]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - net/tls/tls_main.c
sh: switch to NO_BOOTMEM
[mirror_ubuntu-eoan-kernel.git] / net / tls / tls_main.c
1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42
43 #include <net/tls.h>
44
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
48
49 enum {
50 TLSV4,
51 TLSV6,
52 TLS_NUM_PROTS,
53 };
54
55 enum {
56 TLS_BASE,
57 TLS_SW_TX,
58 TLS_SW_RX,
59 TLS_SW_RXTX,
60 TLS_HW_RECORD,
61 TLS_NUM_CONFIG,
62 };
63
64 static struct proto *saved_tcpv6_prot;
65 static DEFINE_MUTEX(tcpv6_prot_mutex);
66 static LIST_HEAD(device_list);
67 static DEFINE_MUTEX(device_mutex);
68 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG];
69 static struct proto_ops tls_sw_proto_ops;
70
71 static inline void update_sk_prot(struct sock *sk, struct tls_context *ctx)
72 {
73 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
74
75 sk->sk_prot = &tls_prots[ip_ver][ctx->conf];
76 }
77
78 int wait_on_pending_writer(struct sock *sk, long *timeo)
79 {
80 int rc = 0;
81 DEFINE_WAIT_FUNC(wait, woken_wake_function);
82
83 add_wait_queue(sk_sleep(sk), &wait);
84 while (1) {
85 if (!*timeo) {
86 rc = -EAGAIN;
87 break;
88 }
89
90 if (signal_pending(current)) {
91 rc = sock_intr_errno(*timeo);
92 break;
93 }
94
95 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
96 break;
97 }
98 remove_wait_queue(sk_sleep(sk), &wait);
99 return rc;
100 }
101
102 int tls_push_sg(struct sock *sk,
103 struct tls_context *ctx,
104 struct scatterlist *sg,
105 u16 first_offset,
106 int flags)
107 {
108 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
109 int ret = 0;
110 struct page *p;
111 size_t size;
112 int offset = first_offset;
113
114 size = sg->length - offset;
115 offset += sg->offset;
116
117 while (1) {
118 if (sg_is_last(sg))
119 sendpage_flags = flags;
120
121 /* is sending application-limited? */
122 tcp_rate_check_app_limited(sk);
123 p = sg_page(sg);
124 retry:
125 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
126
127 if (ret != size) {
128 if (ret > 0) {
129 offset += ret;
130 size -= ret;
131 goto retry;
132 }
133
134 offset -= sg->offset;
135 ctx->partially_sent_offset = offset;
136 ctx->partially_sent_record = (void *)sg;
137 return ret;
138 }
139
140 put_page(p);
141 sk_mem_uncharge(sk, sg->length);
142 sg = sg_next(sg);
143 if (!sg)
144 break;
145
146 offset = sg->offset;
147 size = sg->length;
148 }
149
150 clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
151
152 return 0;
153 }
154
155 static int tls_handle_open_record(struct sock *sk, int flags)
156 {
157 struct tls_context *ctx = tls_get_ctx(sk);
158
159 if (tls_is_pending_open_record(ctx))
160 return ctx->push_pending_record(sk, flags);
161
162 return 0;
163 }
164
165 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
166 unsigned char *record_type)
167 {
168 struct cmsghdr *cmsg;
169 int rc = -EINVAL;
170
171 for_each_cmsghdr(cmsg, msg) {
172 if (!CMSG_OK(msg, cmsg))
173 return -EINVAL;
174 if (cmsg->cmsg_level != SOL_TLS)
175 continue;
176
177 switch (cmsg->cmsg_type) {
178 case TLS_SET_RECORD_TYPE:
179 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
180 return -EINVAL;
181
182 if (msg->msg_flags & MSG_MORE)
183 return -EINVAL;
184
185 rc = tls_handle_open_record(sk, msg->msg_flags);
186 if (rc)
187 return rc;
188
189 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
190 rc = 0;
191 break;
192 default:
193 return -EINVAL;
194 }
195 }
196
197 return rc;
198 }
199
200 int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
201 int flags, long *timeo)
202 {
203 struct scatterlist *sg;
204 u16 offset;
205
206 if (!tls_is_partially_sent_record(ctx))
207 return ctx->push_pending_record(sk, flags);
208
209 sg = ctx->partially_sent_record;
210 offset = ctx->partially_sent_offset;
211
212 ctx->partially_sent_record = NULL;
213 return tls_push_sg(sk, ctx, sg, offset, flags);
214 }
215
216 static void tls_write_space(struct sock *sk)
217 {
218 struct tls_context *ctx = tls_get_ctx(sk);
219
220 if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) {
221 gfp_t sk_allocation = sk->sk_allocation;
222 int rc;
223 long timeo = 0;
224
225 sk->sk_allocation = GFP_ATOMIC;
226 rc = tls_push_pending_closed_record(sk, ctx,
227 MSG_DONTWAIT |
228 MSG_NOSIGNAL,
229 &timeo);
230 sk->sk_allocation = sk_allocation;
231
232 if (rc < 0)
233 return;
234 }
235
236 ctx->sk_write_space(sk);
237 }
238
239 static void tls_sk_proto_close(struct sock *sk, long timeout)
240 {
241 struct tls_context *ctx = tls_get_ctx(sk);
242 long timeo = sock_sndtimeo(sk, 0);
243 void (*sk_proto_close)(struct sock *sk, long timeout);
244
245 lock_sock(sk);
246 sk_proto_close = ctx->sk_proto_close;
247
248 if (ctx->conf == TLS_HW_RECORD)
249 goto skip_tx_cleanup;
250
251 if (ctx->conf == TLS_BASE) {
252 kfree(ctx);
253 ctx = NULL;
254 goto skip_tx_cleanup;
255 }
256
257 if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
258 tls_handle_open_record(sk, 0);
259
260 if (ctx->partially_sent_record) {
261 struct scatterlist *sg = ctx->partially_sent_record;
262
263 while (1) {
264 put_page(sg_page(sg));
265 sk_mem_uncharge(sk, sg->length);
266
267 if (sg_is_last(sg))
268 break;
269 sg++;
270 }
271 }
272
273 kfree(ctx->tx.rec_seq);
274 kfree(ctx->tx.iv);
275 kfree(ctx->rx.rec_seq);
276 kfree(ctx->rx.iv);
277
278 if (ctx->conf == TLS_SW_TX ||
279 ctx->conf == TLS_SW_RX ||
280 ctx->conf == TLS_SW_RXTX) {
281 tls_sw_free_resources(sk);
282 }
283
284 skip_tx_cleanup:
285 release_sock(sk);
286 sk_proto_close(sk, timeout);
287 /* free ctx for TLS_HW_RECORD, used by tcp_set_state
288 * for sk->sk_prot->unhash [tls_hw_unhash]
289 */
290 if (ctx && ctx->conf == TLS_HW_RECORD)
291 kfree(ctx);
292 }
293
294 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
295 int __user *optlen)
296 {
297 int rc = 0;
298 struct tls_context *ctx = tls_get_ctx(sk);
299 struct tls_crypto_info *crypto_info;
300 int len;
301
302 if (get_user(len, optlen))
303 return -EFAULT;
304
305 if (!optval || (len < sizeof(*crypto_info))) {
306 rc = -EINVAL;
307 goto out;
308 }
309
310 if (!ctx) {
311 rc = -EBUSY;
312 goto out;
313 }
314
315 /* get user crypto info */
316 crypto_info = &ctx->crypto_send;
317
318 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
319 rc = -EBUSY;
320 goto out;
321 }
322
323 if (len == sizeof(*crypto_info)) {
324 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
325 rc = -EFAULT;
326 goto out;
327 }
328
329 switch (crypto_info->cipher_type) {
330 case TLS_CIPHER_AES_GCM_128: {
331 struct tls12_crypto_info_aes_gcm_128 *
332 crypto_info_aes_gcm_128 =
333 container_of(crypto_info,
334 struct tls12_crypto_info_aes_gcm_128,
335 info);
336
337 if (len != sizeof(*crypto_info_aes_gcm_128)) {
338 rc = -EINVAL;
339 goto out;
340 }
341 lock_sock(sk);
342 memcpy(crypto_info_aes_gcm_128->iv,
343 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
344 TLS_CIPHER_AES_GCM_128_IV_SIZE);
345 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
346 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
347 release_sock(sk);
348 if (copy_to_user(optval,
349 crypto_info_aes_gcm_128,
350 sizeof(*crypto_info_aes_gcm_128)))
351 rc = -EFAULT;
352 break;
353 }
354 default:
355 rc = -EINVAL;
356 }
357
358 out:
359 return rc;
360 }
361
362 static int do_tls_getsockopt(struct sock *sk, int optname,
363 char __user *optval, int __user *optlen)
364 {
365 int rc = 0;
366
367 switch (optname) {
368 case TLS_TX:
369 rc = do_tls_getsockopt_tx(sk, optval, optlen);
370 break;
371 default:
372 rc = -ENOPROTOOPT;
373 break;
374 }
375 return rc;
376 }
377
378 static int tls_getsockopt(struct sock *sk, int level, int optname,
379 char __user *optval, int __user *optlen)
380 {
381 struct tls_context *ctx = tls_get_ctx(sk);
382
383 if (level != SOL_TLS)
384 return ctx->getsockopt(sk, level, optname, optval, optlen);
385
386 return do_tls_getsockopt(sk, optname, optval, optlen);
387 }
388
389 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
390 unsigned int optlen, int tx)
391 {
392 struct tls_crypto_info *crypto_info;
393 struct tls_context *ctx = tls_get_ctx(sk);
394 int rc = 0;
395 int conf;
396
397 if (!optval || (optlen < sizeof(*crypto_info))) {
398 rc = -EINVAL;
399 goto out;
400 }
401
402 if (tx)
403 crypto_info = &ctx->crypto_send;
404 else
405 crypto_info = &ctx->crypto_recv;
406
407 /* Currently we don't support set crypto info more than one time */
408 if (TLS_CRYPTO_INFO_READY(crypto_info)) {
409 rc = -EBUSY;
410 goto out;
411 }
412
413 rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
414 if (rc) {
415 rc = -EFAULT;
416 goto err_crypto_info;
417 }
418
419 /* check version */
420 if (crypto_info->version != TLS_1_2_VERSION) {
421 rc = -ENOTSUPP;
422 goto err_crypto_info;
423 }
424
425 switch (crypto_info->cipher_type) {
426 case TLS_CIPHER_AES_GCM_128: {
427 if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
428 rc = -EINVAL;
429 goto err_crypto_info;
430 }
431 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
432 optlen - sizeof(*crypto_info));
433 if (rc) {
434 rc = -EFAULT;
435 goto err_crypto_info;
436 }
437 break;
438 }
439 default:
440 rc = -EINVAL;
441 goto err_crypto_info;
442 }
443
444 /* currently SW is default, we will have ethtool in future */
445 if (tx) {
446 rc = tls_set_sw_offload(sk, ctx, 1);
447 if (ctx->conf == TLS_SW_RX)
448 conf = TLS_SW_RXTX;
449 else
450 conf = TLS_SW_TX;
451 } else {
452 rc = tls_set_sw_offload(sk, ctx, 0);
453 if (ctx->conf == TLS_SW_TX)
454 conf = TLS_SW_RXTX;
455 else
456 conf = TLS_SW_RX;
457 }
458
459 if (rc)
460 goto err_crypto_info;
461
462 ctx->conf = conf;
463 update_sk_prot(sk, ctx);
464 if (tx) {
465 ctx->sk_write_space = sk->sk_write_space;
466 sk->sk_write_space = tls_write_space;
467 } else {
468 sk->sk_socket->ops = &tls_sw_proto_ops;
469 }
470 goto out;
471
472 err_crypto_info:
473 memset(crypto_info, 0, sizeof(*crypto_info));
474 out:
475 return rc;
476 }
477
478 static int do_tls_setsockopt(struct sock *sk, int optname,
479 char __user *optval, unsigned int optlen)
480 {
481 int rc = 0;
482
483 switch (optname) {
484 case TLS_TX:
485 case TLS_RX:
486 lock_sock(sk);
487 rc = do_tls_setsockopt_conf(sk, optval, optlen,
488 optname == TLS_TX);
489 release_sock(sk);
490 break;
491 default:
492 rc = -ENOPROTOOPT;
493 break;
494 }
495 return rc;
496 }
497
498 static int tls_setsockopt(struct sock *sk, int level, int optname,
499 char __user *optval, unsigned int optlen)
500 {
501 struct tls_context *ctx = tls_get_ctx(sk);
502
503 if (level != SOL_TLS)
504 return ctx->setsockopt(sk, level, optname, optval, optlen);
505
506 return do_tls_setsockopt(sk, optname, optval, optlen);
507 }
508
509 static struct tls_context *create_ctx(struct sock *sk)
510 {
511 struct inet_connection_sock *icsk = inet_csk(sk);
512 struct tls_context *ctx;
513
514 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
515 if (!ctx)
516 return NULL;
517
518 icsk->icsk_ulp_data = ctx;
519 return ctx;
520 }
521
522 static int tls_hw_prot(struct sock *sk)
523 {
524 struct tls_context *ctx;
525 struct tls_device *dev;
526 int rc = 0;
527
528 mutex_lock(&device_mutex);
529 list_for_each_entry(dev, &device_list, dev_list) {
530 if (dev->feature && dev->feature(dev)) {
531 ctx = create_ctx(sk);
532 if (!ctx)
533 goto out;
534
535 ctx->hash = sk->sk_prot->hash;
536 ctx->unhash = sk->sk_prot->unhash;
537 ctx->sk_proto_close = sk->sk_prot->close;
538 ctx->conf = TLS_HW_RECORD;
539 update_sk_prot(sk, ctx);
540 rc = 1;
541 break;
542 }
543 }
544 out:
545 mutex_unlock(&device_mutex);
546 return rc;
547 }
548
549 static void tls_hw_unhash(struct sock *sk)
550 {
551 struct tls_context *ctx = tls_get_ctx(sk);
552 struct tls_device *dev;
553
554 mutex_lock(&device_mutex);
555 list_for_each_entry(dev, &device_list, dev_list) {
556 if (dev->unhash)
557 dev->unhash(dev, sk);
558 }
559 mutex_unlock(&device_mutex);
560 ctx->unhash(sk);
561 }
562
563 static int tls_hw_hash(struct sock *sk)
564 {
565 struct tls_context *ctx = tls_get_ctx(sk);
566 struct tls_device *dev;
567 int err;
568
569 err = ctx->hash(sk);
570 mutex_lock(&device_mutex);
571 list_for_each_entry(dev, &device_list, dev_list) {
572 if (dev->hash)
573 err |= dev->hash(dev, sk);
574 }
575 mutex_unlock(&device_mutex);
576
577 if (err)
578 tls_hw_unhash(sk);
579 return err;
580 }
581
582 static void build_protos(struct proto *prot, struct proto *base)
583 {
584 prot[TLS_BASE] = *base;
585 prot[TLS_BASE].setsockopt = tls_setsockopt;
586 prot[TLS_BASE].getsockopt = tls_getsockopt;
587 prot[TLS_BASE].close = tls_sk_proto_close;
588
589 prot[TLS_SW_TX] = prot[TLS_BASE];
590 prot[TLS_SW_TX].sendmsg = tls_sw_sendmsg;
591 prot[TLS_SW_TX].sendpage = tls_sw_sendpage;
592
593 prot[TLS_SW_RX] = prot[TLS_BASE];
594 prot[TLS_SW_RX].recvmsg = tls_sw_recvmsg;
595 prot[TLS_SW_RX].close = tls_sk_proto_close;
596
597 prot[TLS_SW_RXTX] = prot[TLS_SW_TX];
598 prot[TLS_SW_RXTX].recvmsg = tls_sw_recvmsg;
599 prot[TLS_SW_RXTX].close = tls_sk_proto_close;
600
601 prot[TLS_HW_RECORD] = *base;
602 prot[TLS_HW_RECORD].hash = tls_hw_hash;
603 prot[TLS_HW_RECORD].unhash = tls_hw_unhash;
604 prot[TLS_HW_RECORD].close = tls_sk_proto_close;
605 }
606
607 static int tls_init(struct sock *sk)
608 {
609 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
610 struct tls_context *ctx;
611 int rc = 0;
612
613 if (tls_hw_prot(sk))
614 goto out;
615
616 /* The TLS ulp is currently supported only for TCP sockets
617 * in ESTABLISHED state.
618 * Supporting sockets in LISTEN state will require us
619 * to modify the accept implementation to clone rather then
620 * share the ulp context.
621 */
622 if (sk->sk_state != TCP_ESTABLISHED)
623 return -ENOTSUPP;
624
625 /* allocate tls context */
626 ctx = create_ctx(sk);
627 if (!ctx) {
628 rc = -ENOMEM;
629 goto out;
630 }
631 ctx->setsockopt = sk->sk_prot->setsockopt;
632 ctx->getsockopt = sk->sk_prot->getsockopt;
633 ctx->sk_proto_close = sk->sk_prot->close;
634
635 /* Build IPv6 TLS whenever the address of tcpv6_prot changes */
636 if (ip_ver == TLSV6 &&
637 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
638 mutex_lock(&tcpv6_prot_mutex);
639 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
640 build_protos(tls_prots[TLSV6], sk->sk_prot);
641 smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
642 }
643 mutex_unlock(&tcpv6_prot_mutex);
644 }
645
646 ctx->conf = TLS_BASE;
647 update_sk_prot(sk, ctx);
648 out:
649 return rc;
650 }
651
652 void tls_register_device(struct tls_device *device)
653 {
654 mutex_lock(&device_mutex);
655 list_add_tail(&device->dev_list, &device_list);
656 mutex_unlock(&device_mutex);
657 }
658 EXPORT_SYMBOL(tls_register_device);
659
660 void tls_unregister_device(struct tls_device *device)
661 {
662 mutex_lock(&device_mutex);
663 list_del(&device->dev_list);
664 mutex_unlock(&device_mutex);
665 }
666 EXPORT_SYMBOL(tls_unregister_device);
667
668 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
669 .name = "tls",
670 .uid = TCP_ULP_TLS,
671 .user_visible = true,
672 .owner = THIS_MODULE,
673 .init = tls_init,
674 };
675
676 static int __init tls_register(void)
677 {
678 build_protos(tls_prots[TLSV4], &tcp_prot);
679
680 tls_sw_proto_ops = inet_stream_ops;
681 tls_sw_proto_ops.poll = tls_sw_poll;
682 tls_sw_proto_ops.splice_read = tls_sw_splice_read;
683
684 tcp_register_ulp(&tcp_tls_ulp_ops);
685
686 return 0;
687 }
688
689 static void __exit tls_unregister(void)
690 {
691 tcp_unregister_ulp(&tcp_tls_ulp_ops);
692 }
693
694 module_init(tls_register);
695 module_exit(tls_unregister);