]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - net/tls/tls_device.c
Merge tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm
[mirror_ubuntu-hirsute-kernel.git] / net / tls / tls_device.c
1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2 *
3 * This software is available to you under a choice of one of two
4 * licenses. You may choose to be licensed under the terms of the GNU
5 * General Public License (GPL) Version 2, available from the file
6 * COPYING in the main directory of this source tree, or the
7 * OpenIB.org BSD license below:
8 *
9 * Redistribution and use in source and binary forms, with or
10 * without modification, are permitted provided that the following
11 * conditions are met:
12 *
13 * - Redistributions of source code must retain the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer.
16 *
17 * - Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials
20 * provided with the distribution.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29 * SOFTWARE.
30 */
31
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
40
41 #include "trace.h"
42
43 /* device_offload_lock is used to synchronize tls_dev_add
44 * against NETDEV_DOWN notifications.
45 */
46 static DECLARE_RWSEM(device_offload_lock);
47
48 static void tls_device_gc_task(struct work_struct *work);
49
50 static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task);
51 static LIST_HEAD(tls_device_gc_list);
52 static LIST_HEAD(tls_device_list);
53 static DEFINE_SPINLOCK(tls_device_lock);
54
55 static void tls_device_free_ctx(struct tls_context *ctx)
56 {
57 if (ctx->tx_conf == TLS_HW) {
58 kfree(tls_offload_ctx_tx(ctx));
59 kfree(ctx->tx.rec_seq);
60 kfree(ctx->tx.iv);
61 }
62
63 if (ctx->rx_conf == TLS_HW)
64 kfree(tls_offload_ctx_rx(ctx));
65
66 tls_ctx_free(NULL, ctx);
67 }
68
69 static void tls_device_gc_task(struct work_struct *work)
70 {
71 struct tls_context *ctx, *tmp;
72 unsigned long flags;
73 LIST_HEAD(gc_list);
74
75 spin_lock_irqsave(&tls_device_lock, flags);
76 list_splice_init(&tls_device_gc_list, &gc_list);
77 spin_unlock_irqrestore(&tls_device_lock, flags);
78
79 list_for_each_entry_safe(ctx, tmp, &gc_list, list) {
80 struct net_device *netdev = ctx->netdev;
81
82 if (netdev && ctx->tx_conf == TLS_HW) {
83 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
84 TLS_OFFLOAD_CTX_DIR_TX);
85 dev_put(netdev);
86 ctx->netdev = NULL;
87 }
88
89 list_del(&ctx->list);
90 tls_device_free_ctx(ctx);
91 }
92 }
93
94 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
95 {
96 unsigned long flags;
97
98 spin_lock_irqsave(&tls_device_lock, flags);
99 list_move_tail(&ctx->list, &tls_device_gc_list);
100
101 /* schedule_work inside the spinlock
102 * to make sure tls_device_down waits for that work.
103 */
104 schedule_work(&tls_device_gc_work);
105
106 spin_unlock_irqrestore(&tls_device_lock, flags);
107 }
108
109 /* We assume that the socket is already connected */
110 static struct net_device *get_netdev_for_sock(struct sock *sk)
111 {
112 struct dst_entry *dst = sk_dst_get(sk);
113 struct net_device *netdev = NULL;
114
115 if (likely(dst)) {
116 netdev = dst->dev;
117 dev_hold(netdev);
118 }
119
120 dst_release(dst);
121
122 return netdev;
123 }
124
125 static void destroy_record(struct tls_record_info *record)
126 {
127 int i;
128
129 for (i = 0; i < record->num_frags; i++)
130 __skb_frag_unref(&record->frags[i]);
131 kfree(record);
132 }
133
134 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
135 {
136 struct tls_record_info *info, *temp;
137
138 list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
139 list_del(&info->list);
140 destroy_record(info);
141 }
142
143 offload_ctx->retransmit_hint = NULL;
144 }
145
146 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
147 {
148 struct tls_context *tls_ctx = tls_get_ctx(sk);
149 struct tls_record_info *info, *temp;
150 struct tls_offload_context_tx *ctx;
151 u64 deleted_records = 0;
152 unsigned long flags;
153
154 if (!tls_ctx)
155 return;
156
157 ctx = tls_offload_ctx_tx(tls_ctx);
158
159 spin_lock_irqsave(&ctx->lock, flags);
160 info = ctx->retransmit_hint;
161 if (info && !before(acked_seq, info->end_seq))
162 ctx->retransmit_hint = NULL;
163
164 list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
165 if (before(acked_seq, info->end_seq))
166 break;
167 list_del(&info->list);
168
169 destroy_record(info);
170 deleted_records++;
171 }
172
173 ctx->unacked_record_sn += deleted_records;
174 spin_unlock_irqrestore(&ctx->lock, flags);
175 }
176
177 /* At this point, there should be no references on this
178 * socket and no in-flight SKBs associated with this
179 * socket, so it is safe to free all the resources.
180 */
181 void tls_device_sk_destruct(struct sock *sk)
182 {
183 struct tls_context *tls_ctx = tls_get_ctx(sk);
184 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
185
186 tls_ctx->sk_destruct(sk);
187
188 if (tls_ctx->tx_conf == TLS_HW) {
189 if (ctx->open_record)
190 destroy_record(ctx->open_record);
191 delete_all_records(ctx);
192 crypto_free_aead(ctx->aead_send);
193 clean_acked_data_disable(inet_csk(sk));
194 }
195
196 if (refcount_dec_and_test(&tls_ctx->refcount))
197 tls_device_queue_ctx_destruction(tls_ctx);
198 }
199 EXPORT_SYMBOL_GPL(tls_device_sk_destruct);
200
201 void tls_device_free_resources_tx(struct sock *sk)
202 {
203 struct tls_context *tls_ctx = tls_get_ctx(sk);
204
205 tls_free_partial_record(sk, tls_ctx);
206 }
207
208 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq)
209 {
210 struct tls_context *tls_ctx = tls_get_ctx(sk);
211
212 trace_tls_device_tx_resync_req(sk, got_seq, exp_seq);
213 WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
214 }
215 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request);
216
217 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
218 u32 seq)
219 {
220 struct net_device *netdev;
221 struct sk_buff *skb;
222 int err = 0;
223 u8 *rcd_sn;
224
225 skb = tcp_write_queue_tail(sk);
226 if (skb)
227 TCP_SKB_CB(skb)->eor = 1;
228
229 rcd_sn = tls_ctx->tx.rec_seq;
230
231 trace_tls_device_tx_resync_send(sk, seq, rcd_sn);
232 down_read(&device_offload_lock);
233 netdev = tls_ctx->netdev;
234 if (netdev)
235 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
236 rcd_sn,
237 TLS_OFFLOAD_CTX_DIR_TX);
238 up_read(&device_offload_lock);
239 if (err)
240 return;
241
242 clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
243 }
244
245 static void tls_append_frag(struct tls_record_info *record,
246 struct page_frag *pfrag,
247 int size)
248 {
249 skb_frag_t *frag;
250
251 frag = &record->frags[record->num_frags - 1];
252 if (skb_frag_page(frag) == pfrag->page &&
253 skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
254 skb_frag_size_add(frag, size);
255 } else {
256 ++frag;
257 __skb_frag_set_page(frag, pfrag->page);
258 skb_frag_off_set(frag, pfrag->offset);
259 skb_frag_size_set(frag, size);
260 ++record->num_frags;
261 get_page(pfrag->page);
262 }
263
264 pfrag->offset += size;
265 record->len += size;
266 }
267
268 static int tls_push_record(struct sock *sk,
269 struct tls_context *ctx,
270 struct tls_offload_context_tx *offload_ctx,
271 struct tls_record_info *record,
272 int flags)
273 {
274 struct tls_prot_info *prot = &ctx->prot_info;
275 struct tcp_sock *tp = tcp_sk(sk);
276 skb_frag_t *frag;
277 int i;
278
279 record->end_seq = tp->write_seq + record->len;
280 list_add_tail_rcu(&record->list, &offload_ctx->records_list);
281 offload_ctx->open_record = NULL;
282
283 if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
284 tls_device_resync_tx(sk, ctx, tp->write_seq);
285
286 tls_advance_record_sn(sk, prot, &ctx->tx);
287
288 for (i = 0; i < record->num_frags; i++) {
289 frag = &record->frags[i];
290 sg_unmark_end(&offload_ctx->sg_tx_data[i]);
291 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
292 skb_frag_size(frag), skb_frag_off(frag));
293 sk_mem_charge(sk, skb_frag_size(frag));
294 get_page(skb_frag_page(frag));
295 }
296 sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
297
298 /* all ready, send */
299 return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
300 }
301
302 static int tls_device_record_close(struct sock *sk,
303 struct tls_context *ctx,
304 struct tls_record_info *record,
305 struct page_frag *pfrag,
306 unsigned char record_type)
307 {
308 struct tls_prot_info *prot = &ctx->prot_info;
309 int ret;
310
311 /* append tag
312 * device will fill in the tag, we just need to append a placeholder
313 * use socket memory to improve coalescing (re-using a single buffer
314 * increases frag count)
315 * if we can't allocate memory now, steal some back from data
316 */
317 if (likely(skb_page_frag_refill(prot->tag_size, pfrag,
318 sk->sk_allocation))) {
319 ret = 0;
320 tls_append_frag(record, pfrag, prot->tag_size);
321 } else {
322 ret = prot->tag_size;
323 if (record->len <= prot->overhead_size)
324 return -ENOMEM;
325 }
326
327 /* fill prepend */
328 tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
329 record->len - prot->overhead_size,
330 record_type, prot->version);
331 return ret;
332 }
333
334 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
335 struct page_frag *pfrag,
336 size_t prepend_size)
337 {
338 struct tls_record_info *record;
339 skb_frag_t *frag;
340
341 record = kmalloc(sizeof(*record), GFP_KERNEL);
342 if (!record)
343 return -ENOMEM;
344
345 frag = &record->frags[0];
346 __skb_frag_set_page(frag, pfrag->page);
347 skb_frag_off_set(frag, pfrag->offset);
348 skb_frag_size_set(frag, prepend_size);
349
350 get_page(pfrag->page);
351 pfrag->offset += prepend_size;
352
353 record->num_frags = 1;
354 record->len = prepend_size;
355 offload_ctx->open_record = record;
356 return 0;
357 }
358
359 static int tls_do_allocation(struct sock *sk,
360 struct tls_offload_context_tx *offload_ctx,
361 struct page_frag *pfrag,
362 size_t prepend_size)
363 {
364 int ret;
365
366 if (!offload_ctx->open_record) {
367 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
368 sk->sk_allocation))) {
369 READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk);
370 sk_stream_moderate_sndbuf(sk);
371 return -ENOMEM;
372 }
373
374 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
375 if (ret)
376 return ret;
377
378 if (pfrag->size > pfrag->offset)
379 return 0;
380 }
381
382 if (!sk_page_frag_refill(sk, pfrag))
383 return -ENOMEM;
384
385 return 0;
386 }
387
388 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
389 {
390 size_t pre_copy, nocache;
391
392 pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
393 if (pre_copy) {
394 pre_copy = min(pre_copy, bytes);
395 if (copy_from_iter(addr, pre_copy, i) != pre_copy)
396 return -EFAULT;
397 bytes -= pre_copy;
398 addr += pre_copy;
399 }
400
401 nocache = round_down(bytes, SMP_CACHE_BYTES);
402 if (copy_from_iter_nocache(addr, nocache, i) != nocache)
403 return -EFAULT;
404 bytes -= nocache;
405 addr += nocache;
406
407 if (bytes && copy_from_iter(addr, bytes, i) != bytes)
408 return -EFAULT;
409
410 return 0;
411 }
412
413 static int tls_push_data(struct sock *sk,
414 struct iov_iter *msg_iter,
415 size_t size, int flags,
416 unsigned char record_type)
417 {
418 struct tls_context *tls_ctx = tls_get_ctx(sk);
419 struct tls_prot_info *prot = &tls_ctx->prot_info;
420 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
421 int more = flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE);
422 struct tls_record_info *record = ctx->open_record;
423 int tls_push_record_flags;
424 struct page_frag *pfrag;
425 size_t orig_size = size;
426 u32 max_open_record_len;
427 int copy, rc = 0;
428 bool done = false;
429 long timeo;
430
431 if (flags &
432 ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
433 return -EOPNOTSUPP;
434
435 if (unlikely(sk->sk_err))
436 return -sk->sk_err;
437
438 flags |= MSG_SENDPAGE_DECRYPTED;
439 tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
440
441 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
442 if (tls_is_partially_sent_record(tls_ctx)) {
443 rc = tls_push_partial_record(sk, tls_ctx, flags);
444 if (rc < 0)
445 return rc;
446 }
447
448 pfrag = sk_page_frag(sk);
449
450 /* TLS_HEADER_SIZE is not counted as part of the TLS record, and
451 * we need to leave room for an authentication tag.
452 */
453 max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
454 prot->prepend_size;
455 do {
456 rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size);
457 if (unlikely(rc)) {
458 rc = sk_stream_wait_memory(sk, &timeo);
459 if (!rc)
460 continue;
461
462 record = ctx->open_record;
463 if (!record)
464 break;
465 handle_error:
466 if (record_type != TLS_RECORD_TYPE_DATA) {
467 /* avoid sending partial
468 * record with type !=
469 * application_data
470 */
471 size = orig_size;
472 destroy_record(record);
473 ctx->open_record = NULL;
474 } else if (record->len > prot->prepend_size) {
475 goto last_record;
476 }
477
478 break;
479 }
480
481 record = ctx->open_record;
482 copy = min_t(size_t, size, (pfrag->size - pfrag->offset));
483 copy = min_t(size_t, copy, (max_open_record_len - record->len));
484
485 rc = tls_device_copy_data(page_address(pfrag->page) +
486 pfrag->offset, copy, msg_iter);
487 if (rc)
488 goto handle_error;
489 tls_append_frag(record, pfrag, copy);
490
491 size -= copy;
492 if (!size) {
493 last_record:
494 tls_push_record_flags = flags;
495 if (more) {
496 tls_ctx->pending_open_record_frags =
497 !!record->num_frags;
498 break;
499 }
500
501 done = true;
502 }
503
504 if (done || record->len >= max_open_record_len ||
505 (record->num_frags >= MAX_SKB_FRAGS - 1)) {
506 rc = tls_device_record_close(sk, tls_ctx, record,
507 pfrag, record_type);
508 if (rc) {
509 if (rc > 0) {
510 size += rc;
511 } else {
512 size = orig_size;
513 destroy_record(record);
514 ctx->open_record = NULL;
515 break;
516 }
517 }
518
519 rc = tls_push_record(sk,
520 tls_ctx,
521 ctx,
522 record,
523 tls_push_record_flags);
524 if (rc < 0)
525 break;
526 }
527 } while (!done);
528
529 if (orig_size - size > 0)
530 rc = orig_size - size;
531
532 return rc;
533 }
534
535 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
536 {
537 unsigned char record_type = TLS_RECORD_TYPE_DATA;
538 struct tls_context *tls_ctx = tls_get_ctx(sk);
539 int rc;
540
541 mutex_lock(&tls_ctx->tx_lock);
542 lock_sock(sk);
543
544 if (unlikely(msg->msg_controllen)) {
545 rc = tls_proccess_cmsg(sk, msg, &record_type);
546 if (rc)
547 goto out;
548 }
549
550 rc = tls_push_data(sk, &msg->msg_iter, size,
551 msg->msg_flags, record_type);
552
553 out:
554 release_sock(sk);
555 mutex_unlock(&tls_ctx->tx_lock);
556 return rc;
557 }
558
559 int tls_device_sendpage(struct sock *sk, struct page *page,
560 int offset, size_t size, int flags)
561 {
562 struct tls_context *tls_ctx = tls_get_ctx(sk);
563 struct iov_iter msg_iter;
564 char *kaddr = kmap(page);
565 struct kvec iov;
566 int rc;
567
568 if (flags & MSG_SENDPAGE_NOTLAST)
569 flags |= MSG_MORE;
570
571 mutex_lock(&tls_ctx->tx_lock);
572 lock_sock(sk);
573
574 if (flags & MSG_OOB) {
575 rc = -EOPNOTSUPP;
576 goto out;
577 }
578
579 iov.iov_base = kaddr + offset;
580 iov.iov_len = size;
581 iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size);
582 rc = tls_push_data(sk, &msg_iter, size,
583 flags, TLS_RECORD_TYPE_DATA);
584 kunmap(page);
585
586 out:
587 release_sock(sk);
588 mutex_unlock(&tls_ctx->tx_lock);
589 return rc;
590 }
591
592 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
593 u32 seq, u64 *p_record_sn)
594 {
595 u64 record_sn = context->hint_record_sn;
596 struct tls_record_info *info, *last;
597
598 info = context->retransmit_hint;
599 if (!info ||
600 before(seq, info->end_seq - info->len)) {
601 /* if retransmit_hint is irrelevant start
602 * from the beggining of the list
603 */
604 info = list_first_entry_or_null(&context->records_list,
605 struct tls_record_info, list);
606 if (!info)
607 return NULL;
608 /* send the start_marker record if seq number is before the
609 * tls offload start marker sequence number. This record is
610 * required to handle TCP packets which are before TLS offload
611 * started.
612 * And if it's not start marker, look if this seq number
613 * belongs to the list.
614 */
615 if (likely(!tls_record_is_start_marker(info))) {
616 /* we have the first record, get the last record to see
617 * if this seq number belongs to the list.
618 */
619 last = list_last_entry(&context->records_list,
620 struct tls_record_info, list);
621
622 if (!between(seq, tls_record_start_seq(info),
623 last->end_seq))
624 return NULL;
625 }
626 record_sn = context->unacked_record_sn;
627 }
628
629 /* We just need the _rcu for the READ_ONCE() */
630 rcu_read_lock();
631 list_for_each_entry_from_rcu(info, &context->records_list, list) {
632 if (before(seq, info->end_seq)) {
633 if (!context->retransmit_hint ||
634 after(info->end_seq,
635 context->retransmit_hint->end_seq)) {
636 context->hint_record_sn = record_sn;
637 context->retransmit_hint = info;
638 }
639 *p_record_sn = record_sn;
640 goto exit_rcu_unlock;
641 }
642 record_sn++;
643 }
644 info = NULL;
645
646 exit_rcu_unlock:
647 rcu_read_unlock();
648 return info;
649 }
650 EXPORT_SYMBOL(tls_get_record);
651
652 static int tls_device_push_pending_record(struct sock *sk, int flags)
653 {
654 struct iov_iter msg_iter;
655
656 iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0);
657 return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA);
658 }
659
660 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
661 {
662 if (tls_is_partially_sent_record(ctx)) {
663 gfp_t sk_allocation = sk->sk_allocation;
664
665 WARN_ON_ONCE(sk->sk_write_pending);
666
667 sk->sk_allocation = GFP_ATOMIC;
668 tls_push_partial_record(sk, ctx,
669 MSG_DONTWAIT | MSG_NOSIGNAL |
670 MSG_SENDPAGE_DECRYPTED);
671 sk->sk_allocation = sk_allocation;
672 }
673 }
674
675 static void tls_device_resync_rx(struct tls_context *tls_ctx,
676 struct sock *sk, u32 seq, u8 *rcd_sn)
677 {
678 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
679 struct net_device *netdev;
680
681 if (WARN_ON(test_and_set_bit(TLS_RX_SYNC_RUNNING, &tls_ctx->flags)))
682 return;
683
684 trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type);
685 netdev = READ_ONCE(tls_ctx->netdev);
686 if (netdev)
687 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
688 TLS_OFFLOAD_CTX_DIR_RX);
689 clear_bit_unlock(TLS_RX_SYNC_RUNNING, &tls_ctx->flags);
690 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC);
691 }
692
693 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
694 {
695 struct tls_context *tls_ctx = tls_get_ctx(sk);
696 struct tls_offload_context_rx *rx_ctx;
697 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
698 u32 sock_data, is_req_pending;
699 struct tls_prot_info *prot;
700 s64 resync_req;
701 u32 req_seq;
702
703 if (tls_ctx->rx_conf != TLS_HW)
704 return;
705
706 prot = &tls_ctx->prot_info;
707 rx_ctx = tls_offload_ctx_rx(tls_ctx);
708 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
709
710 switch (rx_ctx->resync_type) {
711 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
712 resync_req = atomic64_read(&rx_ctx->resync_req);
713 req_seq = resync_req >> 32;
714 seq += TLS_HEADER_SIZE - 1;
715 is_req_pending = resync_req;
716
717 if (likely(!is_req_pending) || req_seq != seq ||
718 !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
719 return;
720 break;
721 case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
722 if (likely(!rx_ctx->resync_nh_do_now))
723 return;
724
725 /* head of next rec is already in, note that the sock_inq will
726 * include the currently parsed message when called from parser
727 */
728 sock_data = tcp_inq(sk);
729 if (sock_data > rcd_len) {
730 trace_tls_device_rx_resync_nh_delay(sk, sock_data,
731 rcd_len);
732 return;
733 }
734
735 rx_ctx->resync_nh_do_now = 0;
736 seq += rcd_len;
737 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
738 break;
739 }
740
741 tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
742 }
743
744 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
745 struct tls_offload_context_rx *ctx,
746 struct sock *sk, struct sk_buff *skb)
747 {
748 struct strp_msg *rxm;
749
750 /* device will request resyncs by itself based on stream scan */
751 if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
752 return;
753 /* already scheduled */
754 if (ctx->resync_nh_do_now)
755 return;
756 /* seen decrypted fragments since last fully-failed record */
757 if (ctx->resync_nh_reset) {
758 ctx->resync_nh_reset = 0;
759 ctx->resync_nh.decrypted_failed = 1;
760 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
761 return;
762 }
763
764 if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
765 return;
766
767 /* doing resync, bump the next target in case it fails */
768 if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
769 ctx->resync_nh.decrypted_tgt *= 2;
770 else
771 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
772
773 rxm = strp_msg(skb);
774
775 /* head of next rec is already in, parser will sync for us */
776 if (tcp_inq(sk) > rxm->full_len) {
777 trace_tls_device_rx_resync_nh_schedule(sk);
778 ctx->resync_nh_do_now = 1;
779 } else {
780 struct tls_prot_info *prot = &tls_ctx->prot_info;
781 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
782
783 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
784 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
785
786 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
787 rcd_sn);
788 }
789 }
790
791 static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb)
792 {
793 struct strp_msg *rxm = strp_msg(skb);
794 int err = 0, offset = rxm->offset, copy, nsg, data_len, pos;
795 struct sk_buff *skb_iter, *unused;
796 struct scatterlist sg[1];
797 char *orig_buf, *buf;
798
799 orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE +
800 TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation);
801 if (!orig_buf)
802 return -ENOMEM;
803 buf = orig_buf;
804
805 nsg = skb_cow_data(skb, 0, &unused);
806 if (unlikely(nsg < 0)) {
807 err = nsg;
808 goto free_buf;
809 }
810
811 sg_init_table(sg, 1);
812 sg_set_buf(&sg[0], buf,
813 rxm->full_len + TLS_HEADER_SIZE +
814 TLS_CIPHER_AES_GCM_128_IV_SIZE);
815 err = skb_copy_bits(skb, offset, buf,
816 TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE);
817 if (err)
818 goto free_buf;
819
820 /* We are interested only in the decrypted data not the auth */
821 err = decrypt_skb(sk, skb, sg);
822 if (err != -EBADMSG)
823 goto free_buf;
824 else
825 err = 0;
826
827 data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE;
828
829 if (skb_pagelen(skb) > offset) {
830 copy = min_t(int, skb_pagelen(skb) - offset, data_len);
831
832 if (skb->decrypted) {
833 err = skb_store_bits(skb, offset, buf, copy);
834 if (err)
835 goto free_buf;
836 }
837
838 offset += copy;
839 buf += copy;
840 }
841
842 pos = skb_pagelen(skb);
843 skb_walk_frags(skb, skb_iter) {
844 int frag_pos;
845
846 /* Practically all frags must belong to msg if reencrypt
847 * is needed with current strparser and coalescing logic,
848 * but strparser may "get optimized", so let's be safe.
849 */
850 if (pos + skb_iter->len <= offset)
851 goto done_with_frag;
852 if (pos >= data_len + rxm->offset)
853 break;
854
855 frag_pos = offset - pos;
856 copy = min_t(int, skb_iter->len - frag_pos,
857 data_len + rxm->offset - offset);
858
859 if (skb_iter->decrypted) {
860 err = skb_store_bits(skb_iter, frag_pos, buf, copy);
861 if (err)
862 goto free_buf;
863 }
864
865 offset += copy;
866 buf += copy;
867 done_with_frag:
868 pos += skb_iter->len;
869 }
870
871 free_buf:
872 kfree(orig_buf);
873 return err;
874 }
875
876 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
877 struct sk_buff *skb, struct strp_msg *rxm)
878 {
879 struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
880 int is_decrypted = skb->decrypted;
881 int is_encrypted = !is_decrypted;
882 struct sk_buff *skb_iter;
883
884 /* Check if all the data is decrypted already */
885 skb_walk_frags(skb, skb_iter) {
886 is_decrypted &= skb_iter->decrypted;
887 is_encrypted &= !skb_iter->decrypted;
888 }
889
890 trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len,
891 tls_ctx->rx.rec_seq, rxm->full_len,
892 is_encrypted, is_decrypted);
893
894 ctx->sw.decrypted |= is_decrypted;
895
896 /* Return immediately if the record is either entirely plaintext or
897 * entirely ciphertext. Otherwise handle reencrypt partially decrypted
898 * record.
899 */
900 if (is_decrypted) {
901 ctx->resync_nh_reset = 1;
902 return 0;
903 }
904 if (is_encrypted) {
905 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
906 return 0;
907 }
908
909 ctx->resync_nh_reset = 1;
910 return tls_device_reencrypt(sk, skb);
911 }
912
913 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
914 struct net_device *netdev)
915 {
916 if (sk->sk_destruct != tls_device_sk_destruct) {
917 refcount_set(&ctx->refcount, 1);
918 dev_hold(netdev);
919 ctx->netdev = netdev;
920 spin_lock_irq(&tls_device_lock);
921 list_add_tail(&ctx->list, &tls_device_list);
922 spin_unlock_irq(&tls_device_lock);
923
924 ctx->sk_destruct = sk->sk_destruct;
925 smp_store_release(&sk->sk_destruct, tls_device_sk_destruct);
926 }
927 }
928
929 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
930 {
931 u16 nonce_size, tag_size, iv_size, rec_seq_size;
932 struct tls_context *tls_ctx = tls_get_ctx(sk);
933 struct tls_prot_info *prot = &tls_ctx->prot_info;
934 struct tls_record_info *start_marker_record;
935 struct tls_offload_context_tx *offload_ctx;
936 struct tls_crypto_info *crypto_info;
937 struct net_device *netdev;
938 char *iv, *rec_seq;
939 struct sk_buff *skb;
940 __be64 rcd_sn;
941 int rc;
942
943 if (!ctx)
944 return -EINVAL;
945
946 if (ctx->priv_ctx_tx)
947 return -EEXIST;
948
949 start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
950 if (!start_marker_record)
951 return -ENOMEM;
952
953 offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
954 if (!offload_ctx) {
955 rc = -ENOMEM;
956 goto free_marker_record;
957 }
958
959 crypto_info = &ctx->crypto_send.info;
960 if (crypto_info->version != TLS_1_2_VERSION) {
961 rc = -EOPNOTSUPP;
962 goto free_offload_ctx;
963 }
964
965 switch (crypto_info->cipher_type) {
966 case TLS_CIPHER_AES_GCM_128:
967 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
968 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
969 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
970 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
971 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
972 rec_seq =
973 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
974 break;
975 default:
976 rc = -EINVAL;
977 goto free_offload_ctx;
978 }
979
980 /* Sanity-check the rec_seq_size for stack allocations */
981 if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
982 rc = -EINVAL;
983 goto free_offload_ctx;
984 }
985
986 prot->version = crypto_info->version;
987 prot->cipher_type = crypto_info->cipher_type;
988 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
989 prot->tag_size = tag_size;
990 prot->overhead_size = prot->prepend_size + prot->tag_size;
991 prot->iv_size = iv_size;
992 ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
993 GFP_KERNEL);
994 if (!ctx->tx.iv) {
995 rc = -ENOMEM;
996 goto free_offload_ctx;
997 }
998
999 memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
1000
1001 prot->rec_seq_size = rec_seq_size;
1002 ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
1003 if (!ctx->tx.rec_seq) {
1004 rc = -ENOMEM;
1005 goto free_iv;
1006 }
1007
1008 rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
1009 if (rc)
1010 goto free_rec_seq;
1011
1012 /* start at rec_seq - 1 to account for the start marker record */
1013 memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
1014 offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
1015
1016 start_marker_record->end_seq = tcp_sk(sk)->write_seq;
1017 start_marker_record->len = 0;
1018 start_marker_record->num_frags = 0;
1019
1020 INIT_LIST_HEAD(&offload_ctx->records_list);
1021 list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
1022 spin_lock_init(&offload_ctx->lock);
1023 sg_init_table(offload_ctx->sg_tx_data,
1024 ARRAY_SIZE(offload_ctx->sg_tx_data));
1025
1026 clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
1027 ctx->push_pending_record = tls_device_push_pending_record;
1028
1029 /* TLS offload is greatly simplified if we don't send
1030 * SKBs where only part of the payload needs to be encrypted.
1031 * So mark the last skb in the write queue as end of record.
1032 */
1033 skb = tcp_write_queue_tail(sk);
1034 if (skb)
1035 TCP_SKB_CB(skb)->eor = 1;
1036
1037 netdev = get_netdev_for_sock(sk);
1038 if (!netdev) {
1039 pr_err_ratelimited("%s: netdev not found\n", __func__);
1040 rc = -EINVAL;
1041 goto disable_cad;
1042 }
1043
1044 if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1045 rc = -EOPNOTSUPP;
1046 goto release_netdev;
1047 }
1048
1049 /* Avoid offloading if the device is down
1050 * We don't want to offload new flows after
1051 * the NETDEV_DOWN event
1052 *
1053 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1054 * handler thus protecting from the device going down before
1055 * ctx was added to tls_device_list.
1056 */
1057 down_read(&device_offload_lock);
1058 if (!(netdev->flags & IFF_UP)) {
1059 rc = -EINVAL;
1060 goto release_lock;
1061 }
1062
1063 ctx->priv_ctx_tx = offload_ctx;
1064 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1065 &ctx->crypto_send.info,
1066 tcp_sk(sk)->write_seq);
1067 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX,
1068 tcp_sk(sk)->write_seq, rec_seq, rc);
1069 if (rc)
1070 goto release_lock;
1071
1072 tls_device_attach(ctx, sk, netdev);
1073 up_read(&device_offload_lock);
1074
1075 /* following this assignment tls_is_sk_tx_device_offloaded
1076 * will return true and the context might be accessed
1077 * by the netdev's xmit function.
1078 */
1079 smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1080 dev_put(netdev);
1081
1082 return 0;
1083
1084 release_lock:
1085 up_read(&device_offload_lock);
1086 release_netdev:
1087 dev_put(netdev);
1088 disable_cad:
1089 clean_acked_data_disable(inet_csk(sk));
1090 crypto_free_aead(offload_ctx->aead_send);
1091 free_rec_seq:
1092 kfree(ctx->tx.rec_seq);
1093 free_iv:
1094 kfree(ctx->tx.iv);
1095 free_offload_ctx:
1096 kfree(offload_ctx);
1097 ctx->priv_ctx_tx = NULL;
1098 free_marker_record:
1099 kfree(start_marker_record);
1100 return rc;
1101 }
1102
1103 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1104 {
1105 struct tls12_crypto_info_aes_gcm_128 *info;
1106 struct tls_offload_context_rx *context;
1107 struct net_device *netdev;
1108 int rc = 0;
1109
1110 if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1111 return -EOPNOTSUPP;
1112
1113 netdev = get_netdev_for_sock(sk);
1114 if (!netdev) {
1115 pr_err_ratelimited("%s: netdev not found\n", __func__);
1116 return -EINVAL;
1117 }
1118
1119 if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1120 rc = -EOPNOTSUPP;
1121 goto release_netdev;
1122 }
1123
1124 /* Avoid offloading if the device is down
1125 * We don't want to offload new flows after
1126 * the NETDEV_DOWN event
1127 *
1128 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1129 * handler thus protecting from the device going down before
1130 * ctx was added to tls_device_list.
1131 */
1132 down_read(&device_offload_lock);
1133 if (!(netdev->flags & IFF_UP)) {
1134 rc = -EINVAL;
1135 goto release_lock;
1136 }
1137
1138 context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
1139 if (!context) {
1140 rc = -ENOMEM;
1141 goto release_lock;
1142 }
1143 context->resync_nh_reset = 1;
1144
1145 ctx->priv_ctx_rx = context;
1146 rc = tls_set_sw_offload(sk, ctx, 0);
1147 if (rc)
1148 goto release_ctx;
1149
1150 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1151 &ctx->crypto_recv.info,
1152 tcp_sk(sk)->copied_seq);
1153 info = (void *)&ctx->crypto_recv.info;
1154 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX,
1155 tcp_sk(sk)->copied_seq, info->rec_seq, rc);
1156 if (rc)
1157 goto free_sw_resources;
1158
1159 tls_device_attach(ctx, sk, netdev);
1160 up_read(&device_offload_lock);
1161
1162 dev_put(netdev);
1163
1164 return 0;
1165
1166 free_sw_resources:
1167 up_read(&device_offload_lock);
1168 tls_sw_free_resources_rx(sk);
1169 down_read(&device_offload_lock);
1170 release_ctx:
1171 ctx->priv_ctx_rx = NULL;
1172 release_lock:
1173 up_read(&device_offload_lock);
1174 release_netdev:
1175 dev_put(netdev);
1176 return rc;
1177 }
1178
1179 void tls_device_offload_cleanup_rx(struct sock *sk)
1180 {
1181 struct tls_context *tls_ctx = tls_get_ctx(sk);
1182 struct net_device *netdev;
1183
1184 down_read(&device_offload_lock);
1185 netdev = tls_ctx->netdev;
1186 if (!netdev)
1187 goto out;
1188
1189 netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1190 TLS_OFFLOAD_CTX_DIR_RX);
1191
1192 if (tls_ctx->tx_conf != TLS_HW) {
1193 dev_put(netdev);
1194 tls_ctx->netdev = NULL;
1195 }
1196 out:
1197 up_read(&device_offload_lock);
1198 tls_sw_release_resources_rx(sk);
1199 }
1200
1201 static int tls_device_down(struct net_device *netdev)
1202 {
1203 struct tls_context *ctx, *tmp;
1204 unsigned long flags;
1205 LIST_HEAD(list);
1206
1207 /* Request a write lock to block new offload attempts */
1208 down_write(&device_offload_lock);
1209
1210 spin_lock_irqsave(&tls_device_lock, flags);
1211 list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1212 if (ctx->netdev != netdev ||
1213 !refcount_inc_not_zero(&ctx->refcount))
1214 continue;
1215
1216 list_move(&ctx->list, &list);
1217 }
1218 spin_unlock_irqrestore(&tls_device_lock, flags);
1219
1220 list_for_each_entry_safe(ctx, tmp, &list, list) {
1221 if (ctx->tx_conf == TLS_HW)
1222 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1223 TLS_OFFLOAD_CTX_DIR_TX);
1224 if (ctx->rx_conf == TLS_HW)
1225 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1226 TLS_OFFLOAD_CTX_DIR_RX);
1227 WRITE_ONCE(ctx->netdev, NULL);
1228 smp_mb__before_atomic(); /* pairs with test_and_set_bit() */
1229 while (test_bit(TLS_RX_SYNC_RUNNING, &ctx->flags))
1230 usleep_range(10, 200);
1231 dev_put(netdev);
1232 list_del_init(&ctx->list);
1233
1234 if (refcount_dec_and_test(&ctx->refcount))
1235 tls_device_free_ctx(ctx);
1236 }
1237
1238 up_write(&device_offload_lock);
1239
1240 flush_work(&tls_device_gc_work);
1241
1242 return NOTIFY_DONE;
1243 }
1244
1245 static int tls_dev_event(struct notifier_block *this, unsigned long event,
1246 void *ptr)
1247 {
1248 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1249
1250 if (!dev->tlsdev_ops &&
1251 !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1252 return NOTIFY_DONE;
1253
1254 switch (event) {
1255 case NETDEV_REGISTER:
1256 case NETDEV_FEAT_CHANGE:
1257 if ((dev->features & NETIF_F_HW_TLS_RX) &&
1258 !dev->tlsdev_ops->tls_dev_resync)
1259 return NOTIFY_BAD;
1260
1261 if (dev->tlsdev_ops &&
1262 dev->tlsdev_ops->tls_dev_add &&
1263 dev->tlsdev_ops->tls_dev_del)
1264 return NOTIFY_DONE;
1265 else
1266 return NOTIFY_BAD;
1267 case NETDEV_DOWN:
1268 return tls_device_down(dev);
1269 }
1270 return NOTIFY_DONE;
1271 }
1272
1273 static struct notifier_block tls_dev_notifier = {
1274 .notifier_call = tls_dev_event,
1275 };
1276
1277 void __init tls_device_init(void)
1278 {
1279 register_netdevice_notifier(&tls_dev_notifier);
1280 }
1281
1282 void __exit tls_device_cleanup(void)
1283 {
1284 unregister_netdevice_notifier(&tls_dev_notifier);
1285 flush_work(&tls_device_gc_work);
1286 clean_acked_data_flush();
1287 }