]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/tls/tls_main.c
9aac9c60d786db4f2cda968d0892e17d2551a027
[mirror_ubuntu-jammy-kernel.git] / net / tls / tls_main.c
1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43
44 #include <net/snmp.h>
45 #include <net/tls.h>
46 #include <net/tls_toe.h>
47
48 MODULE_AUTHOR("Mellanox Technologies");
49 MODULE_DESCRIPTION("Transport Layer Security Support");
50 MODULE_LICENSE("Dual BSD/GPL");
51 MODULE_ALIAS_TCP_ULP("tls");
52
53 enum {
54 TLSV4,
55 TLSV6,
56 TLS_NUM_PROTS,
57 };
58
59 static const struct proto *saved_tcpv6_prot;
60 static DEFINE_MUTEX(tcpv6_prot_mutex);
61 static const struct proto *saved_tcpv4_prot;
62 static DEFINE_MUTEX(tcpv4_prot_mutex);
63 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
64 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
65 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
66 const struct proto *base);
67
68 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
69 {
70 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
71
72 WRITE_ONCE(sk->sk_prot,
73 &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
74 WRITE_ONCE(sk->sk_socket->ops,
75 &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
76 }
77
78 int wait_on_pending_writer(struct sock *sk, long *timeo)
79 {
80 int rc = 0;
81 DEFINE_WAIT_FUNC(wait, woken_wake_function);
82
83 add_wait_queue(sk_sleep(sk), &wait);
84 while (1) {
85 if (!*timeo) {
86 rc = -EAGAIN;
87 break;
88 }
89
90 if (signal_pending(current)) {
91 rc = sock_intr_errno(*timeo);
92 break;
93 }
94
95 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
96 break;
97 }
98 remove_wait_queue(sk_sleep(sk), &wait);
99 return rc;
100 }
101
102 int tls_push_sg(struct sock *sk,
103 struct tls_context *ctx,
104 struct scatterlist *sg,
105 u16 first_offset,
106 int flags)
107 {
108 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
109 int ret = 0;
110 struct page *p;
111 size_t size;
112 int offset = first_offset;
113
114 size = sg->length - offset;
115 offset += sg->offset;
116
117 ctx->in_tcp_sendpages = true;
118 while (1) {
119 if (sg_is_last(sg))
120 sendpage_flags = flags;
121
122 /* is sending application-limited? */
123 tcp_rate_check_app_limited(sk);
124 p = sg_page(sg);
125 retry:
126 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
127
128 if (ret != size) {
129 if (ret > 0) {
130 offset += ret;
131 size -= ret;
132 goto retry;
133 }
134
135 offset -= sg->offset;
136 ctx->partially_sent_offset = offset;
137 ctx->partially_sent_record = (void *)sg;
138 ctx->in_tcp_sendpages = false;
139 return ret;
140 }
141
142 put_page(p);
143 sk_mem_uncharge(sk, sg->length);
144 sg = sg_next(sg);
145 if (!sg)
146 break;
147
148 offset = sg->offset;
149 size = sg->length;
150 }
151
152 ctx->in_tcp_sendpages = false;
153
154 return 0;
155 }
156
157 static int tls_handle_open_record(struct sock *sk, int flags)
158 {
159 struct tls_context *ctx = tls_get_ctx(sk);
160
161 if (tls_is_pending_open_record(ctx))
162 return ctx->push_pending_record(sk, flags);
163
164 return 0;
165 }
166
167 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
168 unsigned char *record_type)
169 {
170 struct cmsghdr *cmsg;
171 int rc = -EINVAL;
172
173 for_each_cmsghdr(cmsg, msg) {
174 if (!CMSG_OK(msg, cmsg))
175 return -EINVAL;
176 if (cmsg->cmsg_level != SOL_TLS)
177 continue;
178
179 switch (cmsg->cmsg_type) {
180 case TLS_SET_RECORD_TYPE:
181 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
182 return -EINVAL;
183
184 if (msg->msg_flags & MSG_MORE)
185 return -EINVAL;
186
187 rc = tls_handle_open_record(sk, msg->msg_flags);
188 if (rc)
189 return rc;
190
191 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
192 rc = 0;
193 break;
194 default:
195 return -EINVAL;
196 }
197 }
198
199 return rc;
200 }
201
202 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
203 int flags)
204 {
205 struct scatterlist *sg;
206 u16 offset;
207
208 sg = ctx->partially_sent_record;
209 offset = ctx->partially_sent_offset;
210
211 ctx->partially_sent_record = NULL;
212 return tls_push_sg(sk, ctx, sg, offset, flags);
213 }
214
215 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
216 {
217 struct scatterlist *sg;
218
219 for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
220 put_page(sg_page(sg));
221 sk_mem_uncharge(sk, sg->length);
222 }
223 ctx->partially_sent_record = NULL;
224 }
225
226 static void tls_write_space(struct sock *sk)
227 {
228 struct tls_context *ctx = tls_get_ctx(sk);
229
230 /* If in_tcp_sendpages call lower protocol write space handler
231 * to ensure we wake up any waiting operations there. For example
232 * if do_tcp_sendpages where to call sk_wait_event.
233 */
234 if (ctx->in_tcp_sendpages) {
235 ctx->sk_write_space(sk);
236 return;
237 }
238
239 #ifdef CONFIG_TLS_DEVICE
240 if (ctx->tx_conf == TLS_HW)
241 tls_device_write_space(sk, ctx);
242 else
243 #endif
244 tls_sw_write_space(sk, ctx);
245
246 ctx->sk_write_space(sk);
247 }
248
249 /**
250 * tls_ctx_free() - free TLS ULP context
251 * @sk: socket to with @ctx is attached
252 * @ctx: TLS context structure
253 *
254 * Free TLS context. If @sk is %NULL caller guarantees that the socket
255 * to which @ctx was attached has no outstanding references.
256 */
257 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
258 {
259 if (!ctx)
260 return;
261
262 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
263 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
264 mutex_destroy(&ctx->tx_lock);
265
266 if (sk)
267 kfree_rcu(ctx, rcu);
268 else
269 kfree(ctx);
270 }
271
272 static void tls_sk_proto_cleanup(struct sock *sk,
273 struct tls_context *ctx, long timeo)
274 {
275 if (unlikely(sk->sk_write_pending) &&
276 !wait_on_pending_writer(sk, &timeo))
277 tls_handle_open_record(sk, 0);
278
279 /* We need these for tls_sw_fallback handling of other packets */
280 if (ctx->tx_conf == TLS_SW) {
281 kfree(ctx->tx.rec_seq);
282 kfree(ctx->tx.iv);
283 tls_sw_release_resources_tx(sk);
284 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
285 } else if (ctx->tx_conf == TLS_HW) {
286 tls_device_free_resources_tx(sk);
287 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
288 }
289
290 if (ctx->rx_conf == TLS_SW) {
291 tls_sw_release_resources_rx(sk);
292 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
293 } else if (ctx->rx_conf == TLS_HW) {
294 tls_device_offload_cleanup_rx(sk);
295 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
296 }
297 }
298
299 static void tls_sk_proto_close(struct sock *sk, long timeout)
300 {
301 struct inet_connection_sock *icsk = inet_csk(sk);
302 struct tls_context *ctx = tls_get_ctx(sk);
303 long timeo = sock_sndtimeo(sk, 0);
304 bool free_ctx;
305
306 if (ctx->tx_conf == TLS_SW)
307 tls_sw_cancel_work_tx(ctx);
308
309 lock_sock(sk);
310 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
311
312 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
313 tls_sk_proto_cleanup(sk, ctx, timeo);
314
315 write_lock_bh(&sk->sk_callback_lock);
316 if (free_ctx)
317 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
318 WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
319 if (sk->sk_write_space == tls_write_space)
320 sk->sk_write_space = ctx->sk_write_space;
321 write_unlock_bh(&sk->sk_callback_lock);
322 release_sock(sk);
323 if (ctx->tx_conf == TLS_SW)
324 tls_sw_free_ctx_tx(ctx);
325 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
326 tls_sw_strparser_done(ctx);
327 if (ctx->rx_conf == TLS_SW)
328 tls_sw_free_ctx_rx(ctx);
329 ctx->sk_proto->close(sk, timeout);
330
331 if (free_ctx)
332 tls_ctx_free(sk, ctx);
333 }
334
335 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
336 int __user *optlen, int tx)
337 {
338 int rc = 0;
339 struct tls_context *ctx = tls_get_ctx(sk);
340 struct tls_crypto_info *crypto_info;
341 struct cipher_context *cctx;
342 int len;
343
344 if (get_user(len, optlen))
345 return -EFAULT;
346
347 if (!optval || (len < sizeof(*crypto_info))) {
348 rc = -EINVAL;
349 goto out;
350 }
351
352 if (!ctx) {
353 rc = -EBUSY;
354 goto out;
355 }
356
357 /* get user crypto info */
358 if (tx) {
359 crypto_info = &ctx->crypto_send.info;
360 cctx = &ctx->tx;
361 } else {
362 crypto_info = &ctx->crypto_recv.info;
363 cctx = &ctx->rx;
364 }
365
366 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
367 rc = -EBUSY;
368 goto out;
369 }
370
371 if (len == sizeof(*crypto_info)) {
372 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
373 rc = -EFAULT;
374 goto out;
375 }
376
377 switch (crypto_info->cipher_type) {
378 case TLS_CIPHER_AES_GCM_128: {
379 struct tls12_crypto_info_aes_gcm_128 *
380 crypto_info_aes_gcm_128 =
381 container_of(crypto_info,
382 struct tls12_crypto_info_aes_gcm_128,
383 info);
384
385 if (len != sizeof(*crypto_info_aes_gcm_128)) {
386 rc = -EINVAL;
387 goto out;
388 }
389 lock_sock(sk);
390 memcpy(crypto_info_aes_gcm_128->iv,
391 cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
392 TLS_CIPHER_AES_GCM_128_IV_SIZE);
393 memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq,
394 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
395 release_sock(sk);
396 if (copy_to_user(optval,
397 crypto_info_aes_gcm_128,
398 sizeof(*crypto_info_aes_gcm_128)))
399 rc = -EFAULT;
400 break;
401 }
402 case TLS_CIPHER_AES_GCM_256: {
403 struct tls12_crypto_info_aes_gcm_256 *
404 crypto_info_aes_gcm_256 =
405 container_of(crypto_info,
406 struct tls12_crypto_info_aes_gcm_256,
407 info);
408
409 if (len != sizeof(*crypto_info_aes_gcm_256)) {
410 rc = -EINVAL;
411 goto out;
412 }
413 lock_sock(sk);
414 memcpy(crypto_info_aes_gcm_256->iv,
415 cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
416 TLS_CIPHER_AES_GCM_256_IV_SIZE);
417 memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq,
418 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
419 release_sock(sk);
420 if (copy_to_user(optval,
421 crypto_info_aes_gcm_256,
422 sizeof(*crypto_info_aes_gcm_256)))
423 rc = -EFAULT;
424 break;
425 }
426 default:
427 rc = -EINVAL;
428 }
429
430 out:
431 return rc;
432 }
433
434 static int do_tls_getsockopt(struct sock *sk, int optname,
435 char __user *optval, int __user *optlen)
436 {
437 int rc = 0;
438
439 switch (optname) {
440 case TLS_TX:
441 case TLS_RX:
442 rc = do_tls_getsockopt_conf(sk, optval, optlen,
443 optname == TLS_TX);
444 break;
445 default:
446 rc = -ENOPROTOOPT;
447 break;
448 }
449 return rc;
450 }
451
452 static int tls_getsockopt(struct sock *sk, int level, int optname,
453 char __user *optval, int __user *optlen)
454 {
455 struct tls_context *ctx = tls_get_ctx(sk);
456
457 if (level != SOL_TLS)
458 return ctx->sk_proto->getsockopt(sk, level,
459 optname, optval, optlen);
460
461 return do_tls_getsockopt(sk, optname, optval, optlen);
462 }
463
464 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
465 unsigned int optlen, int tx)
466 {
467 struct tls_crypto_info *crypto_info;
468 struct tls_crypto_info *alt_crypto_info;
469 struct tls_context *ctx = tls_get_ctx(sk);
470 size_t optsize;
471 int rc = 0;
472 int conf;
473
474 if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info))) {
475 rc = -EINVAL;
476 goto out;
477 }
478
479 if (tx) {
480 crypto_info = &ctx->crypto_send.info;
481 alt_crypto_info = &ctx->crypto_recv.info;
482 } else {
483 crypto_info = &ctx->crypto_recv.info;
484 alt_crypto_info = &ctx->crypto_send.info;
485 }
486
487 /* Currently we don't support set crypto info more than one time */
488 if (TLS_CRYPTO_INFO_READY(crypto_info)) {
489 rc = -EBUSY;
490 goto out;
491 }
492
493 rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
494 if (rc) {
495 rc = -EFAULT;
496 goto err_crypto_info;
497 }
498
499 /* check version */
500 if (crypto_info->version != TLS_1_2_VERSION &&
501 crypto_info->version != TLS_1_3_VERSION) {
502 rc = -EINVAL;
503 goto err_crypto_info;
504 }
505
506 /* Ensure that TLS version and ciphers are same in both directions */
507 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
508 if (alt_crypto_info->version != crypto_info->version ||
509 alt_crypto_info->cipher_type != crypto_info->cipher_type) {
510 rc = -EINVAL;
511 goto err_crypto_info;
512 }
513 }
514
515 switch (crypto_info->cipher_type) {
516 case TLS_CIPHER_AES_GCM_128:
517 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
518 break;
519 case TLS_CIPHER_AES_GCM_256: {
520 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
521 break;
522 }
523 case TLS_CIPHER_AES_CCM_128:
524 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
525 break;
526 case TLS_CIPHER_CHACHA20_POLY1305:
527 optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305);
528 break;
529 default:
530 rc = -EINVAL;
531 goto err_crypto_info;
532 }
533
534 if (optlen != optsize) {
535 rc = -EINVAL;
536 goto err_crypto_info;
537 }
538
539 rc = copy_from_sockptr_offset(crypto_info + 1, optval,
540 sizeof(*crypto_info),
541 optlen - sizeof(*crypto_info));
542 if (rc) {
543 rc = -EFAULT;
544 goto err_crypto_info;
545 }
546
547 if (tx) {
548 rc = tls_set_device_offload(sk, ctx);
549 conf = TLS_HW;
550 if (!rc) {
551 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
552 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
553 } else {
554 rc = tls_set_sw_offload(sk, ctx, 1);
555 if (rc)
556 goto err_crypto_info;
557 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
558 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
559 conf = TLS_SW;
560 }
561 } else {
562 rc = tls_set_device_offload_rx(sk, ctx);
563 conf = TLS_HW;
564 if (!rc) {
565 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
566 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
567 } else {
568 rc = tls_set_sw_offload(sk, ctx, 0);
569 if (rc)
570 goto err_crypto_info;
571 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
572 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
573 conf = TLS_SW;
574 }
575 tls_sw_strparser_arm(sk, ctx);
576 }
577
578 if (tx)
579 ctx->tx_conf = conf;
580 else
581 ctx->rx_conf = conf;
582 update_sk_prot(sk, ctx);
583 if (tx) {
584 ctx->sk_write_space = sk->sk_write_space;
585 sk->sk_write_space = tls_write_space;
586 }
587 goto out;
588
589 err_crypto_info:
590 memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
591 out:
592 return rc;
593 }
594
595 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
596 unsigned int optlen)
597 {
598 int rc = 0;
599
600 switch (optname) {
601 case TLS_TX:
602 case TLS_RX:
603 lock_sock(sk);
604 rc = do_tls_setsockopt_conf(sk, optval, optlen,
605 optname == TLS_TX);
606 release_sock(sk);
607 break;
608 default:
609 rc = -ENOPROTOOPT;
610 break;
611 }
612 return rc;
613 }
614
615 static int tls_setsockopt(struct sock *sk, int level, int optname,
616 sockptr_t optval, unsigned int optlen)
617 {
618 struct tls_context *ctx = tls_get_ctx(sk);
619
620 if (level != SOL_TLS)
621 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
622 optlen);
623
624 return do_tls_setsockopt(sk, optname, optval, optlen);
625 }
626
627 struct tls_context *tls_ctx_create(struct sock *sk)
628 {
629 struct inet_connection_sock *icsk = inet_csk(sk);
630 struct tls_context *ctx;
631
632 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
633 if (!ctx)
634 return NULL;
635
636 mutex_init(&ctx->tx_lock);
637 rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
638 ctx->sk_proto = READ_ONCE(sk->sk_prot);
639 ctx->sk = sk;
640 return ctx;
641 }
642
643 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
644 const struct proto_ops *base)
645 {
646 ops[TLS_BASE][TLS_BASE] = *base;
647
648 ops[TLS_SW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
649 ops[TLS_SW ][TLS_BASE].sendpage_locked = tls_sw_sendpage_locked;
650
651 ops[TLS_BASE][TLS_SW ] = ops[TLS_BASE][TLS_BASE];
652 ops[TLS_BASE][TLS_SW ].splice_read = tls_sw_splice_read;
653
654 ops[TLS_SW ][TLS_SW ] = ops[TLS_SW ][TLS_BASE];
655 ops[TLS_SW ][TLS_SW ].splice_read = tls_sw_splice_read;
656
657 #ifdef CONFIG_TLS_DEVICE
658 ops[TLS_HW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
659 ops[TLS_HW ][TLS_BASE].sendpage_locked = NULL;
660
661 ops[TLS_HW ][TLS_SW ] = ops[TLS_BASE][TLS_SW ];
662 ops[TLS_HW ][TLS_SW ].sendpage_locked = NULL;
663
664 ops[TLS_BASE][TLS_HW ] = ops[TLS_BASE][TLS_SW ];
665
666 ops[TLS_SW ][TLS_HW ] = ops[TLS_SW ][TLS_SW ];
667
668 ops[TLS_HW ][TLS_HW ] = ops[TLS_HW ][TLS_SW ];
669 ops[TLS_HW ][TLS_HW ].sendpage_locked = NULL;
670 #endif
671 #ifdef CONFIG_TLS_TOE
672 ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
673 #endif
674 }
675
676 static void tls_build_proto(struct sock *sk)
677 {
678 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
679 struct proto *prot = READ_ONCE(sk->sk_prot);
680
681 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
682 if (ip_ver == TLSV6 &&
683 unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
684 mutex_lock(&tcpv6_prot_mutex);
685 if (likely(prot != saved_tcpv6_prot)) {
686 build_protos(tls_prots[TLSV6], prot);
687 build_proto_ops(tls_proto_ops[TLSV6],
688 sk->sk_socket->ops);
689 smp_store_release(&saved_tcpv6_prot, prot);
690 }
691 mutex_unlock(&tcpv6_prot_mutex);
692 }
693
694 if (ip_ver == TLSV4 &&
695 unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
696 mutex_lock(&tcpv4_prot_mutex);
697 if (likely(prot != saved_tcpv4_prot)) {
698 build_protos(tls_prots[TLSV4], prot);
699 build_proto_ops(tls_proto_ops[TLSV4],
700 sk->sk_socket->ops);
701 smp_store_release(&saved_tcpv4_prot, prot);
702 }
703 mutex_unlock(&tcpv4_prot_mutex);
704 }
705 }
706
707 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
708 const struct proto *base)
709 {
710 prot[TLS_BASE][TLS_BASE] = *base;
711 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt;
712 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt;
713 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close;
714
715 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
716 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg;
717 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage;
718
719 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
720 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg;
721 prot[TLS_BASE][TLS_SW].sock_is_readable = tls_sw_sock_is_readable;
722 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close;
723
724 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
725 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg;
726 prot[TLS_SW][TLS_SW].sock_is_readable = tls_sw_sock_is_readable;
727 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close;
728
729 #ifdef CONFIG_TLS_DEVICE
730 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
731 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg;
732 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage;
733
734 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
735 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg;
736 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage;
737
738 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
739
740 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
741
742 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
743 #endif
744 #ifdef CONFIG_TLS_TOE
745 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
746 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash;
747 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash;
748 #endif
749 }
750
751 static int tls_init(struct sock *sk)
752 {
753 struct tls_context *ctx;
754 int rc = 0;
755
756 tls_build_proto(sk);
757
758 #ifdef CONFIG_TLS_TOE
759 if (tls_toe_bypass(sk))
760 return 0;
761 #endif
762
763 /* The TLS ulp is currently supported only for TCP sockets
764 * in ESTABLISHED state.
765 * Supporting sockets in LISTEN state will require us
766 * to modify the accept implementation to clone rather then
767 * share the ulp context.
768 */
769 if (sk->sk_state != TCP_ESTABLISHED)
770 return -ENOTCONN;
771
772 /* allocate tls context */
773 write_lock_bh(&sk->sk_callback_lock);
774 ctx = tls_ctx_create(sk);
775 if (!ctx) {
776 rc = -ENOMEM;
777 goto out;
778 }
779
780 ctx->tx_conf = TLS_BASE;
781 ctx->rx_conf = TLS_BASE;
782 update_sk_prot(sk, ctx);
783 out:
784 write_unlock_bh(&sk->sk_callback_lock);
785 return rc;
786 }
787
788 static void tls_update(struct sock *sk, struct proto *p,
789 void (*write_space)(struct sock *sk))
790 {
791 struct tls_context *ctx;
792
793 ctx = tls_get_ctx(sk);
794 if (likely(ctx)) {
795 ctx->sk_write_space = write_space;
796 ctx->sk_proto = p;
797 } else {
798 /* Pairs with lockless read in sk_clone_lock(). */
799 WRITE_ONCE(sk->sk_prot, p);
800 sk->sk_write_space = write_space;
801 }
802 }
803
804 static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
805 {
806 u16 version, cipher_type;
807 struct tls_context *ctx;
808 struct nlattr *start;
809 int err;
810
811 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
812 if (!start)
813 return -EMSGSIZE;
814
815 rcu_read_lock();
816 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
817 if (!ctx) {
818 err = 0;
819 goto nla_failure;
820 }
821 version = ctx->prot_info.version;
822 if (version) {
823 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
824 if (err)
825 goto nla_failure;
826 }
827 cipher_type = ctx->prot_info.cipher_type;
828 if (cipher_type) {
829 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
830 if (err)
831 goto nla_failure;
832 }
833 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
834 if (err)
835 goto nla_failure;
836
837 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
838 if (err)
839 goto nla_failure;
840
841 rcu_read_unlock();
842 nla_nest_end(skb, start);
843 return 0;
844
845 nla_failure:
846 rcu_read_unlock();
847 nla_nest_cancel(skb, start);
848 return err;
849 }
850
851 static size_t tls_get_info_size(const struct sock *sk)
852 {
853 size_t size = 0;
854
855 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */
856 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */
857 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */
858 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */
859 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */
860 0;
861
862 return size;
863 }
864
865 static int __net_init tls_init_net(struct net *net)
866 {
867 int err;
868
869 net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
870 if (!net->mib.tls_statistics)
871 return -ENOMEM;
872
873 err = tls_proc_init(net);
874 if (err)
875 goto err_free_stats;
876
877 return 0;
878 err_free_stats:
879 free_percpu(net->mib.tls_statistics);
880 return err;
881 }
882
883 static void __net_exit tls_exit_net(struct net *net)
884 {
885 tls_proc_fini(net);
886 free_percpu(net->mib.tls_statistics);
887 }
888
889 static struct pernet_operations tls_proc_ops = {
890 .init = tls_init_net,
891 .exit = tls_exit_net,
892 };
893
894 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
895 .name = "tls",
896 .owner = THIS_MODULE,
897 .init = tls_init,
898 .update = tls_update,
899 .get_info = tls_get_info,
900 .get_info_size = tls_get_info_size,
901 };
902
903 static int __init tls_register(void)
904 {
905 int err;
906
907 err = register_pernet_subsys(&tls_proc_ops);
908 if (err)
909 return err;
910
911 tls_device_init();
912 tcp_register_ulp(&tcp_tls_ulp_ops);
913
914 return 0;
915 }
916
917 static void __exit tls_unregister(void)
918 {
919 tcp_unregister_ulp(&tcp_tls_ulp_ops);
920 tls_device_cleanup();
921 unregister_pernet_subsys(&tls_proc_ops);
922 }
923
924 module_init(tls_register);
925 module_exit(tls_unregister);