31)) {
204 if (j)
205 dprintk("\n");
206 dprintk("0x%04x ", j);
207 }
208 dprintk("%02x%02x%02x%02x ",
209 buf[j], buf[j+1], buf[j+2], buf[j+3]);
210 }
211 dprintk("\n");
212 }
213 #else
214 static inline void xs_pktdump(char *msg, u32 *packet, unsigned int count)
215 {
216 /* NOP */
217 }
218 #endif
219
220 static inline struct rpc_xprt *xprt_from_sock(struct sock *sk)
221 {
222 return (struct rpc_xprt *) sk->sk_user_data;
223 }
224
225 static inline struct sockaddr *xs_addr(struct rpc_xprt *xprt)
226 {
227 return (struct sockaddr *) &xprt->addr;
228 }
229
230 static inline struct sockaddr_un *xs_addr_un(struct rpc_xprt *xprt)
231 {
232 return (struct sockaddr_un *) &xprt->addr;
233 }
234
235 static inline struct sockaddr_in *xs_addr_in(struct rpc_xprt *xprt)
236 {
237 return (struct sockaddr_in *) &xprt->addr;
238 }
239
240 static inline struct sockaddr_in6 *xs_addr_in6(struct rpc_xprt *xprt)
241 {
242 return (struct sockaddr_in6 *) &xprt->addr;
243 }
244
245 static void xs_format_common_peer_addresses(struct rpc_xprt *xprt)
246 {
247 struct sockaddr *sap = xs_addr(xprt);
248 struct sockaddr_in6 *sin6;
249 struct sockaddr_in *sin;
250 struct sockaddr_un *sun;
251 char buf[128];
252
253 switch (sap->sa_family) {
254 case AF_LOCAL:
255 sun = xs_addr_un(xprt);
256 strlcpy(buf, sun->sun_path, sizeof(buf));
257 xprt->address_strings[RPC_DISPLAY_ADDR] =
258 kstrdup(buf, GFP_KERNEL);
259 break;
260 case AF_INET:
261 (void)rpc_ntop(sap, buf, sizeof(buf));
262 xprt->address_strings[RPC_DISPLAY_ADDR] =
263 kstrdup(buf, GFP_KERNEL);
264 sin = xs_addr_in(xprt);
265 snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr));
266 break;
267 case AF_INET6:
268 (void)rpc_ntop(sap, buf, sizeof(buf));
269 xprt->address_strings[RPC_DISPLAY_ADDR] =
270 kstrdup(buf, GFP_KERNEL);
271 sin6 = xs_addr_in6(xprt);
272 snprintf(buf, sizeof(buf), "%pi6", &sin6->sin6_addr);
273 break;
274 default:
275 BUG();
276 }
277
278 xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL);
279 }
280
281 static void xs_format_common_peer_ports(struct rpc_xprt *xprt)
282 {
283 struct sockaddr *sap = xs_addr(xprt);
284 char buf[128];
285
286 snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap));
287 xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL);
288
289 snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap));
290 xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL);
291 }
292
293 static void xs_format_peer_addresses(struct rpc_xprt *xprt,
294 const char *protocol,
295 const char *netid)
296 {
297 xprt->address_strings[RPC_DISPLAY_PROTO] = protocol;
298 xprt->address_strings[RPC_DISPLAY_NETID] = netid;
299 xs_format_common_peer_addresses(xprt);
300 xs_format_common_peer_ports(xprt);
301 }
302
303 static void xs_update_peer_port(struct rpc_xprt *xprt)
304 {
305 kfree(xprt->address_strings[RPC_DISPLAY_HEX_PORT]);
306 kfree(xprt->address_strings[RPC_DISPLAY_PORT]);
307
308 xs_format_common_peer_ports(xprt);
309 }
310
311 static void xs_free_peer_addresses(struct rpc_xprt *xprt)
312 {
313 unsigned int i;
314
315 for (i = 0; i < RPC_DISPLAY_MAX; i++)
316 switch (i) {
317 case RPC_DISPLAY_PROTO:
318 case RPC_DISPLAY_NETID:
319 continue;
320 default:
321 kfree(xprt->address_strings[i]);
322 }
323 }
324
325 #define XS_SENDMSG_FLAGS (MSG_DONTWAIT | MSG_NOSIGNAL)
326
327 static int xs_send_kvec(struct socket *sock, struct sockaddr *addr, int addrlen, struct kvec *vec, unsigned int base, int more)
328 {
329 struct msghdr msg = {
330 .msg_name = addr,
331 .msg_namelen = addrlen,
332 .msg_flags = XS_SENDMSG_FLAGS | (more ? MSG_MORE : 0),
333 };
334 struct kvec iov = {
335 .iov_base = vec->iov_base + base,
336 .iov_len = vec->iov_len - base,
337 };
338
339 if (iov.iov_len != 0)
340 return kernel_sendmsg(sock, &msg, &iov, 1, iov.iov_len);
341 return kernel_sendmsg(sock, &msg, NULL, 0, 0);
342 }
343
344 static int xs_send_pagedata(struct socket *sock, struct xdr_buf *xdr, unsigned int base, int more, bool zerocopy, int *sent_p)
345 {
346 ssize_t (*do_sendpage)(struct socket *sock, struct page *page,
347 int offset, size_t size, int flags);
348 struct page **ppage;
349 unsigned int remainder;
350 int err;
351
352 remainder = xdr->page_len - base;
353 base += xdr->page_base;
354 ppage = xdr->pages + (base >> PAGE_SHIFT);
355 base &= ~PAGE_MASK;
356 do_sendpage = sock->ops->sendpage;
357 if (!zerocopy)
358 do_sendpage = sock_no_sendpage;
359 for(;;) {
360 unsigned int len = min_t(unsigned int, PAGE_SIZE - base, remainder);
361 int flags = XS_SENDMSG_FLAGS;
362
363 remainder -= len;
364 if (more)
365 flags |= MSG_MORE;
366 if (remainder != 0)
367 flags |= MSG_SENDPAGE_NOTLAST | MSG_MORE;
368 err = do_sendpage(sock, *ppage, base, len, flags);
369 if (remainder == 0 || err != len)
370 break;
371 *sent_p += err;
372 ppage++;
373 base = 0;
374 }
375 if (err > 0) {
376 *sent_p += err;
377 err = 0;
378 }
379 return err;
380 }
381
382 /**
383 * xs_sendpages - write pages directly to a socket
384 * @sock: socket to send on
385 * @addr: UDP only -- address of destination
386 * @addrlen: UDP only -- length of destination address
387 * @xdr: buffer containing this request
388 * @base: starting position in the buffer
389 * @zerocopy: true if it is safe to use sendpage()
390 * @sent_p: return the total number of bytes successfully queued for sending
391 *
392 */
393 static int xs_sendpages(struct socket *sock, struct sockaddr *addr, int addrlen, struct xdr_buf *xdr, unsigned int base, bool zerocopy, int *sent_p)
394 {
395 unsigned int remainder = xdr->len - base;
396 int err = 0;
397 int sent = 0;
398
399 if (unlikely(!sock))
400 return -ENOTSOCK;
401
402 if (base != 0) {
403 addr = NULL;
404 addrlen = 0;
405 }
406
407 if (base < xdr->head[0].iov_len || addr != NULL) {
408 unsigned int len = xdr->head[0].iov_len - base;
409 remainder -= len;
410 err = xs_send_kvec(sock, addr, addrlen, &xdr->head[0], base, remainder != 0);
411 if (remainder == 0 || err != len)
412 goto out;
413 *sent_p += err;
414 base = 0;
415 } else
416 base -= xdr->head[0].iov_len;
417
418 if (base < xdr->page_len) {
419 unsigned int len = xdr->page_len - base;
420 remainder -= len;
421 err = xs_send_pagedata(sock, xdr, base, remainder != 0, zerocopy, &sent);
422 *sent_p += sent;
423 if (remainder == 0 || sent != len)
424 goto out;
425 base = 0;
426 } else
427 base -= xdr->page_len;
428
429 if (base >= xdr->tail[0].iov_len)
430 return 0;
431 err = xs_send_kvec(sock, NULL, 0, &xdr->tail[0], base, 0);
432 out:
433 if (err > 0) {
434 *sent_p += err;
435 err = 0;
436 }
437 return err;
438 }
439
440 static void xs_nospace_callback(struct rpc_task *task)
441 {
442 struct sock_xprt *transport = container_of(task->tk_rqstp->rq_xprt, struct sock_xprt, xprt);
443
444 transport->inet->sk_write_pending--;
445 }
446
447 /**
448 * xs_nospace - place task on wait queue if transmit was incomplete
449 * @task: task to put to sleep
450 *
451 */
452 static int xs_nospace(struct rpc_task *task)
453 {
454 struct rpc_rqst *req = task->tk_rqstp;
455 struct rpc_xprt *xprt = req->rq_xprt;
456 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt);
457 struct sock *sk = transport->inet;
458 int ret = -EAGAIN;
459
460 dprintk("RPC: %5u xmit incomplete (%u left of %u)\n",
461 task->tk_pid, req->rq_slen - req->rq_bytes_sent,
462 req->rq_slen);
463
464 /* Protect against races with write_space */
465 spin_lock_bh(&xprt->transport_lock);
466
467 /* Don't race with disconnect */
468 if (xprt_connected(xprt)) {
469 /* wait for more buffer space */
470 sk->sk_write_pending++;
471 xprt_wait_for_buffer_space(task, xs_nospace_callback);
472 } else
473 ret = -ENOTCONN;
474
475 spin_unlock_bh(&xprt->transport_lock);
476
477 /* Race breaker in case memory is freed before above code is called */
478 if (ret == -EAGAIN) {
479 struct socket_wq *wq;
480
481 rcu_read_lock();
482 wq = rcu_dereference(sk->sk_wq);
483 set_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags);
484 rcu_read_unlock();
485
486 sk->sk_write_space(sk);
487 }
488 return ret;
489 }
490
491 /*
492 * Construct a stream transport record marker in @buf.
493 */
494 static inline void xs_encode_stream_record_marker(struct xdr_buf *buf)
495 {
496 u32 reclen = buf->len - sizeof(rpc_fraghdr);
497 rpc_fraghdr *base = buf->head[0].iov_base;
498 *base = cpu_to_be32(RPC_LAST_STREAM_FRAGMENT | reclen);
499 }
500
501 /**
502 * xs_local_send_request - write an RPC request to an AF_LOCAL socket
503 * @task: RPC task that manages the state of an RPC request
504 *
505 * Return values:
506 * 0: The request has been sent
507 * EAGAIN: The socket was blocked, please call again later to
508 * complete the request
509 * ENOTCONN: Caller needs to invoke connect logic then call again
510 * other: Some other error occured, the request was not sent
511 */
512 static int xs_local_send_request(struct rpc_task *task)
513 {
514 struct rpc_rqst *req = task->tk_rqstp;
515 struct rpc_xprt *xprt = req->rq_xprt;
516 struct sock_xprt *transport =
517 container_of(xprt, struct sock_xprt, xprt);
518 struct xdr_buf *xdr = &req->rq_snd_buf;
519 int status;
520 int sent = 0;
521
522 xs_encode_stream_record_marker(&req->rq_snd_buf);
523
524 xs_pktdump("packet data:",
525 req->rq_svec->iov_base, req->rq_svec->iov_len);
526
527 status = xs_sendpages(transport->sock, NULL, 0, xdr, req->rq_bytes_sent,
528 true, &sent);
529 dprintk("RPC: %s(%u) = %d\n",
530 __func__, xdr->len - req->rq_bytes_sent, status);
531
532 if (status == -EAGAIN && sock_writeable(transport->inet))
533 status = -ENOBUFS;
534
535 if (likely(sent > 0) || status == 0) {
536 req->rq_bytes_sent += sent;
537 req->rq_xmit_bytes_sent += sent;
538 if (likely(req->rq_bytes_sent >= req->rq_slen)) {
539 req->rq_bytes_sent = 0;
540 return 0;
541 }
542 status = -EAGAIN;
543 }
544
545 switch (status) {
546 case -ENOBUFS:
547 break;
548 case -EAGAIN:
549 status = xs_nospace(task);
550 break;
551 default:
552 dprintk("RPC: sendmsg returned unrecognized error %d\n",
553 -status);
554 case -EPIPE:
555 xs_close(xprt);
556 status = -ENOTCONN;
557 }
558
559 return status;
560 }
561
562 /**
563 * xs_udp_send_request - write an RPC request to a UDP socket
564 * @task: address of RPC task that manages the state of an RPC request
565 *
566 * Return values:
567 * 0: The request has been sent
568 * EAGAIN: The socket was blocked, please call again later to
569 * complete the request
570 * ENOTCONN: Caller needs to invoke connect logic then call again
571 * other: Some other error occurred, the request was not sent
572 */
573 static int xs_udp_send_request(struct rpc_task *task)
574 {
575 struct rpc_rqst *req = task->tk_rqstp;
576 struct rpc_xprt *xprt = req->rq_xprt;
577 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt);
578 struct xdr_buf *xdr = &req->rq_snd_buf;
579 int sent = 0;
580 int status;
581
582 xs_pktdump("packet data:",
583 req->rq_svec->iov_base,
584 req->rq_svec->iov_len);
585
586 if (!xprt_bound(xprt))
587 return -ENOTCONN;
588 status = xs_sendpages(transport->sock, xs_addr(xprt), xprt->addrlen,
589 xdr, req->rq_bytes_sent, true, &sent);
590
591 dprintk("RPC: xs_udp_send_request(%u) = %d\n",
592 xdr->len - req->rq_bytes_sent, status);
593
594 /* firewall is blocking us, don't return -EAGAIN or we end up looping */
595 if (status == -EPERM)
596 goto process_status;
597
598 if (status == -EAGAIN && sock_writeable(transport->inet))
599 status = -ENOBUFS;
600
601 if (sent > 0 || status == 0) {
602 req->rq_xmit_bytes_sent += sent;
603 if (sent >= req->rq_slen)
604 return 0;
605 /* Still some bytes left; set up for a retry later. */
606 status = -EAGAIN;
607 }
608
609 process_status:
610 switch (status) {
611 case -ENOTSOCK:
612 status = -ENOTCONN;
613 /* Should we call xs_close() here? */
614 break;
615 case -EAGAIN:
616 status = xs_nospace(task);
617 break;
618 case -ENETUNREACH:
619 case -ENOBUFS:
620 case -EPIPE:
621 case -ECONNREFUSED:
622 case -EPERM:
623 /* When the server has died, an ICMP port unreachable message
624 * prompts ECONNREFUSED. */
625 break;
626 default:
627 dprintk("RPC: sendmsg returned unrecognized error %d\n",
628 -status);
629 }
630
631 return status;
632 }
633
634 /**
635 * xs_tcp_send_request - write an RPC request to a TCP socket
636 * @task: address of RPC task that manages the state of an RPC request
637 *
638 * Return values:
639 * 0: The request has been sent
640 * EAGAIN: The socket was blocked, please call again later to
641 * complete the request
642 * ENOTCONN: Caller needs to invoke connect logic then call again
643 * other: Some other error occurred, the request was not sent
644 *
645 * XXX: In the case of soft timeouts, should we eventually give up
646 * if sendmsg is not able to make progress?
647 */
648 static int xs_tcp_send_request(struct rpc_task *task)
649 {
650 struct rpc_rqst *req = task->tk_rqstp;
651 struct rpc_xprt *xprt = req->rq_xprt;
652 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt);
653 struct xdr_buf *xdr = &req->rq_snd_buf;
654 bool zerocopy = true;
655 bool vm_wait = false;
656 int status;
657 int sent;
658
659 xs_encode_stream_record_marker(&req->rq_snd_buf);
660
661 xs_pktdump("packet data:",
662 req->rq_svec->iov_base,
663 req->rq_svec->iov_len);
664 /* Don't use zero copy if this is a resend. If the RPC call
665 * completes while the socket holds a reference to the pages,
666 * then we may end up resending corrupted data.
667 */
668 if (task->tk_flags & RPC_TASK_SENT)
669 zerocopy = false;
670
671 if (test_bit(XPRT_SOCK_UPD_TIMEOUT, &transport->sock_state))
672 xs_tcp_set_socket_timeouts(xprt, transport->sock);
673
674 /* Continue transmitting the packet/record. We must be careful
675 * to cope with writespace callbacks arriving _after_ we have
676 * called sendmsg(). */
677 while (1) {
678 sent = 0;
679 status = xs_sendpages(transport->sock, NULL, 0, xdr,
680 req->rq_bytes_sent, zerocopy, &sent);
681
682 dprintk("RPC: xs_tcp_send_request(%u) = %d\n",
683 xdr->len - req->rq_bytes_sent, status);
684
685 /* If we've sent the entire packet, immediately
686 * reset the count of bytes sent. */
687 req->rq_bytes_sent += sent;
688 req->rq_xmit_bytes_sent += sent;
689 if (likely(req->rq_bytes_sent >= req->rq_slen)) {
690 req->rq_bytes_sent = 0;
691 return 0;
692 }
693
694 WARN_ON_ONCE(sent == 0 && status == 0);
695
696 if (status == -EAGAIN ) {
697 /*
698 * Return EAGAIN if we're sure we're hitting the
699 * socket send buffer limits.
700 */
701 if (test_bit(SOCK_NOSPACE, &transport->sock->flags))
702 break;
703 /*
704 * Did we hit a memory allocation failure?
705 */
706 if (sent == 0) {
707 status = -ENOBUFS;
708 if (vm_wait)
709 break;
710 /* Retry, knowing now that we're below the
711 * socket send buffer limit
712 */
713 vm_wait = true;
714 }
715 continue;
716 }
717 if (status < 0)
718 break;
719 vm_wait = false;
720 }
721
722 switch (status) {
723 case -ENOTSOCK:
724 status = -ENOTCONN;
725 /* Should we call xs_close() here? */
726 break;
727 case -EAGAIN:
728 status = xs_nospace(task);
729 break;
730 case -ECONNRESET:
731 case -ECONNREFUSED:
732 case -ENOTCONN:
733 case -EADDRINUSE:
734 case -ENOBUFS:
735 case -EPIPE:
736 break;
737 default:
738 dprintk("RPC: sendmsg returned unrecognized error %d\n",
739 -status);
740 }
741
742 return status;
743 }
744
745 /**
746 * xs_tcp_release_xprt - clean up after a tcp transmission
747 * @xprt: transport
748 * @task: rpc task
749 *
750 * This cleans up if an error causes us to abort the transmission of a request.
751 * In this case, the socket may need to be reset in order to avoid confusing
752 * the server.
753 */
754 static void xs_tcp_release_xprt(struct rpc_xprt *xprt, struct rpc_task *task)
755 {
756 struct rpc_rqst *req;
757
758 if (task != xprt->snd_task)
759 return;
760 if (task == NULL)
761 goto out_release;
762 req = task->tk_rqstp;
763 if (req == NULL)
764 goto out_release;
765 if (req->rq_bytes_sent == 0)
766 goto out_release;
767 if (req->rq_bytes_sent == req->rq_snd_buf.len)
768 goto out_release;
769 set_bit(XPRT_CLOSE_WAIT, &xprt->state);
770 out_release:
771 xprt_release_xprt(xprt, task);
772 }
773
774 static void xs_save_old_callbacks(struct sock_xprt *transport, struct sock *sk)
775 {
776 transport->old_data_ready = sk->sk_data_ready;
777 transport->old_state_change = sk->sk_state_change;
778 transport->old_write_space = sk->sk_write_space;
779 transport->old_error_report = sk->sk_error_report;
780 }
781
782 static void xs_restore_old_callbacks(struct sock_xprt *transport, struct sock *sk)
783 {
784 sk->sk_data_ready = transport->old_data_ready;
785 sk->sk_state_change = transport->old_state_change;
786 sk->sk_write_space = transport->old_write_space;
787 sk->sk_error_report = transport->old_error_report;
788 }
789
790 static void xs_sock_reset_state_flags(struct rpc_xprt *xprt)
791 {
792 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt);
793
794 clear_bit(XPRT_SOCK_DATA_READY, &transport->sock_state);
795 }
796
797 static void xs_sock_reset_connection_flags(struct rpc_xprt *xprt)
798 {
799 smp_mb__before_atomic();
800 clear_bit(XPRT_CLOSE_WAIT, &xprt->state);
801 clear_bit(XPRT_CLOSING, &xprt->state);
802 xs_sock_reset_state_flags(xprt);
803 smp_mb__after_atomic();
804 }
805
806 static void xs_sock_mark_closed(struct rpc_xprt *xprt)
807 {
808 xs_sock_reset_connection_flags(xprt);
809 /* Mark transport as closed and wake up all pending tasks */
810 xprt_disconnect_done(xprt);
811 }
812
813 /**
814 * xs_error_report - callback to handle TCP socket state errors
815 * @sk: socket
816 *
817 * Note: we don't call sock_error() since there may be a rpc_task
818 * using the socket, and so we don't want to clear sk->sk_err.
819 */
820 static void xs_error_report(struct sock *sk)
821 {
822 struct rpc_xprt *xprt;
823 int err;
824
825 read_lock_bh(&sk->sk_callback_lock);
826 if (!(xprt = xprt_from_sock(sk)))
827 goto out;
828
829 err = -sk->sk_err;
830 if (err == 0)
831 goto out;
832 /* Is this a reset event? */
833 if (sk->sk_state == TCP_CLOSE)
834 xs_sock_mark_closed(xprt);
835 dprintk("RPC: xs_error_report client %p, error=%d...\n",
836 xprt, -err);
837 trace_rpc_socket_error(xprt, sk->sk_socket, err);
838 xprt_wake_pending_tasks(xprt, err);
839 out:
840 read_unlock_bh(&sk->sk_callback_lock);
841 }
842
843 static void xs_reset_transport(struct sock_xprt *transport)
844 {
845 struct socket *sock = transport->sock;
846 struct sock *sk = transport->inet;
847 struct rpc_xprt *xprt = &transport->xprt;
848
849 if (sk == NULL)
850 return;
851
852 if (atomic_read(&transport->xprt.swapper))
853 sk_clear_memalloc(sk);
854
855 kernel_sock_shutdown(sock, SHUT_RDWR);
856
857 mutex_lock(&transport->recv_mutex);
858 write_lock_bh(&sk->sk_callback_lock);
859 transport->inet = NULL;
860 transport->sock = NULL;
861
862 sk->sk_user_data = NULL;
863
864 xs_restore_old_callbacks(transport, sk);
865 xprt_clear_connected(xprt);
866 write_unlock_bh(&sk->sk_callback_lock);
867 xs_sock_reset_connection_flags(xprt);
868 mutex_unlock(&transport->recv_mutex);
869
870 trace_rpc_socket_close(xprt, sock);
871 sock_release(sock);
872 }
873
874 /**
875 * xs_close - close a socket
876 * @xprt: transport
877 *
878 * This is used when all requests are complete; ie, no DRC state remains
879 * on the server we want to save.
880 *
881 * The caller _must_ be holding XPRT_LOCKED in order to avoid issues with
882 * xs_reset_transport() zeroing the socket from underneath a writer.
883 */
884 static void xs_close(struct rpc_xprt *xprt)
885 {
886 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt);
887
888 dprintk("RPC: xs_close xprt %p\n", xprt);
889
890 xs_reset_transport(transport);
891 xprt->reestablish_timeout = 0;
892
893 xprt_disconnect_done(xprt);
894 }
895
896 static void xs_inject_disconnect(struct rpc_xprt *xprt)
897 {
898 dprintk("RPC: injecting transport disconnect on xprt=%p\n",
899 xprt);
900 xprt_disconnect_done(xprt);
901 }
902
903 static void xs_xprt_free(struct rpc_xprt *xprt)
904 {
905 xs_free_peer_addresses(xprt);
906 xprt_free(xprt);
907 }
908
909 /**
910 * xs_destroy - prepare to shutdown a transport
911 * @xprt: doomed transport
912 *
913 */
914 static void xs_destroy(struct rpc_xprt *xprt)
915 {
916 struct sock_xprt *transport = container_of(xprt,
917 struct sock_xprt, xprt);
918 dprintk("RPC: xs_destroy xprt %p\n", xprt);
919
920 cancel_delayed_work_sync(&transport->connect_worker);
921 xs_close(xprt);
922 cancel_work_sync(&transport->recv_worker);
923 xs_xprt_free(xprt);
924 module_put(THIS_MODULE);
925 }
926
927 static int xs_local_copy_to_xdr(struct xdr_buf *xdr, struct sk_buff *skb)
928 {
929 struct xdr_skb_reader desc = {
930 .skb = skb,
931 .offset = sizeof(rpc_fraghdr),
932 .count = skb->len - sizeof(rpc_fraghdr),
933 };
934
935 if (xdr_partial_copy_from_skb(xdr, 0, &desc, xdr_skb_read_bits) < 0)
936 return -1;
937 if (desc.count)
938 return -1;
939 return 0;
940 }
941
942 /**
943 * xs_local_data_read_skb
944 * @xprt: transport
945 * @sk: socket
946 * @skb: skbuff
947 *
948 * Currently this assumes we can read the whole reply in a single gulp.
949 */
950 static void xs_local_data_read_skb(struct rpc_xprt *xprt,
951 struct sock *sk,
952 struct sk_buff *skb)
953 {
954 struct rpc_task *task;
955 struct rpc_rqst *rovr;
956 int repsize, copied;
957 u32 _xid;
958 __be32 *xp;
959
960 repsize = skb->len - sizeof(rpc_fraghdr);
961 if (repsize < 4) {
962 dprintk("RPC: impossible RPC reply size %d\n", repsize);
963 return;
964 }
965
966 /* Copy the XID from the skb... */
967 xp = skb_header_pointer(skb, sizeof(rpc_fraghdr), sizeof(_xid), &_xid);
968 if (xp == NULL)
969 return;
970
971 /* Look up and lock the request corresponding to the given XID */
972 spin_lock_bh(&xprt->transport_lock);
973 rovr = xprt_lookup_rqst(xprt, *xp);
974 if (!rovr)
975 goto out_unlock;
976 task = rovr->rq_task;
977
978 copied = rovr->rq_private_buf.buflen;
979 if (copied > repsize)
980 copied = repsize;
981
982 if (xs_local_copy_to_xdr(&rovr->rq_private_buf, skb)) {
983 dprintk("RPC: sk_buff copy failed\n");
984 goto out_unlock;
985 }
986
987 xprt_complete_rqst(task, copied);
988
989 out_unlock:
990 spin_unlock_bh(&xprt->transport_lock);
991 }
992
993 static void xs_local_data_receive(struct sock_xprt *transport)
994 {
995 struct sk_buff *skb;
996 struct sock *sk;
997 int err;
998
999 mutex_lock(&transport->recv_mutex);
1000 sk = transport->inet;
1001 if (sk == NULL)
1002 goto out;
1003 for (;;) {
1004 skb = skb_recv_datagram(sk, 0, 1, &err);
1005 if (skb != NULL) {
1006 xs_local_data_read_skb(&transport->xprt, sk, skb);
1007 skb_free_datagram(sk, skb);
1008 continue;
1009 }
1010 if (!test_and_clear_bit(XPRT_SOCK_DATA_READY, &transport->sock_state))
1011 break;
1012 }
1013 out:
1014 mutex_unlock(&transport->recv_mutex);
1015 }
1016
1017 static void xs_local_data_receive_workfn(struct work_struct *work)
1018 {
1019 struct sock_xprt *transport =
1020 container_of(work, struct sock_xprt, recv_worker);
1021 xs_local_data_receive(transport);
1022 }
1023
1024 /**
1025 * xs_udp_data_read_skb - receive callback for UDP sockets
1026 * @xprt: transport
1027 * @sk: socket
1028 * @skb: skbuff
1029 *
1030 */
1031 static void xs_udp_data_read_skb(struct rpc_xprt *xprt,
1032 struct sock *sk,
1033 struct sk_buff *skb)
1034 {
1035 struct rpc_task *task;
1036 struct rpc_rqst *rovr;
1037 int repsize, copied;
1038 u32 _xid;
1039 __be32 *xp;
1040
1041 repsize = skb->len;
1042 if (repsize < 4) {
1043 dprintk("RPC: impossible RPC reply size %d!\n", repsize);
1044 return;
1045 }
1046
1047 /* Copy the XID from the skb... */
1048 xp = skb_header_pointer(skb, 0, sizeof(_xid), &_xid);
1049 if (xp == NULL)
1050 return;
1051
1052 /* Look up and lock the request corresponding to the given XID */
1053 spin_lock_bh(&xprt->transport_lock);
1054 rovr = xprt_lookup_rqst(xprt, *xp);
1055 if (!rovr)
1056 goto out_unlock;
1057 task = rovr->rq_task;
1058
1059 if ((copied = rovr->rq_private_buf.buflen) > repsize)
1060 copied = repsize;
1061
1062 /* Suck it into the iovec, verify checksum if not done by hw. */
1063 if (csum_partial_copy_to_xdr(&rovr->rq_private_buf, skb)) {
1064 __UDPX_INC_STATS(sk, UDP_MIB_INERRORS);
1065 goto out_unlock;
1066 }
1067
1068 __UDPX_INC_STATS(sk, UDP_MIB_INDATAGRAMS);
1069
1070 xprt_adjust_cwnd(xprt, task, copied);
1071 xprt_complete_rqst(task, copied);
1072
1073 out_unlock:
1074 spin_unlock_bh(&xprt->transport_lock);
1075 }
1076
1077 static void xs_udp_data_receive(struct sock_xprt *transport)
1078 {
1079 struct sk_buff *skb;
1080 struct sock *sk;
1081 int err;
1082
1083 mutex_lock(&transport->recv_mutex);
1084 sk = transport->inet;
1085 if (sk == NULL)
1086 goto out;
1087 for (;;) {
1088 skb = skb_recv_udp(sk, 0, 1, &err);
1089 if (skb != NULL) {
1090 xs_udp_data_read_skb(&transport->xprt, sk, skb);
1091 consume_skb(skb);
1092 continue;
1093 }
1094 if (!test_and_clear_bit(XPRT_SOCK_DATA_READY, &transport->sock_state))
1095 break;
1096 }
1097 out:
1098 mutex_unlock(&transport->recv_mutex);
1099 }
1100
1101 static void xs_udp_data_receive_workfn(struct work_struct *work)
1102 {
1103 struct sock_xprt *transport =
1104 container_of(work, struct sock_xprt, recv_worker);
1105 xs_udp_data_receive(transport);
1106 }
1107
1108 /**
1109 * xs_data_ready - "data ready" callback for UDP sockets
1110 * @sk: socket with data to read
1111 *
1112 */
1113 static void xs_data_ready(struct sock *sk)
1114 {
1115 struct rpc_xprt *xprt;
1116
1117 read_lock_bh(&sk->sk_callback_lock);
1118 dprintk("RPC: xs_data_ready...\n");
1119 xprt = xprt_from_sock(sk);
1120 if (xprt != NULL) {
1121 struct sock_xprt *transport = container_of(xprt,
1122 struct sock_xprt, xprt);
1123 transport->old_data_ready(sk);
1124 /* Any data means we had a useful conversation, so
1125 * then we don't need to delay the next reconnect
1126 */
1127 if (xprt->reestablish_timeout)
1128 xprt->reestablish_timeout = 0;
1129 if (!test_and_set_bit(XPRT_SOCK_DATA_READY, &transport->sock_state))
1130 queue_work(xprtiod_workqueue, &transport->recv_worker);
1131 }
1132 read_unlock_bh(&sk->sk_callback_lock);
1133 }
1134
1135 /*
1136 * Helper function to force a TCP close if the server is sending
1137 * junk and/or it has put us in CLOSE_WAIT
1138 */
1139 static void xs_tcp_force_close(struct rpc_xprt *xprt)
1140 {
1141 xprt_force_disconnect(xprt);
1142 }
1143
1144 static inline void xs_tcp_read_fraghdr(struct rpc_xprt *xprt, struct xdr_skb_reader *desc)
1145 {
1146 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt);
1147 size_t len, used;
1148 char *p;
1149
1150 p = ((char *) &transport->tcp_fraghdr) + transport->tcp_offset;
1151 len = sizeof(transport->tcp_fraghdr) - transport->tcp_offset;
1152 used = xdr_skb_read_bits(desc, p, len);
1153 transport->tcp_offset += used;
1154 if (used != len)
1155 return;
1156
1157 transport->tcp_reclen = ntohl(transport->tcp_fraghdr);
1158 if (transport->tcp_reclen & RPC_LAST_STREAM_FRAGMENT)
1159 transport->tcp_flags |= TCP_RCV_LAST_FRAG;
1160 else
1161 transport->tcp_flags &= ~TCP_RCV_LAST_FRAG;
1162 transport->tcp_reclen &= RPC_FRAGMENT_SIZE_MASK;
1163
1164 transport->tcp_flags &= ~TCP_RCV_COPY_FRAGHDR;
1165 transport->tcp_offset = 0;
1166
1167 /* Sanity check of the record length */
1168 if (unlikely(transport->tcp_reclen < 8)) {
1169 dprintk("RPC: invalid TCP record fragment length\n");
1170 xs_tcp_force_close(xprt);
1171 return;
1172 }
1173 dprintk("RPC: reading TCP record fragment of length %d\n",
1174 transport->tcp_reclen);
1175 }
1176
1177 static void xs_tcp_check_fraghdr(struct sock_xprt *transport)
1178 {
1179 if (transport->tcp_offset == transport->tcp_reclen) {
1180 transport->tcp_flags |= TCP_RCV_COPY_FRAGHDR;
1181 transport->tcp_offset = 0;
1182 if (transport->tcp_flags & TCP_RCV_LAST_FRAG) {
1183 transport->tcp_flags &= ~TCP_RCV_COPY_DATA;
1184 transport->tcp_flags |= TCP_RCV_COPY_XID;
1185 transport->tcp_copied = 0;
1186 }
1187 }
1188 }
1189
1190 static inline void xs_tcp_read_xid(struct sock_xprt *transport, struct xdr_skb_reader *desc)
1191 {
1192 size_t len, used;
1193 char *p;
1194
1195 len = sizeof(transport->tcp_xid) - transport->tcp_offset;
1196 dprintk("RPC: reading XID (%zu bytes)\n", len);
1197 p = ((char *) &transport->tcp_xid) + transport->tcp_offset;
1198 used = xdr_skb_read_bits(desc, p, len);
1199 transport->tcp_offset += used;
1200 if (used != len)
1201 return;
1202 transport->tcp_flags &= ~TCP_RCV_COPY_XID;
1203 transport->tcp_flags |= TCP_RCV_READ_CALLDIR;
1204 transport->tcp_copied = 4;
1205 dprintk("RPC: reading %s XID %08x\n",
1206 (transport->tcp_flags & TCP_RPC_REPLY) ? "reply for"
1207 : "request with",
1208 ntohl(transport->tcp_xid));
1209 xs_tcp_check_fraghdr(transport);
1210 }
1211
1212 static inline void xs_tcp_read_calldir(struct sock_xprt *transport,
1213 struct xdr_skb_reader *desc)
1214 {
1215 size_t len, used;
1216 u32 offset;
1217 char *p;
1218
1219 /*
1220 * We want transport->tcp_offset to be 8 at the end of this routine
1221 * (4 bytes for the xid and 4 bytes for the call/reply flag).
1222 * When this function is called for the first time,
1223 * transport->tcp_offset is 4 (after having already read the xid).
1224 */
1225 offset = transport->tcp_offset - sizeof(transport->tcp_xid);
1226 len = sizeof(transport->tcp_calldir) - offset;
1227 dprintk("RPC: reading CALL/REPLY flag (%zu bytes)\n", len);
1228 p = ((char *) &transport->tcp_calldir) + offset;
1229 used = xdr_skb_read_bits(desc, p, len);
1230 transport->tcp_offset += used;
1231 if (used != len)
1232 return;
1233 transport->tcp_flags &= ~TCP_RCV_READ_CALLDIR;
1234 /*
1235 * We don't yet have the XDR buffer, so we will write the calldir
1236 * out after we get the buffer from the 'struct rpc_rqst'
1237 */
1238 switch (ntohl(transport->tcp_calldir)) {
1239 case RPC_REPLY:
1240 transport->tcp_flags |= TCP_RCV_COPY_CALLDIR;
1241 transport->tcp_flags |= TCP_RCV_COPY_DATA;
1242 transport->tcp_flags |= TCP_RPC_REPLY;
1243 break;
1244 case RPC_CALL:
1245 transport->tcp_flags |= TCP_RCV_COPY_CALLDIR;
1246 transport->tcp_flags |= TCP_RCV_COPY_DATA;
1247 transport->tcp_flags &= ~TCP_RPC_REPLY;
1248 break;
1249 default:
1250 dprintk("RPC: invalid request message type\n");
1251 xs_tcp_force_close(&transport->xprt);
1252 }
1253 xs_tcp_check_fraghdr(transport);
1254 }
1255
1256 static inline void xs_tcp_read_common(struct rpc_xprt *xprt,
1257 struct xdr_skb_reader *desc,
1258 struct rpc_rqst *req)
1259 {
1260 struct sock_xprt *transport =
1261 container_of(xprt, struct sock_xprt, xprt);
1262 struct xdr_buf *rcvbuf;
1263 size_t len;
1264 ssize_t r;
1265
1266 rcvbuf = &req->rq_private_buf;
1267
1268 if (transport->tcp_flags & TCP_RCV_COPY_CALLDIR) {
1269 /*
1270 * Save the RPC direction in the XDR buffer
1271 */
1272 memcpy(rcvbuf->head[0].iov_base + transport->tcp_copied,
1273 &transport->tcp_calldir,
1274 sizeof(transport->tcp_calldir));
1275 transport->tcp_copied += sizeof(transport->tcp_calldir);
1276 transport->tcp_flags &= ~TCP_RCV_COPY_CALLDIR;
1277 }
1278
1279 len = desc->count;
1280 if (len > transport->tcp_reclen - transport->tcp_offset) {
1281 struct xdr_skb_reader my_desc;
1282
1283 len = transport->tcp_reclen - transport->tcp_offset;
1284 memcpy(&my_desc, desc, sizeof(my_desc));
1285 my_desc.count = len;
1286 r = xdr_partial_copy_from_skb(rcvbuf, transport->tcp_copied,
1287 &my_desc, xdr_skb_read_bits);
1288 desc->count -= r;
1289 desc->offset += r;
1290 } else
1291 r = xdr_partial_copy_from_skb(rcvbuf, transport->tcp_copied,
1292 desc, xdr_skb_read_bits);
1293
1294 if (r > 0) {
1295 transport->tcp_copied += r;
1296 transport->tcp_offset += r;
1297 }
1298 if (r != len) {
1299 /* Error when copying to the receive buffer,
1300 * usually because we weren't able to allocate
1301 * additional buffer pages. All we can do now
1302 * is turn off TCP_RCV_COPY_DATA, so the request
1303 * will not receive any additional updates,
1304 * and time out.
1305 * Any remaining data from this record will
1306 * be discarded.
1307 */
1308 transport->tcp_flags &= ~TCP_RCV_COPY_DATA;
1309 dprintk("RPC: XID %08x truncated request\n",
1310 ntohl(transport->tcp_xid));
1311 dprintk("RPC: xprt = %p, tcp_copied = %lu, "
1312 "tcp_offset = %u, tcp_reclen = %u\n",
1313 xprt, transport->tcp_copied,
1314 transport->tcp_offset, transport->tcp_reclen);
1315 return;
1316 }
1317
1318 dprintk("RPC: XID %08x read %zd bytes\n",
1319 ntohl(transport->tcp_xid), r);
1320 dprintk("RPC: xprt = %p, tcp_copied = %lu, tcp_offset = %u, "
1321 "tcp_reclen = %u\n", xprt, transport->tcp_copied,
1322 transport->tcp_offset, transport->tcp_reclen);
1323
1324 if (transport->tcp_copied == req->rq_private_buf.buflen)
1325 transport->tcp_flags &= ~TCP_RCV_COPY_DATA;
1326 else if (transport->tcp_offset == transport->tcp_reclen) {
1327 if (transport->tcp_flags & TCP_RCV_LAST_FRAG)
1328 transport->tcp_flags &= ~TCP_RCV_COPY_DATA;
1329 }
1330 }
1331
1332 /*
1333 * Finds the request corresponding to the RPC xid and invokes the common
1334 * tcp read code to read the data.
1335 */
1336 static inline int xs_tcp_read_reply(struct rpc_xprt *xprt,
1337 struct xdr_skb_reader *desc)
1338 {
1339 struct sock_xprt *transport =
1340 container_of(xprt, struct sock_xprt, xprt);
1341 struct rpc_rqst *req;
1342
1343 dprintk("RPC: read reply XID %08x\n", ntohl(transport->tcp_xid));
1344
1345 /* Find and lock the request corresponding to this xid */
1346 spin_lock_bh(&xprt->transport_lock);
1347 req = xprt_lookup_rqst(xprt, transport->tcp_xid);
1348 if (!req) {
1349 dprintk("RPC: XID %08x request not found!\n",
1350 ntohl(transport->tcp_xid));
1351 spin_unlock_bh(&xprt->transport_lock);
1352 return -1;
1353 }
1354
1355 xs_tcp_read_common(xprt, desc, req);
1356
1357 if (!(transport->tcp_flags & TCP_RCV_COPY_DATA))
1358 xprt_complete_rqst(req->rq_task, transport->tcp_copied);
1359
1360 spin_unlock_bh(&xprt->transport_lock);
1361 return 0;
1362 }
1363
1364 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1365 /*
1366 * Obtains an rpc_rqst previously allocated and invokes the common
1367 * tcp read code to read the data. The result is placed in the callback
1368 * queue.
1369 * If we're unable to obtain the rpc_rqst we schedule the closing of the
1370 * connection and return -1.
1371 */
1372 static int xs_tcp_read_callback(struct rpc_xprt *xprt,
1373 struct xdr_skb_reader *desc)
1374 {
1375 struct sock_xprt *transport =
1376 container_of(xprt, struct sock_xprt, xprt);
1377 struct rpc_rqst *req;
1378
1379 /* Look up and lock the request corresponding to the given XID */
1380 spin_lock_bh(&xprt->transport_lock);
1381 req = xprt_lookup_bc_request(xprt, transport->tcp_xid);
1382 if (req == NULL) {
1383 spin_unlock_bh(&xprt->transport_lock);
1384 printk(KERN_WARNING "Callback slot table overflowed\n");
1385 xprt_force_disconnect(xprt);
1386 return -1;
1387 }
1388
1389 dprintk("RPC: read callback XID %08x\n", ntohl(req->rq_xid));
1390 xs_tcp_read_common(xprt, desc, req);
1391
1392 if (!(transport->tcp_flags & TCP_RCV_COPY_DATA))
1393 xprt_complete_bc_request(req, transport->tcp_copied);
1394 spin_unlock_bh(&xprt->transport_lock);
1395
1396 return 0;
1397 }
1398
1399 static inline int _xs_tcp_read_data(struct rpc_xprt *xprt,
1400 struct xdr_skb_reader *desc)
1401 {
1402 struct sock_xprt *transport =
1403 container_of(xprt, struct sock_xprt, xprt);
1404
1405 return (transport->tcp_flags & TCP_RPC_REPLY) ?
1406 xs_tcp_read_reply(xprt, desc) :
1407 xs_tcp_read_callback(xprt, desc);
1408 }
1409
1410 static int xs_tcp_bc_up(struct svc_serv *serv, struct net *net)
1411 {
1412 int ret;
1413
1414 ret = svc_create_xprt(serv, "tcp-bc", net, PF_INET, 0,
1415 SVC_SOCK_ANONYMOUS);
1416 if (ret < 0)
1417 return ret;
1418 return 0;
1419 }
1420
1421 static size_t xs_tcp_bc_maxpayload(struct rpc_xprt *xprt)
1422 {
1423 return PAGE_SIZE;
1424 }
1425 #else
1426 static inline int _xs_tcp_read_data(struct rpc_xprt *xprt,
1427 struct xdr_skb_reader *desc)
1428 {
1429 return xs_tcp_read_reply(xprt, desc);
1430 }
1431 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1432
1433 /*
1434 * Read data off the transport. This can be either an RPC_CALL or an
1435 * RPC_REPLY. Relay the processing to helper functions.
1436 */
1437 static void xs_tcp_read_data(struct rpc_xprt *xprt,
1438 struct xdr_skb_reader *desc)
1439 {
1440 struct sock_xprt *transport =
1441 container_of(xprt, struct sock_xprt, xprt);
1442
1443 if (_xs_tcp_read_data(xprt, desc) == 0)
1444 xs_tcp_check_fraghdr(transport);
1445 else {
1446 /*
1447 * The transport_lock protects the request handling.
1448 * There's no need to hold it to update the tcp_flags.
1449 */
1450 transport->tcp_flags &= ~TCP_RCV_COPY_DATA;
1451 }
1452 }
1453
1454 static inline void xs_tcp_read_discard(struct sock_xprt *transport, struct xdr_skb_reader *desc)
1455 {
1456 size_t len;
1457
1458 len = transport->tcp_reclen - transport->tcp_offset;
1459 if (len > desc->count)
1460 len = desc->count;
1461 desc->count -= len;
1462 desc->offset += len;
1463 transport->tcp_offset += len;
1464 dprintk("RPC: discarded %zu bytes\n", len);
1465 xs_tcp_check_fraghdr(transport);
1466 }
1467
1468 static int xs_tcp_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, unsigned int offset, size_t len)
1469 {
1470 struct rpc_xprt *xprt = rd_desc->arg.data;
1471 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt);
1472 struct xdr_skb_reader desc = {
1473 .skb = skb,
1474 .offset = offset,
1475 .count = len,
1476 };
1477
1478 dprintk("RPC: xs_tcp_data_recv started\n");
1479 do {
1480 trace_xs_tcp_data_recv(transport);
1481 /* Read in a new fragment marker if necessary */
1482 /* Can we ever really expect to get completely empty fragments? */
1483 if (transport->tcp_flags & TCP_RCV_COPY_FRAGHDR) {
1484 xs_tcp_read_fraghdr(xprt, &desc);
1485 continue;
1486 }
1487 /* Read in the xid if necessary */
1488 if (transport->tcp_flags & TCP_RCV_COPY_XID) {
1489 xs_tcp_read_xid(transport, &desc);
1490 continue;
1491 }
1492 /* Read in the call/reply flag */
1493 if (transport->tcp_flags & TCP_RCV_READ_CALLDIR) {
1494 xs_tcp_read_calldir(transport, &desc);
1495 continue;
1496 }
1497 /* Read in the request data */
1498 if (transport->tcp_flags & TCP_RCV_COPY_DATA) {
1499 xs_tcp_read_data(xprt, &desc);
1500 continue;
1501 }
1502 /* Skip over any trailing bytes on short reads */
1503 xs_tcp_read_discard(transport, &desc);
1504 } while (desc.count);
1505 trace_xs_tcp_data_recv(transport);
1506 dprintk("RPC: xs_tcp_data_recv done\n");
1507 return len - desc.count;
1508 }
1509
1510 static void xs_tcp_data_receive(struct sock_xprt *transport)
1511 {
1512 struct rpc_xprt *xprt = &transport->xprt;
1513 struct sock *sk;
1514 read_descriptor_t rd_desc = {
1515 .count = 2*1024*1024,
1516 .arg.data = xprt,
1517 };
1518 unsigned long total = 0;
1519 int read = 0;
1520
1521 mutex_lock(&transport->recv_mutex);
1522 sk = transport->inet;
1523 if (sk == NULL)
1524 goto out;
1525
1526 /* We use rd_desc to pass struct xprt to xs_tcp_data_recv */
1527 for (;;) {
1528 lock_sock(sk);
1529 read = tcp_read_sock(sk, &rd_desc, xs_tcp_data_recv);
1530 if (read <= 0) {
1531 clear_bit(XPRT_SOCK_DATA_READY, &transport->sock_state);
1532 release_sock(sk);
1533 if (!test_bit(XPRT_SOCK_DATA_READY, &transport->sock_state))
1534 break;
1535 } else {
1536 release_sock(sk);
1537 total += read;
1538 }
1539 rd_desc.count = 65536;
1540 }
1541 out:
1542 mutex_unlock(&transport->recv_mutex);
1543 trace_xs_tcp_data_ready(xprt, read, total);
1544 }
1545
1546 static void xs_tcp_data_receive_workfn(struct work_struct *work)
1547 {
1548 struct sock_xprt *transport =
1549 container_of(work, struct sock_xprt, recv_worker);
1550 xs_tcp_data_receive(transport);
1551 }
1552
1553 /**
1554 * xs_tcp_state_change - callback to handle TCP socket state changes
1555 * @sk: socket whose state has changed
1556 *
1557 */
1558 static void xs_tcp_state_change(struct sock *sk)
1559 {
1560 struct rpc_xprt *xprt;
1561 struct sock_xprt *transport;
1562
1563 read_lock_bh(&sk->sk_callback_lock);
1564 if (!(xprt = xprt_from_sock(sk)))
1565 goto out;
1566 dprintk("RPC: xs_tcp_state_change client %p...\n", xprt);
1567 dprintk("RPC: state %x conn %d dead %d zapped %d sk_shutdown %d\n",
1568 sk->sk_state, xprt_connected(xprt),
1569 sock_flag(sk, SOCK_DEAD),
1570 sock_flag(sk, SOCK_ZAPPED),
1571 sk->sk_shutdown);
1572
1573 transport = container_of(xprt, struct sock_xprt, xprt);
1574 trace_rpc_socket_state_change(xprt, sk->sk_socket);
1575 switch (sk->sk_state) {
1576 case TCP_ESTABLISHED:
1577 spin_lock(&xprt->transport_lock);
1578 if (!xprt_test_and_set_connected(xprt)) {
1579
1580 /* Reset TCP record info */
1581 transport->tcp_offset = 0;
1582 transport->tcp_reclen = 0;
1583 transport->tcp_copied = 0;
1584 transport->tcp_flags =
1585 TCP_RCV_COPY_FRAGHDR | TCP_RCV_COPY_XID;
1586 xprt->connect_cookie++;
1587 clear_bit(XPRT_SOCK_CONNECTING, &transport->sock_state);
1588 xprt_clear_connecting(xprt);
1589
1590 xprt_wake_pending_tasks(xprt, -EAGAIN);
1591 }
1592 spin_unlock(&xprt->transport_lock);
1593 break;
1594 case TCP_FIN_WAIT1:
1595 /* The client initiated a shutdown of the socket */
1596 xprt->connect_cookie++;
1597 xprt->reestablish_timeout = 0;
1598 set_bit(XPRT_CLOSING, &xprt->state);
1599 smp_mb__before_atomic();
1600 clear_bit(XPRT_CONNECTED, &xprt->state);
1601 clear_bit(XPRT_CLOSE_WAIT, &xprt->state);
1602 smp_mb__after_atomic();
1603 break;
1604 case TCP_CLOSE_WAIT:
1605 /* The server initiated a shutdown of the socket */
1606 xprt->connect_cookie++;
1607 clear_bit(XPRT_CONNECTED, &xprt->state);
1608 xs_tcp_force_close(xprt);
1609 case TCP_CLOSING:
1610 /*
1611 * If the server closed down the connection, make sure that
1612 * we back off before reconnecting
1613 */
1614 if (xprt->reestablish_timeout < XS_TCP_INIT_REEST_TO)
1615 xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO;
1616 break;
1617 case TCP_LAST_ACK:
1618 set_bit(XPRT_CLOSING, &xprt->state);
1619 smp_mb__before_atomic();
1620 clear_bit(XPRT_CONNECTED, &xprt->state);
1621 smp_mb__after_atomic();
1622 break;
1623 case TCP_CLOSE:
1624 if (test_and_clear_bit(XPRT_SOCK_CONNECTING,
1625 &transport->sock_state))
1626 xprt_clear_connecting(xprt);
1627 xs_sock_mark_closed(xprt);
1628 }
1629 out:
1630 read_unlock_bh(&sk->sk_callback_lock);
1631 }
1632
1633 static void xs_write_space(struct sock *sk)
1634 {
1635 struct socket_wq *wq;
1636 struct rpc_xprt *xprt;
1637
1638 if (!sk->sk_socket)
1639 return;
1640 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1641
1642 if (unlikely(!(xprt = xprt_from_sock(sk))))
1643 return;
1644 rcu_read_lock();
1645 wq = rcu_dereference(sk->sk_wq);
1646 if (!wq || test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags) == 0)
1647 goto out;
1648
1649 xprt_write_space(xprt);
1650 out:
1651 rcu_read_unlock();
1652 }
1653
1654 /**
1655 * xs_udp_write_space - callback invoked when socket buffer space
1656 * becomes available
1657 * @sk: socket whose state has changed
1658 *
1659 * Called when more output buffer space is available for this socket.
1660 * We try not to wake our writers until they can make "significant"
1661 * progress, otherwise we'll waste resources thrashing kernel_sendmsg
1662 * with a bunch of small requests.
1663 */
1664 static void xs_udp_write_space(struct sock *sk)
1665 {
1666 read_lock_bh(&sk->sk_callback_lock);
1667
1668 /* from net/core/sock.c:sock_def_write_space */
1669 if (sock_writeable(sk))
1670 xs_write_space(sk);
1671
1672 read_unlock_bh(&sk->sk_callback_lock);
1673 }
1674
1675 /**
1676 * xs_tcp_write_space - callback invoked when socket buffer space
1677 * becomes available
1678 * @sk: socket whose state has changed
1679 *
1680 * Called when more output buffer space is available for this socket.
1681 * We try not to wake our writers until they can make "significant"
1682 * progress, otherwise we'll waste resources thrashing kernel_sendmsg
1683 * with a bunch of small requests.
1684 */
1685 static void xs_tcp_write_space(struct sock *sk)
1686 {
1687 read_lock_bh(&sk->sk_callback_lock);
1688
1689 /* from net/core/stream.c:sk_stream_write_space */
1690 if (sk_stream_is_writeable(sk))
1691 xs_write_space(sk);
1692
1693 read_unlock_bh(&sk->sk_callback_lock);
1694 }
1695
1696 static void xs_udp_do_set_buffer_size(struct rpc_xprt *xprt)
1697 {
1698 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt);
1699 struct sock *sk = transport->inet;
1700
1701 if (transport->rcvsize) {
1702 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
1703 sk->sk_rcvbuf = transport->rcvsize * xprt->max_reqs * 2;
1704 }
1705 if (transport->sndsize) {
1706 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1707 sk->sk_sndbuf = transport->sndsize * xprt->max_reqs * 2;
1708 sk->sk_write_space(sk);
1709 }
1710 }
1711
1712 /**
1713 * xs_udp_set_buffer_size - set send and receive limits
1714 * @xprt: generic transport
1715 * @sndsize: requested size of send buffer, in bytes
1716 * @rcvsize: requested size of receive buffer, in bytes
1717 *
1718 * Set socket send and receive buffer size limits.
1719 */
1720 static void xs_udp_set_buffer_size(struct rpc_xprt *xprt, size_t sndsize, size_t rcvsize)
1721 {
1722 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt);
1723
1724 transport->sndsize = 0;
1725 if (sndsize)
1726 transport->sndsize = sndsize + 1024;
1727 transport->rcvsize = 0;
1728 if (rcvsize)
1729 transport->rcvsize = rcvsize + 1024;
1730
1731 xs_udp_do_set_buffer_size(xprt);
1732 }
1733
1734 /**
1735 * xs_udp_timer - called when a retransmit timeout occurs on a UDP transport
1736 * @task: task that timed out
1737 *
1738 * Adjust the congestion window after a retransmit timeout has occurred.
1739 */
1740 static void xs_udp_timer(struct rpc_xprt *xprt, struct rpc_task *task)
1741 {
1742 spin_lock_bh(&xprt->transport_lock);
1743 xprt_adjust_cwnd(xprt, task, -ETIMEDOUT);
1744 spin_unlock_bh(&xprt->transport_lock);
1745 }
1746
1747 static unsigned short xs_get_random_port(void)
1748 {
1749 unsigned short range = xprt_max_resvport - xprt_min_resvport + 1;
1750 unsigned short rand = (unsigned short) prandom_u32() % range;
1751 return rand + xprt_min_resvport;
1752 }
1753
1754 /**
1755 * xs_set_reuseaddr_port - set the socket's port and address reuse options
1756 * @sock: socket
1757 *
1758 * Note that this function has to be called on all sockets that share the
1759 * same port, and it must be called before binding.
1760 */
1761 static void xs_sock_set_reuseport(struct socket *sock)
1762 {
1763 int opt = 1;
1764
1765 kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEPORT,
1766 (char *)&opt, sizeof(opt));
1767 }
1768
1769 static unsigned short xs_sock_getport(struct socket *sock)
1770 {
1771 struct sockaddr_storage buf;
1772 int buflen;
1773 unsigned short port = 0;
1774
1775 if (kernel_getsockname(sock, (struct sockaddr *)&buf, &buflen) < 0)
1776 goto out;
1777 switch (buf.ss_family) {
1778 case AF_INET6:
1779 port = ntohs(((struct sockaddr_in6 *)&buf)->sin6_port);
1780 break;
1781 case AF_INET:
1782 port = ntohs(((struct sockaddr_in *)&buf)->sin_port);
1783 }
1784 out:
1785 return port;
1786 }
1787
1788 /**
1789 * xs_set_port - reset the port number in the remote endpoint address
1790 * @xprt: generic transport
1791 * @port: new port number
1792 *
1793 */
1794 static void xs_set_port(struct rpc_xprt *xprt, unsigned short port)
1795 {
1796 dprintk("RPC: setting port for xprt %p to %u\n", xprt, port);
1797
1798 rpc_set_port(xs_addr(xprt), port);
1799 xs_update_peer_port(xprt);
1800 }
1801
1802 static void xs_set_srcport(struct sock_xprt *transport, struct socket *sock)
1803 {
1804 if (transport->srcport == 0)
1805 transport->srcport = xs_sock_getport(sock);
1806 }
1807
1808 static unsigned short xs_get_srcport(struct sock_xprt *transport)
1809 {
1810 unsigned short port = transport->srcport;
1811
1812 if (port == 0 && transport->xprt.resvport)
1813 port = xs_get_random_port();
1814 return port;
1815 }
1816
1817 static unsigned short xs_next_srcport(struct sock_xprt *transport, unsigned short port)
1818 {
1819 if (transport->srcport != 0)
1820 transport->srcport = 0;
1821 if (!transport->xprt.resvport)
1822 return 0;
1823 if (port <= xprt_min_resvport || port > xprt_max_resvport)
1824 return xprt_max_resvport;
1825 return --port;
1826 }
1827 static int xs_bind(struct sock_xprt *transport, struct socket *sock)
1828 {
1829 struct sockaddr_storage myaddr;
1830 int err, nloop = 0;
1831 unsigned short port = xs_get_srcport(transport);
1832 unsigned short last;
1833
1834 /*
1835 * If we are asking for any ephemeral port (i.e. port == 0 &&
1836 * transport->xprt.resvport == 0), don't bind. Let the local
1837 * port selection happen implicitly when the socket is used
1838 * (for example at connect time).
1839 *
1840 * This ensures that we can continue to establish TCP
1841 * connections even when all local ephemeral ports are already
1842 * a part of some TCP connection. This makes no difference
1843 * for UDP sockets, but also doens't harm them.
1844 *
1845 * If we're asking for any reserved port (i.e. port == 0 &&
1846 * transport->xprt.resvport == 1) xs_get_srcport above will
1847 * ensure that port is non-zero and we will bind as needed.
1848 */
1849 if (port == 0)
1850 return 0;
1851
1852 memcpy(&myaddr, &transport->srcaddr, transport->xprt.addrlen);
1853 do {
1854 rpc_set_port((struct sockaddr *)&myaddr, port);
1855 err = kernel_bind(sock, (struct sockaddr *)&myaddr,
1856 transport->xprt.addrlen);
1857 if (err == 0) {
1858 transport->srcport = port;
1859 break;
1860 }
1861 last = port;
1862 port = xs_next_srcport(transport, port);
1863 if (port > last)
1864 nloop++;
1865 } while (err == -EADDRINUSE && nloop != 2);
1866
1867 if (myaddr.ss_family == AF_INET)
1868 dprintk("RPC: %s %pI4:%u: %s (%d)\n", __func__,
1869 &((struct sockaddr_in *)&myaddr)->sin_addr,
1870 port, err ? "failed" : "ok", err);
1871 else
1872 dprintk("RPC: %s %pI6:%u: %s (%d)\n", __func__,
1873 &((struct sockaddr_in6 *)&myaddr)->sin6_addr,
1874 port, err ? "failed" : "ok", err);
1875 return err;
1876 }
1877
1878 /*
1879 * We don't support autobind on AF_LOCAL sockets
1880 */
1881 static void xs_local_rpcbind(struct rpc_task *task)
1882 {
1883 xprt_set_bound(task->tk_xprt);
1884 }
1885
1886 static void xs_local_set_port(struct rpc_xprt *xprt, unsigned short port)
1887 {
1888 }
1889
1890 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1891 static struct lock_class_key xs_key[2];
1892 static struct lock_class_key xs_slock_key[2];
1893
1894 static inline void xs_reclassify_socketu(struct socket *sock)
1895 {
1896 struct sock *sk = sock->sk;
1897
1898 sock_lock_init_class_and_name(sk, "slock-AF_LOCAL-RPC",
1899 &xs_slock_key[1], "sk_lock-AF_LOCAL-RPC", &xs_key[1]);
1900 }
1901
1902 static inline void xs_reclassify_socket4(struct socket *sock)
1903 {
1904 struct sock *sk = sock->sk;
1905
1906 sock_lock_init_class_and_name(sk, "slock-AF_INET-RPC",
1907 &xs_slock_key[0], "sk_lock-AF_INET-RPC", &xs_key[0]);
1908 }
1909
1910 static inline void xs_reclassify_socket6(struct socket *sock)
1911 {
1912 struct sock *sk = sock->sk;
1913
1914 sock_lock_init_class_and_name(sk, "slock-AF_INET6-RPC",
1915 &xs_slock_key[1], "sk_lock-AF_INET6-RPC", &xs_key[1]);
1916 }
1917
1918 static inline void xs_reclassify_socket(int family, struct socket *sock)
1919 {
1920 if (WARN_ON_ONCE(!sock_allow_reclassification(sock->sk)))
1921 return;
1922
1923 switch (family) {
1924 case AF_LOCAL:
1925 xs_reclassify_socketu(sock);
1926 break;
1927 case AF_INET:
1928 xs_reclassify_socket4(sock);
1929 break;
1930 case AF_INET6:
1931 xs_reclassify_socket6(sock);
1932 break;
1933 }
1934 }
1935 #else
1936 static inline void xs_reclassify_socket(int family, struct socket *sock)
1937 {
1938 }
1939 #endif
1940
1941 static void xs_dummy_setup_socket(struct work_struct *work)
1942 {
1943 }
1944
1945 static struct socket *xs_create_sock(struct rpc_xprt *xprt,
1946 struct sock_xprt *transport, int family, int type,
1947 int protocol, bool reuseport)
1948 {
1949 struct socket *sock;
1950 int err;
1951
1952 err = __sock_create(xprt->xprt_net, family, type, protocol, &sock, 1);
1953 if (err < 0) {
1954 dprintk("RPC: can't create %d transport socket (%d).\n",
1955 protocol, -err);
1956 goto out;
1957 }
1958 xs_reclassify_socket(family, sock);
1959
1960 if (reuseport)
1961 xs_sock_set_reuseport(sock);
1962
1963 err = xs_bind(transport, sock);
1964 if (err) {
1965 sock_release(sock);
1966 goto out;
1967 }
1968
1969 return sock;
1970 out:
1971 return ERR_PTR(err);
1972 }
1973
1974 static int xs_local_finish_connecting(struct rpc_xprt *xprt,
1975 struct socket *sock)
1976 {
1977 struct sock_xprt *transport = container_of(xprt, struct sock_xprt,
1978 xprt);
1979
1980 if (!transport->inet) {
1981 struct sock *sk = sock->sk;
1982
1983 write_lock_bh(&sk->sk_callback_lock);
1984
1985 xs_save_old_callbacks(transport, sk);
1986
1987 sk->sk_user_data = xprt;
1988 sk->sk_data_ready = xs_data_ready;
1989 sk->sk_write_space = xs_udp_write_space;
1990 sock_set_flag(sk, SOCK_FASYNC);
1991 sk->sk_error_report = xs_error_report;
1992 sk->sk_allocation = GFP_NOIO;
1993
1994 xprt_clear_connected(xprt);
1995
1996 /* Reset to new socket */
1997 transport->sock = sock;
1998 transport->inet = sk;
1999
2000 write_unlock_bh(&sk->sk_callback_lock);
2001 }
2002
2003 /* Tell the socket layer to start connecting... */
2004 xprt->stat.connect_count++;
2005 xprt->stat.connect_start = jiffies;
2006 return kernel_connect(sock, xs_addr(xprt), xprt->addrlen, 0);
2007 }
2008
2009 /**
2010 * xs_local_setup_socket - create AF_LOCAL socket, connect to a local endpoint
2011 * @transport: socket transport to connect
2012 */
2013 static int xs_local_setup_socket(struct sock_xprt *transport)
2014 {
2015 struct rpc_xprt *xprt = &transport->xprt;
2016 struct socket *sock;
2017 int status = -EIO;
2018
2019 status = __sock_create(xprt->xprt_net, AF_LOCAL,
2020 SOCK_STREAM, 0, &sock, 1);
2021 if (status < 0) {
2022 dprintk("RPC: can't create AF_LOCAL "
2023 "transport socket (%d).\n", -status);
2024 goto out;
2025 }
2026 xs_reclassify_socket(AF_LOCAL, sock);
2027
2028 dprintk("RPC: worker connecting xprt %p via AF_LOCAL to %s\n",
2029 xprt, xprt->address_strings[RPC_DISPLAY_ADDR]);
2030
2031 status = xs_local_finish_connecting(xprt, sock);
2032 trace_rpc_socket_connect(xprt, sock, status);
2033 switch (status) {
2034 case 0:
2035 dprintk("RPC: xprt %p connected to %s\n",
2036 xprt, xprt->address_strings[RPC_DISPLAY_ADDR]);
2037 xprt_set_connected(xprt);
2038 case -ENOBUFS:
2039 break;
2040 case -ENOENT:
2041 dprintk("RPC: xprt %p: socket %s does not exist\n",
2042 xprt, xprt->address_strings[RPC_DISPLAY_ADDR]);
2043 break;
2044 case -ECONNREFUSED:
2045 dprintk("RPC: xprt %p: connection refused for %s\n",
2046 xprt, xprt->address_strings[RPC_DISPLAY_ADDR]);
2047 break;
2048 default:
2049 printk(KERN_ERR "%s: unhandled error (%d) connecting to %s\n",
2050 __func__, -status,
2051 xprt->address_strings[RPC_DISPLAY_ADDR]);
2052 }
2053
2054 out:
2055 xprt_clear_connecting(xprt);
2056 xprt_wake_pending_tasks(xprt, status);
2057 return status;
2058 }
2059
2060 static void xs_local_connect(struct rpc_xprt *xprt, struct rpc_task *task)
2061 {
2062 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt);
2063 int ret;
2064
2065 if (RPC_IS_ASYNC(task)) {
2066 /*
2067 * We want the AF_LOCAL connect to be resolved in the
2068 * filesystem namespace of the process making the rpc
2069 * call. Thus we connect synchronously.
2070 *
2071 * If we want to support asynchronous AF_LOCAL calls,
2072 * we'll need to figure out how to pass a namespace to
2073 * connect.
2074 */
2075 rpc_exit(task, -ENOTCONN);
2076 return;
2077 }
2078 ret = xs_local_setup_socket(transport);
2079 if (ret && !RPC_IS_SOFTCONN(task))
2080 msleep_interruptible(15000);
2081 }
2082
2083 #if IS_ENABLED(CONFIG_SUNRPC_SWAP)
2084 /*
2085 * Note that this should be called with XPRT_LOCKED held (or when we otherwise
2086 * know that we have exclusive access to the socket), to guard against
2087 * races with xs_reset_transport.
2088 */
2089 static void xs_set_memalloc(struct rpc_xprt *xprt)
2090 {
2091 struct sock_xprt *transport = container_of(xprt, struct sock_xprt,
2092 xprt);
2093
2094 /*
2095 * If there's no sock, then we have nothing to set. The
2096 * reconnecting process will get it for us.
2097 */
2098 if (!transport->inet)
2099 return;
2100 if (atomic_read(&xprt->swapper))
2101 sk_set_memalloc(transport->inet);
2102 }
2103
2104 /**
2105 * xs_enable_swap - Tag this transport as being used for swap.
2106 * @xprt: transport to tag
2107 *
2108 * Take a reference to this transport on behalf of the rpc_clnt, and
2109 * optionally mark it for swapping if it wasn't already.
2110 */
2111 static int
2112 xs_enable_swap(struct rpc_xprt *xprt)
2113 {
2114 struct sock_xprt *xs = container_of(xprt, struct sock_xprt, xprt);
2115
2116 if (atomic_inc_return(&xprt->swapper) != 1)
2117 return 0;
2118 if (wait_on_bit_lock(&xprt->state, XPRT_LOCKED, TASK_KILLABLE))
2119 return -ERESTARTSYS;
2120 if (xs->inet)
2121 sk_set_memalloc(xs->inet);
2122 xprt_release_xprt(xprt, NULL);
2123 return 0;
2124 }
2125
2126 /**
2127 * xs_disable_swap - Untag this transport as being used for swap.
2128 * @xprt: transport to tag
2129 *
2130 * Drop a "swapper" reference to this xprt on behalf of the rpc_clnt. If the
2131 * swapper refcount goes to 0, untag the socket as a memalloc socket.
2132 */
2133 static void
2134 xs_disable_swap(struct rpc_xprt *xprt)
2135 {
2136 struct sock_xprt *xs = container_of(xprt, struct sock_xprt, xprt);
2137
2138 if (!atomic_dec_and_test(&xprt->swapper))
2139 return;
2140 if (wait_on_bit_lock(&xprt->state, XPRT_LOCKED, TASK_KILLABLE))
2141 return;
2142 if (xs->inet)
2143 sk_clear_memalloc(xs->inet);
2144 xprt_release_xprt(xprt, NULL);
2145 }
2146 #else
2147 static void xs_set_memalloc(struct rpc_xprt *xprt)
2148 {
2149 }
2150
2151 static int
2152 xs_enable_swap(struct rpc_xprt *xprt)
2153 {
2154 return -EINVAL;
2155 }
2156
2157 static void
2158 xs_disable_swap(struct rpc_xprt *xprt)
2159 {
2160 }
2161 #endif
2162
2163 static void xs_udp_finish_connecting(struct rpc_xprt *xprt, struct socket *sock)
2164 {
2165 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt);
2166
2167 if (!transport->inet) {
2168 struct sock *sk = sock->sk;
2169
2170 write_lock_bh(&sk->sk_callback_lock);
2171
2172 xs_save_old_callbacks(transport, sk);
2173
2174 sk->sk_user_data = xprt;
2175 sk->sk_data_ready = xs_data_ready;
2176 sk->sk_write_space = xs_udp_write_space;
2177 sock_set_flag(sk, SOCK_FASYNC);
2178 sk->sk_allocation = GFP_NOIO;
2179
2180 xprt_set_connected(xprt);
2181
2182 /* Reset to new socket */
2183 transport->sock = sock;
2184 transport->inet = sk;
2185
2186 xs_set_memalloc(xprt);
2187
2188 write_unlock_bh(&sk->sk_callback_lock);
2189 }
2190 xs_udp_do_set_buffer_size(xprt);
2191
2192 xprt->stat.connect_start = jiffies;
2193 }
2194
2195 static void xs_udp_setup_socket(struct work_struct *work)
2196 {
2197 struct sock_xprt *transport =
2198 container_of(work, struct sock_xprt, connect_worker.work);
2199 struct rpc_xprt *xprt = &transport->xprt;
2200 struct socket *sock = transport->sock;
2201 int status = -EIO;
2202
2203 sock = xs_create_sock(xprt, transport,
2204 xs_addr(xprt)->sa_family, SOCK_DGRAM,
2205 IPPROTO_UDP, false);
2206 if (IS_ERR(sock))
2207 goto out;
2208
2209 dprintk("RPC: worker connecting xprt %p via %s to "
2210 "%s (port %s)\n", xprt,
2211 xprt->address_strings[RPC_DISPLAY_PROTO],
2212 xprt->address_strings[RPC_DISPLAY_ADDR],
2213 xprt->address_strings[RPC_DISPLAY_PORT]);
2214
2215 xs_udp_finish_connecting(xprt, sock);
2216 trace_rpc_socket_connect(xprt, sock, 0);
2217 status = 0;
2218 out:
2219 xprt_unlock_connect(xprt, transport);
2220 xprt_clear_connecting(xprt);
2221 xprt_wake_pending_tasks(xprt, status);
2222 }
2223
2224 /**
2225 * xs_tcp_shutdown - gracefully shut down a TCP socket
2226 * @xprt: transport
2227 *
2228 * Initiates a graceful shutdown of the TCP socket by calling the
2229 * equivalent of shutdown(SHUT_RDWR);
2230 */
2231 static void xs_tcp_shutdown(struct rpc_xprt *xprt)
2232 {
2233 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt);
2234 struct socket *sock = transport->sock;
2235
2236 if (sock == NULL)
2237 return;
2238 if (xprt_connected(xprt)) {
2239 kernel_sock_shutdown(sock, SHUT_RDWR);
2240 trace_rpc_socket_shutdown(xprt, sock);
2241 } else
2242 xs_reset_transport(transport);
2243 }
2244
2245 static void xs_tcp_set_socket_timeouts(struct rpc_xprt *xprt,
2246 struct socket *sock)
2247 {
2248 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt);
2249 unsigned int keepidle;
2250 unsigned int keepcnt;
2251 unsigned int opt_on = 1;
2252 unsigned int timeo;
2253
2254 spin_lock_bh(&xprt->transport_lock);
2255 keepidle = DIV_ROUND_UP(xprt->timeout->to_initval, HZ);
2256 keepcnt = xprt->timeout->to_retries + 1;
2257 timeo = jiffies_to_msecs(xprt->timeout->to_initval) *
2258 (xprt->timeout->to_retries + 1);
2259 clear_bit(XPRT_SOCK_UPD_TIMEOUT, &transport->sock_state);
2260 spin_unlock_bh(&xprt->transport_lock);
2261
2262 /* TCP Keepalive options */
2263 kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
2264 (char *)&opt_on, sizeof(opt_on));
2265 kernel_setsockopt(sock, SOL_TCP, TCP_KEEPIDLE,
2266 (char *)&keepidle, sizeof(keepidle));
2267 kernel_setsockopt(sock, SOL_TCP, TCP_KEEPINTVL,
2268 (char *)&keepidle, sizeof(keepidle));
2269 kernel_setsockopt(sock, SOL_TCP, TCP_KEEPCNT,
2270 (char *)&keepcnt, sizeof(keepcnt));
2271
2272 /* TCP user timeout (see RFC5482) */
2273 kernel_setsockopt(sock, SOL_TCP, TCP_USER_TIMEOUT,
2274 (char *)&timeo, sizeof(timeo));
2275 }
2276
2277 static void xs_tcp_set_connect_timeout(struct rpc_xprt *xprt,
2278 unsigned long connect_timeout,
2279 unsigned long reconnect_timeout)
2280 {
2281 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt);
2282 struct rpc_timeout to;
2283 unsigned long initval;
2284
2285 spin_lock_bh(&xprt->transport_lock);
2286 if (reconnect_timeout < xprt->max_reconnect_timeout)
2287 xprt->max_reconnect_timeout = reconnect_timeout;
2288 if (connect_timeout < xprt->connect_timeout) {
2289 memcpy(&to, xprt->timeout, sizeof(to));
2290 initval = DIV_ROUND_UP(connect_timeout, to.to_retries + 1);
2291 /* Arbitrary lower limit */
2292 if (initval < XS_TCP_INIT_REEST_TO << 1)
2293 initval = XS_TCP_INIT_REEST_TO << 1;
2294 to.to_initval = initval;
2295 to.to_maxval = initval;
2296 memcpy(&transport->tcp_timeout, &to,
2297 sizeof(transport->tcp_timeout));
2298 xprt->timeout = &transport->tcp_timeout;
2299 xprt->connect_timeout = connect_timeout;
2300 }
2301 set_bit(XPRT_SOCK_UPD_TIMEOUT, &transport->sock_state);
2302 spin_unlock_bh(&xprt->transport_lock);
2303 }
2304
2305 static int xs_tcp_finish_connecting(struct rpc_xprt *xprt, struct socket *sock)
2306 {
2307 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt);
2308 int ret = -ENOTCONN;
2309
2310 if (!transport->inet) {
2311 struct sock *sk = sock->sk;
2312 unsigned int addr_pref = IPV6_PREFER_SRC_PUBLIC;
2313
2314 /* Avoid temporary address, they are bad for long-lived
2315 * connections such as NFS mounts.
2316 * RFC4941, section 3.6 suggests that:
2317 * Individual applications, which have specific
2318 * knowledge about the normal duration of connections,
2319 * MAY override this as appropriate.
2320 */
2321 kernel_setsockopt(sock, SOL_IPV6, IPV6_ADDR_PREFERENCES,
2322 (char *)&addr_pref, sizeof(addr_pref));
2323
2324 xs_tcp_set_socket_timeouts(xprt, sock);
2325
2326 write_lock_bh(&sk->sk_callback_lock);
2327
2328 xs_save_old_callbacks(transport, sk);
2329
2330 sk->sk_user_data = xprt;
2331 sk->sk_data_ready = xs_data_ready;
2332 sk->sk_state_change = xs_tcp_state_change;
2333 sk->sk_write_space = xs_tcp_write_space;
2334 sock_set_flag(sk, SOCK_FASYNC);
2335 sk->sk_error_report = xs_error_report;
2336 sk->sk_allocation = GFP_NOIO;
2337
2338 /* socket options */
2339 sock_reset_flag(sk, SOCK_LINGER);
2340 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF;
2341
2342 xprt_clear_connected(xprt);
2343
2344 /* Reset to new socket */
2345 transport->sock = sock;
2346 transport->inet = sk;
2347
2348 write_unlock_bh(&sk->sk_callback_lock);
2349 }
2350
2351 if (!xprt_bound(xprt))
2352 goto out;
2353
2354 xs_set_memalloc(xprt);
2355
2356 /* Tell the socket layer to start connecting... */
2357 xprt->stat.connect_count++;
2358 xprt->stat.connect_start = jiffies;
2359 set_bit(XPRT_SOCK_CONNECTING, &transport->sock_state);
2360 ret = kernel_connect(sock, xs_addr(xprt), xprt->addrlen, O_NONBLOCK);
2361 switch (ret) {
2362 case 0:
2363 xs_set_srcport(transport, sock);
2364 case -EINPROGRESS:
2365 /* SYN_SENT! */
2366 if (xprt->reestablish_timeout < XS_TCP_INIT_REEST_TO)
2367 xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO;
2368 break;
2369 case -EADDRNOTAVAIL:
2370 /* Source port number is unavailable. Try a new one! */
2371 transport->srcport = 0;
2372 }
2373 out:
2374 return ret;
2375 }
2376
2377 /**
2378 * xs_tcp_setup_socket - create a TCP socket and connect to a remote endpoint
2379 *
2380 * Invoked by a work queue tasklet.
2381 */
2382 static void xs_tcp_setup_socket(struct work_struct *work)
2383 {
2384 struct sock_xprt *transport =
2385 container_of(work, struct sock_xprt, connect_worker.work);
2386 struct socket *sock = transport->sock;
2387 struct rpc_xprt *xprt = &transport->xprt;
2388 int status = -EIO;
2389
2390 if (!sock) {
2391 sock = xs_create_sock(xprt, transport,
2392 xs_addr(xprt)->sa_family, SOCK_STREAM,
2393 IPPROTO_TCP, true);
2394 if (IS_ERR(sock)) {
2395 status = PTR_ERR(sock);
2396 goto out;
2397 }
2398 }
2399
2400 dprintk("RPC: worker connecting xprt %p via %s to "
2401 "%s (port %s)\n", xprt,
2402 xprt->address_strings[RPC_DISPLAY_PROTO],
2403 xprt->address_strings[RPC_DISPLAY_ADDR],
2404 xprt->address_strings[RPC_DISPLAY_PORT]);
2405
2406 status = xs_tcp_finish_connecting(xprt, sock);
2407 trace_rpc_socket_connect(xprt, sock, status);
2408 dprintk("RPC: %p connect status %d connected %d sock state %d\n",
2409 xprt, -status, xprt_connected(xprt),
2410 sock->sk->sk_state);
2411 switch (status) {
2412 default:
2413 printk("%s: connect returned unhandled error %d\n",
2414 __func__, status);
2415 case -EADDRNOTAVAIL:
2416 /* We're probably in TIME_WAIT. Get rid of existing socket,
2417 * and retry
2418 */
2419 xs_tcp_force_close(xprt);
2420 break;
2421 case 0:
2422 case -EINPROGRESS:
2423 case -EALREADY:
2424 xprt_unlock_connect(xprt, transport);
2425 return;
2426 case -EINVAL:
2427 /* Happens, for instance, if the user specified a link
2428 * local IPv6 address without a scope-id.
2429 */
2430 case -ECONNREFUSED:
2431 case -ECONNRESET:
2432 case -ENETUNREACH:
2433 case -EADDRINUSE:
2434 case -ENOBUFS:
2435 /*
2436 * xs_tcp_force_close() wakes tasks with -EIO.
2437 * We need to wake them first to ensure the
2438 * correct error code.
2439 */
2440 xprt_wake_pending_tasks(xprt, status);
2441 xs_tcp_force_close(xprt);
2442 goto out;
2443 }
2444 status = -EAGAIN;
2445 out:
2446 xprt_unlock_connect(xprt, transport);
2447 xprt_clear_connecting(xprt);
2448 xprt_wake_pending_tasks(xprt, status);
2449 }
2450
2451 static unsigned long xs_reconnect_delay(const struct rpc_xprt *xprt)
2452 {
2453 unsigned long start, now = jiffies;
2454
2455 start = xprt->stat.connect_start + xprt->reestablish_timeout;
2456 if (time_after(start, now))
2457 return start - now;
2458 return 0;
2459 }
2460
2461 static void xs_reconnect_backoff(struct rpc_xprt *xprt)
2462 {
2463 xprt->reestablish_timeout <<= 1;
2464 if (xprt->reestablish_timeout > xprt->max_reconnect_timeout)
2465 xprt->reestablish_timeout = xprt->max_reconnect_timeout;
2466 if (xprt->reestablish_timeout < XS_TCP_INIT_REEST_TO)
2467 xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO;
2468 }
2469
2470 /**
2471 * xs_connect - connect a socket to a remote endpoint
2472 * @xprt: pointer to transport structure
2473 * @task: address of RPC task that manages state of connect request
2474 *
2475 * TCP: If the remote end dropped the connection, delay reconnecting.
2476 *
2477 * UDP socket connects are synchronous, but we use a work queue anyway
2478 * to guarantee that even unprivileged user processes can set up a
2479 * socket on a privileged port.
2480 *
2481 * If a UDP socket connect fails, the delay behavior here prevents
2482 * retry floods (hard mounts).
2483 */
2484 static void xs_connect(struct rpc_xprt *xprt, struct rpc_task *task)
2485 {
2486 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt);
2487 unsigned long delay = 0;
2488
2489 WARN_ON_ONCE(!xprt_lock_connect(xprt, task, transport));
2490
2491 if (transport->sock != NULL) {
2492 dprintk("RPC: xs_connect delayed xprt %p for %lu "
2493 "seconds\n",
2494 xprt, xprt->reestablish_timeout / HZ);
2495
2496 /* Start by resetting any existing state */
2497 xs_reset_transport(transport);
2498
2499 delay = xs_reconnect_delay(xprt);
2500 xs_reconnect_backoff(xprt);
2501
2502 } else
2503 dprintk("RPC: xs_connect scheduled xprt %p\n", xprt);
2504
2505 queue_delayed_work(xprtiod_workqueue,
2506 &transport->connect_worker,
2507 delay);
2508 }
2509
2510 /**
2511 * xs_local_print_stats - display AF_LOCAL socket-specifc stats
2512 * @xprt: rpc_xprt struct containing statistics
2513 * @seq: output file
2514 *
2515 */
2516 static void xs_local_print_stats(struct rpc_xprt *xprt, struct seq_file *seq)
2517 {
2518 long idle_time = 0;
2519
2520 if (xprt_connected(xprt))
2521 idle_time = (long)(jiffies - xprt->last_used) / HZ;
2522
2523 seq_printf(seq, "\txprt:\tlocal %lu %lu %lu %ld %lu %lu %lu "
2524 "%llu %llu %lu %llu %llu\n",
2525 xprt->stat.bind_count,
2526 xprt->stat.connect_count,
2527 xprt->stat.connect_time,
2528 idle_time,
2529 xprt->stat.sends,
2530 xprt->stat.recvs,
2531 xprt->stat.bad_xids,
2532 xprt->stat.req_u,
2533 xprt->stat.bklog_u,
2534 xprt->stat.max_slots,
2535 xprt->stat.sending_u,
2536 xprt->stat.pending_u);
2537 }
2538
2539 /**
2540 * xs_udp_print_stats - display UDP socket-specifc stats
2541 * @xprt: rpc_xprt struct containing statistics
2542 * @seq: output file
2543 *
2544 */
2545 static void xs_udp_print_stats(struct rpc_xprt *xprt, struct seq_file *seq)
2546 {
2547 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt);
2548
2549 seq_printf(seq, "\txprt:\tudp %u %lu %lu %lu %lu %llu %llu "
2550 "%lu %llu %llu\n",
2551 transport->srcport,
2552 xprt->stat.bind_count,
2553 xprt->stat.sends,
2554 xprt->stat.recvs,
2555 xprt->stat.bad_xids,
2556 xprt->stat.req_u,
2557 xprt->stat.bklog_u,
2558 xprt->stat.max_slots,
2559 xprt->stat.sending_u,
2560 xprt->stat.pending_u);
2561 }
2562
2563 /**
2564 * xs_tcp_print_stats - display TCP socket-specifc stats
2565 * @xprt: rpc_xprt struct containing statistics
2566 * @seq: output file
2567 *
2568 */
2569 static void xs_tcp_print_stats(struct rpc_xprt *xprt, struct seq_file *seq)
2570 {
2571 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt);
2572 long idle_time = 0;
2573
2574 if (xprt_connected(xprt))
2575 idle_time = (long)(jiffies - xprt->last_used) / HZ;
2576
2577 seq_printf(seq, "\txprt:\ttcp %u %lu %lu %lu %ld %lu %lu %lu "
2578 "%llu %llu %lu %llu %llu\n",
2579 transport->srcport,
2580 xprt->stat.bind_count,
2581 xprt->stat.connect_count,
2582 xprt->stat.connect_time,
2583 idle_time,
2584 xprt->stat.sends,
2585 xprt->stat.recvs,
2586 xprt->stat.bad_xids,
2587 xprt->stat.req_u,
2588 xprt->stat.bklog_u,
2589 xprt->stat.max_slots,
2590 xprt->stat.sending_u,
2591 xprt->stat.pending_u);
2592 }
2593
2594 /*
2595 * Allocate a bunch of pages for a scratch buffer for the rpc code. The reason
2596 * we allocate pages instead doing a kmalloc like rpc_malloc is because we want
2597 * to use the server side send routines.
2598 */
2599 static int bc_malloc(struct rpc_task *task)
2600 {
2601 struct rpc_rqst *rqst = task->tk_rqstp;
2602 size_t size = rqst->rq_callsize;
2603 struct page *page;
2604 struct rpc_buffer *buf;
2605
2606 if (size > PAGE_SIZE - sizeof(struct rpc_buffer)) {
2607 WARN_ONCE(1, "xprtsock: large bc buffer request (size %zu)\n",
2608 size);
2609 return -EINVAL;
2610 }
2611
2612 page = alloc_page(GFP_KERNEL);
2613 if (!page)
2614 return -ENOMEM;
2615
2616 buf = page_address(page);
2617 buf->len = PAGE_SIZE;
2618
2619 rqst->rq_buffer = buf->data;
2620 rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
2621 return 0;
2622 }
2623
2624 /*
2625 * Free the space allocated in the bc_alloc routine
2626 */
2627 static void bc_free(struct rpc_task *task)
2628 {
2629 void *buffer = task->tk_rqstp->rq_buffer;
2630 struct rpc_buffer *buf;
2631
2632 buf = container_of(buffer, struct rpc_buffer, data);
2633 free_page((unsigned long)buf);
2634 }
2635
2636 /*
2637 * Use the svc_sock to send the callback. Must be called with svsk->sk_mutex
2638 * held. Borrows heavily from svc_tcp_sendto and xs_tcp_send_request.
2639 */
2640 static int bc_sendto(struct rpc_rqst *req)
2641 {
2642 int len;
2643 struct xdr_buf *xbufp = &req->rq_snd_buf;
2644 struct rpc_xprt *xprt = req->rq_xprt;
2645 struct sock_xprt *transport =
2646 container_of(xprt, struct sock_xprt, xprt);
2647 struct socket *sock = transport->sock;
2648 unsigned long headoff;
2649 unsigned long tailoff;
2650
2651 xs_encode_stream_record_marker(xbufp);
2652
2653 tailoff = (unsigned long)xbufp->tail[0].iov_base & ~PAGE_MASK;
2654 headoff = (unsigned long)xbufp->head[0].iov_base & ~PAGE_MASK;
2655 len = svc_send_common(sock, xbufp,
2656 virt_to_page(xbufp->head[0].iov_base), headoff,
2657 xbufp->tail[0].iov_base, tailoff);
2658
2659 if (len != xbufp->len) {
2660 printk(KERN_NOTICE "Error sending entire callback!\n");
2661 len = -EAGAIN;
2662 }
2663
2664 return len;
2665 }
2666
2667 /*
2668 * The send routine. Borrows from svc_send
2669 */
2670 static int bc_send_request(struct rpc_task *task)
2671 {
2672 struct rpc_rqst *req = task->tk_rqstp;
2673 struct svc_xprt *xprt;
2674 int len;
2675
2676 dprintk("sending request with xid: %08x\n", ntohl(req->rq_xid));
2677 /*
2678 * Get the server socket associated with this callback xprt
2679 */
2680 xprt = req->rq_xprt->bc_xprt;
2681
2682 /*
2683 * Grab the mutex to serialize data as the connection is shared
2684 * with the fore channel
2685 */
2686 if (!mutex_trylock(&xprt->xpt_mutex)) {
2687 rpc_sleep_on(&xprt->xpt_bc_pending, task, NULL);
2688 if (!mutex_trylock(&xprt->xpt_mutex))
2689 return -EAGAIN;
2690 rpc_wake_up_queued_task(&xprt->xpt_bc_pending, task);
2691 }
2692 if (test_bit(XPT_DEAD, &xprt->xpt_flags))
2693 len = -ENOTCONN;
2694 else
2695 len = bc_sendto(req);
2696 mutex_unlock(&xprt->xpt_mutex);
2697
2698 if (len > 0)
2699 len = 0;
2700
2701 return len;
2702 }
2703
2704 /*
2705 * The close routine. Since this is client initiated, we do nothing
2706 */
2707
2708 static void bc_close(struct rpc_xprt *xprt)
2709 {
2710 }
2711
2712 /*
2713 * The xprt destroy routine. Again, because this connection is client
2714 * initiated, we do nothing
2715 */
2716
2717 static void bc_destroy(struct rpc_xprt *xprt)
2718 {
2719 dprintk("RPC: bc_destroy xprt %p\n", xprt);
2720
2721 xs_xprt_free(xprt);
2722 module_put(THIS_MODULE);
2723 }
2724
2725 static struct rpc_xprt_ops xs_local_ops = {
2726 .reserve_xprt = xprt_reserve_xprt,
2727 .release_xprt = xs_tcp_release_xprt,
2728 .alloc_slot = xprt_alloc_slot,
2729 .rpcbind = xs_local_rpcbind,
2730 .set_port = xs_local_set_port,
2731 .connect = xs_local_connect,
2732 .buf_alloc = rpc_malloc,
2733 .buf_free = rpc_free,
2734 .send_request = xs_local_send_request,
2735 .set_retrans_timeout = xprt_set_retrans_timeout_def,
2736 .close = xs_close,
2737 .destroy = xs_destroy,
2738 .print_stats = xs_local_print_stats,
2739 .enable_swap = xs_enable_swap,
2740 .disable_swap = xs_disable_swap,
2741 };
2742
2743 static struct rpc_xprt_ops xs_udp_ops = {
2744 .set_buffer_size = xs_udp_set_buffer_size,
2745 .reserve_xprt = xprt_reserve_xprt_cong,
2746 .release_xprt = xprt_release_xprt_cong,
2747 .alloc_slot = xprt_alloc_slot,
2748 .rpcbind = rpcb_getport_async,
2749 .set_port = xs_set_port,
2750 .connect = xs_connect,
2751 .buf_alloc = rpc_malloc,
2752 .buf_free = rpc_free,
2753 .send_request = xs_udp_send_request,
2754 .set_retrans_timeout = xprt_set_retrans_timeout_rtt,
2755 .timer = xs_udp_timer,
2756 .release_request = xprt_release_rqst_cong,
2757 .close = xs_close,
2758 .destroy = xs_destroy,
2759 .print_stats = xs_udp_print_stats,
2760 .enable_swap = xs_enable_swap,
2761 .disable_swap = xs_disable_swap,
2762 .inject_disconnect = xs_inject_disconnect,
2763 };
2764
2765 static struct rpc_xprt_ops xs_tcp_ops = {
2766 .reserve_xprt = xprt_reserve_xprt,
2767 .release_xprt = xs_tcp_release_xprt,
2768 .alloc_slot = xprt_lock_and_alloc_slot,
2769 .rpcbind = rpcb_getport_async,
2770 .set_port = xs_set_port,
2771 .connect = xs_connect,
2772 .buf_alloc = rpc_malloc,
2773 .buf_free = rpc_free,
2774 .send_request = xs_tcp_send_request,
2775 .set_retrans_timeout = xprt_set_retrans_timeout_def,
2776 .close = xs_tcp_shutdown,
2777 .destroy = xs_destroy,
2778 .set_connect_timeout = xs_tcp_set_connect_timeout,
2779 .print_stats = xs_tcp_print_stats,
2780 .enable_swap = xs_enable_swap,
2781 .disable_swap = xs_disable_swap,
2782 .inject_disconnect = xs_inject_disconnect,
2783 #ifdef CONFIG_SUNRPC_BACKCHANNEL
2784 .bc_setup = xprt_setup_bc,
2785 .bc_up = xs_tcp_bc_up,
2786 .bc_maxpayload = xs_tcp_bc_maxpayload,
2787 .bc_free_rqst = xprt_free_bc_rqst,
2788 .bc_destroy = xprt_destroy_bc,
2789 #endif
2790 };
2791
2792 /*
2793 * The rpc_xprt_ops for the server backchannel
2794 */
2795
2796 static struct rpc_xprt_ops bc_tcp_ops = {
2797 .reserve_xprt = xprt_reserve_xprt,
2798 .release_xprt = xprt_release_xprt,
2799 .alloc_slot = xprt_alloc_slot,
2800 .buf_alloc = bc_malloc,
2801 .buf_free = bc_free,
2802 .send_request = bc_send_request,
2803 .set_retrans_timeout = xprt_set_retrans_timeout_def,
2804 .close = bc_close,
2805 .destroy = bc_destroy,
2806 .print_stats = xs_tcp_print_stats,
2807 .enable_swap = xs_enable_swap,
2808 .disable_swap = xs_disable_swap,
2809 .inject_disconnect = xs_inject_disconnect,
2810 };
2811
2812 static int xs_init_anyaddr(const int family, struct sockaddr *sap)
2813 {
2814 static const struct sockaddr_in sin = {
2815 .sin_family = AF_INET,
2816 .sin_addr.s_addr = htonl(INADDR_ANY),
2817 };
2818 static const struct sockaddr_in6 sin6 = {
2819 .sin6_family = AF_INET6,
2820 .sin6_addr = IN6ADDR_ANY_INIT,
2821 };
2822
2823 switch (family) {
2824 case AF_LOCAL:
2825 break;
2826 case AF_INET:
2827 memcpy(sap, &sin, sizeof(sin));
2828 break;
2829 case AF_INET6:
2830 memcpy(sap, &sin6, sizeof(sin6));
2831 break;
2832 default:
2833 dprintk("RPC: %s: Bad address family\n", __func__);
2834 return -EAFNOSUPPORT;
2835 }
2836 return 0;
2837 }
2838
2839 static struct rpc_xprt *xs_setup_xprt(struct xprt_create *args,
2840 unsigned int slot_table_size,
2841 unsigned int max_slot_table_size)
2842 {
2843 struct rpc_xprt *xprt;
2844 struct sock_xprt *new;
2845
2846 if (args->addrlen > sizeof(xprt->addr)) {
2847 dprintk("RPC: xs_setup_xprt: address too large\n");
2848 return ERR_PTR(-EBADF);
2849 }
2850
2851 xprt = xprt_alloc(args->net, sizeof(*new), slot_table_size,
2852 max_slot_table_size);
2853 if (xprt == NULL) {
2854 dprintk("RPC: xs_setup_xprt: couldn't allocate "
2855 "rpc_xprt\n");
2856 return ERR_PTR(-ENOMEM);
2857 }
2858
2859 new = container_of(xprt, struct sock_xprt, xprt);
2860 mutex_init(&new->recv_mutex);
2861 memcpy(&xprt->addr, args->dstaddr, args->addrlen);
2862 xprt->addrlen = args->addrlen;
2863 if (args->srcaddr)
2864 memcpy(&new->srcaddr, args->srcaddr, args->addrlen);
2865 else {
2866 int err;
2867 err = xs_init_anyaddr(args->dstaddr->sa_family,
2868 (struct sockaddr *)&new->srcaddr);
2869 if (err != 0) {
2870 xprt_free(xprt);
2871 return ERR_PTR(err);
2872 }
2873 }
2874
2875 return xprt;
2876 }
2877
2878 static const struct rpc_timeout xs_local_default_timeout = {
2879 .to_initval = 10 * HZ,
2880 .to_maxval = 10 * HZ,
2881 .to_retries = 2,
2882 };
2883
2884 /**
2885 * xs_setup_local - Set up transport to use an AF_LOCAL socket
2886 * @args: rpc transport creation arguments
2887 *
2888 * AF_LOCAL is a "tpi_cots_ord" transport, just like TCP
2889 */
2890 static struct rpc_xprt *xs_setup_local(struct xprt_create *args)
2891 {
2892 struct sockaddr_un *sun = (struct sockaddr_un *)args->dstaddr;
2893 struct sock_xprt *transport;
2894 struct rpc_xprt *xprt;
2895 struct rpc_xprt *ret;
2896
2897 xprt = xs_setup_xprt(args, xprt_tcp_slot_table_entries,
2898 xprt_max_tcp_slot_table_entries);
2899 if (IS_ERR(xprt))
2900 return xprt;
2901 transport = container_of(xprt, struct sock_xprt, xprt);
2902
2903 xprt->prot = 0;
2904 xprt->tsh_size = sizeof(rpc_fraghdr) / sizeof(u32);
2905 xprt->max_payload = RPC_MAX_FRAGMENT_SIZE;
2906
2907 xprt->bind_timeout = XS_BIND_TO;
2908 xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO;
2909 xprt->idle_timeout = XS_IDLE_DISC_TO;
2910
2911 xprt->ops = &xs_local_ops;
2912 xprt->timeout = &xs_local_default_timeout;
2913
2914 INIT_WORK(&transport->recv_worker, xs_local_data_receive_workfn);
2915 INIT_DELAYED_WORK(&transport->connect_worker,
2916 xs_dummy_setup_socket);
2917
2918 switch (sun->sun_family) {
2919 case AF_LOCAL:
2920 if (sun->sun_path[0] != '/') {
2921 dprintk("RPC: bad AF_LOCAL address: %s\n",
2922 sun->sun_path);
2923 ret = ERR_PTR(-EINVAL);
2924 goto out_err;
2925 }
2926 xprt_set_bound(xprt);
2927 xs_format_peer_addresses(xprt, "local", RPCBIND_NETID_LOCAL);
2928 ret = ERR_PTR(xs_local_setup_socket(transport));
2929 if (ret)
2930 goto out_err;
2931 break;
2932 default:
2933 ret = ERR_PTR(-EAFNOSUPPORT);
2934 goto out_err;
2935 }
2936
2937 dprintk("RPC: set up xprt to %s via AF_LOCAL\n",
2938 xprt->address_strings[RPC_DISPLAY_ADDR]);
2939
2940 if (try_module_get(THIS_MODULE))
2941 return xprt;
2942 ret = ERR_PTR(-EINVAL);
2943 out_err:
2944 xs_xprt_free(xprt);
2945 return ret;
2946 }
2947
2948 static const struct rpc_timeout xs_udp_default_timeout = {
2949 .to_initval = 5 * HZ,
2950 .to_maxval = 30 * HZ,
2951 .to_increment = 5 * HZ,
2952 .to_retries = 5,
2953 };
2954
2955 /**
2956 * xs_setup_udp - Set up transport to use a UDP socket
2957 * @args: rpc transport creation arguments
2958 *
2959 */
2960 static struct rpc_xprt *xs_setup_udp(struct xprt_create *args)
2961 {
2962 struct sockaddr *addr = args->dstaddr;
2963 struct rpc_xprt *xprt;
2964 struct sock_xprt *transport;
2965 struct rpc_xprt *ret;
2966
2967 xprt = xs_setup_xprt(args, xprt_udp_slot_table_entries,
2968 xprt_udp_slot_table_entries);
2969 if (IS_ERR(xprt))
2970 return xprt;
2971 transport = container_of(xprt, struct sock_xprt, xprt);
2972
2973 xprt->prot = IPPROTO_UDP;
2974 xprt->tsh_size = 0;
2975 /* XXX: header size can vary due to auth type, IPv6, etc. */
2976 xprt->max_payload = (1U << 16) - (MAX_HEADER << 3);
2977
2978 xprt->bind_timeout = XS_BIND_TO;
2979 xprt->reestablish_timeout = XS_UDP_REEST_TO;
2980 xprt->idle_timeout = XS_IDLE_DISC_TO;
2981
2982 xprt->ops = &xs_udp_ops;
2983
2984 xprt->timeout = &xs_udp_default_timeout;
2985
2986 INIT_WORK(&transport->recv_worker, xs_udp_data_receive_workfn);
2987 INIT_DELAYED_WORK(&transport->connect_worker, xs_udp_setup_socket);
2988
2989 switch (addr->sa_family) {
2990 case AF_INET:
2991 if (((struct sockaddr_in *)addr)->sin_port != htons(0))
2992 xprt_set_bound(xprt);
2993
2994 xs_format_peer_addresses(xprt, "udp", RPCBIND_NETID_UDP);
2995 break;
2996 case AF_INET6:
2997 if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0))
2998 xprt_set_bound(xprt);
2999
3000 xs_format_peer_addresses(xprt, "udp", RPCBIND_NETID_UDP6);
3001 break;
3002 default:
3003 ret = ERR_PTR(-EAFNOSUPPORT);
3004 goto out_err;
3005 }
3006
3007 if (xprt_bound(xprt))
3008 dprintk("RPC: set up xprt to %s (port %s) via %s\n",
3009 xprt->address_strings[RPC_DISPLAY_ADDR],
3010 xprt->address_strings[RPC_DISPLAY_PORT],
3011 xprt->address_strings[RPC_DISPLAY_PROTO]);
3012 else
3013 dprintk("RPC: set up xprt to %s (autobind) via %s\n",
3014 xprt->address_strings[RPC_DISPLAY_ADDR],
3015 xprt->address_strings[RPC_DISPLAY_PROTO]);
3016
3017 if (try_module_get(THIS_MODULE))
3018 return xprt;
3019 ret = ERR_PTR(-EINVAL);
3020 out_err:
3021 xs_xprt_free(xprt);
3022 return ret;
3023 }
3024
3025 static const struct rpc_timeout xs_tcp_default_timeout = {
3026 .to_initval = 60 * HZ,
3027 .to_maxval = 60 * HZ,
3028 .to_retries = 2,
3029 };
3030
3031 /**
3032 * xs_setup_tcp - Set up transport to use a TCP socket
3033 * @args: rpc transport creation arguments
3034 *
3035 */
3036 static struct rpc_xprt *xs_setup_tcp(struct xprt_create *args)
3037 {
3038 struct sockaddr *addr = args->dstaddr;
3039 struct rpc_xprt *xprt;
3040 struct sock_xprt *transport;
3041 struct rpc_xprt *ret;
3042 unsigned int max_slot_table_size = xprt_max_tcp_slot_table_entries;
3043
3044 if (args->flags & XPRT_CREATE_INFINITE_SLOTS)
3045 max_slot_table_size = RPC_MAX_SLOT_TABLE_LIMIT;
3046
3047 xprt = xs_setup_xprt(args, xprt_tcp_slot_table_entries,
3048 max_slot_table_size);
3049 if (IS_ERR(xprt))
3050 return xprt;
3051 transport = container_of(xprt, struct sock_xprt, xprt);
3052
3053 xprt->prot = IPPROTO_TCP;
3054 xprt->tsh_size = sizeof(rpc_fraghdr) / sizeof(u32);
3055 xprt->max_payload = RPC_MAX_FRAGMENT_SIZE;
3056
3057 xprt->bind_timeout = XS_BIND_TO;
3058 xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO;
3059 xprt->idle_timeout = XS_IDLE_DISC_TO;
3060
3061 xprt->ops = &xs_tcp_ops;
3062 xprt->timeout = &xs_tcp_default_timeout;
3063
3064 xprt->max_reconnect_timeout = xprt->timeout->to_maxval;
3065 xprt->connect_timeout = xprt->timeout->to_initval *
3066 (xprt->timeout->to_retries + 1);
3067
3068 INIT_WORK(&transport->recv_worker, xs_tcp_data_receive_workfn);
3069 INIT_DELAYED_WORK(&transport->connect_worker, xs_tcp_setup_socket);
3070
3071 switch (addr->sa_family) {
3072 case AF_INET:
3073 if (((struct sockaddr_in *)addr)->sin_port != htons(0))
3074 xprt_set_bound(xprt);
3075
3076 xs_format_peer_addresses(xprt, "tcp", RPCBIND_NETID_TCP);
3077 break;
3078 case AF_INET6:
3079 if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0))
3080 xprt_set_bound(xprt);
3081
3082 xs_format_peer_addresses(xprt, "tcp", RPCBIND_NETID_TCP6);
3083 break;
3084 default:
3085 ret = ERR_PTR(-EAFNOSUPPORT);
3086 goto out_err;
3087 }
3088
3089 if (xprt_bound(xprt))
3090 dprintk("RPC: set up xprt to %s (port %s) via %s\n",
3091 xprt->address_strings[RPC_DISPLAY_ADDR],
3092 xprt->address_strings[RPC_DISPLAY_PORT],
3093 xprt->address_strings[RPC_DISPLAY_PROTO]);
3094 else
3095 dprintk("RPC: set up xprt to %s (autobind) via %s\n",
3096 xprt->address_strings[RPC_DISPLAY_ADDR],
3097 xprt->address_strings[RPC_DISPLAY_PROTO]);
3098
3099 if (try_module_get(THIS_MODULE))
3100 return xprt;
3101 ret = ERR_PTR(-EINVAL);
3102 out_err:
3103 xs_xprt_free(xprt);
3104 return ret;
3105 }
3106
3107 /**
3108 * xs_setup_bc_tcp - Set up transport to use a TCP backchannel socket
3109 * @args: rpc transport creation arguments
3110 *
3111 */
3112 static struct rpc_xprt *xs_setup_bc_tcp(struct xprt_create *args)
3113 {
3114 struct sockaddr *addr = args->dstaddr;
3115 struct rpc_xprt *xprt;
3116 struct sock_xprt *transport;
3117 struct svc_sock *bc_sock;
3118 struct rpc_xprt *ret;
3119
3120 xprt = xs_setup_xprt(args, xprt_tcp_slot_table_entries,
3121 xprt_tcp_slot_table_entries);
3122 if (IS_ERR(xprt))
3123 return xprt;
3124 transport = container_of(xprt, struct sock_xprt, xprt);
3125
3126 xprt->prot = IPPROTO_TCP;
3127 xprt->tsh_size = sizeof(rpc_fraghdr) / sizeof(u32);
3128 xprt->max_payload = RPC_MAX_FRAGMENT_SIZE;
3129 xprt->timeout = &xs_tcp_default_timeout;
3130
3131 /* backchannel */
3132 xprt_set_bound(xprt);
3133 xprt->bind_timeout = 0;
3134 xprt->reestablish_timeout = 0;
3135 xprt->idle_timeout = 0;
3136
3137 xprt->ops = &bc_tcp_ops;
3138
3139 switch (addr->sa_family) {
3140 case AF_INET:
3141 xs_format_peer_addresses(xprt, "tcp",
3142 RPCBIND_NETID_TCP);
3143 break;
3144 case AF_INET6:
3145 xs_format_peer_addresses(xprt, "tcp",
3146 RPCBIND_NETID_TCP6);
3147 break;
3148 default:
3149 ret = ERR_PTR(-EAFNOSUPPORT);
3150 goto out_err;
3151 }
3152
3153 dprintk("RPC: set up xprt to %s (port %s) via %s\n",
3154 xprt->address_strings[RPC_DISPLAY_ADDR],
3155 xprt->address_strings[RPC_DISPLAY_PORT],
3156 xprt->address_strings[RPC_DISPLAY_PROTO]);
3157
3158 /*
3159 * Once we've associated a backchannel xprt with a connection,
3160 * we want to keep it around as long as the connection lasts,
3161 * in case we need to start using it for a backchannel again;
3162 * this reference won't be dropped until bc_xprt is destroyed.
3163 */
3164 xprt_get(xprt);
3165 args->bc_xprt->xpt_bc_xprt = xprt;
3166 xprt->bc_xprt = args->bc_xprt;
3167 bc_sock = container_of(args->bc_xprt, struct svc_sock, sk_xprt);
3168 transport->sock = bc_sock->sk_sock;
3169 transport->inet = bc_sock->sk_sk;
3170
3171 /*
3172 * Since we don't want connections for the backchannel, we set
3173 * the xprt status to connected
3174 */
3175 xprt_set_connected(xprt);
3176
3177 if (try_module_get(THIS_MODULE))
3178 return xprt;
3179
3180 args->bc_xprt->xpt_bc_xprt = NULL;
3181 args->bc_xprt->xpt_bc_xps = NULL;
3182 xprt_put(xprt);
3183 ret = ERR_PTR(-EINVAL);
3184 out_err:
3185 xs_xprt_free(xprt);
3186 return ret;
3187 }
3188
3189 static struct xprt_class xs_local_transport = {
3190 .list = LIST_HEAD_INIT(xs_local_transport.list),
3191 .name = "named UNIX socket",
3192 .owner = THIS_MODULE,
3193 .ident = XPRT_TRANSPORT_LOCAL,
3194 .setup = xs_setup_local,
3195 };
3196
3197 static struct xprt_class xs_udp_transport = {
3198 .list = LIST_HEAD_INIT(xs_udp_transport.list),
3199 .name = "udp",
3200 .owner = THIS_MODULE,
3201 .ident = XPRT_TRANSPORT_UDP,
3202 .setup = xs_setup_udp,
3203 };
3204
3205 static struct xprt_class xs_tcp_transport = {
3206 .list = LIST_HEAD_INIT(xs_tcp_transport.list),
3207 .name = "tcp",
3208 .owner = THIS_MODULE,
3209 .ident = XPRT_TRANSPORT_TCP,
3210 .setup = xs_setup_tcp,
3211 };
3212
3213 static struct xprt_class xs_bc_tcp_transport = {
3214 .list = LIST_HEAD_INIT(xs_bc_tcp_transport.list),
3215 .name = "tcp NFSv4.1 backchannel",
3216 .owner = THIS_MODULE,
3217 .ident = XPRT_TRANSPORT_BC_TCP,
3218 .setup = xs_setup_bc_tcp,
3219 };
3220
3221 /**
3222 * init_socket_xprt - set up xprtsock's sysctls, register with RPC client
3223 *
3224 */
3225 int init_socket_xprt(void)
3226 {
3227 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
3228 if (!sunrpc_table_header)
3229 sunrpc_table_header = register_sysctl_table(sunrpc_table);
3230 #endif
3231
3232 xprt_register_transport(&xs_local_transport);
3233 xprt_register_transport(&xs_udp_transport);
3234 xprt_register_transport(&xs_tcp_transport);
3235 xprt_register_transport(&xs_bc_tcp_transport);
3236
3237 return 0;
3238 }
3239
3240 /**
3241 * cleanup_socket_xprt - remove xprtsock's sysctls, unregister
3242 *
3243 */
3244 void cleanup_socket_xprt(void)
3245 {
3246 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
3247 if (sunrpc_table_header) {
3248 unregister_sysctl_table(sunrpc_table_header);
3249 sunrpc_table_header = NULL;
3250 }
3251 #endif
3252
3253 xprt_unregister_transport(&xs_local_transport);
3254 xprt_unregister_transport(&xs_udp_transport);
3255 xprt_unregister_transport(&xs_tcp_transport);
3256 xprt_unregister_transport(&xs_bc_tcp_transport);
3257 }
3258
3259 static int param_set_uint_minmax(const char *val,
3260 const struct kernel_param *kp,
3261 unsigned int min, unsigned int max)
3262 {
3263 unsigned int num;
3264 int ret;
3265
3266 if (!val)
3267 return -EINVAL;
3268 ret = kstrtouint(val, 0, &num);
3269 if (ret)
3270 return ret;
3271 if (num < min || num > max)
3272 return -EINVAL;
3273 *((unsigned int *)kp->arg) = num;
3274 return 0;
3275 }
3276
3277 static int param_set_portnr(const char *val, const struct kernel_param *kp)
3278 {
3279 if (kp->arg == &xprt_min_resvport)
3280 return param_set_uint_minmax(val, kp,
3281 RPC_MIN_RESVPORT,
3282 xprt_max_resvport);
3283 return param_set_uint_minmax(val, kp,
3284 xprt_min_resvport,
3285 RPC_MAX_RESVPORT);
3286 }
3287
3288 static const struct kernel_param_ops param_ops_portnr = {
3289 .set = param_set_portnr,
3290 .get = param_get_uint,
3291 };
3292
3293 #define param_check_portnr(name, p) \
3294 __param_check(name, p, unsigned int);
3295
3296 module_param_named(min_resvport, xprt_min_resvport, portnr, 0644);
3297 module_param_named(max_resvport, xprt_max_resvport, portnr, 0644);
3298
3299 static int param_set_slot_table_size(const char *val,
3300 const struct kernel_param *kp)
3301 {
3302 return param_set_uint_minmax(val, kp,
3303 RPC_MIN_SLOT_TABLE,
3304 RPC_MAX_SLOT_TABLE);
3305 }
3306
3307 static const struct kernel_param_ops param_ops_slot_table_size = {
3308 .set = param_set_slot_table_size,
3309 .get = param_get_uint,
3310 };
3311
3312 #define param_check_slot_table_size(name, p) \
3313 __param_check(name, p, unsigned int);
3314
3315 static int param_set_max_slot_table_size(const char *val,
3316 const struct kernel_param *kp)
3317 {
3318 return param_set_uint_minmax(val, kp,
3319 RPC_MIN_SLOT_TABLE,
3320 RPC_MAX_SLOT_TABLE_LIMIT);
3321 }
3322
3323 static const struct kernel_param_ops param_ops_max_slot_table_size = {
3324 .set = param_set_max_slot_table_size,
3325 .get = param_get_uint,
3326 };
3327
3328 #define param_check_max_slot_table_size(name, p) \
3329 __param_check(name, p, unsigned int);
3330
3331 module_param_named(tcp_slot_table_entries, xprt_tcp_slot_table_entries,
3332 slot_table_size, 0644);
3333 module_param_named(tcp_max_slot_table_entries, xprt_max_tcp_slot_table_entries,
3334 max_slot_table_size, 0644);
3335 module_param_named(udp_slot_table_entries, xprt_udp_slot_table_entries,
3336 slot_table_size, 0644);
3337