]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - net/tls/tls_main.c
bpf: tls_sw, init TLS ULP removes BPF proto hooks
[mirror_ubuntu-hirsute-kernel.git] / net / tls / tls_main.c
1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42
43 #include <net/tls.h>
44
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
48 MODULE_ALIAS_TCP_ULP("tls");
49
50 enum {
51 TLSV4,
52 TLSV6,
53 TLS_NUM_PROTS,
54 };
55
56 static struct proto *saved_tcpv6_prot;
57 static DEFINE_MUTEX(tcpv6_prot_mutex);
58 static struct proto *saved_tcpv4_prot;
59 static DEFINE_MUTEX(tcpv4_prot_mutex);
60 static LIST_HEAD(device_list);
61 static DEFINE_MUTEX(device_mutex);
62 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
63 static struct proto_ops tls_sw_proto_ops;
64
65 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
66 {
67 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
68
69 sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
70 }
71
72 int wait_on_pending_writer(struct sock *sk, long *timeo)
73 {
74 int rc = 0;
75 DEFINE_WAIT_FUNC(wait, woken_wake_function);
76
77 add_wait_queue(sk_sleep(sk), &wait);
78 while (1) {
79 if (!*timeo) {
80 rc = -EAGAIN;
81 break;
82 }
83
84 if (signal_pending(current)) {
85 rc = sock_intr_errno(*timeo);
86 break;
87 }
88
89 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
90 break;
91 }
92 remove_wait_queue(sk_sleep(sk), &wait);
93 return rc;
94 }
95
96 int tls_push_sg(struct sock *sk,
97 struct tls_context *ctx,
98 struct scatterlist *sg,
99 u16 first_offset,
100 int flags)
101 {
102 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
103 int ret = 0;
104 struct page *p;
105 size_t size;
106 int offset = first_offset;
107
108 size = sg->length - offset;
109 offset += sg->offset;
110
111 ctx->in_tcp_sendpages = true;
112 while (1) {
113 if (sg_is_last(sg))
114 sendpage_flags = flags;
115
116 /* is sending application-limited? */
117 tcp_rate_check_app_limited(sk);
118 p = sg_page(sg);
119 retry:
120 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
121
122 if (ret != size) {
123 if (ret > 0) {
124 offset += ret;
125 size -= ret;
126 goto retry;
127 }
128
129 offset -= sg->offset;
130 ctx->partially_sent_offset = offset;
131 ctx->partially_sent_record = (void *)sg;
132 ctx->in_tcp_sendpages = false;
133 return ret;
134 }
135
136 put_page(p);
137 sk_mem_uncharge(sk, sg->length);
138 sg = sg_next(sg);
139 if (!sg)
140 break;
141
142 offset = sg->offset;
143 size = sg->length;
144 }
145
146 ctx->in_tcp_sendpages = false;
147 ctx->sk_write_space(sk);
148
149 return 0;
150 }
151
152 static int tls_handle_open_record(struct sock *sk, int flags)
153 {
154 struct tls_context *ctx = tls_get_ctx(sk);
155
156 if (tls_is_pending_open_record(ctx))
157 return ctx->push_pending_record(sk, flags);
158
159 return 0;
160 }
161
162 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
163 unsigned char *record_type)
164 {
165 struct cmsghdr *cmsg;
166 int rc = -EINVAL;
167
168 for_each_cmsghdr(cmsg, msg) {
169 if (!CMSG_OK(msg, cmsg))
170 return -EINVAL;
171 if (cmsg->cmsg_level != SOL_TLS)
172 continue;
173
174 switch (cmsg->cmsg_type) {
175 case TLS_SET_RECORD_TYPE:
176 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
177 return -EINVAL;
178
179 if (msg->msg_flags & MSG_MORE)
180 return -EINVAL;
181
182 rc = tls_handle_open_record(sk, msg->msg_flags);
183 if (rc)
184 return rc;
185
186 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
187 rc = 0;
188 break;
189 default:
190 return -EINVAL;
191 }
192 }
193
194 return rc;
195 }
196
197 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
198 int flags)
199 {
200 struct scatterlist *sg;
201 u16 offset;
202
203 sg = ctx->partially_sent_record;
204 offset = ctx->partially_sent_offset;
205
206 ctx->partially_sent_record = NULL;
207 return tls_push_sg(sk, ctx, sg, offset, flags);
208 }
209
210 int tls_push_pending_closed_record(struct sock *sk,
211 struct tls_context *tls_ctx,
212 int flags, long *timeo)
213 {
214 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
215
216 if (tls_is_partially_sent_record(tls_ctx) ||
217 !list_empty(&ctx->tx_list))
218 return tls_tx_records(sk, flags);
219 else
220 return tls_ctx->push_pending_record(sk, flags);
221 }
222
223 static void tls_write_space(struct sock *sk)
224 {
225 struct tls_context *ctx = tls_get_ctx(sk);
226 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
227
228 /* If in_tcp_sendpages call lower protocol write space handler
229 * to ensure we wake up any waiting operations there. For example
230 * if do_tcp_sendpages where to call sk_wait_event.
231 */
232 if (ctx->in_tcp_sendpages) {
233 ctx->sk_write_space(sk);
234 return;
235 }
236
237 /* Schedule the transmission if tx list is ready */
238 if (is_tx_ready(tx_ctx) && !sk->sk_write_pending) {
239 /* Schedule the transmission */
240 if (!test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
241 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
242 }
243
244 ctx->sk_write_space(sk);
245 }
246
247 static void tls_ctx_free(struct tls_context *ctx)
248 {
249 if (!ctx)
250 return;
251
252 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
253 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
254 kfree(ctx);
255 }
256
257 static void tls_sk_proto_close(struct sock *sk, long timeout)
258 {
259 struct tls_context *ctx = tls_get_ctx(sk);
260 long timeo = sock_sndtimeo(sk, 0);
261 void (*sk_proto_close)(struct sock *sk, long timeout);
262 bool free_ctx = false;
263
264 lock_sock(sk);
265 sk_proto_close = ctx->sk_proto_close;
266
267 if ((ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD) ||
268 (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE)) {
269 free_ctx = true;
270 goto skip_tx_cleanup;
271 }
272
273 if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
274 tls_handle_open_record(sk, 0);
275
276 /* We need these for tls_sw_fallback handling of other packets */
277 if (ctx->tx_conf == TLS_SW) {
278 kfree(ctx->tx.rec_seq);
279 kfree(ctx->tx.iv);
280 tls_sw_free_resources_tx(sk);
281 }
282
283 if (ctx->rx_conf == TLS_SW) {
284 kfree(ctx->rx.rec_seq);
285 kfree(ctx->rx.iv);
286 tls_sw_free_resources_rx(sk);
287 }
288
289 #ifdef CONFIG_TLS_DEVICE
290 if (ctx->rx_conf == TLS_HW)
291 tls_device_offload_cleanup_rx(sk);
292
293 if (ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW) {
294 #else
295 {
296 #endif
297 tls_ctx_free(ctx);
298 ctx = NULL;
299 }
300
301 skip_tx_cleanup:
302 release_sock(sk);
303 sk_proto_close(sk, timeout);
304 /* free ctx for TLS_HW_RECORD, used by tcp_set_state
305 * for sk->sk_prot->unhash [tls_hw_unhash]
306 */
307 if (free_ctx)
308 tls_ctx_free(ctx);
309 }
310
311 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
312 int __user *optlen)
313 {
314 int rc = 0;
315 struct tls_context *ctx = tls_get_ctx(sk);
316 struct tls_crypto_info *crypto_info;
317 int len;
318
319 if (get_user(len, optlen))
320 return -EFAULT;
321
322 if (!optval || (len < sizeof(*crypto_info))) {
323 rc = -EINVAL;
324 goto out;
325 }
326
327 if (!ctx) {
328 rc = -EBUSY;
329 goto out;
330 }
331
332 /* get user crypto info */
333 crypto_info = &ctx->crypto_send.info;
334
335 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
336 rc = -EBUSY;
337 goto out;
338 }
339
340 if (len == sizeof(*crypto_info)) {
341 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
342 rc = -EFAULT;
343 goto out;
344 }
345
346 switch (crypto_info->cipher_type) {
347 case TLS_CIPHER_AES_GCM_128: {
348 struct tls12_crypto_info_aes_gcm_128 *
349 crypto_info_aes_gcm_128 =
350 container_of(crypto_info,
351 struct tls12_crypto_info_aes_gcm_128,
352 info);
353
354 if (len != sizeof(*crypto_info_aes_gcm_128)) {
355 rc = -EINVAL;
356 goto out;
357 }
358 lock_sock(sk);
359 memcpy(crypto_info_aes_gcm_128->iv,
360 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
361 TLS_CIPHER_AES_GCM_128_IV_SIZE);
362 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
363 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
364 release_sock(sk);
365 if (copy_to_user(optval,
366 crypto_info_aes_gcm_128,
367 sizeof(*crypto_info_aes_gcm_128)))
368 rc = -EFAULT;
369 break;
370 }
371 default:
372 rc = -EINVAL;
373 }
374
375 out:
376 return rc;
377 }
378
379 static int do_tls_getsockopt(struct sock *sk, int optname,
380 char __user *optval, int __user *optlen)
381 {
382 int rc = 0;
383
384 switch (optname) {
385 case TLS_TX:
386 rc = do_tls_getsockopt_tx(sk, optval, optlen);
387 break;
388 default:
389 rc = -ENOPROTOOPT;
390 break;
391 }
392 return rc;
393 }
394
395 static int tls_getsockopt(struct sock *sk, int level, int optname,
396 char __user *optval, int __user *optlen)
397 {
398 struct tls_context *ctx = tls_get_ctx(sk);
399
400 if (level != SOL_TLS)
401 return ctx->getsockopt(sk, level, optname, optval, optlen);
402
403 return do_tls_getsockopt(sk, optname, optval, optlen);
404 }
405
406 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
407 unsigned int optlen, int tx)
408 {
409 struct tls_crypto_info *crypto_info;
410 struct tls_context *ctx = tls_get_ctx(sk);
411 int rc = 0;
412 int conf;
413
414 if (!optval || (optlen < sizeof(*crypto_info))) {
415 rc = -EINVAL;
416 goto out;
417 }
418
419 if (tx)
420 crypto_info = &ctx->crypto_send.info;
421 else
422 crypto_info = &ctx->crypto_recv.info;
423
424 /* Currently we don't support set crypto info more than one time */
425 if (TLS_CRYPTO_INFO_READY(crypto_info)) {
426 rc = -EBUSY;
427 goto out;
428 }
429
430 rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
431 if (rc) {
432 rc = -EFAULT;
433 goto err_crypto_info;
434 }
435
436 /* check version */
437 if (crypto_info->version != TLS_1_2_VERSION) {
438 rc = -ENOTSUPP;
439 goto err_crypto_info;
440 }
441
442 switch (crypto_info->cipher_type) {
443 case TLS_CIPHER_AES_GCM_128: {
444 if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
445 rc = -EINVAL;
446 goto err_crypto_info;
447 }
448 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
449 optlen - sizeof(*crypto_info));
450 if (rc) {
451 rc = -EFAULT;
452 goto err_crypto_info;
453 }
454 break;
455 }
456 default:
457 rc = -EINVAL;
458 goto err_crypto_info;
459 }
460
461 if (tx) {
462 #ifdef CONFIG_TLS_DEVICE
463 rc = tls_set_device_offload(sk, ctx);
464 conf = TLS_HW;
465 if (rc) {
466 #else
467 {
468 #endif
469 rc = tls_set_sw_offload(sk, ctx, 1);
470 conf = TLS_SW;
471 }
472 } else {
473 #ifdef CONFIG_TLS_DEVICE
474 rc = tls_set_device_offload_rx(sk, ctx);
475 conf = TLS_HW;
476 if (rc) {
477 #else
478 {
479 #endif
480 rc = tls_set_sw_offload(sk, ctx, 0);
481 conf = TLS_SW;
482 }
483 }
484
485 if (rc)
486 goto err_crypto_info;
487
488 if (tx)
489 ctx->tx_conf = conf;
490 else
491 ctx->rx_conf = conf;
492 update_sk_prot(sk, ctx);
493 if (tx) {
494 ctx->sk_write_space = sk->sk_write_space;
495 sk->sk_write_space = tls_write_space;
496 } else {
497 sk->sk_socket->ops = &tls_sw_proto_ops;
498 }
499 goto out;
500
501 err_crypto_info:
502 memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
503 out:
504 return rc;
505 }
506
507 static int do_tls_setsockopt(struct sock *sk, int optname,
508 char __user *optval, unsigned int optlen)
509 {
510 int rc = 0;
511
512 switch (optname) {
513 case TLS_TX:
514 case TLS_RX:
515 lock_sock(sk);
516 rc = do_tls_setsockopt_conf(sk, optval, optlen,
517 optname == TLS_TX);
518 release_sock(sk);
519 break;
520 default:
521 rc = -ENOPROTOOPT;
522 break;
523 }
524 return rc;
525 }
526
527 static int tls_setsockopt(struct sock *sk, int level, int optname,
528 char __user *optval, unsigned int optlen)
529 {
530 struct tls_context *ctx = tls_get_ctx(sk);
531
532 if (level != SOL_TLS)
533 return ctx->setsockopt(sk, level, optname, optval, optlen);
534
535 return do_tls_setsockopt(sk, optname, optval, optlen);
536 }
537
538 static struct tls_context *create_ctx(struct sock *sk)
539 {
540 struct inet_connection_sock *icsk = inet_csk(sk);
541 struct tls_context *ctx;
542
543 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
544 if (!ctx)
545 return NULL;
546
547 icsk->icsk_ulp_data = ctx;
548 return ctx;
549 }
550
551 static int tls_hw_prot(struct sock *sk)
552 {
553 struct tls_context *ctx;
554 struct tls_device *dev;
555 int rc = 0;
556
557 mutex_lock(&device_mutex);
558 list_for_each_entry(dev, &device_list, dev_list) {
559 if (dev->feature && dev->feature(dev)) {
560 ctx = create_ctx(sk);
561 if (!ctx)
562 goto out;
563
564 ctx->hash = sk->sk_prot->hash;
565 ctx->unhash = sk->sk_prot->unhash;
566 ctx->sk_proto_close = sk->sk_prot->close;
567 ctx->rx_conf = TLS_HW_RECORD;
568 ctx->tx_conf = TLS_HW_RECORD;
569 update_sk_prot(sk, ctx);
570 rc = 1;
571 break;
572 }
573 }
574 out:
575 mutex_unlock(&device_mutex);
576 return rc;
577 }
578
579 static void tls_hw_unhash(struct sock *sk)
580 {
581 struct tls_context *ctx = tls_get_ctx(sk);
582 struct tls_device *dev;
583
584 mutex_lock(&device_mutex);
585 list_for_each_entry(dev, &device_list, dev_list) {
586 if (dev->unhash)
587 dev->unhash(dev, sk);
588 }
589 mutex_unlock(&device_mutex);
590 ctx->unhash(sk);
591 }
592
593 static int tls_hw_hash(struct sock *sk)
594 {
595 struct tls_context *ctx = tls_get_ctx(sk);
596 struct tls_device *dev;
597 int err;
598
599 err = ctx->hash(sk);
600 mutex_lock(&device_mutex);
601 list_for_each_entry(dev, &device_list, dev_list) {
602 if (dev->hash)
603 err |= dev->hash(dev, sk);
604 }
605 mutex_unlock(&device_mutex);
606
607 if (err)
608 tls_hw_unhash(sk);
609 return err;
610 }
611
612 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
613 struct proto *base)
614 {
615 prot[TLS_BASE][TLS_BASE] = *base;
616 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt;
617 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt;
618 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close;
619
620 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
621 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg;
622 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage;
623
624 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
625 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg;
626 prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
627 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close;
628
629 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
630 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg;
631 prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read;
632 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close;
633
634 #ifdef CONFIG_TLS_DEVICE
635 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
636 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg;
637 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage;
638
639 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
640 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg;
641 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage;
642
643 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
644
645 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
646
647 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
648 #endif
649
650 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
651 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_hw_hash;
652 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_hw_unhash;
653 prot[TLS_HW_RECORD][TLS_HW_RECORD].close = tls_sk_proto_close;
654 }
655
656 static int tls_init(struct sock *sk)
657 {
658 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
659 struct tls_context *ctx;
660 int rc = 0;
661
662 if (tls_hw_prot(sk))
663 goto out;
664
665 /* The TLS ulp is currently supported only for TCP sockets
666 * in ESTABLISHED state.
667 * Supporting sockets in LISTEN state will require us
668 * to modify the accept implementation to clone rather then
669 * share the ulp context.
670 */
671 if (sk->sk_state != TCP_ESTABLISHED)
672 return -ENOTSUPP;
673
674 /* allocate tls context */
675 ctx = create_ctx(sk);
676 if (!ctx) {
677 rc = -ENOMEM;
678 goto out;
679 }
680 ctx->setsockopt = sk->sk_prot->setsockopt;
681 ctx->getsockopt = sk->sk_prot->getsockopt;
682 ctx->sk_proto_close = sk->sk_prot->close;
683
684 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
685 if (ip_ver == TLSV6 &&
686 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
687 mutex_lock(&tcpv6_prot_mutex);
688 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
689 build_protos(tls_prots[TLSV6], sk->sk_prot);
690 smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
691 }
692 mutex_unlock(&tcpv6_prot_mutex);
693 }
694
695 if (ip_ver == TLSV4 &&
696 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) {
697 mutex_lock(&tcpv4_prot_mutex);
698 if (likely(sk->sk_prot != saved_tcpv4_prot)) {
699 build_protos(tls_prots[TLSV4], sk->sk_prot);
700 smp_store_release(&saved_tcpv4_prot, sk->sk_prot);
701 }
702 mutex_unlock(&tcpv4_prot_mutex);
703 }
704
705 ctx->tx_conf = TLS_BASE;
706 ctx->rx_conf = TLS_BASE;
707 update_sk_prot(sk, ctx);
708 out:
709 return rc;
710 }
711
712 void tls_register_device(struct tls_device *device)
713 {
714 mutex_lock(&device_mutex);
715 list_add_tail(&device->dev_list, &device_list);
716 mutex_unlock(&device_mutex);
717 }
718 EXPORT_SYMBOL(tls_register_device);
719
720 void tls_unregister_device(struct tls_device *device)
721 {
722 mutex_lock(&device_mutex);
723 list_del(&device->dev_list);
724 mutex_unlock(&device_mutex);
725 }
726 EXPORT_SYMBOL(tls_unregister_device);
727
728 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
729 .name = "tls",
730 .owner = THIS_MODULE,
731 .init = tls_init,
732 };
733
734 static int __init tls_register(void)
735 {
736 tls_sw_proto_ops = inet_stream_ops;
737 tls_sw_proto_ops.splice_read = tls_sw_splice_read;
738
739 #ifdef CONFIG_TLS_DEVICE
740 tls_device_init();
741 #endif
742 tcp_register_ulp(&tcp_tls_ulp_ops);
743
744 return 0;
745 }
746
747 static void __exit tls_unregister(void)
748 {
749 tcp_unregister_ulp(&tcp_tls_ulp_ops);
750 #ifdef CONFIG_TLS_DEVICE
751 tls_device_cleanup();
752 #endif
753 }
754
755 module_init(tls_register);
756 module_exit(tls_unregister);