]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/tipc/crypto.c
UBUNTU: Ubuntu-5.15.0-39.42
[mirror_ubuntu-jammy-kernel.git] / net / tipc / crypto.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * net/tipc/crypto.c: TIPC crypto for key handling & packet en/decryption
4 *
5 * Copyright (c) 2019, Ericsson AB
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the names of the copyright holders nor the names of its
17 * contributors may be used to endorse or promote products derived from
18 * this software without specific prior written permission.
19 *
20 * Alternatively, this software may be distributed under the terms of the
21 * GNU General Public License ("GPL") version 2 as published by the Free
22 * Software Foundation.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
28 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 #include <crypto/aead.h>
38 #include <crypto/aes.h>
39 #include <crypto/rng.h>
40 #include "crypto.h"
41 #include "msg.h"
42 #include "bcast.h"
43
44 #define TIPC_TX_GRACE_PERIOD msecs_to_jiffies(5000) /* 5s */
45 #define TIPC_TX_LASTING_TIME msecs_to_jiffies(10000) /* 10s */
46 #define TIPC_RX_ACTIVE_LIM msecs_to_jiffies(3000) /* 3s */
47 #define TIPC_RX_PASSIVE_LIM msecs_to_jiffies(15000) /* 15s */
48
49 #define TIPC_MAX_TFMS_DEF 10
50 #define TIPC_MAX_TFMS_LIM 1000
51
52 #define TIPC_REKEYING_INTV_DEF (60 * 24) /* default: 1 day */
53
54 /*
55 * TIPC Key ids
56 */
57 enum {
58 KEY_MASTER = 0,
59 KEY_MIN = KEY_MASTER,
60 KEY_1 = 1,
61 KEY_2,
62 KEY_3,
63 KEY_MAX = KEY_3,
64 };
65
66 /*
67 * TIPC Crypto statistics
68 */
69 enum {
70 STAT_OK,
71 STAT_NOK,
72 STAT_ASYNC,
73 STAT_ASYNC_OK,
74 STAT_ASYNC_NOK,
75 STAT_BADKEYS, /* tx only */
76 STAT_BADMSGS = STAT_BADKEYS, /* rx only */
77 STAT_NOKEYS,
78 STAT_SWITCHES,
79
80 MAX_STATS,
81 };
82
83 /* TIPC crypto statistics' header */
84 static const char *hstats[MAX_STATS] = {"ok", "nok", "async", "async_ok",
85 "async_nok", "badmsgs", "nokeys",
86 "switches"};
87
88 /* Max TFMs number per key */
89 int sysctl_tipc_max_tfms __read_mostly = TIPC_MAX_TFMS_DEF;
90 /* Key exchange switch, default: on */
91 int sysctl_tipc_key_exchange_enabled __read_mostly = 1;
92
93 /*
94 * struct tipc_key - TIPC keys' status indicator
95 *
96 * 7 6 5 4 3 2 1 0
97 * +-----+-----+-----+-----+-----+-----+-----+-----+
98 * key: | (reserved)|passive idx| active idx|pending idx|
99 * +-----+-----+-----+-----+-----+-----+-----+-----+
100 */
101 struct tipc_key {
102 #define KEY_BITS (2)
103 #define KEY_MASK ((1 << KEY_BITS) - 1)
104 union {
105 struct {
106 #if defined(__LITTLE_ENDIAN_BITFIELD)
107 u8 pending:2,
108 active:2,
109 passive:2, /* rx only */
110 reserved:2;
111 #elif defined(__BIG_ENDIAN_BITFIELD)
112 u8 reserved:2,
113 passive:2, /* rx only */
114 active:2,
115 pending:2;
116 #else
117 #error "Please fix <asm/byteorder.h>"
118 #endif
119 } __packed;
120 u8 keys;
121 };
122 };
123
124 /**
125 * struct tipc_tfm - TIPC TFM structure to form a list of TFMs
126 * @tfm: cipher handle/key
127 * @list: linked list of TFMs
128 */
129 struct tipc_tfm {
130 struct crypto_aead *tfm;
131 struct list_head list;
132 };
133
134 /**
135 * struct tipc_aead - TIPC AEAD key structure
136 * @tfm_entry: per-cpu pointer to one entry in TFM list
137 * @crypto: TIPC crypto owns this key
138 * @cloned: reference to the source key in case cloning
139 * @users: the number of the key users (TX/RX)
140 * @salt: the key's SALT value
141 * @authsize: authentication tag size (max = 16)
142 * @mode: crypto mode is applied to the key
143 * @hint: a hint for user key
144 * @rcu: struct rcu_head
145 * @key: the aead key
146 * @gen: the key's generation
147 * @seqno: the key seqno (cluster scope)
148 * @refcnt: the key reference counter
149 */
150 struct tipc_aead {
151 #define TIPC_AEAD_HINT_LEN (5)
152 struct tipc_tfm * __percpu *tfm_entry;
153 struct tipc_crypto *crypto;
154 struct tipc_aead *cloned;
155 atomic_t users;
156 u32 salt;
157 u8 authsize;
158 u8 mode;
159 char hint[2 * TIPC_AEAD_HINT_LEN + 1];
160 struct rcu_head rcu;
161 struct tipc_aead_key *key;
162 u16 gen;
163
164 atomic64_t seqno ____cacheline_aligned;
165 refcount_t refcnt ____cacheline_aligned;
166
167 } ____cacheline_aligned;
168
169 /**
170 * struct tipc_crypto_stats - TIPC Crypto statistics
171 * @stat: array of crypto statistics
172 */
173 struct tipc_crypto_stats {
174 unsigned int stat[MAX_STATS];
175 };
176
177 /**
178 * struct tipc_crypto - TIPC TX/RX crypto structure
179 * @net: struct net
180 * @node: TIPC node (RX)
181 * @aead: array of pointers to AEAD keys for encryption/decryption
182 * @peer_rx_active: replicated peer RX active key index
183 * @key_gen: TX/RX key generation
184 * @key: the key states
185 * @skey_mode: session key's mode
186 * @skey: received session key
187 * @wq: common workqueue on TX crypto
188 * @work: delayed work sched for TX/RX
189 * @key_distr: key distributing state
190 * @rekeying_intv: rekeying interval (in minutes)
191 * @stats: the crypto statistics
192 * @name: the crypto name
193 * @sndnxt: the per-peer sndnxt (TX)
194 * @timer1: general timer 1 (jiffies)
195 * @timer2: general timer 2 (jiffies)
196 * @working: the crypto is working or not
197 * @key_master: flag indicates if master key exists
198 * @legacy_user: flag indicates if a peer joins w/o master key (for bwd comp.)
199 * @nokey: no key indication
200 * @flags: combined flags field
201 * @lock: tipc_key lock
202 */
203 struct tipc_crypto {
204 struct net *net;
205 struct tipc_node *node;
206 struct tipc_aead __rcu *aead[KEY_MAX + 1];
207 atomic_t peer_rx_active;
208 u16 key_gen;
209 struct tipc_key key;
210 u8 skey_mode;
211 struct tipc_aead_key *skey;
212 struct workqueue_struct *wq;
213 struct delayed_work work;
214 #define KEY_DISTR_SCHED 1
215 #define KEY_DISTR_COMPL 2
216 atomic_t key_distr;
217 u32 rekeying_intv;
218
219 struct tipc_crypto_stats __percpu *stats;
220 char name[48];
221
222 atomic64_t sndnxt ____cacheline_aligned;
223 unsigned long timer1;
224 unsigned long timer2;
225 union {
226 struct {
227 u8 working:1;
228 u8 key_master:1;
229 u8 legacy_user:1;
230 u8 nokey: 1;
231 };
232 u8 flags;
233 };
234 spinlock_t lock; /* crypto lock */
235
236 } ____cacheline_aligned;
237
238 /* struct tipc_crypto_tx_ctx - TX context for callbacks */
239 struct tipc_crypto_tx_ctx {
240 struct tipc_aead *aead;
241 struct tipc_bearer *bearer;
242 struct tipc_media_addr dst;
243 };
244
245 /* struct tipc_crypto_rx_ctx - RX context for callbacks */
246 struct tipc_crypto_rx_ctx {
247 struct tipc_aead *aead;
248 struct tipc_bearer *bearer;
249 };
250
251 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead);
252 static inline void tipc_aead_put(struct tipc_aead *aead);
253 static void tipc_aead_free(struct rcu_head *rp);
254 static int tipc_aead_users(struct tipc_aead __rcu *aead);
255 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim);
256 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim);
257 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val);
258 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead);
259 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
260 u8 mode);
261 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src);
262 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
263 unsigned int crypto_ctx_size,
264 u8 **iv, struct aead_request **req,
265 struct scatterlist **sg, int nsg);
266 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
267 struct tipc_bearer *b,
268 struct tipc_media_addr *dst,
269 struct tipc_node *__dnode);
270 static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err);
271 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
272 struct sk_buff *skb, struct tipc_bearer *b);
273 static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err);
274 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr);
275 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
276 u8 tx_key, struct sk_buff *skb,
277 struct tipc_crypto *__rx);
278 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
279 u8 new_passive,
280 u8 new_active,
281 u8 new_pending);
282 static int tipc_crypto_key_attach(struct tipc_crypto *c,
283 struct tipc_aead *aead, u8 pos,
284 bool master_key);
285 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending);
286 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
287 struct tipc_crypto *rx,
288 struct sk_buff *skb,
289 u8 tx_key);
290 static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb);
291 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key);
292 static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
293 struct tipc_bearer *b,
294 struct tipc_media_addr *dst,
295 struct tipc_node *__dnode, u8 type);
296 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
297 struct tipc_bearer *b,
298 struct sk_buff **skb, int err);
299 static void tipc_crypto_do_cmd(struct net *net, int cmd);
300 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf);
301 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
302 char *buf);
303 static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
304 u16 gen, u8 mode, u32 dnode);
305 static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr);
306 static void tipc_crypto_work_tx(struct work_struct *work);
307 static void tipc_crypto_work_rx(struct work_struct *work);
308 static int tipc_aead_key_generate(struct tipc_aead_key *skey);
309
310 #define is_tx(crypto) (!(crypto)->node)
311 #define is_rx(crypto) (!is_tx(crypto))
312
313 #define key_next(cur) ((cur) % KEY_MAX + 1)
314
315 #define tipc_aead_rcu_ptr(rcu_ptr, lock) \
316 rcu_dereference_protected((rcu_ptr), lockdep_is_held(lock))
317
318 #define tipc_aead_rcu_replace(rcu_ptr, ptr, lock) \
319 do { \
320 struct tipc_aead *__tmp = rcu_dereference_protected((rcu_ptr), \
321 lockdep_is_held(lock)); \
322 rcu_assign_pointer((rcu_ptr), (ptr)); \
323 tipc_aead_put(__tmp); \
324 } while (0)
325
326 #define tipc_crypto_key_detach(rcu_ptr, lock) \
327 tipc_aead_rcu_replace((rcu_ptr), NULL, lock)
328
329 /**
330 * tipc_aead_key_validate - Validate a AEAD user key
331 * @ukey: pointer to user key data
332 * @info: netlink info pointer
333 */
334 int tipc_aead_key_validate(struct tipc_aead_key *ukey, struct genl_info *info)
335 {
336 int keylen;
337
338 /* Check if algorithm exists */
339 if (unlikely(!crypto_has_alg(ukey->alg_name, 0, 0))) {
340 GENL_SET_ERR_MSG(info, "unable to load the algorithm (module existed?)");
341 return -ENODEV;
342 }
343
344 /* Currently, we only support the "gcm(aes)" cipher algorithm */
345 if (strcmp(ukey->alg_name, "gcm(aes)")) {
346 GENL_SET_ERR_MSG(info, "not supported yet the algorithm");
347 return -ENOTSUPP;
348 }
349
350 /* Check if key size is correct */
351 keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
352 if (unlikely(keylen != TIPC_AES_GCM_KEY_SIZE_128 &&
353 keylen != TIPC_AES_GCM_KEY_SIZE_192 &&
354 keylen != TIPC_AES_GCM_KEY_SIZE_256)) {
355 GENL_SET_ERR_MSG(info, "incorrect key length (20, 28 or 36 octets?)");
356 return -EKEYREJECTED;
357 }
358
359 return 0;
360 }
361
362 /**
363 * tipc_aead_key_generate - Generate new session key
364 * @skey: input/output key with new content
365 *
366 * Return: 0 in case of success, otherwise < 0
367 */
368 static int tipc_aead_key_generate(struct tipc_aead_key *skey)
369 {
370 int rc = 0;
371
372 /* Fill the key's content with a random value via RNG cipher */
373 rc = crypto_get_default_rng();
374 if (likely(!rc)) {
375 rc = crypto_rng_get_bytes(crypto_default_rng, skey->key,
376 skey->keylen);
377 crypto_put_default_rng();
378 }
379
380 return rc;
381 }
382
383 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead)
384 {
385 struct tipc_aead *tmp;
386
387 rcu_read_lock();
388 tmp = rcu_dereference(aead);
389 if (unlikely(!tmp || !refcount_inc_not_zero(&tmp->refcnt)))
390 tmp = NULL;
391 rcu_read_unlock();
392
393 return tmp;
394 }
395
396 static inline void tipc_aead_put(struct tipc_aead *aead)
397 {
398 if (aead && refcount_dec_and_test(&aead->refcnt))
399 call_rcu(&aead->rcu, tipc_aead_free);
400 }
401
402 /**
403 * tipc_aead_free - Release AEAD key incl. all the TFMs in the list
404 * @rp: rcu head pointer
405 */
406 static void tipc_aead_free(struct rcu_head *rp)
407 {
408 struct tipc_aead *aead = container_of(rp, struct tipc_aead, rcu);
409 struct tipc_tfm *tfm_entry, *head, *tmp;
410
411 if (aead->cloned) {
412 tipc_aead_put(aead->cloned);
413 } else {
414 head = *get_cpu_ptr(aead->tfm_entry);
415 put_cpu_ptr(aead->tfm_entry);
416 list_for_each_entry_safe(tfm_entry, tmp, &head->list, list) {
417 crypto_free_aead(tfm_entry->tfm);
418 list_del(&tfm_entry->list);
419 kfree(tfm_entry);
420 }
421 /* Free the head */
422 crypto_free_aead(head->tfm);
423 list_del(&head->list);
424 kfree(head);
425 }
426 free_percpu(aead->tfm_entry);
427 kfree_sensitive(aead->key);
428 kfree(aead);
429 }
430
431 static int tipc_aead_users(struct tipc_aead __rcu *aead)
432 {
433 struct tipc_aead *tmp;
434 int users = 0;
435
436 rcu_read_lock();
437 tmp = rcu_dereference(aead);
438 if (tmp)
439 users = atomic_read(&tmp->users);
440 rcu_read_unlock();
441
442 return users;
443 }
444
445 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim)
446 {
447 struct tipc_aead *tmp;
448
449 rcu_read_lock();
450 tmp = rcu_dereference(aead);
451 if (tmp)
452 atomic_add_unless(&tmp->users, 1, lim);
453 rcu_read_unlock();
454 }
455
456 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim)
457 {
458 struct tipc_aead *tmp;
459
460 rcu_read_lock();
461 tmp = rcu_dereference(aead);
462 if (tmp)
463 atomic_add_unless(&rcu_dereference(aead)->users, -1, lim);
464 rcu_read_unlock();
465 }
466
467 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val)
468 {
469 struct tipc_aead *tmp;
470 int cur;
471
472 rcu_read_lock();
473 tmp = rcu_dereference(aead);
474 if (tmp) {
475 do {
476 cur = atomic_read(&tmp->users);
477 if (cur == val)
478 break;
479 } while (atomic_cmpxchg(&tmp->users, cur, val) != cur);
480 }
481 rcu_read_unlock();
482 }
483
484 /**
485 * tipc_aead_tfm_next - Move TFM entry to the next one in list and return it
486 * @aead: the AEAD key pointer
487 */
488 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead)
489 {
490 struct tipc_tfm **tfm_entry;
491 struct crypto_aead *tfm;
492
493 tfm_entry = get_cpu_ptr(aead->tfm_entry);
494 *tfm_entry = list_next_entry(*tfm_entry, list);
495 tfm = (*tfm_entry)->tfm;
496 put_cpu_ptr(tfm_entry);
497
498 return tfm;
499 }
500
501 /**
502 * tipc_aead_init - Initiate TIPC AEAD
503 * @aead: returned new TIPC AEAD key handle pointer
504 * @ukey: pointer to user key data
505 * @mode: the key mode
506 *
507 * Allocate a (list of) new cipher transformation (TFM) with the specific user
508 * key data if valid. The number of the allocated TFMs can be set via the sysfs
509 * "net/tipc/max_tfms" first.
510 * Also, all the other AEAD data are also initialized.
511 *
512 * Return: 0 if the initiation is successful, otherwise: < 0
513 */
514 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
515 u8 mode)
516 {
517 struct tipc_tfm *tfm_entry, *head;
518 struct crypto_aead *tfm;
519 struct tipc_aead *tmp;
520 int keylen, err, cpu;
521 int tfm_cnt = 0;
522
523 if (unlikely(*aead))
524 return -EEXIST;
525
526 /* Allocate a new AEAD */
527 tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC);
528 if (unlikely(!tmp))
529 return -ENOMEM;
530
531 /* The key consists of two parts: [AES-KEY][SALT] */
532 keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
533
534 /* Allocate per-cpu TFM entry pointer */
535 tmp->tfm_entry = alloc_percpu(struct tipc_tfm *);
536 if (!tmp->tfm_entry) {
537 kfree_sensitive(tmp);
538 return -ENOMEM;
539 }
540
541 /* Make a list of TFMs with the user key data */
542 do {
543 tfm = crypto_alloc_aead(ukey->alg_name, 0, 0);
544 if (IS_ERR(tfm)) {
545 err = PTR_ERR(tfm);
546 break;
547 }
548
549 if (unlikely(!tfm_cnt &&
550 crypto_aead_ivsize(tfm) != TIPC_AES_GCM_IV_SIZE)) {
551 crypto_free_aead(tfm);
552 err = -ENOTSUPP;
553 break;
554 }
555
556 err = crypto_aead_setauthsize(tfm, TIPC_AES_GCM_TAG_SIZE);
557 err |= crypto_aead_setkey(tfm, ukey->key, keylen);
558 if (unlikely(err)) {
559 crypto_free_aead(tfm);
560 break;
561 }
562
563 tfm_entry = kmalloc(sizeof(*tfm_entry), GFP_KERNEL);
564 if (unlikely(!tfm_entry)) {
565 crypto_free_aead(tfm);
566 err = -ENOMEM;
567 break;
568 }
569 INIT_LIST_HEAD(&tfm_entry->list);
570 tfm_entry->tfm = tfm;
571
572 /* First entry? */
573 if (!tfm_cnt) {
574 head = tfm_entry;
575 for_each_possible_cpu(cpu) {
576 *per_cpu_ptr(tmp->tfm_entry, cpu) = head;
577 }
578 } else {
579 list_add_tail(&tfm_entry->list, &head->list);
580 }
581
582 } while (++tfm_cnt < sysctl_tipc_max_tfms);
583
584 /* Not any TFM is allocated? */
585 if (!tfm_cnt) {
586 free_percpu(tmp->tfm_entry);
587 kfree_sensitive(tmp);
588 return err;
589 }
590
591 /* Form a hex string of some last bytes as the key's hint */
592 bin2hex(tmp->hint, ukey->key + keylen - TIPC_AEAD_HINT_LEN,
593 TIPC_AEAD_HINT_LEN);
594
595 /* Initialize the other data */
596 tmp->mode = mode;
597 tmp->cloned = NULL;
598 tmp->authsize = TIPC_AES_GCM_TAG_SIZE;
599 tmp->key = kmemdup(ukey, tipc_aead_key_size(ukey), GFP_KERNEL);
600 if (!tmp->key) {
601 tipc_aead_free(&tmp->rcu);
602 return -ENOMEM;
603 }
604 memcpy(&tmp->salt, ukey->key + keylen, TIPC_AES_GCM_SALT_SIZE);
605 atomic_set(&tmp->users, 0);
606 atomic64_set(&tmp->seqno, 0);
607 refcount_set(&tmp->refcnt, 1);
608
609 *aead = tmp;
610 return 0;
611 }
612
613 /**
614 * tipc_aead_clone - Clone a TIPC AEAD key
615 * @dst: dest key for the cloning
616 * @src: source key to clone from
617 *
618 * Make a "copy" of the source AEAD key data to the dest, the TFMs list is
619 * common for the keys.
620 * A reference to the source is hold in the "cloned" pointer for the later
621 * freeing purposes.
622 *
623 * Note: this must be done in cluster-key mode only!
624 * Return: 0 in case of success, otherwise < 0
625 */
626 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src)
627 {
628 struct tipc_aead *aead;
629 int cpu;
630
631 if (!src)
632 return -ENOKEY;
633
634 if (src->mode != CLUSTER_KEY)
635 return -EINVAL;
636
637 if (unlikely(*dst))
638 return -EEXIST;
639
640 aead = kzalloc(sizeof(*aead), GFP_ATOMIC);
641 if (unlikely(!aead))
642 return -ENOMEM;
643
644 aead->tfm_entry = alloc_percpu_gfp(struct tipc_tfm *, GFP_ATOMIC);
645 if (unlikely(!aead->tfm_entry)) {
646 kfree_sensitive(aead);
647 return -ENOMEM;
648 }
649
650 for_each_possible_cpu(cpu) {
651 *per_cpu_ptr(aead->tfm_entry, cpu) =
652 *per_cpu_ptr(src->tfm_entry, cpu);
653 }
654
655 memcpy(aead->hint, src->hint, sizeof(src->hint));
656 aead->mode = src->mode;
657 aead->salt = src->salt;
658 aead->authsize = src->authsize;
659 atomic_set(&aead->users, 0);
660 atomic64_set(&aead->seqno, 0);
661 refcount_set(&aead->refcnt, 1);
662
663 WARN_ON(!refcount_inc_not_zero(&src->refcnt));
664 aead->cloned = src;
665
666 *dst = aead;
667 return 0;
668 }
669
670 /**
671 * tipc_aead_mem_alloc - Allocate memory for AEAD request operations
672 * @tfm: cipher handle to be registered with the request
673 * @crypto_ctx_size: size of crypto context for callback
674 * @iv: returned pointer to IV data
675 * @req: returned pointer to AEAD request data
676 * @sg: returned pointer to SG lists
677 * @nsg: number of SG lists to be allocated
678 *
679 * Allocate memory to store the crypto context data, AEAD request, IV and SG
680 * lists, the memory layout is as follows:
681 * crypto_ctx || iv || aead_req || sg[]
682 *
683 * Return: the pointer to the memory areas in case of success, otherwise NULL
684 */
685 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
686 unsigned int crypto_ctx_size,
687 u8 **iv, struct aead_request **req,
688 struct scatterlist **sg, int nsg)
689 {
690 unsigned int iv_size, req_size;
691 unsigned int len;
692 u8 *mem;
693
694 iv_size = crypto_aead_ivsize(tfm);
695 req_size = sizeof(**req) + crypto_aead_reqsize(tfm);
696
697 len = crypto_ctx_size;
698 len += iv_size;
699 len += crypto_aead_alignmask(tfm) & ~(crypto_tfm_ctx_alignment() - 1);
700 len = ALIGN(len, crypto_tfm_ctx_alignment());
701 len += req_size;
702 len = ALIGN(len, __alignof__(struct scatterlist));
703 len += nsg * sizeof(**sg);
704
705 mem = kmalloc(len, GFP_ATOMIC);
706 if (!mem)
707 return NULL;
708
709 *iv = (u8 *)PTR_ALIGN(mem + crypto_ctx_size,
710 crypto_aead_alignmask(tfm) + 1);
711 *req = (struct aead_request *)PTR_ALIGN(*iv + iv_size,
712 crypto_tfm_ctx_alignment());
713 *sg = (struct scatterlist *)PTR_ALIGN((u8 *)*req + req_size,
714 __alignof__(struct scatterlist));
715
716 return (void *)mem;
717 }
718
719 /**
720 * tipc_aead_encrypt - Encrypt a message
721 * @aead: TIPC AEAD key for the message encryption
722 * @skb: the input/output skb
723 * @b: TIPC bearer where the message will be delivered after the encryption
724 * @dst: the destination media address
725 * @__dnode: TIPC dest node if "known"
726 *
727 * Return:
728 * * 0 : if the encryption has completed
729 * * -EINPROGRESS/-EBUSY : if a callback will be performed
730 * * < 0 : the encryption has failed
731 */
732 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
733 struct tipc_bearer *b,
734 struct tipc_media_addr *dst,
735 struct tipc_node *__dnode)
736 {
737 struct crypto_aead *tfm = tipc_aead_tfm_next(aead);
738 struct tipc_crypto_tx_ctx *tx_ctx;
739 struct aead_request *req;
740 struct sk_buff *trailer;
741 struct scatterlist *sg;
742 struct tipc_ehdr *ehdr;
743 int ehsz, len, tailen, nsg, rc;
744 void *ctx;
745 u32 salt;
746 u8 *iv;
747
748 /* Make sure message len at least 4-byte aligned */
749 len = ALIGN(skb->len, 4);
750 tailen = len - skb->len + aead->authsize;
751
752 /* Expand skb tail for authentication tag:
753 * As for simplicity, we'd have made sure skb having enough tailroom
754 * for authentication tag @skb allocation. Even when skb is nonlinear
755 * but there is no frag_list, it should be still fine!
756 * Otherwise, we must cow it to be a writable buffer with the tailroom.
757 */
758 SKB_LINEAR_ASSERT(skb);
759 if (tailen > skb_tailroom(skb)) {
760 pr_debug("TX(): skb tailroom is not enough: %d, requires: %d\n",
761 skb_tailroom(skb), tailen);
762 }
763
764 if (unlikely(!skb_cloned(skb) && tailen <= skb_tailroom(skb))) {
765 nsg = 1;
766 trailer = skb;
767 } else {
768 /* TODO: We could avoid skb_cow_data() if skb has no frag_list
769 * e.g. by skb_fill_page_desc() to add another page to the skb
770 * with the wanted tailen... However, page skbs look not often,
771 * so take it easy now!
772 * Cloned skbs e.g. from link_xmit() seems no choice though :(
773 */
774 nsg = skb_cow_data(skb, tailen, &trailer);
775 if (unlikely(nsg < 0)) {
776 pr_err("TX: skb_cow_data() returned %d\n", nsg);
777 return nsg;
778 }
779 }
780
781 pskb_put(skb, trailer, tailen);
782
783 /* Allocate memory for the AEAD operation */
784 ctx = tipc_aead_mem_alloc(tfm, sizeof(*tx_ctx), &iv, &req, &sg, nsg);
785 if (unlikely(!ctx))
786 return -ENOMEM;
787 TIPC_SKB_CB(skb)->crypto_ctx = ctx;
788
789 /* Map skb to the sg lists */
790 sg_init_table(sg, nsg);
791 rc = skb_to_sgvec(skb, sg, 0, skb->len);
792 if (unlikely(rc < 0)) {
793 pr_err("TX: skb_to_sgvec() returned %d, nsg %d!\n", rc, nsg);
794 goto exit;
795 }
796
797 /* Prepare IV: [SALT (4 octets)][SEQNO (8 octets)]
798 * In case we're in cluster-key mode, SALT is varied by xor-ing with
799 * the source address (or w0 of id), otherwise with the dest address
800 * if dest is known.
801 */
802 ehdr = (struct tipc_ehdr *)skb->data;
803 salt = aead->salt;
804 if (aead->mode == CLUSTER_KEY)
805 salt ^= __be32_to_cpu(ehdr->addr);
806 else if (__dnode)
807 salt ^= tipc_node_get_addr(__dnode);
808 memcpy(iv, &salt, 4);
809 memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
810
811 /* Prepare request */
812 ehsz = tipc_ehdr_size(ehdr);
813 aead_request_set_tfm(req, tfm);
814 aead_request_set_ad(req, ehsz);
815 aead_request_set_crypt(req, sg, sg, len - ehsz, iv);
816
817 /* Set callback function & data */
818 aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
819 tipc_aead_encrypt_done, skb);
820 tx_ctx = (struct tipc_crypto_tx_ctx *)ctx;
821 tx_ctx->aead = aead;
822 tx_ctx->bearer = b;
823 memcpy(&tx_ctx->dst, dst, sizeof(*dst));
824
825 /* Hold bearer */
826 if (unlikely(!tipc_bearer_hold(b))) {
827 rc = -ENODEV;
828 goto exit;
829 }
830
831 /* Now, do encrypt */
832 rc = crypto_aead_encrypt(req);
833 if (rc == -EINPROGRESS || rc == -EBUSY)
834 return rc;
835
836 tipc_bearer_put(b);
837
838 exit:
839 kfree(ctx);
840 TIPC_SKB_CB(skb)->crypto_ctx = NULL;
841 return rc;
842 }
843
844 static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err)
845 {
846 struct sk_buff *skb = base->data;
847 struct tipc_crypto_tx_ctx *tx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
848 struct tipc_bearer *b = tx_ctx->bearer;
849 struct tipc_aead *aead = tx_ctx->aead;
850 struct tipc_crypto *tx = aead->crypto;
851 struct net *net = tx->net;
852
853 switch (err) {
854 case 0:
855 this_cpu_inc(tx->stats->stat[STAT_ASYNC_OK]);
856 rcu_read_lock();
857 if (likely(test_bit(0, &b->up)))
858 b->media->send_msg(net, skb, b, &tx_ctx->dst);
859 else
860 kfree_skb(skb);
861 rcu_read_unlock();
862 break;
863 case -EINPROGRESS:
864 return;
865 default:
866 this_cpu_inc(tx->stats->stat[STAT_ASYNC_NOK]);
867 kfree_skb(skb);
868 break;
869 }
870
871 kfree(tx_ctx);
872 tipc_bearer_put(b);
873 tipc_aead_put(aead);
874 }
875
876 /**
877 * tipc_aead_decrypt - Decrypt an encrypted message
878 * @net: struct net
879 * @aead: TIPC AEAD for the message decryption
880 * @skb: the input/output skb
881 * @b: TIPC bearer where the message has been received
882 *
883 * Return:
884 * * 0 : if the decryption has completed
885 * * -EINPROGRESS/-EBUSY : if a callback will be performed
886 * * < 0 : the decryption has failed
887 */
888 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
889 struct sk_buff *skb, struct tipc_bearer *b)
890 {
891 struct tipc_crypto_rx_ctx *rx_ctx;
892 struct aead_request *req;
893 struct crypto_aead *tfm;
894 struct sk_buff *unused;
895 struct scatterlist *sg;
896 struct tipc_ehdr *ehdr;
897 int ehsz, nsg, rc;
898 void *ctx;
899 u32 salt;
900 u8 *iv;
901
902 if (unlikely(!aead))
903 return -ENOKEY;
904
905 nsg = skb_cow_data(skb, 0, &unused);
906 if (unlikely(nsg < 0)) {
907 pr_err("RX: skb_cow_data() returned %d\n", nsg);
908 return nsg;
909 }
910
911 /* Allocate memory for the AEAD operation */
912 tfm = tipc_aead_tfm_next(aead);
913 ctx = tipc_aead_mem_alloc(tfm, sizeof(*rx_ctx), &iv, &req, &sg, nsg);
914 if (unlikely(!ctx))
915 return -ENOMEM;
916 TIPC_SKB_CB(skb)->crypto_ctx = ctx;
917
918 /* Map skb to the sg lists */
919 sg_init_table(sg, nsg);
920 rc = skb_to_sgvec(skb, sg, 0, skb->len);
921 if (unlikely(rc < 0)) {
922 pr_err("RX: skb_to_sgvec() returned %d, nsg %d\n", rc, nsg);
923 goto exit;
924 }
925
926 /* Reconstruct IV: */
927 ehdr = (struct tipc_ehdr *)skb->data;
928 salt = aead->salt;
929 if (aead->mode == CLUSTER_KEY)
930 salt ^= __be32_to_cpu(ehdr->addr);
931 else if (ehdr->destined)
932 salt ^= tipc_own_addr(net);
933 memcpy(iv, &salt, 4);
934 memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
935
936 /* Prepare request */
937 ehsz = tipc_ehdr_size(ehdr);
938 aead_request_set_tfm(req, tfm);
939 aead_request_set_ad(req, ehsz);
940 aead_request_set_crypt(req, sg, sg, skb->len - ehsz, iv);
941
942 /* Set callback function & data */
943 aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
944 tipc_aead_decrypt_done, skb);
945 rx_ctx = (struct tipc_crypto_rx_ctx *)ctx;
946 rx_ctx->aead = aead;
947 rx_ctx->bearer = b;
948
949 /* Hold bearer */
950 if (unlikely(!tipc_bearer_hold(b))) {
951 rc = -ENODEV;
952 goto exit;
953 }
954
955 /* Now, do decrypt */
956 rc = crypto_aead_decrypt(req);
957 if (rc == -EINPROGRESS || rc == -EBUSY)
958 return rc;
959
960 tipc_bearer_put(b);
961
962 exit:
963 kfree(ctx);
964 TIPC_SKB_CB(skb)->crypto_ctx = NULL;
965 return rc;
966 }
967
968 static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err)
969 {
970 struct sk_buff *skb = base->data;
971 struct tipc_crypto_rx_ctx *rx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
972 struct tipc_bearer *b = rx_ctx->bearer;
973 struct tipc_aead *aead = rx_ctx->aead;
974 struct tipc_crypto_stats __percpu *stats = aead->crypto->stats;
975 struct net *net = aead->crypto->net;
976
977 switch (err) {
978 case 0:
979 this_cpu_inc(stats->stat[STAT_ASYNC_OK]);
980 break;
981 case -EINPROGRESS:
982 return;
983 default:
984 this_cpu_inc(stats->stat[STAT_ASYNC_NOK]);
985 break;
986 }
987
988 kfree(rx_ctx);
989 tipc_crypto_rcv_complete(net, aead, b, &skb, err);
990 if (likely(skb)) {
991 if (likely(test_bit(0, &b->up)))
992 tipc_rcv(net, skb, b);
993 else
994 kfree_skb(skb);
995 }
996
997 tipc_bearer_put(b);
998 }
999
1000 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr)
1001 {
1002 return (ehdr->user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
1003 }
1004
1005 /**
1006 * tipc_ehdr_validate - Validate an encryption message
1007 * @skb: the message buffer
1008 *
1009 * Return: "true" if this is a valid encryption message, otherwise "false"
1010 */
1011 bool tipc_ehdr_validate(struct sk_buff *skb)
1012 {
1013 struct tipc_ehdr *ehdr;
1014 int ehsz;
1015
1016 if (unlikely(!pskb_may_pull(skb, EHDR_MIN_SIZE)))
1017 return false;
1018
1019 ehdr = (struct tipc_ehdr *)skb->data;
1020 if (unlikely(ehdr->version != TIPC_EVERSION))
1021 return false;
1022 ehsz = tipc_ehdr_size(ehdr);
1023 if (unlikely(!pskb_may_pull(skb, ehsz)))
1024 return false;
1025 if (unlikely(skb->len <= ehsz + TIPC_AES_GCM_TAG_SIZE))
1026 return false;
1027
1028 return true;
1029 }
1030
1031 /**
1032 * tipc_ehdr_build - Build TIPC encryption message header
1033 * @net: struct net
1034 * @aead: TX AEAD key to be used for the message encryption
1035 * @tx_key: key id used for the message encryption
1036 * @skb: input/output message skb
1037 * @__rx: RX crypto handle if dest is "known"
1038 *
1039 * Return: the header size if the building is successful, otherwise < 0
1040 */
1041 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
1042 u8 tx_key, struct sk_buff *skb,
1043 struct tipc_crypto *__rx)
1044 {
1045 struct tipc_msg *hdr = buf_msg(skb);
1046 struct tipc_ehdr *ehdr;
1047 u32 user = msg_user(hdr);
1048 u64 seqno;
1049 int ehsz;
1050
1051 /* Make room for encryption header */
1052 ehsz = (user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
1053 WARN_ON(skb_headroom(skb) < ehsz);
1054 ehdr = (struct tipc_ehdr *)skb_push(skb, ehsz);
1055
1056 /* Obtain a seqno first:
1057 * Use the key seqno (= cluster wise) if dest is unknown or we're in
1058 * cluster key mode, otherwise it's better for a per-peer seqno!
1059 */
1060 if (!__rx || aead->mode == CLUSTER_KEY)
1061 seqno = atomic64_inc_return(&aead->seqno);
1062 else
1063 seqno = atomic64_inc_return(&__rx->sndnxt);
1064
1065 /* Revoke the key if seqno is wrapped around */
1066 if (unlikely(!seqno))
1067 return tipc_crypto_key_revoke(net, tx_key);
1068
1069 /* Word 1-2 */
1070 ehdr->seqno = cpu_to_be64(seqno);
1071
1072 /* Words 0, 3- */
1073 ehdr->version = TIPC_EVERSION;
1074 ehdr->user = 0;
1075 ehdr->keepalive = 0;
1076 ehdr->tx_key = tx_key;
1077 ehdr->destined = (__rx) ? 1 : 0;
1078 ehdr->rx_key_active = (__rx) ? __rx->key.active : 0;
1079 ehdr->rx_nokey = (__rx) ? __rx->nokey : 0;
1080 ehdr->master_key = aead->crypto->key_master;
1081 ehdr->reserved_1 = 0;
1082 ehdr->reserved_2 = 0;
1083
1084 switch (user) {
1085 case LINK_CONFIG:
1086 ehdr->user = LINK_CONFIG;
1087 memcpy(ehdr->id, tipc_own_id(net), NODE_ID_LEN);
1088 break;
1089 default:
1090 if (user == LINK_PROTOCOL && msg_type(hdr) == STATE_MSG) {
1091 ehdr->user = LINK_PROTOCOL;
1092 ehdr->keepalive = msg_is_keepalive(hdr);
1093 }
1094 ehdr->addr = hdr->hdr[3];
1095 break;
1096 }
1097
1098 return ehsz;
1099 }
1100
1101 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
1102 u8 new_passive,
1103 u8 new_active,
1104 u8 new_pending)
1105 {
1106 struct tipc_key old = c->key;
1107 char buf[32];
1108
1109 c->key.keys = ((new_passive & KEY_MASK) << (KEY_BITS * 2)) |
1110 ((new_active & KEY_MASK) << (KEY_BITS)) |
1111 ((new_pending & KEY_MASK));
1112
1113 pr_debug("%s: key changing %s ::%pS\n", c->name,
1114 tipc_key_change_dump(old, c->key, buf),
1115 __builtin_return_address(0));
1116 }
1117
1118 /**
1119 * tipc_crypto_key_init - Initiate a new user / AEAD key
1120 * @c: TIPC crypto to which new key is attached
1121 * @ukey: the user key
1122 * @mode: the key mode (CLUSTER_KEY or PER_NODE_KEY)
1123 * @master_key: specify this is a cluster master key
1124 *
1125 * A new TIPC AEAD key will be allocated and initiated with the specified user
1126 * key, then attached to the TIPC crypto.
1127 *
1128 * Return: new key id in case of success, otherwise: < 0
1129 */
1130 int tipc_crypto_key_init(struct tipc_crypto *c, struct tipc_aead_key *ukey,
1131 u8 mode, bool master_key)
1132 {
1133 struct tipc_aead *aead = NULL;
1134 int rc = 0;
1135
1136 /* Initiate with the new user key */
1137 rc = tipc_aead_init(&aead, ukey, mode);
1138
1139 /* Attach it to the crypto */
1140 if (likely(!rc)) {
1141 rc = tipc_crypto_key_attach(c, aead, 0, master_key);
1142 if (rc < 0)
1143 tipc_aead_free(&aead->rcu);
1144 }
1145
1146 return rc;
1147 }
1148
1149 /**
1150 * tipc_crypto_key_attach - Attach a new AEAD key to TIPC crypto
1151 * @c: TIPC crypto to which the new AEAD key is attached
1152 * @aead: the new AEAD key pointer
1153 * @pos: desired slot in the crypto key array, = 0 if any!
1154 * @master_key: specify this is a cluster master key
1155 *
1156 * Return: new key id in case of success, otherwise: -EBUSY
1157 */
1158 static int tipc_crypto_key_attach(struct tipc_crypto *c,
1159 struct tipc_aead *aead, u8 pos,
1160 bool master_key)
1161 {
1162 struct tipc_key key;
1163 int rc = -EBUSY;
1164 u8 new_key;
1165
1166 spin_lock_bh(&c->lock);
1167 key = c->key;
1168 if (master_key) {
1169 new_key = KEY_MASTER;
1170 goto attach;
1171 }
1172 if (key.active && key.passive)
1173 goto exit;
1174 if (key.pending) {
1175 if (tipc_aead_users(c->aead[key.pending]) > 0)
1176 goto exit;
1177 /* if (pos): ok with replacing, will be aligned when needed */
1178 /* Replace it */
1179 new_key = key.pending;
1180 } else {
1181 if (pos) {
1182 if (key.active && pos != key_next(key.active)) {
1183 key.passive = pos;
1184 new_key = pos;
1185 goto attach;
1186 } else if (!key.active && !key.passive) {
1187 key.pending = pos;
1188 new_key = pos;
1189 goto attach;
1190 }
1191 }
1192 key.pending = key_next(key.active ?: key.passive);
1193 new_key = key.pending;
1194 }
1195
1196 attach:
1197 aead->crypto = c;
1198 aead->gen = (is_tx(c)) ? ++c->key_gen : c->key_gen;
1199 tipc_aead_rcu_replace(c->aead[new_key], aead, &c->lock);
1200 if (likely(c->key.keys != key.keys))
1201 tipc_crypto_key_set_state(c, key.passive, key.active,
1202 key.pending);
1203 c->working = 1;
1204 c->nokey = 0;
1205 c->key_master |= master_key;
1206 rc = new_key;
1207
1208 exit:
1209 spin_unlock_bh(&c->lock);
1210 return rc;
1211 }
1212
1213 void tipc_crypto_key_flush(struct tipc_crypto *c)
1214 {
1215 struct tipc_crypto *tx, *rx;
1216 int k;
1217
1218 spin_lock_bh(&c->lock);
1219 if (is_rx(c)) {
1220 /* Try to cancel pending work */
1221 rx = c;
1222 tx = tipc_net(rx->net)->crypto_tx;
1223 if (cancel_delayed_work(&rx->work)) {
1224 kfree(rx->skey);
1225 rx->skey = NULL;
1226 atomic_xchg(&rx->key_distr, 0);
1227 tipc_node_put(rx->node);
1228 }
1229 /* RX stopping => decrease TX key users if any */
1230 k = atomic_xchg(&rx->peer_rx_active, 0);
1231 if (k) {
1232 tipc_aead_users_dec(tx->aead[k], 0);
1233 /* Mark the point TX key users changed */
1234 tx->timer1 = jiffies;
1235 }
1236 }
1237
1238 c->flags = 0;
1239 tipc_crypto_key_set_state(c, 0, 0, 0);
1240 for (k = KEY_MIN; k <= KEY_MAX; k++)
1241 tipc_crypto_key_detach(c->aead[k], &c->lock);
1242 atomic64_set(&c->sndnxt, 0);
1243 spin_unlock_bh(&c->lock);
1244 }
1245
1246 /**
1247 * tipc_crypto_key_try_align - Align RX keys if possible
1248 * @rx: RX crypto handle
1249 * @new_pending: new pending slot if aligned (= TX key from peer)
1250 *
1251 * Peer has used an unknown key slot, this only happens when peer has left and
1252 * rejoned, or we are newcomer.
1253 * That means, there must be no active key but a pending key at unaligned slot.
1254 * If so, we try to move the pending key to the new slot.
1255 * Note: A potential passive key can exist, it will be shifted correspondingly!
1256 *
1257 * Return: "true" if key is successfully aligned, otherwise "false"
1258 */
1259 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending)
1260 {
1261 struct tipc_aead *tmp1, *tmp2 = NULL;
1262 struct tipc_key key;
1263 bool aligned = false;
1264 u8 new_passive = 0;
1265 int x;
1266
1267 spin_lock(&rx->lock);
1268 key = rx->key;
1269 if (key.pending == new_pending) {
1270 aligned = true;
1271 goto exit;
1272 }
1273 if (key.active)
1274 goto exit;
1275 if (!key.pending)
1276 goto exit;
1277 if (tipc_aead_users(rx->aead[key.pending]) > 0)
1278 goto exit;
1279
1280 /* Try to "isolate" this pending key first */
1281 tmp1 = tipc_aead_rcu_ptr(rx->aead[key.pending], &rx->lock);
1282 if (!refcount_dec_if_one(&tmp1->refcnt))
1283 goto exit;
1284 rcu_assign_pointer(rx->aead[key.pending], NULL);
1285
1286 /* Move passive key if any */
1287 if (key.passive) {
1288 tmp2 = rcu_replace_pointer(rx->aead[key.passive], tmp2, lockdep_is_held(&rx->lock));
1289 x = (key.passive - key.pending + new_pending) % KEY_MAX;
1290 new_passive = (x <= 0) ? x + KEY_MAX : x;
1291 }
1292
1293 /* Re-allocate the key(s) */
1294 tipc_crypto_key_set_state(rx, new_passive, 0, new_pending);
1295 rcu_assign_pointer(rx->aead[new_pending], tmp1);
1296 if (new_passive)
1297 rcu_assign_pointer(rx->aead[new_passive], tmp2);
1298 refcount_set(&tmp1->refcnt, 1);
1299 aligned = true;
1300 pr_info_ratelimited("%s: key[%d] -> key[%d]\n", rx->name, key.pending,
1301 new_pending);
1302
1303 exit:
1304 spin_unlock(&rx->lock);
1305 return aligned;
1306 }
1307
1308 /**
1309 * tipc_crypto_key_pick_tx - Pick one TX key for message decryption
1310 * @tx: TX crypto handle
1311 * @rx: RX crypto handle (can be NULL)
1312 * @skb: the message skb which will be decrypted later
1313 * @tx_key: peer TX key id
1314 *
1315 * This function looks up the existing TX keys and pick one which is suitable
1316 * for the message decryption, that must be a cluster key and not used before
1317 * on the same message (i.e. recursive).
1318 *
1319 * Return: the TX AEAD key handle in case of success, otherwise NULL
1320 */
1321 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
1322 struct tipc_crypto *rx,
1323 struct sk_buff *skb,
1324 u8 tx_key)
1325 {
1326 struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(skb);
1327 struct tipc_aead *aead = NULL;
1328 struct tipc_key key = tx->key;
1329 u8 k, i = 0;
1330
1331 /* Initialize data if not yet */
1332 if (!skb_cb->tx_clone_deferred) {
1333 skb_cb->tx_clone_deferred = 1;
1334 memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1335 }
1336
1337 skb_cb->tx_clone_ctx.rx = rx;
1338 if (++skb_cb->tx_clone_ctx.recurs > 2)
1339 return NULL;
1340
1341 /* Pick one TX key */
1342 spin_lock(&tx->lock);
1343 if (tx_key == KEY_MASTER) {
1344 aead = tipc_aead_rcu_ptr(tx->aead[KEY_MASTER], &tx->lock);
1345 goto done;
1346 }
1347 do {
1348 k = (i == 0) ? key.pending :
1349 ((i == 1) ? key.active : key.passive);
1350 if (!k)
1351 continue;
1352 aead = tipc_aead_rcu_ptr(tx->aead[k], &tx->lock);
1353 if (!aead)
1354 continue;
1355 if (aead->mode != CLUSTER_KEY ||
1356 aead == skb_cb->tx_clone_ctx.last) {
1357 aead = NULL;
1358 continue;
1359 }
1360 /* Ok, found one cluster key */
1361 skb_cb->tx_clone_ctx.last = aead;
1362 WARN_ON(skb->next);
1363 skb->next = skb_clone(skb, GFP_ATOMIC);
1364 if (unlikely(!skb->next))
1365 pr_warn("Failed to clone skb for next round if any\n");
1366 break;
1367 } while (++i < 3);
1368
1369 done:
1370 if (likely(aead))
1371 WARN_ON(!refcount_inc_not_zero(&aead->refcnt));
1372 spin_unlock(&tx->lock);
1373
1374 return aead;
1375 }
1376
1377 /**
1378 * tipc_crypto_key_synch: Synch own key data according to peer key status
1379 * @rx: RX crypto handle
1380 * @skb: TIPCv2 message buffer (incl. the ehdr from peer)
1381 *
1382 * This function updates the peer node related data as the peer RX active key
1383 * has changed, so the number of TX keys' users on this node are increased and
1384 * decreased correspondingly.
1385 *
1386 * It also considers if peer has no key, then we need to make own master key
1387 * (if any) taking over i.e. starting grace period and also trigger key
1388 * distributing process.
1389 *
1390 * The "per-peer" sndnxt is also reset when the peer key has switched.
1391 */
1392 static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb)
1393 {
1394 struct tipc_ehdr *ehdr = (struct tipc_ehdr *)skb_network_header(skb);
1395 struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
1396 struct tipc_msg *hdr = buf_msg(skb);
1397 u32 self = tipc_own_addr(rx->net);
1398 u8 cur, new;
1399 unsigned long delay;
1400
1401 /* Update RX 'key_master' flag according to peer, also mark "legacy" if
1402 * a peer has no master key.
1403 */
1404 rx->key_master = ehdr->master_key;
1405 if (!rx->key_master)
1406 tx->legacy_user = 1;
1407
1408 /* For later cases, apply only if message is destined to this node */
1409 if (!ehdr->destined || msg_short(hdr) || msg_destnode(hdr) != self)
1410 return;
1411
1412 /* Case 1: Peer has no keys, let's make master key take over */
1413 if (ehdr->rx_nokey) {
1414 /* Set or extend grace period */
1415 tx->timer2 = jiffies;
1416 /* Schedule key distributing for the peer if not yet */
1417 if (tx->key.keys &&
1418 !atomic_cmpxchg(&rx->key_distr, 0, KEY_DISTR_SCHED)) {
1419 get_random_bytes(&delay, 2);
1420 delay %= 5;
1421 delay = msecs_to_jiffies(500 * ++delay);
1422 if (queue_delayed_work(tx->wq, &rx->work, delay))
1423 tipc_node_get(rx->node);
1424 }
1425 } else {
1426 /* Cancel a pending key distributing if any */
1427 atomic_xchg(&rx->key_distr, 0);
1428 }
1429
1430 /* Case 2: Peer RX active key has changed, let's update own TX users */
1431 cur = atomic_read(&rx->peer_rx_active);
1432 new = ehdr->rx_key_active;
1433 if (tx->key.keys &&
1434 cur != new &&
1435 atomic_cmpxchg(&rx->peer_rx_active, cur, new) == cur) {
1436 if (new)
1437 tipc_aead_users_inc(tx->aead[new], INT_MAX);
1438 if (cur)
1439 tipc_aead_users_dec(tx->aead[cur], 0);
1440
1441 atomic64_set(&rx->sndnxt, 0);
1442 /* Mark the point TX key users changed */
1443 tx->timer1 = jiffies;
1444
1445 pr_debug("%s: key users changed %d-- %d++, peer %s\n",
1446 tx->name, cur, new, rx->name);
1447 }
1448 }
1449
1450 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key)
1451 {
1452 struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1453 struct tipc_key key;
1454
1455 spin_lock(&tx->lock);
1456 key = tx->key;
1457 WARN_ON(!key.active || tx_key != key.active);
1458
1459 /* Free the active key */
1460 tipc_crypto_key_set_state(tx, key.passive, 0, key.pending);
1461 tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1462 spin_unlock(&tx->lock);
1463
1464 pr_warn("%s: key is revoked\n", tx->name);
1465 return -EKEYREVOKED;
1466 }
1467
1468 int tipc_crypto_start(struct tipc_crypto **crypto, struct net *net,
1469 struct tipc_node *node)
1470 {
1471 struct tipc_crypto *c;
1472
1473 if (*crypto)
1474 return -EEXIST;
1475
1476 /* Allocate crypto */
1477 c = kzalloc(sizeof(*c), GFP_ATOMIC);
1478 if (!c)
1479 return -ENOMEM;
1480
1481 /* Allocate workqueue on TX */
1482 if (!node) {
1483 c->wq = alloc_ordered_workqueue("tipc_crypto", 0);
1484 if (!c->wq) {
1485 kfree(c);
1486 return -ENOMEM;
1487 }
1488 }
1489
1490 /* Allocate statistic structure */
1491 c->stats = alloc_percpu_gfp(struct tipc_crypto_stats, GFP_ATOMIC);
1492 if (!c->stats) {
1493 if (c->wq)
1494 destroy_workqueue(c->wq);
1495 kfree_sensitive(c);
1496 return -ENOMEM;
1497 }
1498
1499 c->flags = 0;
1500 c->net = net;
1501 c->node = node;
1502 get_random_bytes(&c->key_gen, 2);
1503 tipc_crypto_key_set_state(c, 0, 0, 0);
1504 atomic_set(&c->key_distr, 0);
1505 atomic_set(&c->peer_rx_active, 0);
1506 atomic64_set(&c->sndnxt, 0);
1507 c->timer1 = jiffies;
1508 c->timer2 = jiffies;
1509 c->rekeying_intv = TIPC_REKEYING_INTV_DEF;
1510 spin_lock_init(&c->lock);
1511 scnprintf(c->name, 48, "%s(%s)", (is_rx(c)) ? "RX" : "TX",
1512 (is_rx(c)) ? tipc_node_get_id_str(c->node) :
1513 tipc_own_id_string(c->net));
1514
1515 if (is_rx(c))
1516 INIT_DELAYED_WORK(&c->work, tipc_crypto_work_rx);
1517 else
1518 INIT_DELAYED_WORK(&c->work, tipc_crypto_work_tx);
1519
1520 *crypto = c;
1521 return 0;
1522 }
1523
1524 void tipc_crypto_stop(struct tipc_crypto **crypto)
1525 {
1526 struct tipc_crypto *c = *crypto;
1527 u8 k;
1528
1529 if (!c)
1530 return;
1531
1532 /* Flush any queued works & destroy wq */
1533 if (is_tx(c)) {
1534 c->rekeying_intv = 0;
1535 cancel_delayed_work_sync(&c->work);
1536 destroy_workqueue(c->wq);
1537 }
1538
1539 /* Release AEAD keys */
1540 rcu_read_lock();
1541 for (k = KEY_MIN; k <= KEY_MAX; k++)
1542 tipc_aead_put(rcu_dereference(c->aead[k]));
1543 rcu_read_unlock();
1544 pr_debug("%s: has been stopped\n", c->name);
1545
1546 /* Free this crypto statistics */
1547 free_percpu(c->stats);
1548
1549 *crypto = NULL;
1550 kfree_sensitive(c);
1551 }
1552
1553 void tipc_crypto_timeout(struct tipc_crypto *rx)
1554 {
1555 struct tipc_net *tn = tipc_net(rx->net);
1556 struct tipc_crypto *tx = tn->crypto_tx;
1557 struct tipc_key key;
1558 int cmd;
1559
1560 /* TX pending: taking all users & stable -> active */
1561 spin_lock(&tx->lock);
1562 key = tx->key;
1563 if (key.active && tipc_aead_users(tx->aead[key.active]) > 0)
1564 goto s1;
1565 if (!key.pending || tipc_aead_users(tx->aead[key.pending]) <= 0)
1566 goto s1;
1567 if (time_before(jiffies, tx->timer1 + TIPC_TX_LASTING_TIME))
1568 goto s1;
1569
1570 tipc_crypto_key_set_state(tx, key.passive, key.pending, 0);
1571 if (key.active)
1572 tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1573 this_cpu_inc(tx->stats->stat[STAT_SWITCHES]);
1574 pr_info("%s: key[%d] is activated\n", tx->name, key.pending);
1575
1576 s1:
1577 spin_unlock(&tx->lock);
1578
1579 /* RX pending: having user -> active */
1580 spin_lock(&rx->lock);
1581 key = rx->key;
1582 if (!key.pending || tipc_aead_users(rx->aead[key.pending]) <= 0)
1583 goto s2;
1584
1585 if (key.active)
1586 key.passive = key.active;
1587 key.active = key.pending;
1588 rx->timer2 = jiffies;
1589 tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
1590 this_cpu_inc(rx->stats->stat[STAT_SWITCHES]);
1591 pr_info("%s: key[%d] is activated\n", rx->name, key.pending);
1592 goto s5;
1593
1594 s2:
1595 /* RX pending: not working -> remove */
1596 if (!key.pending || tipc_aead_users(rx->aead[key.pending]) > -10)
1597 goto s3;
1598
1599 tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
1600 tipc_crypto_key_detach(rx->aead[key.pending], &rx->lock);
1601 pr_debug("%s: key[%d] is removed\n", rx->name, key.pending);
1602 goto s5;
1603
1604 s3:
1605 /* RX active: timed out or no user -> pending */
1606 if (!key.active)
1607 goto s4;
1608 if (time_before(jiffies, rx->timer1 + TIPC_RX_ACTIVE_LIM) &&
1609 tipc_aead_users(rx->aead[key.active]) > 0)
1610 goto s4;
1611
1612 if (key.pending)
1613 key.passive = key.active;
1614 else
1615 key.pending = key.active;
1616 rx->timer2 = jiffies;
1617 tipc_crypto_key_set_state(rx, key.passive, 0, key.pending);
1618 tipc_aead_users_set(rx->aead[key.pending], 0);
1619 pr_debug("%s: key[%d] is deactivated\n", rx->name, key.active);
1620 goto s5;
1621
1622 s4:
1623 /* RX passive: outdated or not working -> free */
1624 if (!key.passive)
1625 goto s5;
1626 if (time_before(jiffies, rx->timer2 + TIPC_RX_PASSIVE_LIM) &&
1627 tipc_aead_users(rx->aead[key.passive]) > -10)
1628 goto s5;
1629
1630 tipc_crypto_key_set_state(rx, 0, key.active, key.pending);
1631 tipc_crypto_key_detach(rx->aead[key.passive], &rx->lock);
1632 pr_debug("%s: key[%d] is freed\n", rx->name, key.passive);
1633
1634 s5:
1635 spin_unlock(&rx->lock);
1636
1637 /* Relax it here, the flag will be set again if it really is, but only
1638 * when we are not in grace period for safety!
1639 */
1640 if (time_after(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD))
1641 tx->legacy_user = 0;
1642
1643 /* Limit max_tfms & do debug commands if needed */
1644 if (likely(sysctl_tipc_max_tfms <= TIPC_MAX_TFMS_LIM))
1645 return;
1646
1647 cmd = sysctl_tipc_max_tfms;
1648 sysctl_tipc_max_tfms = TIPC_MAX_TFMS_DEF;
1649 tipc_crypto_do_cmd(rx->net, cmd);
1650 }
1651
1652 static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
1653 struct tipc_bearer *b,
1654 struct tipc_media_addr *dst,
1655 struct tipc_node *__dnode, u8 type)
1656 {
1657 struct sk_buff *skb;
1658
1659 skb = skb_clone(_skb, GFP_ATOMIC);
1660 if (skb) {
1661 TIPC_SKB_CB(skb)->xmit_type = type;
1662 tipc_crypto_xmit(net, &skb, b, dst, __dnode);
1663 if (skb)
1664 b->media->send_msg(net, skb, b, dst);
1665 }
1666 }
1667
1668 /**
1669 * tipc_crypto_xmit - Build & encrypt TIPC message for xmit
1670 * @net: struct net
1671 * @skb: input/output message skb pointer
1672 * @b: bearer used for xmit later
1673 * @dst: destination media address
1674 * @__dnode: destination node for reference if any
1675 *
1676 * First, build an encryption message header on the top of the message, then
1677 * encrypt the original TIPC message by using the pending, master or active
1678 * key with this preference order.
1679 * If the encryption is successful, the encrypted skb is returned directly or
1680 * via the callback.
1681 * Otherwise, the skb is freed!
1682 *
1683 * Return:
1684 * * 0 : the encryption has succeeded (or no encryption)
1685 * * -EINPROGRESS/-EBUSY : the encryption is ongoing, a callback will be made
1686 * * -ENOKEK : the encryption has failed due to no key
1687 * * -EKEYREVOKED : the encryption has failed due to key revoked
1688 * * -ENOMEM : the encryption has failed due to no memory
1689 * * < 0 : the encryption has failed due to other reasons
1690 */
1691 int tipc_crypto_xmit(struct net *net, struct sk_buff **skb,
1692 struct tipc_bearer *b, struct tipc_media_addr *dst,
1693 struct tipc_node *__dnode)
1694 {
1695 struct tipc_crypto *__rx = tipc_node_crypto_rx(__dnode);
1696 struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1697 struct tipc_crypto_stats __percpu *stats = tx->stats;
1698 struct tipc_msg *hdr = buf_msg(*skb);
1699 struct tipc_key key = tx->key;
1700 struct tipc_aead *aead = NULL;
1701 u32 user = msg_user(hdr);
1702 u32 type = msg_type(hdr);
1703 int rc = -ENOKEY;
1704 u8 tx_key = 0;
1705
1706 /* No encryption? */
1707 if (!tx->working)
1708 return 0;
1709
1710 /* Pending key if peer has active on it or probing time */
1711 if (unlikely(key.pending)) {
1712 tx_key = key.pending;
1713 if (!tx->key_master && !key.active)
1714 goto encrypt;
1715 if (__rx && atomic_read(&__rx->peer_rx_active) == tx_key)
1716 goto encrypt;
1717 if (TIPC_SKB_CB(*skb)->xmit_type == SKB_PROBING) {
1718 pr_debug("%s: probing for key[%d]\n", tx->name,
1719 key.pending);
1720 goto encrypt;
1721 }
1722 if (user == LINK_CONFIG || user == LINK_PROTOCOL)
1723 tipc_crypto_clone_msg(net, *skb, b, dst, __dnode,
1724 SKB_PROBING);
1725 }
1726
1727 /* Master key if this is a *vital* message or in grace period */
1728 if (tx->key_master) {
1729 tx_key = KEY_MASTER;
1730 if (!key.active)
1731 goto encrypt;
1732 if (TIPC_SKB_CB(*skb)->xmit_type == SKB_GRACING) {
1733 pr_debug("%s: gracing for msg (%d %d)\n", tx->name,
1734 user, type);
1735 goto encrypt;
1736 }
1737 if (user == LINK_CONFIG ||
1738 (user == LINK_PROTOCOL && type == RESET_MSG) ||
1739 (user == MSG_CRYPTO && type == KEY_DISTR_MSG) ||
1740 time_before(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD)) {
1741 if (__rx && __rx->key_master &&
1742 !atomic_read(&__rx->peer_rx_active))
1743 goto encrypt;
1744 if (!__rx) {
1745 if (likely(!tx->legacy_user))
1746 goto encrypt;
1747 tipc_crypto_clone_msg(net, *skb, b, dst,
1748 __dnode, SKB_GRACING);
1749 }
1750 }
1751 }
1752
1753 /* Else, use the active key if any */
1754 if (likely(key.active)) {
1755 tx_key = key.active;
1756 goto encrypt;
1757 }
1758
1759 goto exit;
1760
1761 encrypt:
1762 aead = tipc_aead_get(tx->aead[tx_key]);
1763 if (unlikely(!aead))
1764 goto exit;
1765 rc = tipc_ehdr_build(net, aead, tx_key, *skb, __rx);
1766 if (likely(rc > 0))
1767 rc = tipc_aead_encrypt(aead, *skb, b, dst, __dnode);
1768
1769 exit:
1770 switch (rc) {
1771 case 0:
1772 this_cpu_inc(stats->stat[STAT_OK]);
1773 break;
1774 case -EINPROGRESS:
1775 case -EBUSY:
1776 this_cpu_inc(stats->stat[STAT_ASYNC]);
1777 *skb = NULL;
1778 return rc;
1779 default:
1780 this_cpu_inc(stats->stat[STAT_NOK]);
1781 if (rc == -ENOKEY)
1782 this_cpu_inc(stats->stat[STAT_NOKEYS]);
1783 else if (rc == -EKEYREVOKED)
1784 this_cpu_inc(stats->stat[STAT_BADKEYS]);
1785 kfree_skb(*skb);
1786 *skb = NULL;
1787 break;
1788 }
1789
1790 tipc_aead_put(aead);
1791 return rc;
1792 }
1793
1794 /**
1795 * tipc_crypto_rcv - Decrypt an encrypted TIPC message from peer
1796 * @net: struct net
1797 * @rx: RX crypto handle
1798 * @skb: input/output message skb pointer
1799 * @b: bearer where the message has been received
1800 *
1801 * If the decryption is successful, the decrypted skb is returned directly or
1802 * as the callback, the encryption header and auth tag will be trimed out
1803 * before forwarding to tipc_rcv() via the tipc_crypto_rcv_complete().
1804 * Otherwise, the skb will be freed!
1805 * Note: RX key(s) can be re-aligned, or in case of no key suitable, TX
1806 * cluster key(s) can be taken for decryption (- recursive).
1807 *
1808 * Return:
1809 * * 0 : the decryption has successfully completed
1810 * * -EINPROGRESS/-EBUSY : the decryption is ongoing, a callback will be made
1811 * * -ENOKEY : the decryption has failed due to no key
1812 * * -EBADMSG : the decryption has failed due to bad message
1813 * * -ENOMEM : the decryption has failed due to no memory
1814 * * < 0 : the decryption has failed due to other reasons
1815 */
1816 int tipc_crypto_rcv(struct net *net, struct tipc_crypto *rx,
1817 struct sk_buff **skb, struct tipc_bearer *b)
1818 {
1819 struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1820 struct tipc_crypto_stats __percpu *stats;
1821 struct tipc_aead *aead = NULL;
1822 struct tipc_key key;
1823 int rc = -ENOKEY;
1824 u8 tx_key, n;
1825
1826 tx_key = ((struct tipc_ehdr *)(*skb)->data)->tx_key;
1827
1828 /* New peer?
1829 * Let's try with TX key (i.e. cluster mode) & verify the skb first!
1830 */
1831 if (unlikely(!rx || tx_key == KEY_MASTER))
1832 goto pick_tx;
1833
1834 /* Pick RX key according to TX key if any */
1835 key = rx->key;
1836 if (tx_key == key.active || tx_key == key.pending ||
1837 tx_key == key.passive)
1838 goto decrypt;
1839
1840 /* Unknown key, let's try to align RX key(s) */
1841 if (tipc_crypto_key_try_align(rx, tx_key))
1842 goto decrypt;
1843
1844 pick_tx:
1845 /* No key suitable? Try to pick one from TX... */
1846 aead = tipc_crypto_key_pick_tx(tx, rx, *skb, tx_key);
1847 if (aead)
1848 goto decrypt;
1849 goto exit;
1850
1851 decrypt:
1852 rcu_read_lock();
1853 if (!aead)
1854 aead = tipc_aead_get(rx->aead[tx_key]);
1855 rc = tipc_aead_decrypt(net, aead, *skb, b);
1856 rcu_read_unlock();
1857
1858 exit:
1859 stats = ((rx) ?: tx)->stats;
1860 switch (rc) {
1861 case 0:
1862 this_cpu_inc(stats->stat[STAT_OK]);
1863 break;
1864 case -EINPROGRESS:
1865 case -EBUSY:
1866 this_cpu_inc(stats->stat[STAT_ASYNC]);
1867 *skb = NULL;
1868 return rc;
1869 default:
1870 this_cpu_inc(stats->stat[STAT_NOK]);
1871 if (rc == -ENOKEY) {
1872 kfree_skb(*skb);
1873 *skb = NULL;
1874 if (rx) {
1875 /* Mark rx->nokey only if we dont have a
1876 * pending received session key, nor a newer
1877 * one i.e. in the next slot.
1878 */
1879 n = key_next(tx_key);
1880 rx->nokey = !(rx->skey ||
1881 rcu_access_pointer(rx->aead[n]));
1882 pr_debug_ratelimited("%s: nokey %d, key %d/%x\n",
1883 rx->name, rx->nokey,
1884 tx_key, rx->key.keys);
1885 tipc_node_put(rx->node);
1886 }
1887 this_cpu_inc(stats->stat[STAT_NOKEYS]);
1888 return rc;
1889 } else if (rc == -EBADMSG) {
1890 this_cpu_inc(stats->stat[STAT_BADMSGS]);
1891 }
1892 break;
1893 }
1894
1895 tipc_crypto_rcv_complete(net, aead, b, skb, rc);
1896 return rc;
1897 }
1898
1899 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
1900 struct tipc_bearer *b,
1901 struct sk_buff **skb, int err)
1902 {
1903 struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(*skb);
1904 struct tipc_crypto *rx = aead->crypto;
1905 struct tipc_aead *tmp = NULL;
1906 struct tipc_ehdr *ehdr;
1907 struct tipc_node *n;
1908
1909 /* Is this completed by TX? */
1910 if (unlikely(is_tx(aead->crypto))) {
1911 rx = skb_cb->tx_clone_ctx.rx;
1912 pr_debug("TX->RX(%s): err %d, aead %p, skb->next %p, flags %x\n",
1913 (rx) ? tipc_node_get_id_str(rx->node) : "-", err, aead,
1914 (*skb)->next, skb_cb->flags);
1915 pr_debug("skb_cb [recurs %d, last %p], tx->aead [%p %p %p]\n",
1916 skb_cb->tx_clone_ctx.recurs, skb_cb->tx_clone_ctx.last,
1917 aead->crypto->aead[1], aead->crypto->aead[2],
1918 aead->crypto->aead[3]);
1919 if (unlikely(err)) {
1920 if (err == -EBADMSG && (*skb)->next)
1921 tipc_rcv(net, (*skb)->next, b);
1922 goto free_skb;
1923 }
1924
1925 if (likely((*skb)->next)) {
1926 kfree_skb((*skb)->next);
1927 (*skb)->next = NULL;
1928 }
1929 ehdr = (struct tipc_ehdr *)(*skb)->data;
1930 if (!rx) {
1931 WARN_ON(ehdr->user != LINK_CONFIG);
1932 n = tipc_node_create(net, 0, ehdr->id, 0xffffu, 0,
1933 true);
1934 rx = tipc_node_crypto_rx(n);
1935 if (unlikely(!rx))
1936 goto free_skb;
1937 }
1938
1939 /* Ignore cloning if it was TX master key */
1940 if (ehdr->tx_key == KEY_MASTER)
1941 goto rcv;
1942 if (tipc_aead_clone(&tmp, aead) < 0)
1943 goto rcv;
1944 WARN_ON(!refcount_inc_not_zero(&tmp->refcnt));
1945 if (tipc_crypto_key_attach(rx, tmp, ehdr->tx_key, false) < 0) {
1946 tipc_aead_free(&tmp->rcu);
1947 goto rcv;
1948 }
1949 tipc_aead_put(aead);
1950 aead = tmp;
1951 }
1952
1953 if (unlikely(err)) {
1954 tipc_aead_users_dec((struct tipc_aead __force __rcu *)aead, INT_MIN);
1955 goto free_skb;
1956 }
1957
1958 /* Set the RX key's user */
1959 tipc_aead_users_set((struct tipc_aead __force __rcu *)aead, 1);
1960
1961 /* Mark this point, RX works */
1962 rx->timer1 = jiffies;
1963
1964 rcv:
1965 /* Remove ehdr & auth. tag prior to tipc_rcv() */
1966 ehdr = (struct tipc_ehdr *)(*skb)->data;
1967
1968 /* Mark this point, RX passive still works */
1969 if (rx->key.passive && ehdr->tx_key == rx->key.passive)
1970 rx->timer2 = jiffies;
1971
1972 skb_reset_network_header(*skb);
1973 skb_pull(*skb, tipc_ehdr_size(ehdr));
1974 pskb_trim(*skb, (*skb)->len - aead->authsize);
1975
1976 /* Validate TIPCv2 message */
1977 if (unlikely(!tipc_msg_validate(skb))) {
1978 pr_err_ratelimited("Packet dropped after decryption!\n");
1979 goto free_skb;
1980 }
1981
1982 /* Ok, everything's fine, try to synch own keys according to peers' */
1983 tipc_crypto_key_synch(rx, *skb);
1984
1985 /* Mark skb decrypted */
1986 skb_cb->decrypted = 1;
1987
1988 /* Clear clone cxt if any */
1989 if (likely(!skb_cb->tx_clone_deferred))
1990 goto exit;
1991 skb_cb->tx_clone_deferred = 0;
1992 memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1993 goto exit;
1994
1995 free_skb:
1996 kfree_skb(*skb);
1997 *skb = NULL;
1998
1999 exit:
2000 tipc_aead_put(aead);
2001 if (rx)
2002 tipc_node_put(rx->node);
2003 }
2004
2005 static void tipc_crypto_do_cmd(struct net *net, int cmd)
2006 {
2007 struct tipc_net *tn = tipc_net(net);
2008 struct tipc_crypto *tx = tn->crypto_tx, *rx;
2009 struct list_head *p;
2010 unsigned int stat;
2011 int i, j, cpu;
2012 char buf[200];
2013
2014 /* Currently only one command is supported */
2015 switch (cmd) {
2016 case 0xfff1:
2017 goto print_stats;
2018 default:
2019 return;
2020 }
2021
2022 print_stats:
2023 /* Print a header */
2024 pr_info("\n=============== TIPC Crypto Statistics ===============\n\n");
2025
2026 /* Print key status */
2027 pr_info("Key status:\n");
2028 pr_info("TX(%7.7s)\n%s", tipc_own_id_string(net),
2029 tipc_crypto_key_dump(tx, buf));
2030
2031 rcu_read_lock();
2032 for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
2033 rx = tipc_node_crypto_rx_by_list(p);
2034 pr_info("RX(%7.7s)\n%s", tipc_node_get_id_str(rx->node),
2035 tipc_crypto_key_dump(rx, buf));
2036 }
2037 rcu_read_unlock();
2038
2039 /* Print crypto statistics */
2040 for (i = 0, j = 0; i < MAX_STATS; i++)
2041 j += scnprintf(buf + j, 200 - j, "|%11s ", hstats[i]);
2042 pr_info("Counter %s", buf);
2043
2044 memset(buf, '-', 115);
2045 buf[115] = '\0';
2046 pr_info("%s\n", buf);
2047
2048 j = scnprintf(buf, 200, "TX(%7.7s) ", tipc_own_id_string(net));
2049 for_each_possible_cpu(cpu) {
2050 for (i = 0; i < MAX_STATS; i++) {
2051 stat = per_cpu_ptr(tx->stats, cpu)->stat[i];
2052 j += scnprintf(buf + j, 200 - j, "|%11d ", stat);
2053 }
2054 pr_info("%s", buf);
2055 j = scnprintf(buf, 200, "%12s", " ");
2056 }
2057
2058 rcu_read_lock();
2059 for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
2060 rx = tipc_node_crypto_rx_by_list(p);
2061 j = scnprintf(buf, 200, "RX(%7.7s) ",
2062 tipc_node_get_id_str(rx->node));
2063 for_each_possible_cpu(cpu) {
2064 for (i = 0; i < MAX_STATS; i++) {
2065 stat = per_cpu_ptr(rx->stats, cpu)->stat[i];
2066 j += scnprintf(buf + j, 200 - j, "|%11d ",
2067 stat);
2068 }
2069 pr_info("%s", buf);
2070 j = scnprintf(buf, 200, "%12s", " ");
2071 }
2072 }
2073 rcu_read_unlock();
2074
2075 pr_info("\n======================== Done ========================\n");
2076 }
2077
2078 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf)
2079 {
2080 struct tipc_key key = c->key;
2081 struct tipc_aead *aead;
2082 int k, i = 0;
2083 char *s;
2084
2085 for (k = KEY_MIN; k <= KEY_MAX; k++) {
2086 if (k == KEY_MASTER) {
2087 if (is_rx(c))
2088 continue;
2089 if (time_before(jiffies,
2090 c->timer2 + TIPC_TX_GRACE_PERIOD))
2091 s = "ACT";
2092 else
2093 s = "PAS";
2094 } else {
2095 if (k == key.passive)
2096 s = "PAS";
2097 else if (k == key.active)
2098 s = "ACT";
2099 else if (k == key.pending)
2100 s = "PEN";
2101 else
2102 s = "-";
2103 }
2104 i += scnprintf(buf + i, 200 - i, "\tKey%d: %s", k, s);
2105
2106 rcu_read_lock();
2107 aead = rcu_dereference(c->aead[k]);
2108 if (aead)
2109 i += scnprintf(buf + i, 200 - i,
2110 "{\"0x...%s\", \"%s\"}/%d:%d",
2111 aead->hint,
2112 (aead->mode == CLUSTER_KEY) ? "c" : "p",
2113 atomic_read(&aead->users),
2114 refcount_read(&aead->refcnt));
2115 rcu_read_unlock();
2116 i += scnprintf(buf + i, 200 - i, "\n");
2117 }
2118
2119 if (is_rx(c))
2120 i += scnprintf(buf + i, 200 - i, "\tPeer RX active: %d\n",
2121 atomic_read(&c->peer_rx_active));
2122
2123 return buf;
2124 }
2125
2126 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
2127 char *buf)
2128 {
2129 struct tipc_key *key = &old;
2130 int k, i = 0;
2131 char *s;
2132
2133 /* Output format: "[%s %s %s] -> [%s %s %s]", max len = 32 */
2134 again:
2135 i += scnprintf(buf + i, 32 - i, "[");
2136 for (k = KEY_1; k <= KEY_3; k++) {
2137 if (k == key->passive)
2138 s = "pas";
2139 else if (k == key->active)
2140 s = "act";
2141 else if (k == key->pending)
2142 s = "pen";
2143 else
2144 s = "-";
2145 i += scnprintf(buf + i, 32 - i,
2146 (k != KEY_3) ? "%s " : "%s", s);
2147 }
2148 if (key != &new) {
2149 i += scnprintf(buf + i, 32 - i, "] -> ");
2150 key = &new;
2151 goto again;
2152 }
2153 i += scnprintf(buf + i, 32 - i, "]");
2154 return buf;
2155 }
2156
2157 /**
2158 * tipc_crypto_msg_rcv - Common 'MSG_CRYPTO' processing point
2159 * @net: the struct net
2160 * @skb: the receiving message buffer
2161 */
2162 void tipc_crypto_msg_rcv(struct net *net, struct sk_buff *skb)
2163 {
2164 struct tipc_crypto *rx;
2165 struct tipc_msg *hdr;
2166
2167 if (unlikely(skb_linearize(skb)))
2168 goto exit;
2169
2170 hdr = buf_msg(skb);
2171 rx = tipc_node_crypto_rx_by_addr(net, msg_prevnode(hdr));
2172 if (unlikely(!rx))
2173 goto exit;
2174
2175 switch (msg_type(hdr)) {
2176 case KEY_DISTR_MSG:
2177 if (tipc_crypto_key_rcv(rx, hdr))
2178 goto exit;
2179 break;
2180 default:
2181 break;
2182 }
2183
2184 tipc_node_put(rx->node);
2185
2186 exit:
2187 kfree_skb(skb);
2188 }
2189
2190 /**
2191 * tipc_crypto_key_distr - Distribute a TX key
2192 * @tx: the TX crypto
2193 * @key: the key's index
2194 * @dest: the destination tipc node, = NULL if distributing to all nodes
2195 *
2196 * Return: 0 in case of success, otherwise < 0
2197 */
2198 int tipc_crypto_key_distr(struct tipc_crypto *tx, u8 key,
2199 struct tipc_node *dest)
2200 {
2201 struct tipc_aead *aead;
2202 u32 dnode = tipc_node_get_addr(dest);
2203 int rc = -ENOKEY;
2204
2205 if (!sysctl_tipc_key_exchange_enabled)
2206 return 0;
2207
2208 if (key) {
2209 rcu_read_lock();
2210 aead = tipc_aead_get(tx->aead[key]);
2211 if (likely(aead)) {
2212 rc = tipc_crypto_key_xmit(tx->net, aead->key,
2213 aead->gen, aead->mode,
2214 dnode);
2215 tipc_aead_put(aead);
2216 }
2217 rcu_read_unlock();
2218 }
2219
2220 return rc;
2221 }
2222
2223 /**
2224 * tipc_crypto_key_xmit - Send a session key
2225 * @net: the struct net
2226 * @skey: the session key to be sent
2227 * @gen: the key's generation
2228 * @mode: the key's mode
2229 * @dnode: the destination node address, = 0 if broadcasting to all nodes
2230 *
2231 * The session key 'skey' is packed in a TIPC v2 'MSG_CRYPTO/KEY_DISTR_MSG'
2232 * as its data section, then xmit-ed through the uc/bc link.
2233 *
2234 * Return: 0 in case of success, otherwise < 0
2235 */
2236 static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
2237 u16 gen, u8 mode, u32 dnode)
2238 {
2239 struct sk_buff_head pkts;
2240 struct tipc_msg *hdr;
2241 struct sk_buff *skb;
2242 u16 size, cong_link_cnt;
2243 u8 *data;
2244 int rc;
2245
2246 size = tipc_aead_key_size(skey);
2247 skb = tipc_buf_acquire(INT_H_SIZE + size, GFP_ATOMIC);
2248 if (!skb)
2249 return -ENOMEM;
2250
2251 hdr = buf_msg(skb);
2252 tipc_msg_init(tipc_own_addr(net), hdr, MSG_CRYPTO, KEY_DISTR_MSG,
2253 INT_H_SIZE, dnode);
2254 msg_set_size(hdr, INT_H_SIZE + size);
2255 msg_set_key_gen(hdr, gen);
2256 msg_set_key_mode(hdr, mode);
2257
2258 data = msg_data(hdr);
2259 *((__be32 *)(data + TIPC_AEAD_ALG_NAME)) = htonl(skey->keylen);
2260 memcpy(data, skey->alg_name, TIPC_AEAD_ALG_NAME);
2261 memcpy(data + TIPC_AEAD_ALG_NAME + sizeof(__be32), skey->key,
2262 skey->keylen);
2263
2264 __skb_queue_head_init(&pkts);
2265 __skb_queue_tail(&pkts, skb);
2266 if (dnode)
2267 rc = tipc_node_xmit(net, &pkts, dnode, 0);
2268 else
2269 rc = tipc_bcast_xmit(net, &pkts, &cong_link_cnt);
2270
2271 return rc;
2272 }
2273
2274 /**
2275 * tipc_crypto_key_rcv - Receive a session key
2276 * @rx: the RX crypto
2277 * @hdr: the TIPC v2 message incl. the receiving session key in its data
2278 *
2279 * This function retrieves the session key in the message from peer, then
2280 * schedules a RX work to attach the key to the corresponding RX crypto.
2281 *
2282 * Return: "true" if the key has been scheduled for attaching, otherwise
2283 * "false".
2284 */
2285 static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr)
2286 {
2287 struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
2288 struct tipc_aead_key *skey = NULL;
2289 u16 key_gen = msg_key_gen(hdr);
2290 u32 size = msg_data_sz(hdr);
2291 u8 *data = msg_data(hdr);
2292 unsigned int keylen;
2293
2294 /* Verify whether the size can exist in the packet */
2295 if (unlikely(size < sizeof(struct tipc_aead_key) + TIPC_AEAD_KEYLEN_MIN)) {
2296 pr_debug("%s: message data size is too small\n", rx->name);
2297 goto exit;
2298 }
2299
2300 keylen = ntohl(*((__be32 *)(data + TIPC_AEAD_ALG_NAME)));
2301
2302 /* Verify the supplied size values */
2303 if (unlikely(size != keylen + sizeof(struct tipc_aead_key) ||
2304 keylen > TIPC_AEAD_KEY_SIZE_MAX)) {
2305 pr_debug("%s: invalid MSG_CRYPTO key size\n", rx->name);
2306 goto exit;
2307 }
2308
2309 spin_lock(&rx->lock);
2310 if (unlikely(rx->skey || (key_gen == rx->key_gen && rx->key.keys))) {
2311 pr_err("%s: key existed <%p>, gen %d vs %d\n", rx->name,
2312 rx->skey, key_gen, rx->key_gen);
2313 goto exit_unlock;
2314 }
2315
2316 /* Allocate memory for the key */
2317 skey = kmalloc(size, GFP_ATOMIC);
2318 if (unlikely(!skey)) {
2319 pr_err("%s: unable to allocate memory for skey\n", rx->name);
2320 goto exit_unlock;
2321 }
2322
2323 /* Copy key from msg data */
2324 skey->keylen = keylen;
2325 memcpy(skey->alg_name, data, TIPC_AEAD_ALG_NAME);
2326 memcpy(skey->key, data + TIPC_AEAD_ALG_NAME + sizeof(__be32),
2327 skey->keylen);
2328
2329 rx->key_gen = key_gen;
2330 rx->skey_mode = msg_key_mode(hdr);
2331 rx->skey = skey;
2332 rx->nokey = 0;
2333 mb(); /* for nokey flag */
2334
2335 exit_unlock:
2336 spin_unlock(&rx->lock);
2337
2338 exit:
2339 /* Schedule the key attaching on this crypto */
2340 if (likely(skey && queue_delayed_work(tx->wq, &rx->work, 0)))
2341 return true;
2342
2343 return false;
2344 }
2345
2346 /**
2347 * tipc_crypto_work_rx - Scheduled RX works handler
2348 * @work: the struct RX work
2349 *
2350 * The function processes the previous scheduled works i.e. distributing TX key
2351 * or attaching a received session key on RX crypto.
2352 */
2353 static void tipc_crypto_work_rx(struct work_struct *work)
2354 {
2355 struct delayed_work *dwork = to_delayed_work(work);
2356 struct tipc_crypto *rx = container_of(dwork, struct tipc_crypto, work);
2357 struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
2358 unsigned long delay = msecs_to_jiffies(5000);
2359 bool resched = false;
2360 u8 key;
2361 int rc;
2362
2363 /* Case 1: Distribute TX key to peer if scheduled */
2364 if (atomic_cmpxchg(&rx->key_distr,
2365 KEY_DISTR_SCHED,
2366 KEY_DISTR_COMPL) == KEY_DISTR_SCHED) {
2367 /* Always pick the newest one for distributing */
2368 key = tx->key.pending ?: tx->key.active;
2369 rc = tipc_crypto_key_distr(tx, key, rx->node);
2370 if (unlikely(rc))
2371 pr_warn("%s: unable to distr key[%d] to %s, err %d\n",
2372 tx->name, key, tipc_node_get_id_str(rx->node),
2373 rc);
2374
2375 /* Sched for key_distr releasing */
2376 resched = true;
2377 } else {
2378 atomic_cmpxchg(&rx->key_distr, KEY_DISTR_COMPL, 0);
2379 }
2380
2381 /* Case 2: Attach a pending received session key from peer if any */
2382 if (rx->skey) {
2383 rc = tipc_crypto_key_init(rx, rx->skey, rx->skey_mode, false);
2384 if (unlikely(rc < 0))
2385 pr_warn("%s: unable to attach received skey, err %d\n",
2386 rx->name, rc);
2387 switch (rc) {
2388 case -EBUSY:
2389 case -ENOMEM:
2390 /* Resched the key attaching */
2391 resched = true;
2392 break;
2393 default:
2394 synchronize_rcu();
2395 kfree(rx->skey);
2396 rx->skey = NULL;
2397 break;
2398 }
2399 }
2400
2401 if (resched && queue_delayed_work(tx->wq, &rx->work, delay))
2402 return;
2403
2404 tipc_node_put(rx->node);
2405 }
2406
2407 /**
2408 * tipc_crypto_rekeying_sched - (Re)schedule rekeying w/o new interval
2409 * @tx: TX crypto
2410 * @changed: if the rekeying needs to be rescheduled with new interval
2411 * @new_intv: new rekeying interval (when "changed" = true)
2412 */
2413 void tipc_crypto_rekeying_sched(struct tipc_crypto *tx, bool changed,
2414 u32 new_intv)
2415 {
2416 unsigned long delay;
2417 bool now = false;
2418
2419 if (changed) {
2420 if (new_intv == TIPC_REKEYING_NOW)
2421 now = true;
2422 else
2423 tx->rekeying_intv = new_intv;
2424 cancel_delayed_work_sync(&tx->work);
2425 }
2426
2427 if (tx->rekeying_intv || now) {
2428 delay = (now) ? 0 : tx->rekeying_intv * 60 * 1000;
2429 queue_delayed_work(tx->wq, &tx->work, msecs_to_jiffies(delay));
2430 }
2431 }
2432
2433 /**
2434 * tipc_crypto_work_tx - Scheduled TX works handler
2435 * @work: the struct TX work
2436 *
2437 * The function processes the previous scheduled work, i.e. key rekeying, by
2438 * generating a new session key based on current one, then attaching it to the
2439 * TX crypto and finally distributing it to peers. It also re-schedules the
2440 * rekeying if needed.
2441 */
2442 static void tipc_crypto_work_tx(struct work_struct *work)
2443 {
2444 struct delayed_work *dwork = to_delayed_work(work);
2445 struct tipc_crypto *tx = container_of(dwork, struct tipc_crypto, work);
2446 struct tipc_aead_key *skey = NULL;
2447 struct tipc_key key = tx->key;
2448 struct tipc_aead *aead;
2449 int rc = -ENOMEM;
2450
2451 if (unlikely(key.pending))
2452 goto resched;
2453
2454 /* Take current key as a template */
2455 rcu_read_lock();
2456 aead = rcu_dereference(tx->aead[key.active ?: KEY_MASTER]);
2457 if (unlikely(!aead)) {
2458 rcu_read_unlock();
2459 /* At least one key should exist for securing */
2460 return;
2461 }
2462
2463 /* Lets duplicate it first */
2464 skey = kmemdup(aead->key, tipc_aead_key_size(aead->key), GFP_ATOMIC);
2465 rcu_read_unlock();
2466
2467 /* Now, generate new key, initiate & distribute it */
2468 if (likely(skey)) {
2469 rc = tipc_aead_key_generate(skey) ?:
2470 tipc_crypto_key_init(tx, skey, PER_NODE_KEY, false);
2471 if (likely(rc > 0))
2472 rc = tipc_crypto_key_distr(tx, rc, NULL);
2473 kfree_sensitive(skey);
2474 }
2475
2476 if (unlikely(rc))
2477 pr_warn_ratelimited("%s: rekeying returns %d\n", tx->name, rc);
2478
2479 resched:
2480 /* Re-schedule rekeying if any */
2481 tipc_crypto_rekeying_sched(tx, false, 0);
2482 }