]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/switchdev/switchdev.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-zesty-kernel.git] / net / switchdev / switchdev.c
1 /*
2 * net/switchdev/switchdev.c - Switch device API
3 * Copyright (c) 2014-2015 Jiri Pirko <jiri@resnulli.us>
4 * Copyright (c) 2014-2015 Scott Feldman <sfeldma@gmail.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 */
11
12 #include <linux/kernel.h>
13 #include <linux/types.h>
14 #include <linux/init.h>
15 #include <linux/mutex.h>
16 #include <linux/notifier.h>
17 #include <linux/netdevice.h>
18 #include <linux/etherdevice.h>
19 #include <linux/if_bridge.h>
20 #include <linux/list.h>
21 #include <linux/workqueue.h>
22 #include <linux/if_vlan.h>
23 #include <net/ip_fib.h>
24 #include <net/switchdev.h>
25
26 /**
27 * switchdev_trans_item_enqueue - Enqueue data item to transaction queue
28 *
29 * @trans: transaction
30 * @data: pointer to data being queued
31 * @destructor: data destructor
32 * @tritem: transaction item being queued
33 *
34 * Enqeueue data item to transaction queue. tritem is typically placed in
35 * cointainter pointed at by data pointer. Destructor is called on
36 * transaction abort and after successful commit phase in case
37 * the caller did not dequeue the item before.
38 */
39 void switchdev_trans_item_enqueue(struct switchdev_trans *trans,
40 void *data, void (*destructor)(void const *),
41 struct switchdev_trans_item *tritem)
42 {
43 tritem->data = data;
44 tritem->destructor = destructor;
45 list_add_tail(&tritem->list, &trans->item_list);
46 }
47 EXPORT_SYMBOL_GPL(switchdev_trans_item_enqueue);
48
49 static struct switchdev_trans_item *
50 __switchdev_trans_item_dequeue(struct switchdev_trans *trans)
51 {
52 struct switchdev_trans_item *tritem;
53
54 if (list_empty(&trans->item_list))
55 return NULL;
56 tritem = list_first_entry(&trans->item_list,
57 struct switchdev_trans_item, list);
58 list_del(&tritem->list);
59 return tritem;
60 }
61
62 /**
63 * switchdev_trans_item_dequeue - Dequeue data item from transaction queue
64 *
65 * @trans: transaction
66 */
67 void *switchdev_trans_item_dequeue(struct switchdev_trans *trans)
68 {
69 struct switchdev_trans_item *tritem;
70
71 tritem = __switchdev_trans_item_dequeue(trans);
72 BUG_ON(!tritem);
73 return tritem->data;
74 }
75 EXPORT_SYMBOL_GPL(switchdev_trans_item_dequeue);
76
77 static void switchdev_trans_init(struct switchdev_trans *trans)
78 {
79 INIT_LIST_HEAD(&trans->item_list);
80 }
81
82 static void switchdev_trans_items_destroy(struct switchdev_trans *trans)
83 {
84 struct switchdev_trans_item *tritem;
85
86 while ((tritem = __switchdev_trans_item_dequeue(trans)))
87 tritem->destructor(tritem->data);
88 }
89
90 static void switchdev_trans_items_warn_destroy(struct net_device *dev,
91 struct switchdev_trans *trans)
92 {
93 WARN(!list_empty(&trans->item_list), "%s: transaction item queue is not empty.\n",
94 dev->name);
95 switchdev_trans_items_destroy(trans);
96 }
97
98 static LIST_HEAD(deferred);
99 static DEFINE_SPINLOCK(deferred_lock);
100
101 typedef void switchdev_deferred_func_t(struct net_device *dev,
102 const void *data);
103
104 struct switchdev_deferred_item {
105 struct list_head list;
106 struct net_device *dev;
107 switchdev_deferred_func_t *func;
108 unsigned long data[0];
109 };
110
111 static struct switchdev_deferred_item *switchdev_deferred_dequeue(void)
112 {
113 struct switchdev_deferred_item *dfitem;
114
115 spin_lock_bh(&deferred_lock);
116 if (list_empty(&deferred)) {
117 dfitem = NULL;
118 goto unlock;
119 }
120 dfitem = list_first_entry(&deferred,
121 struct switchdev_deferred_item, list);
122 list_del(&dfitem->list);
123 unlock:
124 spin_unlock_bh(&deferred_lock);
125 return dfitem;
126 }
127
128 /**
129 * switchdev_deferred_process - Process ops in deferred queue
130 *
131 * Called to flush the ops currently queued in deferred ops queue.
132 * rtnl_lock must be held.
133 */
134 void switchdev_deferred_process(void)
135 {
136 struct switchdev_deferred_item *dfitem;
137
138 ASSERT_RTNL();
139
140 while ((dfitem = switchdev_deferred_dequeue())) {
141 dfitem->func(dfitem->dev, dfitem->data);
142 dev_put(dfitem->dev);
143 kfree(dfitem);
144 }
145 }
146 EXPORT_SYMBOL_GPL(switchdev_deferred_process);
147
148 static void switchdev_deferred_process_work(struct work_struct *work)
149 {
150 rtnl_lock();
151 switchdev_deferred_process();
152 rtnl_unlock();
153 }
154
155 static DECLARE_WORK(deferred_process_work, switchdev_deferred_process_work);
156
157 static int switchdev_deferred_enqueue(struct net_device *dev,
158 const void *data, size_t data_len,
159 switchdev_deferred_func_t *func)
160 {
161 struct switchdev_deferred_item *dfitem;
162
163 dfitem = kmalloc(sizeof(*dfitem) + data_len, GFP_ATOMIC);
164 if (!dfitem)
165 return -ENOMEM;
166 dfitem->dev = dev;
167 dfitem->func = func;
168 memcpy(dfitem->data, data, data_len);
169 dev_hold(dev);
170 spin_lock_bh(&deferred_lock);
171 list_add_tail(&dfitem->list, &deferred);
172 spin_unlock_bh(&deferred_lock);
173 schedule_work(&deferred_process_work);
174 return 0;
175 }
176
177 /**
178 * switchdev_port_attr_get - Get port attribute
179 *
180 * @dev: port device
181 * @attr: attribute to get
182 */
183 int switchdev_port_attr_get(struct net_device *dev, struct switchdev_attr *attr)
184 {
185 const struct switchdev_ops *ops = dev->switchdev_ops;
186 struct net_device *lower_dev;
187 struct list_head *iter;
188 struct switchdev_attr first = {
189 .id = SWITCHDEV_ATTR_ID_UNDEFINED
190 };
191 int err = -EOPNOTSUPP;
192
193 if (ops && ops->switchdev_port_attr_get)
194 return ops->switchdev_port_attr_get(dev, attr);
195
196 if (attr->flags & SWITCHDEV_F_NO_RECURSE)
197 return err;
198
199 /* Switch device port(s) may be stacked under
200 * bond/team/vlan dev, so recurse down to get attr on
201 * each port. Return -ENODATA if attr values don't
202 * compare across ports.
203 */
204
205 netdev_for_each_lower_dev(dev, lower_dev, iter) {
206 err = switchdev_port_attr_get(lower_dev, attr);
207 if (err)
208 break;
209 if (first.id == SWITCHDEV_ATTR_ID_UNDEFINED)
210 first = *attr;
211 else if (memcmp(&first, attr, sizeof(*attr)))
212 return -ENODATA;
213 }
214
215 return err;
216 }
217 EXPORT_SYMBOL_GPL(switchdev_port_attr_get);
218
219 static int __switchdev_port_attr_set(struct net_device *dev,
220 const struct switchdev_attr *attr,
221 struct switchdev_trans *trans)
222 {
223 const struct switchdev_ops *ops = dev->switchdev_ops;
224 struct net_device *lower_dev;
225 struct list_head *iter;
226 int err = -EOPNOTSUPP;
227
228 if (ops && ops->switchdev_port_attr_set) {
229 err = ops->switchdev_port_attr_set(dev, attr, trans);
230 goto done;
231 }
232
233 if (attr->flags & SWITCHDEV_F_NO_RECURSE)
234 goto done;
235
236 /* Switch device port(s) may be stacked under
237 * bond/team/vlan dev, so recurse down to set attr on
238 * each port.
239 */
240
241 netdev_for_each_lower_dev(dev, lower_dev, iter) {
242 err = __switchdev_port_attr_set(lower_dev, attr, trans);
243 if (err)
244 break;
245 }
246
247 done:
248 if (err == -EOPNOTSUPP && attr->flags & SWITCHDEV_F_SKIP_EOPNOTSUPP)
249 err = 0;
250
251 return err;
252 }
253
254 static int switchdev_port_attr_set_now(struct net_device *dev,
255 const struct switchdev_attr *attr)
256 {
257 struct switchdev_trans trans;
258 int err;
259
260 switchdev_trans_init(&trans);
261
262 /* Phase I: prepare for attr set. Driver/device should fail
263 * here if there are going to be issues in the commit phase,
264 * such as lack of resources or support. The driver/device
265 * should reserve resources needed for the commit phase here,
266 * but should not commit the attr.
267 */
268
269 trans.ph_prepare = true;
270 err = __switchdev_port_attr_set(dev, attr, &trans);
271 if (err) {
272 /* Prepare phase failed: abort the transaction. Any
273 * resources reserved in the prepare phase are
274 * released.
275 */
276
277 if (err != -EOPNOTSUPP)
278 switchdev_trans_items_destroy(&trans);
279
280 return err;
281 }
282
283 /* Phase II: commit attr set. This cannot fail as a fault
284 * of driver/device. If it does, it's a bug in the driver/device
285 * because the driver said everythings was OK in phase I.
286 */
287
288 trans.ph_prepare = false;
289 err = __switchdev_port_attr_set(dev, attr, &trans);
290 WARN(err, "%s: Commit of attribute (id=%d) failed.\n",
291 dev->name, attr->id);
292 switchdev_trans_items_warn_destroy(dev, &trans);
293
294 return err;
295 }
296
297 static void switchdev_port_attr_set_deferred(struct net_device *dev,
298 const void *data)
299 {
300 const struct switchdev_attr *attr = data;
301 int err;
302
303 err = switchdev_port_attr_set_now(dev, attr);
304 if (err && err != -EOPNOTSUPP)
305 netdev_err(dev, "failed (err=%d) to set attribute (id=%d)\n",
306 err, attr->id);
307 }
308
309 static int switchdev_port_attr_set_defer(struct net_device *dev,
310 const struct switchdev_attr *attr)
311 {
312 return switchdev_deferred_enqueue(dev, attr, sizeof(*attr),
313 switchdev_port_attr_set_deferred);
314 }
315
316 /**
317 * switchdev_port_attr_set - Set port attribute
318 *
319 * @dev: port device
320 * @attr: attribute to set
321 *
322 * Use a 2-phase prepare-commit transaction model to ensure
323 * system is not left in a partially updated state due to
324 * failure from driver/device.
325 *
326 * rtnl_lock must be held and must not be in atomic section,
327 * in case SWITCHDEV_F_DEFER flag is not set.
328 */
329 int switchdev_port_attr_set(struct net_device *dev,
330 const struct switchdev_attr *attr)
331 {
332 if (attr->flags & SWITCHDEV_F_DEFER)
333 return switchdev_port_attr_set_defer(dev, attr);
334 ASSERT_RTNL();
335 return switchdev_port_attr_set_now(dev, attr);
336 }
337 EXPORT_SYMBOL_GPL(switchdev_port_attr_set);
338
339 static size_t switchdev_obj_size(const struct switchdev_obj *obj)
340 {
341 switch (obj->id) {
342 case SWITCHDEV_OBJ_ID_PORT_VLAN:
343 return sizeof(struct switchdev_obj_port_vlan);
344 case SWITCHDEV_OBJ_ID_IPV4_FIB:
345 return sizeof(struct switchdev_obj_ipv4_fib);
346 case SWITCHDEV_OBJ_ID_PORT_FDB:
347 return sizeof(struct switchdev_obj_port_fdb);
348 default:
349 BUG();
350 }
351 return 0;
352 }
353
354 static int __switchdev_port_obj_add(struct net_device *dev,
355 const struct switchdev_obj *obj,
356 struct switchdev_trans *trans)
357 {
358 const struct switchdev_ops *ops = dev->switchdev_ops;
359 struct net_device *lower_dev;
360 struct list_head *iter;
361 int err = -EOPNOTSUPP;
362
363 if (ops && ops->switchdev_port_obj_add)
364 return ops->switchdev_port_obj_add(dev, obj, trans);
365
366 /* Switch device port(s) may be stacked under
367 * bond/team/vlan dev, so recurse down to add object on
368 * each port.
369 */
370
371 netdev_for_each_lower_dev(dev, lower_dev, iter) {
372 err = __switchdev_port_obj_add(lower_dev, obj, trans);
373 if (err)
374 break;
375 }
376
377 return err;
378 }
379
380 static int switchdev_port_obj_add_now(struct net_device *dev,
381 const struct switchdev_obj *obj)
382 {
383 struct switchdev_trans trans;
384 int err;
385
386 ASSERT_RTNL();
387
388 switchdev_trans_init(&trans);
389
390 /* Phase I: prepare for obj add. Driver/device should fail
391 * here if there are going to be issues in the commit phase,
392 * such as lack of resources or support. The driver/device
393 * should reserve resources needed for the commit phase here,
394 * but should not commit the obj.
395 */
396
397 trans.ph_prepare = true;
398 err = __switchdev_port_obj_add(dev, obj, &trans);
399 if (err) {
400 /* Prepare phase failed: abort the transaction. Any
401 * resources reserved in the prepare phase are
402 * released.
403 */
404
405 if (err != -EOPNOTSUPP)
406 switchdev_trans_items_destroy(&trans);
407
408 return err;
409 }
410
411 /* Phase II: commit obj add. This cannot fail as a fault
412 * of driver/device. If it does, it's a bug in the driver/device
413 * because the driver said everythings was OK in phase I.
414 */
415
416 trans.ph_prepare = false;
417 err = __switchdev_port_obj_add(dev, obj, &trans);
418 WARN(err, "%s: Commit of object (id=%d) failed.\n", dev->name, obj->id);
419 switchdev_trans_items_warn_destroy(dev, &trans);
420
421 return err;
422 }
423
424 static void switchdev_port_obj_add_deferred(struct net_device *dev,
425 const void *data)
426 {
427 const struct switchdev_obj *obj = data;
428 int err;
429
430 err = switchdev_port_obj_add_now(dev, obj);
431 if (err && err != -EOPNOTSUPP)
432 netdev_err(dev, "failed (err=%d) to add object (id=%d)\n",
433 err, obj->id);
434 }
435
436 static int switchdev_port_obj_add_defer(struct net_device *dev,
437 const struct switchdev_obj *obj)
438 {
439 return switchdev_deferred_enqueue(dev, obj, switchdev_obj_size(obj),
440 switchdev_port_obj_add_deferred);
441 }
442
443 /**
444 * switchdev_port_obj_add - Add port object
445 *
446 * @dev: port device
447 * @id: object ID
448 * @obj: object to add
449 *
450 * Use a 2-phase prepare-commit transaction model to ensure
451 * system is not left in a partially updated state due to
452 * failure from driver/device.
453 *
454 * rtnl_lock must be held and must not be in atomic section,
455 * in case SWITCHDEV_F_DEFER flag is not set.
456 */
457 int switchdev_port_obj_add(struct net_device *dev,
458 const struct switchdev_obj *obj)
459 {
460 if (obj->flags & SWITCHDEV_F_DEFER)
461 return switchdev_port_obj_add_defer(dev, obj);
462 ASSERT_RTNL();
463 return switchdev_port_obj_add_now(dev, obj);
464 }
465 EXPORT_SYMBOL_GPL(switchdev_port_obj_add);
466
467 static int switchdev_port_obj_del_now(struct net_device *dev,
468 const struct switchdev_obj *obj)
469 {
470 const struct switchdev_ops *ops = dev->switchdev_ops;
471 struct net_device *lower_dev;
472 struct list_head *iter;
473 int err = -EOPNOTSUPP;
474
475 if (ops && ops->switchdev_port_obj_del)
476 return ops->switchdev_port_obj_del(dev, obj);
477
478 /* Switch device port(s) may be stacked under
479 * bond/team/vlan dev, so recurse down to delete object on
480 * each port.
481 */
482
483 netdev_for_each_lower_dev(dev, lower_dev, iter) {
484 err = switchdev_port_obj_del_now(lower_dev, obj);
485 if (err)
486 break;
487 }
488
489 return err;
490 }
491
492 static void switchdev_port_obj_del_deferred(struct net_device *dev,
493 const void *data)
494 {
495 const struct switchdev_obj *obj = data;
496 int err;
497
498 err = switchdev_port_obj_del_now(dev, obj);
499 if (err && err != -EOPNOTSUPP)
500 netdev_err(dev, "failed (err=%d) to del object (id=%d)\n",
501 err, obj->id);
502 }
503
504 static int switchdev_port_obj_del_defer(struct net_device *dev,
505 const struct switchdev_obj *obj)
506 {
507 return switchdev_deferred_enqueue(dev, obj, switchdev_obj_size(obj),
508 switchdev_port_obj_del_deferred);
509 }
510
511 /**
512 * switchdev_port_obj_del - Delete port object
513 *
514 * @dev: port device
515 * @id: object ID
516 * @obj: object to delete
517 *
518 * rtnl_lock must be held and must not be in atomic section,
519 * in case SWITCHDEV_F_DEFER flag is not set.
520 */
521 int switchdev_port_obj_del(struct net_device *dev,
522 const struct switchdev_obj *obj)
523 {
524 if (obj->flags & SWITCHDEV_F_DEFER)
525 return switchdev_port_obj_del_defer(dev, obj);
526 ASSERT_RTNL();
527 return switchdev_port_obj_del_now(dev, obj);
528 }
529 EXPORT_SYMBOL_GPL(switchdev_port_obj_del);
530
531 /**
532 * switchdev_port_obj_dump - Dump port objects
533 *
534 * @dev: port device
535 * @id: object ID
536 * @obj: object to dump
537 * @cb: function to call with a filled object
538 *
539 * rtnl_lock must be held.
540 */
541 int switchdev_port_obj_dump(struct net_device *dev, struct switchdev_obj *obj,
542 switchdev_obj_dump_cb_t *cb)
543 {
544 const struct switchdev_ops *ops = dev->switchdev_ops;
545 struct net_device *lower_dev;
546 struct list_head *iter;
547 int err = -EOPNOTSUPP;
548
549 ASSERT_RTNL();
550
551 if (ops && ops->switchdev_port_obj_dump)
552 return ops->switchdev_port_obj_dump(dev, obj, cb);
553
554 /* Switch device port(s) may be stacked under
555 * bond/team/vlan dev, so recurse down to dump objects on
556 * first port at bottom of stack.
557 */
558
559 netdev_for_each_lower_dev(dev, lower_dev, iter) {
560 err = switchdev_port_obj_dump(lower_dev, obj, cb);
561 break;
562 }
563
564 return err;
565 }
566 EXPORT_SYMBOL_GPL(switchdev_port_obj_dump);
567
568 static DEFINE_MUTEX(switchdev_mutex);
569 static RAW_NOTIFIER_HEAD(switchdev_notif_chain);
570
571 /**
572 * register_switchdev_notifier - Register notifier
573 * @nb: notifier_block
574 *
575 * Register switch device notifier. This should be used by code
576 * which needs to monitor events happening in particular device.
577 * Return values are same as for atomic_notifier_chain_register().
578 */
579 int register_switchdev_notifier(struct notifier_block *nb)
580 {
581 int err;
582
583 mutex_lock(&switchdev_mutex);
584 err = raw_notifier_chain_register(&switchdev_notif_chain, nb);
585 mutex_unlock(&switchdev_mutex);
586 return err;
587 }
588 EXPORT_SYMBOL_GPL(register_switchdev_notifier);
589
590 /**
591 * unregister_switchdev_notifier - Unregister notifier
592 * @nb: notifier_block
593 *
594 * Unregister switch device notifier.
595 * Return values are same as for atomic_notifier_chain_unregister().
596 */
597 int unregister_switchdev_notifier(struct notifier_block *nb)
598 {
599 int err;
600
601 mutex_lock(&switchdev_mutex);
602 err = raw_notifier_chain_unregister(&switchdev_notif_chain, nb);
603 mutex_unlock(&switchdev_mutex);
604 return err;
605 }
606 EXPORT_SYMBOL_GPL(unregister_switchdev_notifier);
607
608 /**
609 * call_switchdev_notifiers - Call notifiers
610 * @val: value passed unmodified to notifier function
611 * @dev: port device
612 * @info: notifier information data
613 *
614 * Call all network notifier blocks. This should be called by driver
615 * when it needs to propagate hardware event.
616 * Return values are same as for atomic_notifier_call_chain().
617 */
618 int call_switchdev_notifiers(unsigned long val, struct net_device *dev,
619 struct switchdev_notifier_info *info)
620 {
621 int err;
622
623 info->dev = dev;
624 mutex_lock(&switchdev_mutex);
625 err = raw_notifier_call_chain(&switchdev_notif_chain, val, info);
626 mutex_unlock(&switchdev_mutex);
627 return err;
628 }
629 EXPORT_SYMBOL_GPL(call_switchdev_notifiers);
630
631 struct switchdev_vlan_dump {
632 struct switchdev_obj_port_vlan vlan;
633 struct sk_buff *skb;
634 u32 filter_mask;
635 u16 flags;
636 u16 begin;
637 u16 end;
638 };
639
640 static int switchdev_port_vlan_dump_put(struct switchdev_vlan_dump *dump)
641 {
642 struct bridge_vlan_info vinfo;
643
644 vinfo.flags = dump->flags;
645
646 if (dump->begin == 0 && dump->end == 0) {
647 return 0;
648 } else if (dump->begin == dump->end) {
649 vinfo.vid = dump->begin;
650 if (nla_put(dump->skb, IFLA_BRIDGE_VLAN_INFO,
651 sizeof(vinfo), &vinfo))
652 return -EMSGSIZE;
653 } else {
654 vinfo.vid = dump->begin;
655 vinfo.flags |= BRIDGE_VLAN_INFO_RANGE_BEGIN;
656 if (nla_put(dump->skb, IFLA_BRIDGE_VLAN_INFO,
657 sizeof(vinfo), &vinfo))
658 return -EMSGSIZE;
659 vinfo.vid = dump->end;
660 vinfo.flags &= ~BRIDGE_VLAN_INFO_RANGE_BEGIN;
661 vinfo.flags |= BRIDGE_VLAN_INFO_RANGE_END;
662 if (nla_put(dump->skb, IFLA_BRIDGE_VLAN_INFO,
663 sizeof(vinfo), &vinfo))
664 return -EMSGSIZE;
665 }
666
667 return 0;
668 }
669
670 static int switchdev_port_vlan_dump_cb(struct switchdev_obj *obj)
671 {
672 struct switchdev_obj_port_vlan *vlan = SWITCHDEV_OBJ_PORT_VLAN(obj);
673 struct switchdev_vlan_dump *dump =
674 container_of(vlan, struct switchdev_vlan_dump, vlan);
675 int err = 0;
676
677 if (vlan->vid_begin > vlan->vid_end)
678 return -EINVAL;
679
680 if (dump->filter_mask & RTEXT_FILTER_BRVLAN) {
681 dump->flags = vlan->flags;
682 for (dump->begin = dump->end = vlan->vid_begin;
683 dump->begin <= vlan->vid_end;
684 dump->begin++, dump->end++) {
685 err = switchdev_port_vlan_dump_put(dump);
686 if (err)
687 return err;
688 }
689 } else if (dump->filter_mask & RTEXT_FILTER_BRVLAN_COMPRESSED) {
690 if (dump->begin > vlan->vid_begin &&
691 dump->begin >= vlan->vid_end) {
692 if ((dump->begin - 1) == vlan->vid_end &&
693 dump->flags == vlan->flags) {
694 /* prepend */
695 dump->begin = vlan->vid_begin;
696 } else {
697 err = switchdev_port_vlan_dump_put(dump);
698 dump->flags = vlan->flags;
699 dump->begin = vlan->vid_begin;
700 dump->end = vlan->vid_end;
701 }
702 } else if (dump->end <= vlan->vid_begin &&
703 dump->end < vlan->vid_end) {
704 if ((dump->end + 1) == vlan->vid_begin &&
705 dump->flags == vlan->flags) {
706 /* append */
707 dump->end = vlan->vid_end;
708 } else {
709 err = switchdev_port_vlan_dump_put(dump);
710 dump->flags = vlan->flags;
711 dump->begin = vlan->vid_begin;
712 dump->end = vlan->vid_end;
713 }
714 } else {
715 err = -EINVAL;
716 }
717 }
718
719 return err;
720 }
721
722 static int switchdev_port_vlan_fill(struct sk_buff *skb, struct net_device *dev,
723 u32 filter_mask)
724 {
725 struct switchdev_vlan_dump dump = {
726 .vlan.obj.id = SWITCHDEV_OBJ_ID_PORT_VLAN,
727 .skb = skb,
728 .filter_mask = filter_mask,
729 };
730 int err = 0;
731
732 if ((filter_mask & RTEXT_FILTER_BRVLAN) ||
733 (filter_mask & RTEXT_FILTER_BRVLAN_COMPRESSED)) {
734 err = switchdev_port_obj_dump(dev, &dump.vlan.obj,
735 switchdev_port_vlan_dump_cb);
736 if (err)
737 goto err_out;
738 if (filter_mask & RTEXT_FILTER_BRVLAN_COMPRESSED)
739 /* last one */
740 err = switchdev_port_vlan_dump_put(&dump);
741 }
742
743 err_out:
744 return err == -EOPNOTSUPP ? 0 : err;
745 }
746
747 /**
748 * switchdev_port_bridge_getlink - Get bridge port attributes
749 *
750 * @dev: port device
751 *
752 * Called for SELF on rtnl_bridge_getlink to get bridge port
753 * attributes.
754 */
755 int switchdev_port_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
756 struct net_device *dev, u32 filter_mask,
757 int nlflags)
758 {
759 struct switchdev_attr attr = {
760 .id = SWITCHDEV_ATTR_ID_PORT_BRIDGE_FLAGS,
761 };
762 u16 mode = BRIDGE_MODE_UNDEF;
763 u32 mask = BR_LEARNING | BR_LEARNING_SYNC | BR_FLOOD;
764 int err;
765
766 err = switchdev_port_attr_get(dev, &attr);
767 if (err && err != -EOPNOTSUPP)
768 return err;
769
770 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, mode,
771 attr.u.brport_flags, mask, nlflags,
772 filter_mask, switchdev_port_vlan_fill);
773 }
774 EXPORT_SYMBOL_GPL(switchdev_port_bridge_getlink);
775
776 static int switchdev_port_br_setflag(struct net_device *dev,
777 struct nlattr *nlattr,
778 unsigned long brport_flag)
779 {
780 struct switchdev_attr attr = {
781 .id = SWITCHDEV_ATTR_ID_PORT_BRIDGE_FLAGS,
782 };
783 u8 flag = nla_get_u8(nlattr);
784 int err;
785
786 err = switchdev_port_attr_get(dev, &attr);
787 if (err)
788 return err;
789
790 if (flag)
791 attr.u.brport_flags |= brport_flag;
792 else
793 attr.u.brport_flags &= ~brport_flag;
794
795 return switchdev_port_attr_set(dev, &attr);
796 }
797
798 static const struct nla_policy
799 switchdev_port_bridge_policy[IFLA_BRPORT_MAX + 1] = {
800 [IFLA_BRPORT_STATE] = { .type = NLA_U8 },
801 [IFLA_BRPORT_COST] = { .type = NLA_U32 },
802 [IFLA_BRPORT_PRIORITY] = { .type = NLA_U16 },
803 [IFLA_BRPORT_MODE] = { .type = NLA_U8 },
804 [IFLA_BRPORT_GUARD] = { .type = NLA_U8 },
805 [IFLA_BRPORT_PROTECT] = { .type = NLA_U8 },
806 [IFLA_BRPORT_FAST_LEAVE] = { .type = NLA_U8 },
807 [IFLA_BRPORT_LEARNING] = { .type = NLA_U8 },
808 [IFLA_BRPORT_LEARNING_SYNC] = { .type = NLA_U8 },
809 [IFLA_BRPORT_UNICAST_FLOOD] = { .type = NLA_U8 },
810 };
811
812 static int switchdev_port_br_setlink_protinfo(struct net_device *dev,
813 struct nlattr *protinfo)
814 {
815 struct nlattr *attr;
816 int rem;
817 int err;
818
819 err = nla_validate_nested(protinfo, IFLA_BRPORT_MAX,
820 switchdev_port_bridge_policy);
821 if (err)
822 return err;
823
824 nla_for_each_nested(attr, protinfo, rem) {
825 switch (nla_type(attr)) {
826 case IFLA_BRPORT_LEARNING:
827 err = switchdev_port_br_setflag(dev, attr,
828 BR_LEARNING);
829 break;
830 case IFLA_BRPORT_LEARNING_SYNC:
831 err = switchdev_port_br_setflag(dev, attr,
832 BR_LEARNING_SYNC);
833 break;
834 case IFLA_BRPORT_UNICAST_FLOOD:
835 err = switchdev_port_br_setflag(dev, attr, BR_FLOOD);
836 break;
837 default:
838 err = -EOPNOTSUPP;
839 break;
840 }
841 if (err)
842 return err;
843 }
844
845 return 0;
846 }
847
848 static int switchdev_port_br_afspec(struct net_device *dev,
849 struct nlattr *afspec,
850 int (*f)(struct net_device *dev,
851 const struct switchdev_obj *obj))
852 {
853 struct nlattr *attr;
854 struct bridge_vlan_info *vinfo;
855 struct switchdev_obj_port_vlan vlan = {
856 .obj.id = SWITCHDEV_OBJ_ID_PORT_VLAN,
857 };
858 int rem;
859 int err;
860
861 nla_for_each_nested(attr, afspec, rem) {
862 if (nla_type(attr) != IFLA_BRIDGE_VLAN_INFO)
863 continue;
864 if (nla_len(attr) != sizeof(struct bridge_vlan_info))
865 return -EINVAL;
866 vinfo = nla_data(attr);
867 if (!vinfo->vid || vinfo->vid >= VLAN_VID_MASK)
868 return -EINVAL;
869 vlan.flags = vinfo->flags;
870 if (vinfo->flags & BRIDGE_VLAN_INFO_RANGE_BEGIN) {
871 if (vlan.vid_begin)
872 return -EINVAL;
873 vlan.vid_begin = vinfo->vid;
874 /* don't allow range of pvids */
875 if (vlan.flags & BRIDGE_VLAN_INFO_PVID)
876 return -EINVAL;
877 } else if (vinfo->flags & BRIDGE_VLAN_INFO_RANGE_END) {
878 if (!vlan.vid_begin)
879 return -EINVAL;
880 vlan.vid_end = vinfo->vid;
881 if (vlan.vid_end <= vlan.vid_begin)
882 return -EINVAL;
883 err = f(dev, &vlan.obj);
884 if (err)
885 return err;
886 vlan.vid_begin = 0;
887 } else {
888 if (vlan.vid_begin)
889 return -EINVAL;
890 vlan.vid_begin = vinfo->vid;
891 vlan.vid_end = vinfo->vid;
892 err = f(dev, &vlan.obj);
893 if (err)
894 return err;
895 vlan.vid_begin = 0;
896 }
897 }
898
899 return 0;
900 }
901
902 /**
903 * switchdev_port_bridge_setlink - Set bridge port attributes
904 *
905 * @dev: port device
906 * @nlh: netlink header
907 * @flags: netlink flags
908 *
909 * Called for SELF on rtnl_bridge_setlink to set bridge port
910 * attributes.
911 */
912 int switchdev_port_bridge_setlink(struct net_device *dev,
913 struct nlmsghdr *nlh, u16 flags)
914 {
915 struct nlattr *protinfo;
916 struct nlattr *afspec;
917 int err = 0;
918
919 protinfo = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg),
920 IFLA_PROTINFO);
921 if (protinfo) {
922 err = switchdev_port_br_setlink_protinfo(dev, protinfo);
923 if (err)
924 return err;
925 }
926
927 afspec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg),
928 IFLA_AF_SPEC);
929 if (afspec)
930 err = switchdev_port_br_afspec(dev, afspec,
931 switchdev_port_obj_add);
932
933 return err;
934 }
935 EXPORT_SYMBOL_GPL(switchdev_port_bridge_setlink);
936
937 /**
938 * switchdev_port_bridge_dellink - Set bridge port attributes
939 *
940 * @dev: port device
941 * @nlh: netlink header
942 * @flags: netlink flags
943 *
944 * Called for SELF on rtnl_bridge_dellink to set bridge port
945 * attributes.
946 */
947 int switchdev_port_bridge_dellink(struct net_device *dev,
948 struct nlmsghdr *nlh, u16 flags)
949 {
950 struct nlattr *afspec;
951
952 afspec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg),
953 IFLA_AF_SPEC);
954 if (afspec)
955 return switchdev_port_br_afspec(dev, afspec,
956 switchdev_port_obj_del);
957
958 return 0;
959 }
960 EXPORT_SYMBOL_GPL(switchdev_port_bridge_dellink);
961
962 /**
963 * switchdev_port_fdb_add - Add FDB (MAC/VLAN) entry to port
964 *
965 * @ndmsg: netlink hdr
966 * @nlattr: netlink attributes
967 * @dev: port device
968 * @addr: MAC address to add
969 * @vid: VLAN to add
970 *
971 * Add FDB entry to switch device.
972 */
973 int switchdev_port_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
974 struct net_device *dev, const unsigned char *addr,
975 u16 vid, u16 nlm_flags)
976 {
977 struct switchdev_obj_port_fdb fdb = {
978 .obj.id = SWITCHDEV_OBJ_ID_PORT_FDB,
979 .vid = vid,
980 };
981
982 ether_addr_copy(fdb.addr, addr);
983 return switchdev_port_obj_add(dev, &fdb.obj);
984 }
985 EXPORT_SYMBOL_GPL(switchdev_port_fdb_add);
986
987 /**
988 * switchdev_port_fdb_del - Delete FDB (MAC/VLAN) entry from port
989 *
990 * @ndmsg: netlink hdr
991 * @nlattr: netlink attributes
992 * @dev: port device
993 * @addr: MAC address to delete
994 * @vid: VLAN to delete
995 *
996 * Delete FDB entry from switch device.
997 */
998 int switchdev_port_fdb_del(struct ndmsg *ndm, struct nlattr *tb[],
999 struct net_device *dev, const unsigned char *addr,
1000 u16 vid)
1001 {
1002 struct switchdev_obj_port_fdb fdb = {
1003 .obj.id = SWITCHDEV_OBJ_ID_PORT_FDB,
1004 .vid = vid,
1005 };
1006
1007 ether_addr_copy(fdb.addr, addr);
1008 return switchdev_port_obj_del(dev, &fdb.obj);
1009 }
1010 EXPORT_SYMBOL_GPL(switchdev_port_fdb_del);
1011
1012 struct switchdev_fdb_dump {
1013 struct switchdev_obj_port_fdb fdb;
1014 struct net_device *dev;
1015 struct sk_buff *skb;
1016 struct netlink_callback *cb;
1017 int idx;
1018 };
1019
1020 static int switchdev_port_fdb_dump_cb(struct switchdev_obj *obj)
1021 {
1022 struct switchdev_obj_port_fdb *fdb = SWITCHDEV_OBJ_PORT_FDB(obj);
1023 struct switchdev_fdb_dump *dump =
1024 container_of(fdb, struct switchdev_fdb_dump, fdb);
1025 u32 portid = NETLINK_CB(dump->cb->skb).portid;
1026 u32 seq = dump->cb->nlh->nlmsg_seq;
1027 struct nlmsghdr *nlh;
1028 struct ndmsg *ndm;
1029
1030 if (dump->idx < dump->cb->args[0])
1031 goto skip;
1032
1033 nlh = nlmsg_put(dump->skb, portid, seq, RTM_NEWNEIGH,
1034 sizeof(*ndm), NLM_F_MULTI);
1035 if (!nlh)
1036 return -EMSGSIZE;
1037
1038 ndm = nlmsg_data(nlh);
1039 ndm->ndm_family = AF_BRIDGE;
1040 ndm->ndm_pad1 = 0;
1041 ndm->ndm_pad2 = 0;
1042 ndm->ndm_flags = NTF_SELF;
1043 ndm->ndm_type = 0;
1044 ndm->ndm_ifindex = dump->dev->ifindex;
1045 ndm->ndm_state = fdb->ndm_state;
1046
1047 if (nla_put(dump->skb, NDA_LLADDR, ETH_ALEN, fdb->addr))
1048 goto nla_put_failure;
1049
1050 if (fdb->vid && nla_put_u16(dump->skb, NDA_VLAN, fdb->vid))
1051 goto nla_put_failure;
1052
1053 nlmsg_end(dump->skb, nlh);
1054
1055 skip:
1056 dump->idx++;
1057 return 0;
1058
1059 nla_put_failure:
1060 nlmsg_cancel(dump->skb, nlh);
1061 return -EMSGSIZE;
1062 }
1063
1064 /**
1065 * switchdev_port_fdb_dump - Dump port FDB (MAC/VLAN) entries
1066 *
1067 * @skb: netlink skb
1068 * @cb: netlink callback
1069 * @dev: port device
1070 * @filter_dev: filter device
1071 * @idx:
1072 *
1073 * Delete FDB entry from switch device.
1074 */
1075 int switchdev_port_fdb_dump(struct sk_buff *skb, struct netlink_callback *cb,
1076 struct net_device *dev,
1077 struct net_device *filter_dev, int idx)
1078 {
1079 struct switchdev_fdb_dump dump = {
1080 .fdb.obj.id = SWITCHDEV_OBJ_ID_PORT_FDB,
1081 .dev = dev,
1082 .skb = skb,
1083 .cb = cb,
1084 .idx = idx,
1085 };
1086
1087 switchdev_port_obj_dump(dev, &dump.fdb.obj, switchdev_port_fdb_dump_cb);
1088 return dump.idx;
1089 }
1090 EXPORT_SYMBOL_GPL(switchdev_port_fdb_dump);
1091
1092 static struct net_device *switchdev_get_lowest_dev(struct net_device *dev)
1093 {
1094 const struct switchdev_ops *ops = dev->switchdev_ops;
1095 struct net_device *lower_dev;
1096 struct net_device *port_dev;
1097 struct list_head *iter;
1098
1099 /* Recusively search down until we find a sw port dev.
1100 * (A sw port dev supports switchdev_port_attr_get).
1101 */
1102
1103 if (ops && ops->switchdev_port_attr_get)
1104 return dev;
1105
1106 netdev_for_each_lower_dev(dev, lower_dev, iter) {
1107 port_dev = switchdev_get_lowest_dev(lower_dev);
1108 if (port_dev)
1109 return port_dev;
1110 }
1111
1112 return NULL;
1113 }
1114
1115 static struct net_device *switchdev_get_dev_by_nhs(struct fib_info *fi)
1116 {
1117 struct switchdev_attr attr = {
1118 .id = SWITCHDEV_ATTR_ID_PORT_PARENT_ID,
1119 };
1120 struct switchdev_attr prev_attr;
1121 struct net_device *dev = NULL;
1122 int nhsel;
1123
1124 ASSERT_RTNL();
1125
1126 /* For this route, all nexthop devs must be on the same switch. */
1127
1128 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1129 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1130
1131 if (!nh->nh_dev)
1132 return NULL;
1133
1134 dev = switchdev_get_lowest_dev(nh->nh_dev);
1135 if (!dev)
1136 return NULL;
1137
1138 if (switchdev_port_attr_get(dev, &attr))
1139 return NULL;
1140
1141 if (nhsel > 0 &&
1142 !netdev_phys_item_id_same(&prev_attr.u.ppid, &attr.u.ppid))
1143 return NULL;
1144
1145 prev_attr = attr;
1146 }
1147
1148 return dev;
1149 }
1150
1151 /**
1152 * switchdev_fib_ipv4_add - Add/modify switch IPv4 route entry
1153 *
1154 * @dst: route's IPv4 destination address
1155 * @dst_len: destination address length (prefix length)
1156 * @fi: route FIB info structure
1157 * @tos: route TOS
1158 * @type: route type
1159 * @nlflags: netlink flags passed in (NLM_F_*)
1160 * @tb_id: route table ID
1161 *
1162 * Add/modify switch IPv4 route entry.
1163 */
1164 int switchdev_fib_ipv4_add(u32 dst, int dst_len, struct fib_info *fi,
1165 u8 tos, u8 type, u32 nlflags, u32 tb_id)
1166 {
1167 struct switchdev_obj_ipv4_fib ipv4_fib = {
1168 .obj.id = SWITCHDEV_OBJ_ID_IPV4_FIB,
1169 .dst = dst,
1170 .dst_len = dst_len,
1171 .tos = tos,
1172 .type = type,
1173 .nlflags = nlflags,
1174 .tb_id = tb_id,
1175 };
1176 struct net_device *dev;
1177 int err = 0;
1178
1179 memcpy(&ipv4_fib.fi, fi, sizeof(ipv4_fib.fi));
1180
1181 /* Don't offload route if using custom ip rules or if
1182 * IPv4 FIB offloading has been disabled completely.
1183 */
1184
1185 #ifdef CONFIG_IP_MULTIPLE_TABLES
1186 if (fi->fib_net->ipv4.fib_has_custom_rules)
1187 return 0;
1188 #endif
1189
1190 if (fi->fib_net->ipv4.fib_offload_disabled)
1191 return 0;
1192
1193 dev = switchdev_get_dev_by_nhs(fi);
1194 if (!dev)
1195 return 0;
1196
1197 err = switchdev_port_obj_add(dev, &ipv4_fib.obj);
1198 if (!err)
1199 fi->fib_flags |= RTNH_F_OFFLOAD;
1200
1201 return err == -EOPNOTSUPP ? 0 : err;
1202 }
1203 EXPORT_SYMBOL_GPL(switchdev_fib_ipv4_add);
1204
1205 /**
1206 * switchdev_fib_ipv4_del - Delete IPv4 route entry from switch
1207 *
1208 * @dst: route's IPv4 destination address
1209 * @dst_len: destination address length (prefix length)
1210 * @fi: route FIB info structure
1211 * @tos: route TOS
1212 * @type: route type
1213 * @tb_id: route table ID
1214 *
1215 * Delete IPv4 route entry from switch device.
1216 */
1217 int switchdev_fib_ipv4_del(u32 dst, int dst_len, struct fib_info *fi,
1218 u8 tos, u8 type, u32 tb_id)
1219 {
1220 struct switchdev_obj_ipv4_fib ipv4_fib = {
1221 .obj.id = SWITCHDEV_OBJ_ID_IPV4_FIB,
1222 .dst = dst,
1223 .dst_len = dst_len,
1224 .tos = tos,
1225 .type = type,
1226 .nlflags = 0,
1227 .tb_id = tb_id,
1228 };
1229 struct net_device *dev;
1230 int err = 0;
1231
1232 memcpy(&ipv4_fib.fi, fi, sizeof(ipv4_fib.fi));
1233
1234 if (!(fi->fib_flags & RTNH_F_OFFLOAD))
1235 return 0;
1236
1237 dev = switchdev_get_dev_by_nhs(fi);
1238 if (!dev)
1239 return 0;
1240
1241 err = switchdev_port_obj_del(dev, &ipv4_fib.obj);
1242 if (!err)
1243 fi->fib_flags &= ~RTNH_F_OFFLOAD;
1244
1245 return err == -EOPNOTSUPP ? 0 : err;
1246 }
1247 EXPORT_SYMBOL_GPL(switchdev_fib_ipv4_del);
1248
1249 /**
1250 * switchdev_fib_ipv4_abort - Abort an IPv4 FIB operation
1251 *
1252 * @fi: route FIB info structure
1253 */
1254 void switchdev_fib_ipv4_abort(struct fib_info *fi)
1255 {
1256 /* There was a problem installing this route to the offload
1257 * device. For now, until we come up with more refined
1258 * policy handling, abruptly end IPv4 fib offloading for
1259 * for entire net by flushing offload device(s) of all
1260 * IPv4 routes, and mark IPv4 fib offloading broken from
1261 * this point forward.
1262 */
1263
1264 fib_flush_external(fi->fib_net);
1265 fi->fib_net->ipv4.fib_offload_disabled = true;
1266 }
1267 EXPORT_SYMBOL_GPL(switchdev_fib_ipv4_abort);
1268
1269 static bool switchdev_port_same_parent_id(struct net_device *a,
1270 struct net_device *b)
1271 {
1272 struct switchdev_attr a_attr = {
1273 .id = SWITCHDEV_ATTR_ID_PORT_PARENT_ID,
1274 .flags = SWITCHDEV_F_NO_RECURSE,
1275 };
1276 struct switchdev_attr b_attr = {
1277 .id = SWITCHDEV_ATTR_ID_PORT_PARENT_ID,
1278 .flags = SWITCHDEV_F_NO_RECURSE,
1279 };
1280
1281 if (switchdev_port_attr_get(a, &a_attr) ||
1282 switchdev_port_attr_get(b, &b_attr))
1283 return false;
1284
1285 return netdev_phys_item_id_same(&a_attr.u.ppid, &b_attr.u.ppid);
1286 }
1287
1288 static u32 switchdev_port_fwd_mark_get(struct net_device *dev,
1289 struct net_device *group_dev)
1290 {
1291 struct net_device *lower_dev;
1292 struct list_head *iter;
1293
1294 netdev_for_each_lower_dev(group_dev, lower_dev, iter) {
1295 if (lower_dev == dev)
1296 continue;
1297 if (switchdev_port_same_parent_id(dev, lower_dev))
1298 return lower_dev->offload_fwd_mark;
1299 return switchdev_port_fwd_mark_get(dev, lower_dev);
1300 }
1301
1302 return dev->ifindex;
1303 }
1304
1305 static void switchdev_port_fwd_mark_reset(struct net_device *group_dev,
1306 u32 old_mark, u32 *reset_mark)
1307 {
1308 struct net_device *lower_dev;
1309 struct list_head *iter;
1310
1311 netdev_for_each_lower_dev(group_dev, lower_dev, iter) {
1312 if (lower_dev->offload_fwd_mark == old_mark) {
1313 if (!*reset_mark)
1314 *reset_mark = lower_dev->ifindex;
1315 lower_dev->offload_fwd_mark = *reset_mark;
1316 }
1317 switchdev_port_fwd_mark_reset(lower_dev, old_mark, reset_mark);
1318 }
1319 }
1320
1321 /**
1322 * switchdev_port_fwd_mark_set - Set port offload forwarding mark
1323 *
1324 * @dev: port device
1325 * @group_dev: containing device
1326 * @joining: true if dev is joining group; false if leaving group
1327 *
1328 * An ungrouped port's offload mark is just its ifindex. A grouped
1329 * port's (member of a bridge, for example) offload mark is the ifindex
1330 * of one of the ports in the group with the same parent (switch) ID.
1331 * Ports on the same device in the same group will have the same mark.
1332 *
1333 * Example:
1334 *
1335 * br0 ifindex=9
1336 * sw1p1 ifindex=2 mark=2
1337 * sw1p2 ifindex=3 mark=2
1338 * sw2p1 ifindex=4 mark=5
1339 * sw2p2 ifindex=5 mark=5
1340 *
1341 * If sw2p2 leaves the bridge, we'll have:
1342 *
1343 * br0 ifindex=9
1344 * sw1p1 ifindex=2 mark=2
1345 * sw1p2 ifindex=3 mark=2
1346 * sw2p1 ifindex=4 mark=4
1347 * sw2p2 ifindex=5 mark=5
1348 */
1349 void switchdev_port_fwd_mark_set(struct net_device *dev,
1350 struct net_device *group_dev,
1351 bool joining)
1352 {
1353 u32 mark = dev->ifindex;
1354 u32 reset_mark = 0;
1355
1356 if (group_dev) {
1357 ASSERT_RTNL();
1358 if (joining)
1359 mark = switchdev_port_fwd_mark_get(dev, group_dev);
1360 else if (dev->offload_fwd_mark == mark)
1361 /* Ohoh, this port was the mark reference port,
1362 * but it's leaving the group, so reset the
1363 * mark for the remaining ports in the group.
1364 */
1365 switchdev_port_fwd_mark_reset(group_dev, mark,
1366 &reset_mark);
1367 }
1368
1369 dev->offload_fwd_mark = mark;
1370 }
1371 EXPORT_SYMBOL_GPL(switchdev_port_fwd_mark_set);