]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/tls/tls_main.c
Merge tag 'renesas-fixes-for-v4.13' of https://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / net / tls / tls_main.c
1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41
42 #include <net/tls.h>
43
44 MODULE_AUTHOR("Mellanox Technologies");
45 MODULE_DESCRIPTION("Transport Layer Security Support");
46 MODULE_LICENSE("Dual BSD/GPL");
47
48 static struct proto tls_base_prot;
49 static struct proto tls_sw_prot;
50
51 int wait_on_pending_writer(struct sock *sk, long *timeo)
52 {
53 int rc = 0;
54 DEFINE_WAIT_FUNC(wait, woken_wake_function);
55
56 add_wait_queue(sk_sleep(sk), &wait);
57 while (1) {
58 if (!*timeo) {
59 rc = -EAGAIN;
60 break;
61 }
62
63 if (signal_pending(current)) {
64 rc = sock_intr_errno(*timeo);
65 break;
66 }
67
68 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
69 break;
70 }
71 remove_wait_queue(sk_sleep(sk), &wait);
72 return rc;
73 }
74
75 int tls_push_sg(struct sock *sk,
76 struct tls_context *ctx,
77 struct scatterlist *sg,
78 u16 first_offset,
79 int flags)
80 {
81 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
82 int ret = 0;
83 struct page *p;
84 size_t size;
85 int offset = first_offset;
86
87 size = sg->length - offset;
88 offset += sg->offset;
89
90 while (1) {
91 if (sg_is_last(sg))
92 sendpage_flags = flags;
93
94 /* is sending application-limited? */
95 tcp_rate_check_app_limited(sk);
96 p = sg_page(sg);
97 retry:
98 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
99
100 if (ret != size) {
101 if (ret > 0) {
102 offset += ret;
103 size -= ret;
104 goto retry;
105 }
106
107 offset -= sg->offset;
108 ctx->partially_sent_offset = offset;
109 ctx->partially_sent_record = (void *)sg;
110 return ret;
111 }
112
113 put_page(p);
114 sk_mem_uncharge(sk, sg->length);
115 sg = sg_next(sg);
116 if (!sg)
117 break;
118
119 offset = sg->offset;
120 size = sg->length;
121 }
122
123 clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
124
125 return 0;
126 }
127
128 static int tls_handle_open_record(struct sock *sk, int flags)
129 {
130 struct tls_context *ctx = tls_get_ctx(sk);
131
132 if (tls_is_pending_open_record(ctx))
133 return ctx->push_pending_record(sk, flags);
134
135 return 0;
136 }
137
138 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
139 unsigned char *record_type)
140 {
141 struct cmsghdr *cmsg;
142 int rc = -EINVAL;
143
144 for_each_cmsghdr(cmsg, msg) {
145 if (!CMSG_OK(msg, cmsg))
146 return -EINVAL;
147 if (cmsg->cmsg_level != SOL_TLS)
148 continue;
149
150 switch (cmsg->cmsg_type) {
151 case TLS_SET_RECORD_TYPE:
152 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
153 return -EINVAL;
154
155 if (msg->msg_flags & MSG_MORE)
156 return -EINVAL;
157
158 rc = tls_handle_open_record(sk, msg->msg_flags);
159 if (rc)
160 return rc;
161
162 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
163 rc = 0;
164 break;
165 default:
166 return -EINVAL;
167 }
168 }
169
170 return rc;
171 }
172
173 int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
174 int flags, long *timeo)
175 {
176 struct scatterlist *sg;
177 u16 offset;
178
179 if (!tls_is_partially_sent_record(ctx))
180 return ctx->push_pending_record(sk, flags);
181
182 sg = ctx->partially_sent_record;
183 offset = ctx->partially_sent_offset;
184
185 ctx->partially_sent_record = NULL;
186 return tls_push_sg(sk, ctx, sg, offset, flags);
187 }
188
189 static void tls_write_space(struct sock *sk)
190 {
191 struct tls_context *ctx = tls_get_ctx(sk);
192
193 if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) {
194 gfp_t sk_allocation = sk->sk_allocation;
195 int rc;
196 long timeo = 0;
197
198 sk->sk_allocation = GFP_ATOMIC;
199 rc = tls_push_pending_closed_record(sk, ctx,
200 MSG_DONTWAIT |
201 MSG_NOSIGNAL,
202 &timeo);
203 sk->sk_allocation = sk_allocation;
204
205 if (rc < 0)
206 return;
207 }
208
209 ctx->sk_write_space(sk);
210 }
211
212 static void tls_sk_proto_close(struct sock *sk, long timeout)
213 {
214 struct tls_context *ctx = tls_get_ctx(sk);
215 long timeo = sock_sndtimeo(sk, 0);
216 void (*sk_proto_close)(struct sock *sk, long timeout);
217
218 lock_sock(sk);
219
220 if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
221 tls_handle_open_record(sk, 0);
222
223 if (ctx->partially_sent_record) {
224 struct scatterlist *sg = ctx->partially_sent_record;
225
226 while (1) {
227 put_page(sg_page(sg));
228 sk_mem_uncharge(sk, sg->length);
229
230 if (sg_is_last(sg))
231 break;
232 sg++;
233 }
234 }
235 ctx->free_resources(sk);
236 kfree(ctx->rec_seq);
237 kfree(ctx->iv);
238
239 sk_proto_close = ctx->sk_proto_close;
240 kfree(ctx);
241
242 release_sock(sk);
243 sk_proto_close(sk, timeout);
244 }
245
246 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
247 int __user *optlen)
248 {
249 int rc = 0;
250 struct tls_context *ctx = tls_get_ctx(sk);
251 struct tls_crypto_info *crypto_info;
252 int len;
253
254 if (get_user(len, optlen))
255 return -EFAULT;
256
257 if (!optval || (len < sizeof(*crypto_info))) {
258 rc = -EINVAL;
259 goto out;
260 }
261
262 if (!ctx) {
263 rc = -EBUSY;
264 goto out;
265 }
266
267 /* get user crypto info */
268 crypto_info = &ctx->crypto_send;
269
270 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
271 rc = -EBUSY;
272 goto out;
273 }
274
275 if (len == sizeof(*crypto_info)) {
276 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
277 rc = -EFAULT;
278 goto out;
279 }
280
281 switch (crypto_info->cipher_type) {
282 case TLS_CIPHER_AES_GCM_128: {
283 struct tls12_crypto_info_aes_gcm_128 *
284 crypto_info_aes_gcm_128 =
285 container_of(crypto_info,
286 struct tls12_crypto_info_aes_gcm_128,
287 info);
288
289 if (len != sizeof(*crypto_info_aes_gcm_128)) {
290 rc = -EINVAL;
291 goto out;
292 }
293 lock_sock(sk);
294 memcpy(crypto_info_aes_gcm_128->iv, ctx->iv,
295 TLS_CIPHER_AES_GCM_128_IV_SIZE);
296 release_sock(sk);
297 if (copy_to_user(optval,
298 crypto_info_aes_gcm_128,
299 sizeof(*crypto_info_aes_gcm_128)))
300 rc = -EFAULT;
301 break;
302 }
303 default:
304 rc = -EINVAL;
305 }
306
307 out:
308 return rc;
309 }
310
311 static int do_tls_getsockopt(struct sock *sk, int optname,
312 char __user *optval, int __user *optlen)
313 {
314 int rc = 0;
315
316 switch (optname) {
317 case TLS_TX:
318 rc = do_tls_getsockopt_tx(sk, optval, optlen);
319 break;
320 default:
321 rc = -ENOPROTOOPT;
322 break;
323 }
324 return rc;
325 }
326
327 static int tls_getsockopt(struct sock *sk, int level, int optname,
328 char __user *optval, int __user *optlen)
329 {
330 struct tls_context *ctx = tls_get_ctx(sk);
331
332 if (level != SOL_TLS)
333 return ctx->getsockopt(sk, level, optname, optval, optlen);
334
335 return do_tls_getsockopt(sk, optname, optval, optlen);
336 }
337
338 static int do_tls_setsockopt_tx(struct sock *sk, char __user *optval,
339 unsigned int optlen)
340 {
341 struct tls_crypto_info *crypto_info, tmp_crypto_info;
342 struct tls_context *ctx = tls_get_ctx(sk);
343 struct proto *prot = NULL;
344 int rc = 0;
345
346 if (!optval || (optlen < sizeof(*crypto_info))) {
347 rc = -EINVAL;
348 goto out;
349 }
350
351 rc = copy_from_user(&tmp_crypto_info, optval, sizeof(*crypto_info));
352 if (rc) {
353 rc = -EFAULT;
354 goto out;
355 }
356
357 /* check version */
358 if (tmp_crypto_info.version != TLS_1_2_VERSION) {
359 rc = -ENOTSUPP;
360 goto out;
361 }
362
363 /* get user crypto info */
364 crypto_info = &ctx->crypto_send;
365
366 /* Currently we don't support set crypto info more than one time */
367 if (TLS_CRYPTO_INFO_READY(crypto_info))
368 goto out;
369
370 switch (tmp_crypto_info.cipher_type) {
371 case TLS_CIPHER_AES_GCM_128: {
372 if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
373 rc = -EINVAL;
374 goto out;
375 }
376 rc = copy_from_user(
377 crypto_info,
378 optval,
379 sizeof(struct tls12_crypto_info_aes_gcm_128));
380
381 if (rc) {
382 rc = -EFAULT;
383 goto err_crypto_info;
384 }
385 break;
386 }
387 default:
388 rc = -EINVAL;
389 goto out;
390 }
391
392 ctx->sk_write_space = sk->sk_write_space;
393 sk->sk_write_space = tls_write_space;
394
395 ctx->sk_proto_close = sk->sk_prot->close;
396
397 /* currently SW is default, we will have ethtool in future */
398 rc = tls_set_sw_offload(sk, ctx);
399 prot = &tls_sw_prot;
400 if (rc)
401 goto err_crypto_info;
402
403 sk->sk_prot = prot;
404 goto out;
405
406 err_crypto_info:
407 memset(crypto_info, 0, sizeof(*crypto_info));
408 out:
409 return rc;
410 }
411
412 static int do_tls_setsockopt(struct sock *sk, int optname,
413 char __user *optval, unsigned int optlen)
414 {
415 int rc = 0;
416
417 switch (optname) {
418 case TLS_TX:
419 lock_sock(sk);
420 rc = do_tls_setsockopt_tx(sk, optval, optlen);
421 release_sock(sk);
422 break;
423 default:
424 rc = -ENOPROTOOPT;
425 break;
426 }
427 return rc;
428 }
429
430 static int tls_setsockopt(struct sock *sk, int level, int optname,
431 char __user *optval, unsigned int optlen)
432 {
433 struct tls_context *ctx = tls_get_ctx(sk);
434
435 if (level != SOL_TLS)
436 return ctx->setsockopt(sk, level, optname, optval, optlen);
437
438 return do_tls_setsockopt(sk, optname, optval, optlen);
439 }
440
441 static int tls_init(struct sock *sk)
442 {
443 struct inet_connection_sock *icsk = inet_csk(sk);
444 struct tls_context *ctx;
445 int rc = 0;
446
447 /* allocate tls context */
448 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
449 if (!ctx) {
450 rc = -ENOMEM;
451 goto out;
452 }
453 icsk->icsk_ulp_data = ctx;
454 ctx->setsockopt = sk->sk_prot->setsockopt;
455 ctx->getsockopt = sk->sk_prot->getsockopt;
456 sk->sk_prot = &tls_base_prot;
457 out:
458 return rc;
459 }
460
461 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
462 .name = "tls",
463 .owner = THIS_MODULE,
464 .init = tls_init,
465 };
466
467 static int __init tls_register(void)
468 {
469 tls_base_prot = tcp_prot;
470 tls_base_prot.setsockopt = tls_setsockopt;
471 tls_base_prot.getsockopt = tls_getsockopt;
472
473 tls_sw_prot = tls_base_prot;
474 tls_sw_prot.sendmsg = tls_sw_sendmsg;
475 tls_sw_prot.sendpage = tls_sw_sendpage;
476 tls_sw_prot.close = tls_sk_proto_close;
477
478 tcp_register_ulp(&tcp_tls_ulp_ops);
479
480 return 0;
481 }
482
483 static void __exit tls_unregister(void)
484 {
485 tcp_unregister_ulp(&tcp_tls_ulp_ops);
486 }
487
488 module_init(tls_register);
489 module_exit(tls_unregister);