]> git.proxmox.com Git - mirror_qemu.git/blob - net/vhost-vdpa.c
Merge tag 'pull-hex-20231018' of https://github.com/quic/qemu into staging
[mirror_qemu.git] / net / vhost-vdpa.c
1 /*
2 * vhost-vdpa.c
3 *
4 * Copyright(c) 2017-2018 Intel Corporation.
5 * Copyright(c) 2020 Red Hat, Inc.
6 *
7 * This work is licensed under the terms of the GNU GPL, version 2 or later.
8 * See the COPYING file in the top-level directory.
9 *
10 */
11
12 #include "qemu/osdep.h"
13 #include "clients.h"
14 #include "hw/virtio/virtio-net.h"
15 #include "net/vhost_net.h"
16 #include "net/vhost-vdpa.h"
17 #include "hw/virtio/vhost-vdpa.h"
18 #include "qemu/config-file.h"
19 #include "qemu/error-report.h"
20 #include "qemu/log.h"
21 #include "qemu/memalign.h"
22 #include "qemu/option.h"
23 #include "qapi/error.h"
24 #include <linux/vhost.h>
25 #include <sys/ioctl.h>
26 #include <err.h>
27 #include "standard-headers/linux/virtio_net.h"
28 #include "monitor/monitor.h"
29 #include "migration/migration.h"
30 #include "migration/misc.h"
31 #include "hw/virtio/vhost.h"
32
33 /* Todo:need to add the multiqueue support here */
34 typedef struct VhostVDPAState {
35 NetClientState nc;
36 struct vhost_vdpa vhost_vdpa;
37 Notifier migration_state;
38 VHostNetState *vhost_net;
39
40 /* Control commands shadow buffers */
41 void *cvq_cmd_out_buffer;
42 virtio_net_ctrl_ack *status;
43
44 /* The device always have SVQ enabled */
45 bool always_svq;
46
47 /* The device can isolate CVQ in its own ASID */
48 bool cvq_isolated;
49
50 bool started;
51 } VhostVDPAState;
52
53 /*
54 * The array is sorted alphabetically in ascending order,
55 * with the exception of VHOST_INVALID_FEATURE_BIT,
56 * which should always be the last entry.
57 */
58 const int vdpa_feature_bits[] = {
59 VIRTIO_F_ANY_LAYOUT,
60 VIRTIO_F_IOMMU_PLATFORM,
61 VIRTIO_F_NOTIFY_ON_EMPTY,
62 VIRTIO_F_RING_PACKED,
63 VIRTIO_F_RING_RESET,
64 VIRTIO_F_VERSION_1,
65 VIRTIO_NET_F_CSUM,
66 VIRTIO_NET_F_CTRL_GUEST_OFFLOADS,
67 VIRTIO_NET_F_CTRL_MAC_ADDR,
68 VIRTIO_NET_F_CTRL_RX,
69 VIRTIO_NET_F_CTRL_RX_EXTRA,
70 VIRTIO_NET_F_CTRL_VLAN,
71 VIRTIO_NET_F_CTRL_VQ,
72 VIRTIO_NET_F_GSO,
73 VIRTIO_NET_F_GUEST_CSUM,
74 VIRTIO_NET_F_GUEST_ECN,
75 VIRTIO_NET_F_GUEST_TSO4,
76 VIRTIO_NET_F_GUEST_TSO6,
77 VIRTIO_NET_F_GUEST_UFO,
78 VIRTIO_NET_F_GUEST_USO4,
79 VIRTIO_NET_F_GUEST_USO6,
80 VIRTIO_NET_F_HASH_REPORT,
81 VIRTIO_NET_F_HOST_ECN,
82 VIRTIO_NET_F_HOST_TSO4,
83 VIRTIO_NET_F_HOST_TSO6,
84 VIRTIO_NET_F_HOST_UFO,
85 VIRTIO_NET_F_HOST_USO,
86 VIRTIO_NET_F_MQ,
87 VIRTIO_NET_F_MRG_RXBUF,
88 VIRTIO_NET_F_MTU,
89 VIRTIO_NET_F_RSS,
90 VIRTIO_NET_F_STATUS,
91 VIRTIO_RING_F_EVENT_IDX,
92 VIRTIO_RING_F_INDIRECT_DESC,
93
94 /* VHOST_INVALID_FEATURE_BIT should always be the last entry */
95 VHOST_INVALID_FEATURE_BIT
96 };
97
98 /** Supported device specific feature bits with SVQ */
99 static const uint64_t vdpa_svq_device_features =
100 BIT_ULL(VIRTIO_NET_F_CSUM) |
101 BIT_ULL(VIRTIO_NET_F_GUEST_CSUM) |
102 BIT_ULL(VIRTIO_NET_F_CTRL_GUEST_OFFLOADS) |
103 BIT_ULL(VIRTIO_NET_F_MTU) |
104 BIT_ULL(VIRTIO_NET_F_MAC) |
105 BIT_ULL(VIRTIO_NET_F_GUEST_TSO4) |
106 BIT_ULL(VIRTIO_NET_F_GUEST_TSO6) |
107 BIT_ULL(VIRTIO_NET_F_GUEST_ECN) |
108 BIT_ULL(VIRTIO_NET_F_GUEST_UFO) |
109 BIT_ULL(VIRTIO_NET_F_HOST_TSO4) |
110 BIT_ULL(VIRTIO_NET_F_HOST_TSO6) |
111 BIT_ULL(VIRTIO_NET_F_HOST_ECN) |
112 BIT_ULL(VIRTIO_NET_F_HOST_UFO) |
113 BIT_ULL(VIRTIO_NET_F_MRG_RXBUF) |
114 BIT_ULL(VIRTIO_NET_F_STATUS) |
115 BIT_ULL(VIRTIO_NET_F_CTRL_VQ) |
116 BIT_ULL(VIRTIO_NET_F_CTRL_RX) |
117 BIT_ULL(VIRTIO_NET_F_CTRL_VLAN) |
118 BIT_ULL(VIRTIO_NET_F_CTRL_RX_EXTRA) |
119 BIT_ULL(VIRTIO_NET_F_MQ) |
120 BIT_ULL(VIRTIO_F_ANY_LAYOUT) |
121 BIT_ULL(VIRTIO_NET_F_CTRL_MAC_ADDR) |
122 /* VHOST_F_LOG_ALL is exposed by SVQ */
123 BIT_ULL(VHOST_F_LOG_ALL) |
124 BIT_ULL(VIRTIO_NET_F_RSC_EXT) |
125 BIT_ULL(VIRTIO_NET_F_STANDBY) |
126 BIT_ULL(VIRTIO_NET_F_SPEED_DUPLEX);
127
128 #define VHOST_VDPA_NET_CVQ_ASID 1
129
130 VHostNetState *vhost_vdpa_get_vhost_net(NetClientState *nc)
131 {
132 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc);
133 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA);
134 return s->vhost_net;
135 }
136
137 static size_t vhost_vdpa_net_cvq_cmd_len(void)
138 {
139 /*
140 * MAC_TABLE_SET is the ctrl command that produces the longer out buffer.
141 * In buffer is always 1 byte, so it should fit here
142 */
143 return sizeof(struct virtio_net_ctrl_hdr) +
144 2 * sizeof(struct virtio_net_ctrl_mac) +
145 MAC_TABLE_ENTRIES * ETH_ALEN;
146 }
147
148 static size_t vhost_vdpa_net_cvq_cmd_page_len(void)
149 {
150 return ROUND_UP(vhost_vdpa_net_cvq_cmd_len(), qemu_real_host_page_size());
151 }
152
153 static bool vhost_vdpa_net_valid_svq_features(uint64_t features, Error **errp)
154 {
155 uint64_t invalid_dev_features =
156 features & ~vdpa_svq_device_features &
157 /* Transport are all accepted at this point */
158 ~MAKE_64BIT_MASK(VIRTIO_TRANSPORT_F_START,
159 VIRTIO_TRANSPORT_F_END - VIRTIO_TRANSPORT_F_START);
160
161 if (invalid_dev_features) {
162 error_setg(errp, "vdpa svq does not work with features 0x%" PRIx64,
163 invalid_dev_features);
164 return false;
165 }
166
167 return vhost_svq_valid_features(features, errp);
168 }
169
170 static int vhost_vdpa_net_check_device_id(struct vhost_net *net)
171 {
172 uint32_t device_id;
173 int ret;
174 struct vhost_dev *hdev;
175
176 hdev = (struct vhost_dev *)&net->dev;
177 ret = hdev->vhost_ops->vhost_get_device_id(hdev, &device_id);
178 if (device_id != VIRTIO_ID_NET) {
179 return -ENOTSUP;
180 }
181 return ret;
182 }
183
184 static int vhost_vdpa_add(NetClientState *ncs, void *be,
185 int queue_pair_index, int nvqs)
186 {
187 VhostNetOptions options;
188 struct vhost_net *net = NULL;
189 VhostVDPAState *s;
190 int ret;
191
192 options.backend_type = VHOST_BACKEND_TYPE_VDPA;
193 assert(ncs->info->type == NET_CLIENT_DRIVER_VHOST_VDPA);
194 s = DO_UPCAST(VhostVDPAState, nc, ncs);
195 options.net_backend = ncs;
196 options.opaque = be;
197 options.busyloop_timeout = 0;
198 options.nvqs = nvqs;
199
200 net = vhost_net_init(&options);
201 if (!net) {
202 error_report("failed to init vhost_net for queue");
203 goto err_init;
204 }
205 s->vhost_net = net;
206 ret = vhost_vdpa_net_check_device_id(net);
207 if (ret) {
208 goto err_check;
209 }
210 return 0;
211 err_check:
212 vhost_net_cleanup(net);
213 g_free(net);
214 err_init:
215 return -1;
216 }
217
218 static void vhost_vdpa_cleanup(NetClientState *nc)
219 {
220 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc);
221
222 /*
223 * If a peer NIC is attached, do not cleanup anything.
224 * Cleanup will happen as a part of qemu_cleanup() -> net_cleanup()
225 * when the guest is shutting down.
226 */
227 if (nc->peer && nc->peer->info->type == NET_CLIENT_DRIVER_NIC) {
228 return;
229 }
230 munmap(s->cvq_cmd_out_buffer, vhost_vdpa_net_cvq_cmd_page_len());
231 munmap(s->status, vhost_vdpa_net_cvq_cmd_page_len());
232 if (s->vhost_net) {
233 vhost_net_cleanup(s->vhost_net);
234 g_free(s->vhost_net);
235 s->vhost_net = NULL;
236 }
237 if (s->vhost_vdpa.device_fd >= 0) {
238 qemu_close(s->vhost_vdpa.device_fd);
239 s->vhost_vdpa.device_fd = -1;
240 }
241 }
242
243 static bool vhost_vdpa_has_vnet_hdr(NetClientState *nc)
244 {
245 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA);
246
247 return true;
248 }
249
250 static bool vhost_vdpa_has_ufo(NetClientState *nc)
251 {
252 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA);
253 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc);
254 uint64_t features = 0;
255 features |= (1ULL << VIRTIO_NET_F_HOST_UFO);
256 features = vhost_net_get_features(s->vhost_net, features);
257 return !!(features & (1ULL << VIRTIO_NET_F_HOST_UFO));
258
259 }
260
261 static bool vhost_vdpa_check_peer_type(NetClientState *nc, ObjectClass *oc,
262 Error **errp)
263 {
264 const char *driver = object_class_get_name(oc);
265
266 if (!g_str_has_prefix(driver, "virtio-net-")) {
267 error_setg(errp, "vhost-vdpa requires frontend driver virtio-net-*");
268 return false;
269 }
270
271 return true;
272 }
273
274 /** Dummy receive in case qemu falls back to userland tap networking */
275 static ssize_t vhost_vdpa_receive(NetClientState *nc, const uint8_t *buf,
276 size_t size)
277 {
278 return size;
279 }
280
281 /** From any vdpa net client, get the netclient of the first queue pair */
282 static VhostVDPAState *vhost_vdpa_net_first_nc_vdpa(VhostVDPAState *s)
283 {
284 NICState *nic = qemu_get_nic(s->nc.peer);
285 NetClientState *nc0 = qemu_get_peer(nic->ncs, 0);
286
287 return DO_UPCAST(VhostVDPAState, nc, nc0);
288 }
289
290 static void vhost_vdpa_net_log_global_enable(VhostVDPAState *s, bool enable)
291 {
292 struct vhost_vdpa *v = &s->vhost_vdpa;
293 VirtIONet *n;
294 VirtIODevice *vdev;
295 int data_queue_pairs, cvq, r;
296
297 /* We are only called on the first data vqs and only if x-svq is not set */
298 if (s->vhost_vdpa.shadow_vqs_enabled == enable) {
299 return;
300 }
301
302 vdev = v->dev->vdev;
303 n = VIRTIO_NET(vdev);
304 if (!n->vhost_started) {
305 return;
306 }
307
308 data_queue_pairs = n->multiqueue ? n->max_queue_pairs : 1;
309 cvq = virtio_vdev_has_feature(vdev, VIRTIO_NET_F_CTRL_VQ) ?
310 n->max_ncs - n->max_queue_pairs : 0;
311 /*
312 * TODO: vhost_net_stop does suspend, get_base and reset. We can be smarter
313 * in the future and resume the device if read-only operations between
314 * suspend and reset goes wrong.
315 */
316 vhost_net_stop(vdev, n->nic->ncs, data_queue_pairs, cvq);
317
318 /* Start will check migration setup_or_active to configure or not SVQ */
319 r = vhost_net_start(vdev, n->nic->ncs, data_queue_pairs, cvq);
320 if (unlikely(r < 0)) {
321 error_report("unable to start vhost net: %s(%d)", g_strerror(-r), -r);
322 }
323 }
324
325 static void vdpa_net_migration_state_notifier(Notifier *notifier, void *data)
326 {
327 MigrationState *migration = data;
328 VhostVDPAState *s = container_of(notifier, VhostVDPAState,
329 migration_state);
330
331 if (migration_in_setup(migration)) {
332 vhost_vdpa_net_log_global_enable(s, true);
333 } else if (migration_has_failed(migration)) {
334 vhost_vdpa_net_log_global_enable(s, false);
335 }
336 }
337
338 static void vhost_vdpa_net_data_start_first(VhostVDPAState *s)
339 {
340 struct vhost_vdpa *v = &s->vhost_vdpa;
341
342 migration_add_notifier(&s->migration_state,
343 vdpa_net_migration_state_notifier);
344 if (v->shadow_vqs_enabled) {
345 v->iova_tree = vhost_iova_tree_new(v->iova_range.first,
346 v->iova_range.last);
347 }
348 }
349
350 static int vhost_vdpa_net_data_start(NetClientState *nc)
351 {
352 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc);
353 struct vhost_vdpa *v = &s->vhost_vdpa;
354
355 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA);
356
357 if (s->always_svq ||
358 migration_is_setup_or_active(migrate_get_current()->state)) {
359 v->shadow_vqs_enabled = true;
360 v->shadow_data = true;
361 } else {
362 v->shadow_vqs_enabled = false;
363 v->shadow_data = false;
364 }
365
366 if (v->index == 0) {
367 vhost_vdpa_net_data_start_first(s);
368 return 0;
369 }
370
371 if (v->shadow_vqs_enabled) {
372 VhostVDPAState *s0 = vhost_vdpa_net_first_nc_vdpa(s);
373 v->iova_tree = s0->vhost_vdpa.iova_tree;
374 }
375
376 return 0;
377 }
378
379 static int vhost_vdpa_net_data_load(NetClientState *nc)
380 {
381 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc);
382 struct vhost_vdpa *v = &s->vhost_vdpa;
383 bool has_cvq = v->dev->vq_index_end % 2;
384
385 if (has_cvq) {
386 return 0;
387 }
388
389 for (int i = 0; i < v->dev->nvqs; ++i) {
390 vhost_vdpa_set_vring_ready(v, i + v->dev->vq_index);
391 }
392 return 0;
393 }
394
395 static void vhost_vdpa_net_client_stop(NetClientState *nc)
396 {
397 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc);
398 struct vhost_dev *dev;
399
400 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA);
401
402 if (s->vhost_vdpa.index == 0) {
403 migration_remove_notifier(&s->migration_state);
404 }
405
406 dev = s->vhost_vdpa.dev;
407 if (dev->vq_index + dev->nvqs == dev->vq_index_end) {
408 g_clear_pointer(&s->vhost_vdpa.iova_tree, vhost_iova_tree_delete);
409 } else {
410 s->vhost_vdpa.iova_tree = NULL;
411 }
412 }
413
414 static NetClientInfo net_vhost_vdpa_info = {
415 .type = NET_CLIENT_DRIVER_VHOST_VDPA,
416 .size = sizeof(VhostVDPAState),
417 .receive = vhost_vdpa_receive,
418 .start = vhost_vdpa_net_data_start,
419 .load = vhost_vdpa_net_data_load,
420 .stop = vhost_vdpa_net_client_stop,
421 .cleanup = vhost_vdpa_cleanup,
422 .has_vnet_hdr = vhost_vdpa_has_vnet_hdr,
423 .has_ufo = vhost_vdpa_has_ufo,
424 .check_peer_type = vhost_vdpa_check_peer_type,
425 };
426
427 static int64_t vhost_vdpa_get_vring_group(int device_fd, unsigned vq_index,
428 Error **errp)
429 {
430 struct vhost_vring_state state = {
431 .index = vq_index,
432 };
433 int r = ioctl(device_fd, VHOST_VDPA_GET_VRING_GROUP, &state);
434
435 if (unlikely(r < 0)) {
436 r = -errno;
437 error_setg_errno(errp, errno, "Cannot get VQ %u group", vq_index);
438 return r;
439 }
440
441 return state.num;
442 }
443
444 static int vhost_vdpa_set_address_space_id(struct vhost_vdpa *v,
445 unsigned vq_group,
446 unsigned asid_num)
447 {
448 struct vhost_vring_state asid = {
449 .index = vq_group,
450 .num = asid_num,
451 };
452 int r;
453
454 r = ioctl(v->device_fd, VHOST_VDPA_SET_GROUP_ASID, &asid);
455 if (unlikely(r < 0)) {
456 error_report("Can't set vq group %u asid %u, errno=%d (%s)",
457 asid.index, asid.num, errno, g_strerror(errno));
458 }
459 return r;
460 }
461
462 static void vhost_vdpa_cvq_unmap_buf(struct vhost_vdpa *v, void *addr)
463 {
464 VhostIOVATree *tree = v->iova_tree;
465 DMAMap needle = {
466 /*
467 * No need to specify size or to look for more translations since
468 * this contiguous chunk was allocated by us.
469 */
470 .translated_addr = (hwaddr)(uintptr_t)addr,
471 };
472 const DMAMap *map = vhost_iova_tree_find_iova(tree, &needle);
473 int r;
474
475 if (unlikely(!map)) {
476 error_report("Cannot locate expected map");
477 return;
478 }
479
480 r = vhost_vdpa_dma_unmap(v, v->address_space_id, map->iova, map->size + 1);
481 if (unlikely(r != 0)) {
482 error_report("Device cannot unmap: %s(%d)", g_strerror(r), r);
483 }
484
485 vhost_iova_tree_remove(tree, *map);
486 }
487
488 /** Map CVQ buffer. */
489 static int vhost_vdpa_cvq_map_buf(struct vhost_vdpa *v, void *buf, size_t size,
490 bool write)
491 {
492 DMAMap map = {};
493 int r;
494
495 map.translated_addr = (hwaddr)(uintptr_t)buf;
496 map.size = size - 1;
497 map.perm = write ? IOMMU_RW : IOMMU_RO,
498 r = vhost_iova_tree_map_alloc(v->iova_tree, &map);
499 if (unlikely(r != IOVA_OK)) {
500 error_report("Cannot map injected element");
501 return r;
502 }
503
504 r = vhost_vdpa_dma_map(v, v->address_space_id, map.iova,
505 vhost_vdpa_net_cvq_cmd_page_len(), buf, !write);
506 if (unlikely(r < 0)) {
507 goto dma_map_err;
508 }
509
510 return 0;
511
512 dma_map_err:
513 vhost_iova_tree_remove(v->iova_tree, map);
514 return r;
515 }
516
517 static int vhost_vdpa_net_cvq_start(NetClientState *nc)
518 {
519 VhostVDPAState *s, *s0;
520 struct vhost_vdpa *v;
521 int64_t cvq_group;
522 int r;
523 Error *err = NULL;
524
525 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA);
526
527 s = DO_UPCAST(VhostVDPAState, nc, nc);
528 v = &s->vhost_vdpa;
529
530 s0 = vhost_vdpa_net_first_nc_vdpa(s);
531 v->shadow_data = s0->vhost_vdpa.shadow_vqs_enabled;
532 v->shadow_vqs_enabled = s0->vhost_vdpa.shadow_vqs_enabled;
533 s->vhost_vdpa.address_space_id = VHOST_VDPA_GUEST_PA_ASID;
534
535 if (s->vhost_vdpa.shadow_data) {
536 /* SVQ is already configured for all virtqueues */
537 goto out;
538 }
539
540 /*
541 * If we early return in these cases SVQ will not be enabled. The migration
542 * will be blocked as long as vhost-vdpa backends will not offer _F_LOG.
543 */
544 if (!vhost_vdpa_net_valid_svq_features(v->dev->features, NULL)) {
545 return 0;
546 }
547
548 if (!s->cvq_isolated) {
549 return 0;
550 }
551
552 cvq_group = vhost_vdpa_get_vring_group(v->device_fd,
553 v->dev->vq_index_end - 1,
554 &err);
555 if (unlikely(cvq_group < 0)) {
556 error_report_err(err);
557 return cvq_group;
558 }
559
560 r = vhost_vdpa_set_address_space_id(v, cvq_group, VHOST_VDPA_NET_CVQ_ASID);
561 if (unlikely(r < 0)) {
562 return r;
563 }
564
565 v->shadow_vqs_enabled = true;
566 s->vhost_vdpa.address_space_id = VHOST_VDPA_NET_CVQ_ASID;
567
568 out:
569 if (!s->vhost_vdpa.shadow_vqs_enabled) {
570 return 0;
571 }
572
573 if (s0->vhost_vdpa.iova_tree) {
574 /*
575 * SVQ is already configured for all virtqueues. Reuse IOVA tree for
576 * simplicity, whether CVQ shares ASID with guest or not, because:
577 * - Memory listener need access to guest's memory addresses allocated
578 * in the IOVA tree.
579 * - There should be plenty of IOVA address space for both ASID not to
580 * worry about collisions between them. Guest's translations are
581 * still validated with virtio virtqueue_pop so there is no risk for
582 * the guest to access memory that it shouldn't.
583 *
584 * To allocate a iova tree per ASID is doable but it complicates the
585 * code and it is not worth it for the moment.
586 */
587 v->iova_tree = s0->vhost_vdpa.iova_tree;
588 } else {
589 v->iova_tree = vhost_iova_tree_new(v->iova_range.first,
590 v->iova_range.last);
591 }
592
593 r = vhost_vdpa_cvq_map_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer,
594 vhost_vdpa_net_cvq_cmd_page_len(), false);
595 if (unlikely(r < 0)) {
596 return r;
597 }
598
599 r = vhost_vdpa_cvq_map_buf(&s->vhost_vdpa, s->status,
600 vhost_vdpa_net_cvq_cmd_page_len(), true);
601 if (unlikely(r < 0)) {
602 vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer);
603 }
604
605 return r;
606 }
607
608 static void vhost_vdpa_net_cvq_stop(NetClientState *nc)
609 {
610 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc);
611
612 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA);
613
614 if (s->vhost_vdpa.shadow_vqs_enabled) {
615 vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer);
616 vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->status);
617 }
618
619 vhost_vdpa_net_client_stop(nc);
620 }
621
622 static ssize_t vhost_vdpa_net_cvq_add(VhostVDPAState *s,
623 const struct iovec *out_sg, size_t out_num,
624 const struct iovec *in_sg, size_t in_num)
625 {
626 VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0);
627 int r;
628
629 r = vhost_svq_add(svq, out_sg, out_num, in_sg, in_num, NULL);
630 if (unlikely(r != 0)) {
631 if (unlikely(r == -ENOSPC)) {
632 qemu_log_mask(LOG_GUEST_ERROR, "%s: No space on device queue\n",
633 __func__);
634 }
635 }
636
637 return r;
638 }
639
640 /*
641 * Convenience wrapper to poll SVQ for multiple control commands.
642 *
643 * Caller should hold the BQL when invoking this function, and should take
644 * the answer before SVQ pulls by itself when BQL is released.
645 */
646 static ssize_t vhost_vdpa_net_svq_poll(VhostVDPAState *s, size_t cmds_in_flight)
647 {
648 VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0);
649 return vhost_svq_poll(svq, cmds_in_flight);
650 }
651
652 static void vhost_vdpa_net_load_cursor_reset(VhostVDPAState *s,
653 struct iovec *out_cursor,
654 struct iovec *in_cursor)
655 {
656 /* reset the cursor of the output buffer for the device */
657 out_cursor->iov_base = s->cvq_cmd_out_buffer;
658 out_cursor->iov_len = vhost_vdpa_net_cvq_cmd_page_len();
659
660 /* reset the cursor of the in buffer for the device */
661 in_cursor->iov_base = s->status;
662 in_cursor->iov_len = vhost_vdpa_net_cvq_cmd_page_len();
663 }
664
665 /*
666 * Poll SVQ for multiple pending control commands and check the device's ack.
667 *
668 * Caller should hold the BQL when invoking this function.
669 *
670 * @s: The VhostVDPAState
671 * @len: The length of the pending status shadow buffer
672 */
673 static ssize_t vhost_vdpa_net_svq_flush(VhostVDPAState *s, size_t len)
674 {
675 /* device uses a one-byte length ack for each control command */
676 ssize_t dev_written = vhost_vdpa_net_svq_poll(s, len);
677 if (unlikely(dev_written != len)) {
678 return -EIO;
679 }
680
681 /* check the device's ack */
682 for (int i = 0; i < len; ++i) {
683 if (s->status[i] != VIRTIO_NET_OK) {
684 return -EIO;
685 }
686 }
687 return 0;
688 }
689
690 static ssize_t vhost_vdpa_net_load_cmd(VhostVDPAState *s,
691 struct iovec *out_cursor,
692 struct iovec *in_cursor, uint8_t class,
693 uint8_t cmd, const struct iovec *data_sg,
694 size_t data_num)
695 {
696 const struct virtio_net_ctrl_hdr ctrl = {
697 .class = class,
698 .cmd = cmd,
699 };
700 size_t data_size = iov_size(data_sg, data_num), cmd_size;
701 struct iovec out, in;
702 ssize_t r;
703 unsigned dummy_cursor_iov_cnt;
704 VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0);
705
706 assert(data_size < vhost_vdpa_net_cvq_cmd_page_len() - sizeof(ctrl));
707 cmd_size = sizeof(ctrl) + data_size;
708 if (vhost_svq_available_slots(svq) < 2 ||
709 iov_size(out_cursor, 1) < cmd_size) {
710 /*
711 * It is time to flush all pending control commands if SVQ is full
712 * or control commands shadow buffers are full.
713 *
714 * We can poll here since we've had BQL from the time
715 * we sent the descriptor.
716 */
717 r = vhost_vdpa_net_svq_flush(s, in_cursor->iov_base -
718 (void *)s->status);
719 if (unlikely(r < 0)) {
720 return r;
721 }
722
723 vhost_vdpa_net_load_cursor_reset(s, out_cursor, in_cursor);
724 }
725
726 /* pack the CVQ command header */
727 iov_from_buf(out_cursor, 1, 0, &ctrl, sizeof(ctrl));
728 /* pack the CVQ command command-specific-data */
729 iov_to_buf(data_sg, data_num, 0,
730 out_cursor->iov_base + sizeof(ctrl), data_size);
731
732 /* extract the required buffer from the cursor for output */
733 iov_copy(&out, 1, out_cursor, 1, 0, cmd_size);
734 /* extract the required buffer from the cursor for input */
735 iov_copy(&in, 1, in_cursor, 1, 0, sizeof(*s->status));
736
737 r = vhost_vdpa_net_cvq_add(s, &out, 1, &in, 1);
738 if (unlikely(r < 0)) {
739 return r;
740 }
741
742 /* iterate the cursors */
743 dummy_cursor_iov_cnt = 1;
744 iov_discard_front(&out_cursor, &dummy_cursor_iov_cnt, cmd_size);
745 dummy_cursor_iov_cnt = 1;
746 iov_discard_front(&in_cursor, &dummy_cursor_iov_cnt, sizeof(*s->status));
747
748 return 0;
749 }
750
751 static int vhost_vdpa_net_load_mac(VhostVDPAState *s, const VirtIONet *n,
752 struct iovec *out_cursor,
753 struct iovec *in_cursor)
754 {
755 if (virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_MAC_ADDR)) {
756 const struct iovec data = {
757 .iov_base = (void *)n->mac,
758 .iov_len = sizeof(n->mac),
759 };
760 ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor,
761 VIRTIO_NET_CTRL_MAC,
762 VIRTIO_NET_CTRL_MAC_ADDR_SET,
763 &data, 1);
764 if (unlikely(r < 0)) {
765 return r;
766 }
767 }
768
769 /*
770 * According to VirtIO standard, "The device MUST have an
771 * empty MAC filtering table on reset.".
772 *
773 * Therefore, there is no need to send this CVQ command if the
774 * driver also sets an empty MAC filter table, which aligns with
775 * the device's defaults.
776 *
777 * Note that the device's defaults can mismatch the driver's
778 * configuration only at live migration.
779 */
780 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX) ||
781 n->mac_table.in_use == 0) {
782 return 0;
783 }
784
785 uint32_t uni_entries = n->mac_table.first_multi,
786 uni_macs_size = uni_entries * ETH_ALEN,
787 mul_entries = n->mac_table.in_use - uni_entries,
788 mul_macs_size = mul_entries * ETH_ALEN;
789 struct virtio_net_ctrl_mac uni = {
790 .entries = cpu_to_le32(uni_entries),
791 };
792 struct virtio_net_ctrl_mac mul = {
793 .entries = cpu_to_le32(mul_entries),
794 };
795 const struct iovec data[] = {
796 {
797 .iov_base = &uni,
798 .iov_len = sizeof(uni),
799 }, {
800 .iov_base = n->mac_table.macs,
801 .iov_len = uni_macs_size,
802 }, {
803 .iov_base = &mul,
804 .iov_len = sizeof(mul),
805 }, {
806 .iov_base = &n->mac_table.macs[uni_macs_size],
807 .iov_len = mul_macs_size,
808 },
809 };
810 ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor,
811 VIRTIO_NET_CTRL_MAC,
812 VIRTIO_NET_CTRL_MAC_TABLE_SET,
813 data, ARRAY_SIZE(data));
814 if (unlikely(r < 0)) {
815 return r;
816 }
817
818 return 0;
819 }
820
821 static int vhost_vdpa_net_load_mq(VhostVDPAState *s,
822 const VirtIONet *n,
823 struct iovec *out_cursor,
824 struct iovec *in_cursor)
825 {
826 struct virtio_net_ctrl_mq mq;
827 ssize_t r;
828
829 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_MQ)) {
830 return 0;
831 }
832
833 mq.virtqueue_pairs = cpu_to_le16(n->curr_queue_pairs);
834 const struct iovec data = {
835 .iov_base = &mq,
836 .iov_len = sizeof(mq),
837 };
838 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor,
839 VIRTIO_NET_CTRL_MQ,
840 VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET,
841 &data, 1);
842 if (unlikely(r < 0)) {
843 return r;
844 }
845
846 return 0;
847 }
848
849 static int vhost_vdpa_net_load_offloads(VhostVDPAState *s,
850 const VirtIONet *n,
851 struct iovec *out_cursor,
852 struct iovec *in_cursor)
853 {
854 uint64_t offloads;
855 ssize_t r;
856
857 if (!virtio_vdev_has_feature(&n->parent_obj,
858 VIRTIO_NET_F_CTRL_GUEST_OFFLOADS)) {
859 return 0;
860 }
861
862 if (n->curr_guest_offloads == virtio_net_supported_guest_offloads(n)) {
863 /*
864 * According to VirtIO standard, "Upon feature negotiation
865 * corresponding offload gets enabled to preserve
866 * backward compatibility.".
867 *
868 * Therefore, there is no need to send this CVQ command if the
869 * driver also enables all supported offloads, which aligns with
870 * the device's defaults.
871 *
872 * Note that the device's defaults can mismatch the driver's
873 * configuration only at live migration.
874 */
875 return 0;
876 }
877
878 offloads = cpu_to_le64(n->curr_guest_offloads);
879 const struct iovec data = {
880 .iov_base = &offloads,
881 .iov_len = sizeof(offloads),
882 };
883 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor,
884 VIRTIO_NET_CTRL_GUEST_OFFLOADS,
885 VIRTIO_NET_CTRL_GUEST_OFFLOADS_SET,
886 &data, 1);
887 if (unlikely(r < 0)) {
888 return r;
889 }
890
891 return 0;
892 }
893
894 static int vhost_vdpa_net_load_rx_mode(VhostVDPAState *s,
895 struct iovec *out_cursor,
896 struct iovec *in_cursor,
897 uint8_t cmd,
898 uint8_t on)
899 {
900 const struct iovec data = {
901 .iov_base = &on,
902 .iov_len = sizeof(on),
903 };
904 ssize_t r;
905
906 r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor,
907 VIRTIO_NET_CTRL_RX, cmd, &data, 1);
908 if (unlikely(r < 0)) {
909 return r;
910 }
911
912 return 0;
913 }
914
915 static int vhost_vdpa_net_load_rx(VhostVDPAState *s,
916 const VirtIONet *n,
917 struct iovec *out_cursor,
918 struct iovec *in_cursor)
919 {
920 ssize_t r;
921
922 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX)) {
923 return 0;
924 }
925
926 /*
927 * According to virtio_net_reset(), device turns promiscuous mode
928 * on by default.
929 *
930 * Additionally, according to VirtIO standard, "Since there are
931 * no guarantees, it can use a hash filter or silently switch to
932 * allmulti or promiscuous mode if it is given too many addresses.".
933 * QEMU marks `n->mac_table.uni_overflow` if guest sets too many
934 * non-multicast MAC addresses, indicating that promiscuous mode
935 * should be enabled.
936 *
937 * Therefore, QEMU should only send this CVQ command if the
938 * `n->mac_table.uni_overflow` is not marked and `n->promisc` is off,
939 * which sets promiscuous mode on, different from the device's defaults.
940 *
941 * Note that the device's defaults can mismatch the driver's
942 * configuration only at live migration.
943 */
944 if (!n->mac_table.uni_overflow && !n->promisc) {
945 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor,
946 VIRTIO_NET_CTRL_RX_PROMISC, 0);
947 if (unlikely(r < 0)) {
948 return r;
949 }
950 }
951
952 /*
953 * According to virtio_net_reset(), device turns all-multicast mode
954 * off by default.
955 *
956 * According to VirtIO standard, "Since there are no guarantees,
957 * it can use a hash filter or silently switch to allmulti or
958 * promiscuous mode if it is given too many addresses.". QEMU marks
959 * `n->mac_table.multi_overflow` if guest sets too many
960 * non-multicast MAC addresses.
961 *
962 * Therefore, QEMU should only send this CVQ command if the
963 * `n->mac_table.multi_overflow` is marked or `n->allmulti` is on,
964 * which sets all-multicast mode on, different from the device's defaults.
965 *
966 * Note that the device's defaults can mismatch the driver's
967 * configuration only at live migration.
968 */
969 if (n->mac_table.multi_overflow || n->allmulti) {
970 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor,
971 VIRTIO_NET_CTRL_RX_ALLMULTI, 1);
972 if (unlikely(r < 0)) {
973 return r;
974 }
975 }
976
977 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX_EXTRA)) {
978 return 0;
979 }
980
981 /*
982 * According to virtio_net_reset(), device turns all-unicast mode
983 * off by default.
984 *
985 * Therefore, QEMU should only send this CVQ command if the driver
986 * sets all-unicast mode on, different from the device's defaults.
987 *
988 * Note that the device's defaults can mismatch the driver's
989 * configuration only at live migration.
990 */
991 if (n->alluni) {
992 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor,
993 VIRTIO_NET_CTRL_RX_ALLUNI, 1);
994 if (r < 0) {
995 return r;
996 }
997 }
998
999 /*
1000 * According to virtio_net_reset(), device turns non-multicast mode
1001 * off by default.
1002 *
1003 * Therefore, QEMU should only send this CVQ command if the driver
1004 * sets non-multicast mode on, different from the device's defaults.
1005 *
1006 * Note that the device's defaults can mismatch the driver's
1007 * configuration only at live migration.
1008 */
1009 if (n->nomulti) {
1010 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor,
1011 VIRTIO_NET_CTRL_RX_NOMULTI, 1);
1012 if (r < 0) {
1013 return r;
1014 }
1015 }
1016
1017 /*
1018 * According to virtio_net_reset(), device turns non-unicast mode
1019 * off by default.
1020 *
1021 * Therefore, QEMU should only send this CVQ command if the driver
1022 * sets non-unicast mode on, different from the device's defaults.
1023 *
1024 * Note that the device's defaults can mismatch the driver's
1025 * configuration only at live migration.
1026 */
1027 if (n->nouni) {
1028 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor,
1029 VIRTIO_NET_CTRL_RX_NOUNI, 1);
1030 if (r < 0) {
1031 return r;
1032 }
1033 }
1034
1035 /*
1036 * According to virtio_net_reset(), device turns non-broadcast mode
1037 * off by default.
1038 *
1039 * Therefore, QEMU should only send this CVQ command if the driver
1040 * sets non-broadcast mode on, different from the device's defaults.
1041 *
1042 * Note that the device's defaults can mismatch the driver's
1043 * configuration only at live migration.
1044 */
1045 if (n->nobcast) {
1046 r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor,
1047 VIRTIO_NET_CTRL_RX_NOBCAST, 1);
1048 if (r < 0) {
1049 return r;
1050 }
1051 }
1052
1053 return 0;
1054 }
1055
1056 static int vhost_vdpa_net_load_single_vlan(VhostVDPAState *s,
1057 const VirtIONet *n,
1058 struct iovec *out_cursor,
1059 struct iovec *in_cursor,
1060 uint16_t vid)
1061 {
1062 const struct iovec data = {
1063 .iov_base = &vid,
1064 .iov_len = sizeof(vid),
1065 };
1066 ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor,
1067 VIRTIO_NET_CTRL_VLAN,
1068 VIRTIO_NET_CTRL_VLAN_ADD,
1069 &data, 1);
1070 if (unlikely(r < 0)) {
1071 return r;
1072 }
1073
1074 return 0;
1075 }
1076
1077 static int vhost_vdpa_net_load_vlan(VhostVDPAState *s,
1078 const VirtIONet *n,
1079 struct iovec *out_cursor,
1080 struct iovec *in_cursor)
1081 {
1082 int r;
1083
1084 if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_VLAN)) {
1085 return 0;
1086 }
1087
1088 for (int i = 0; i < MAX_VLAN >> 5; i++) {
1089 for (int j = 0; n->vlans[i] && j <= 0x1f; j++) {
1090 if (n->vlans[i] & (1U << j)) {
1091 r = vhost_vdpa_net_load_single_vlan(s, n, out_cursor,
1092 in_cursor, (i << 5) + j);
1093 if (unlikely(r != 0)) {
1094 return r;
1095 }
1096 }
1097 }
1098 }
1099
1100 return 0;
1101 }
1102
1103 static int vhost_vdpa_net_cvq_load(NetClientState *nc)
1104 {
1105 VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc);
1106 struct vhost_vdpa *v = &s->vhost_vdpa;
1107 const VirtIONet *n;
1108 int r;
1109 struct iovec out_cursor, in_cursor;
1110
1111 assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA);
1112
1113 vhost_vdpa_set_vring_ready(v, v->dev->vq_index);
1114
1115 if (v->shadow_vqs_enabled) {
1116 n = VIRTIO_NET(v->dev->vdev);
1117 vhost_vdpa_net_load_cursor_reset(s, &out_cursor, &in_cursor);
1118 r = vhost_vdpa_net_load_mac(s, n, &out_cursor, &in_cursor);
1119 if (unlikely(r < 0)) {
1120 return r;
1121 }
1122 r = vhost_vdpa_net_load_mq(s, n, &out_cursor, &in_cursor);
1123 if (unlikely(r)) {
1124 return r;
1125 }
1126 r = vhost_vdpa_net_load_offloads(s, n, &out_cursor, &in_cursor);
1127 if (unlikely(r)) {
1128 return r;
1129 }
1130 r = vhost_vdpa_net_load_rx(s, n, &out_cursor, &in_cursor);
1131 if (unlikely(r)) {
1132 return r;
1133 }
1134 r = vhost_vdpa_net_load_vlan(s, n, &out_cursor, &in_cursor);
1135 if (unlikely(r)) {
1136 return r;
1137 }
1138
1139 /*
1140 * We need to poll and check all pending device's used buffers.
1141 *
1142 * We can poll here since we've had BQL from the time
1143 * we sent the descriptor.
1144 */
1145 r = vhost_vdpa_net_svq_flush(s, in_cursor.iov_base - (void *)s->status);
1146 if (unlikely(r)) {
1147 return r;
1148 }
1149 }
1150
1151 for (int i = 0; i < v->dev->vq_index; ++i) {
1152 vhost_vdpa_set_vring_ready(v, i);
1153 }
1154
1155 return 0;
1156 }
1157
1158 static NetClientInfo net_vhost_vdpa_cvq_info = {
1159 .type = NET_CLIENT_DRIVER_VHOST_VDPA,
1160 .size = sizeof(VhostVDPAState),
1161 .receive = vhost_vdpa_receive,
1162 .start = vhost_vdpa_net_cvq_start,
1163 .load = vhost_vdpa_net_cvq_load,
1164 .stop = vhost_vdpa_net_cvq_stop,
1165 .cleanup = vhost_vdpa_cleanup,
1166 .has_vnet_hdr = vhost_vdpa_has_vnet_hdr,
1167 .has_ufo = vhost_vdpa_has_ufo,
1168 .check_peer_type = vhost_vdpa_check_peer_type,
1169 };
1170
1171 /*
1172 * Forward the excessive VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command to
1173 * vdpa device.
1174 *
1175 * Considering that QEMU cannot send the entire filter table to the
1176 * vdpa device, it should send the VIRTIO_NET_CTRL_RX_PROMISC CVQ
1177 * command to enable promiscuous mode to receive all packets,
1178 * according to VirtIO standard, "Since there are no guarantees,
1179 * it can use a hash filter or silently switch to allmulti or
1180 * promiscuous mode if it is given too many addresses.".
1181 *
1182 * Since QEMU ignores MAC addresses beyond `MAC_TABLE_ENTRIES` and
1183 * marks `n->mac_table.x_overflow` accordingly, it should have
1184 * the same effect on the device model to receive
1185 * (`MAC_TABLE_ENTRIES` + 1) or more non-multicast MAC addresses.
1186 * The same applies to multicast MAC addresses.
1187 *
1188 * Therefore, QEMU can provide the device model with a fake
1189 * VIRTIO_NET_CTRL_MAC_TABLE_SET command with (`MAC_TABLE_ENTRIES` + 1)
1190 * non-multicast MAC addresses and (`MAC_TABLE_ENTRIES` + 1) multicast
1191 * MAC addresses. This ensures that the device model marks
1192 * `n->mac_table.uni_overflow` and `n->mac_table.multi_overflow`,
1193 * allowing all packets to be received, which aligns with the
1194 * state of the vdpa device.
1195 */
1196 static int vhost_vdpa_net_excessive_mac_filter_cvq_add(VhostVDPAState *s,
1197 VirtQueueElement *elem,
1198 struct iovec *out,
1199 const struct iovec *in)
1200 {
1201 struct virtio_net_ctrl_mac mac_data, *mac_ptr;
1202 struct virtio_net_ctrl_hdr *hdr_ptr;
1203 uint32_t cursor;
1204 ssize_t r;
1205 uint8_t on = 1;
1206
1207 /* parse the non-multicast MAC address entries from CVQ command */
1208 cursor = sizeof(*hdr_ptr);
1209 r = iov_to_buf(elem->out_sg, elem->out_num, cursor,
1210 &mac_data, sizeof(mac_data));
1211 if (unlikely(r != sizeof(mac_data))) {
1212 /*
1213 * If the CVQ command is invalid, we should simulate the vdpa device
1214 * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command
1215 */
1216 *s->status = VIRTIO_NET_ERR;
1217 return sizeof(*s->status);
1218 }
1219 cursor += sizeof(mac_data) + le32_to_cpu(mac_data.entries) * ETH_ALEN;
1220
1221 /* parse the multicast MAC address entries from CVQ command */
1222 r = iov_to_buf(elem->out_sg, elem->out_num, cursor,
1223 &mac_data, sizeof(mac_data));
1224 if (r != sizeof(mac_data)) {
1225 /*
1226 * If the CVQ command is invalid, we should simulate the vdpa device
1227 * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command
1228 */
1229 *s->status = VIRTIO_NET_ERR;
1230 return sizeof(*s->status);
1231 }
1232 cursor += sizeof(mac_data) + le32_to_cpu(mac_data.entries) * ETH_ALEN;
1233
1234 /* validate the CVQ command */
1235 if (iov_size(elem->out_sg, elem->out_num) != cursor) {
1236 /*
1237 * If the CVQ command is invalid, we should simulate the vdpa device
1238 * to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command
1239 */
1240 *s->status = VIRTIO_NET_ERR;
1241 return sizeof(*s->status);
1242 }
1243
1244 /*
1245 * According to VirtIO standard, "Since there are no guarantees,
1246 * it can use a hash filter or silently switch to allmulti or
1247 * promiscuous mode if it is given too many addresses.".
1248 *
1249 * Therefore, considering that QEMU is unable to send the entire
1250 * filter table to the vdpa device, it should send the
1251 * VIRTIO_NET_CTRL_RX_PROMISC CVQ command to enable promiscuous mode
1252 */
1253 hdr_ptr = out->iov_base;
1254 out->iov_len = sizeof(*hdr_ptr) + sizeof(on);
1255
1256 hdr_ptr->class = VIRTIO_NET_CTRL_RX;
1257 hdr_ptr->cmd = VIRTIO_NET_CTRL_RX_PROMISC;
1258 iov_from_buf(out, 1, sizeof(*hdr_ptr), &on, sizeof(on));
1259 r = vhost_vdpa_net_cvq_add(s, out, 1, in, 1);
1260 if (unlikely(r < 0)) {
1261 return r;
1262 }
1263
1264 /*
1265 * We can poll here since we've had BQL from the time
1266 * we sent the descriptor.
1267 */
1268 r = vhost_vdpa_net_svq_poll(s, 1);
1269 if (unlikely(r < sizeof(*s->status))) {
1270 return r;
1271 }
1272 if (*s->status != VIRTIO_NET_OK) {
1273 return sizeof(*s->status);
1274 }
1275
1276 /*
1277 * QEMU should also send a fake VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ
1278 * command to the device model, including (`MAC_TABLE_ENTRIES` + 1)
1279 * non-multicast MAC addresses and (`MAC_TABLE_ENTRIES` + 1)
1280 * multicast MAC addresses.
1281 *
1282 * By doing so, the device model can mark `n->mac_table.uni_overflow`
1283 * and `n->mac_table.multi_overflow`, enabling all packets to be
1284 * received, which aligns with the state of the vdpa device.
1285 */
1286 cursor = 0;
1287 uint32_t fake_uni_entries = MAC_TABLE_ENTRIES + 1,
1288 fake_mul_entries = MAC_TABLE_ENTRIES + 1,
1289 fake_cvq_size = sizeof(struct virtio_net_ctrl_hdr) +
1290 sizeof(mac_data) + fake_uni_entries * ETH_ALEN +
1291 sizeof(mac_data) + fake_mul_entries * ETH_ALEN;
1292
1293 assert(fake_cvq_size < vhost_vdpa_net_cvq_cmd_page_len());
1294 out->iov_len = fake_cvq_size;
1295
1296 /* pack the header for fake CVQ command */
1297 hdr_ptr = out->iov_base + cursor;
1298 hdr_ptr->class = VIRTIO_NET_CTRL_MAC;
1299 hdr_ptr->cmd = VIRTIO_NET_CTRL_MAC_TABLE_SET;
1300 cursor += sizeof(*hdr_ptr);
1301
1302 /*
1303 * Pack the non-multicast MAC addresses part for fake CVQ command.
1304 *
1305 * According to virtio_net_handle_mac(), QEMU doesn't verify the MAC
1306 * addresses provided in CVQ command. Therefore, only the entries
1307 * field need to be prepared in the CVQ command.
1308 */
1309 mac_ptr = out->iov_base + cursor;
1310 mac_ptr->entries = cpu_to_le32(fake_uni_entries);
1311 cursor += sizeof(*mac_ptr) + fake_uni_entries * ETH_ALEN;
1312
1313 /*
1314 * Pack the multicast MAC addresses part for fake CVQ command.
1315 *
1316 * According to virtio_net_handle_mac(), QEMU doesn't verify the MAC
1317 * addresses provided in CVQ command. Therefore, only the entries
1318 * field need to be prepared in the CVQ command.
1319 */
1320 mac_ptr = out->iov_base + cursor;
1321 mac_ptr->entries = cpu_to_le32(fake_mul_entries);
1322
1323 /*
1324 * Simulating QEMU poll a vdpa device used buffer
1325 * for VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command
1326 */
1327 return sizeof(*s->status);
1328 }
1329
1330 /**
1331 * Validate and copy control virtqueue commands.
1332 *
1333 * Following QEMU guidelines, we offer a copy of the buffers to the device to
1334 * prevent TOCTOU bugs.
1335 */
1336 static int vhost_vdpa_net_handle_ctrl_avail(VhostShadowVirtqueue *svq,
1337 VirtQueueElement *elem,
1338 void *opaque)
1339 {
1340 VhostVDPAState *s = opaque;
1341 size_t in_len;
1342 const struct virtio_net_ctrl_hdr *ctrl;
1343 virtio_net_ctrl_ack status = VIRTIO_NET_ERR;
1344 /* Out buffer sent to both the vdpa device and the device model */
1345 struct iovec out = {
1346 .iov_base = s->cvq_cmd_out_buffer,
1347 };
1348 /* in buffer used for device model */
1349 const struct iovec model_in = {
1350 .iov_base = &status,
1351 .iov_len = sizeof(status),
1352 };
1353 /* in buffer used for vdpa device */
1354 const struct iovec vdpa_in = {
1355 .iov_base = s->status,
1356 .iov_len = sizeof(*s->status),
1357 };
1358 ssize_t dev_written = -EINVAL;
1359
1360 out.iov_len = iov_to_buf(elem->out_sg, elem->out_num, 0,
1361 s->cvq_cmd_out_buffer,
1362 vhost_vdpa_net_cvq_cmd_page_len());
1363
1364 ctrl = s->cvq_cmd_out_buffer;
1365 if (ctrl->class == VIRTIO_NET_CTRL_ANNOUNCE) {
1366 /*
1367 * Guest announce capability is emulated by qemu, so don't forward to
1368 * the device.
1369 */
1370 dev_written = sizeof(status);
1371 *s->status = VIRTIO_NET_OK;
1372 } else if (unlikely(ctrl->class == VIRTIO_NET_CTRL_MAC &&
1373 ctrl->cmd == VIRTIO_NET_CTRL_MAC_TABLE_SET &&
1374 iov_size(elem->out_sg, elem->out_num) > out.iov_len)) {
1375 /*
1376 * Due to the size limitation of the out buffer sent to the vdpa device,
1377 * which is determined by vhost_vdpa_net_cvq_cmd_page_len(), excessive
1378 * MAC addresses set by the driver for the filter table can cause
1379 * truncation of the CVQ command in QEMU. As a result, the vdpa device
1380 * rejects the flawed CVQ command.
1381 *
1382 * Therefore, QEMU must handle this situation instead of sending
1383 * the CVQ command directly.
1384 */
1385 dev_written = vhost_vdpa_net_excessive_mac_filter_cvq_add(s, elem,
1386 &out, &vdpa_in);
1387 if (unlikely(dev_written < 0)) {
1388 goto out;
1389 }
1390 } else {
1391 ssize_t r;
1392 r = vhost_vdpa_net_cvq_add(s, &out, 1, &vdpa_in, 1);
1393 if (unlikely(r < 0)) {
1394 dev_written = r;
1395 goto out;
1396 }
1397
1398 /*
1399 * We can poll here since we've had BQL from the time
1400 * we sent the descriptor.
1401 */
1402 dev_written = vhost_vdpa_net_svq_poll(s, 1);
1403 }
1404
1405 if (unlikely(dev_written < sizeof(status))) {
1406 error_report("Insufficient written data (%zu)", dev_written);
1407 goto out;
1408 }
1409
1410 if (*s->status != VIRTIO_NET_OK) {
1411 goto out;
1412 }
1413
1414 status = VIRTIO_NET_ERR;
1415 virtio_net_handle_ctrl_iov(svq->vdev, &model_in, 1, &out, 1);
1416 if (status != VIRTIO_NET_OK) {
1417 error_report("Bad CVQ processing in model");
1418 }
1419
1420 out:
1421 in_len = iov_from_buf(elem->in_sg, elem->in_num, 0, &status,
1422 sizeof(status));
1423 if (unlikely(in_len < sizeof(status))) {
1424 error_report("Bad device CVQ written length");
1425 }
1426 vhost_svq_push_elem(svq, elem, MIN(in_len, sizeof(status)));
1427 /*
1428 * `elem` belongs to vhost_vdpa_net_handle_ctrl_avail() only when
1429 * the function successfully forwards the CVQ command, indicated
1430 * by a non-negative value of `dev_written`. Otherwise, it still
1431 * belongs to SVQ.
1432 * This function should only free the `elem` when it owns.
1433 */
1434 if (dev_written >= 0) {
1435 g_free(elem);
1436 }
1437 return dev_written < 0 ? dev_written : 0;
1438 }
1439
1440 static const VhostShadowVirtqueueOps vhost_vdpa_net_svq_ops = {
1441 .avail_handler = vhost_vdpa_net_handle_ctrl_avail,
1442 };
1443
1444 /**
1445 * Probe if CVQ is isolated
1446 *
1447 * @device_fd The vdpa device fd
1448 * @features Features offered by the device.
1449 * @cvq_index The control vq pair index
1450 *
1451 * Returns <0 in case of failure, 0 if false and 1 if true.
1452 */
1453 static int vhost_vdpa_probe_cvq_isolation(int device_fd, uint64_t features,
1454 int cvq_index, Error **errp)
1455 {
1456 uint64_t backend_features;
1457 int64_t cvq_group;
1458 uint8_t status = VIRTIO_CONFIG_S_ACKNOWLEDGE |
1459 VIRTIO_CONFIG_S_DRIVER;
1460 int r;
1461
1462 ERRP_GUARD();
1463
1464 r = ioctl(device_fd, VHOST_GET_BACKEND_FEATURES, &backend_features);
1465 if (unlikely(r < 0)) {
1466 error_setg_errno(errp, errno, "Cannot get vdpa backend_features");
1467 return r;
1468 }
1469
1470 if (!(backend_features & BIT_ULL(VHOST_BACKEND_F_IOTLB_ASID))) {
1471 return 0;
1472 }
1473
1474 r = ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status);
1475 if (unlikely(r)) {
1476 error_setg_errno(errp, -r, "Cannot set device status");
1477 goto out;
1478 }
1479
1480 r = ioctl(device_fd, VHOST_SET_FEATURES, &features);
1481 if (unlikely(r)) {
1482 error_setg_errno(errp, -r, "Cannot set features");
1483 goto out;
1484 }
1485
1486 status |= VIRTIO_CONFIG_S_FEATURES_OK;
1487 r = ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status);
1488 if (unlikely(r)) {
1489 error_setg_errno(errp, -r, "Cannot set device status");
1490 goto out;
1491 }
1492
1493 cvq_group = vhost_vdpa_get_vring_group(device_fd, cvq_index, errp);
1494 if (unlikely(cvq_group < 0)) {
1495 if (cvq_group != -ENOTSUP) {
1496 r = cvq_group;
1497 goto out;
1498 }
1499
1500 /*
1501 * The kernel report VHOST_BACKEND_F_IOTLB_ASID if the vdpa frontend
1502 * support ASID even if the parent driver does not. The CVQ cannot be
1503 * isolated in this case.
1504 */
1505 error_free(*errp);
1506 *errp = NULL;
1507 r = 0;
1508 goto out;
1509 }
1510
1511 for (int i = 0; i < cvq_index; ++i) {
1512 int64_t group = vhost_vdpa_get_vring_group(device_fd, i, errp);
1513 if (unlikely(group < 0)) {
1514 r = group;
1515 goto out;
1516 }
1517
1518 if (group == (int64_t)cvq_group) {
1519 r = 0;
1520 goto out;
1521 }
1522 }
1523
1524 r = 1;
1525
1526 out:
1527 status = 0;
1528 ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status);
1529 return r;
1530 }
1531
1532 static NetClientState *net_vhost_vdpa_init(NetClientState *peer,
1533 const char *device,
1534 const char *name,
1535 int vdpa_device_fd,
1536 int queue_pair_index,
1537 int nvqs,
1538 bool is_datapath,
1539 bool svq,
1540 struct vhost_vdpa_iova_range iova_range,
1541 uint64_t features,
1542 Error **errp)
1543 {
1544 NetClientState *nc = NULL;
1545 VhostVDPAState *s;
1546 int ret = 0;
1547 assert(name);
1548 int cvq_isolated = 0;
1549
1550 if (is_datapath) {
1551 nc = qemu_new_net_client(&net_vhost_vdpa_info, peer, device,
1552 name);
1553 } else {
1554 cvq_isolated = vhost_vdpa_probe_cvq_isolation(vdpa_device_fd, features,
1555 queue_pair_index * 2,
1556 errp);
1557 if (unlikely(cvq_isolated < 0)) {
1558 return NULL;
1559 }
1560
1561 nc = qemu_new_net_control_client(&net_vhost_vdpa_cvq_info, peer,
1562 device, name);
1563 }
1564 qemu_set_info_str(nc, TYPE_VHOST_VDPA);
1565 s = DO_UPCAST(VhostVDPAState, nc, nc);
1566
1567 s->vhost_vdpa.device_fd = vdpa_device_fd;
1568 s->vhost_vdpa.index = queue_pair_index;
1569 s->always_svq = svq;
1570 s->migration_state.notify = NULL;
1571 s->vhost_vdpa.shadow_vqs_enabled = svq;
1572 s->vhost_vdpa.iova_range = iova_range;
1573 s->vhost_vdpa.shadow_data = svq;
1574 if (queue_pair_index == 0) {
1575 vhost_vdpa_net_valid_svq_features(features,
1576 &s->vhost_vdpa.migration_blocker);
1577 } else if (!is_datapath) {
1578 s->cvq_cmd_out_buffer = mmap(NULL, vhost_vdpa_net_cvq_cmd_page_len(),
1579 PROT_READ | PROT_WRITE,
1580 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1581 s->status = mmap(NULL, vhost_vdpa_net_cvq_cmd_page_len(),
1582 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS,
1583 -1, 0);
1584
1585 s->vhost_vdpa.shadow_vq_ops = &vhost_vdpa_net_svq_ops;
1586 s->vhost_vdpa.shadow_vq_ops_opaque = s;
1587 s->cvq_isolated = cvq_isolated;
1588 }
1589 ret = vhost_vdpa_add(nc, (void *)&s->vhost_vdpa, queue_pair_index, nvqs);
1590 if (ret) {
1591 qemu_del_net_client(nc);
1592 return NULL;
1593 }
1594 return nc;
1595 }
1596
1597 static int vhost_vdpa_get_features(int fd, uint64_t *features, Error **errp)
1598 {
1599 int ret = ioctl(fd, VHOST_GET_FEATURES, features);
1600 if (unlikely(ret < 0)) {
1601 error_setg_errno(errp, errno,
1602 "Fail to query features from vhost-vDPA device");
1603 }
1604 return ret;
1605 }
1606
1607 static int vhost_vdpa_get_max_queue_pairs(int fd, uint64_t features,
1608 int *has_cvq, Error **errp)
1609 {
1610 unsigned long config_size = offsetof(struct vhost_vdpa_config, buf);
1611 g_autofree struct vhost_vdpa_config *config = NULL;
1612 __virtio16 *max_queue_pairs;
1613 int ret;
1614
1615 if (features & (1 << VIRTIO_NET_F_CTRL_VQ)) {
1616 *has_cvq = 1;
1617 } else {
1618 *has_cvq = 0;
1619 }
1620
1621 if (features & (1 << VIRTIO_NET_F_MQ)) {
1622 config = g_malloc0(config_size + sizeof(*max_queue_pairs));
1623 config->off = offsetof(struct virtio_net_config, max_virtqueue_pairs);
1624 config->len = sizeof(*max_queue_pairs);
1625
1626 ret = ioctl(fd, VHOST_VDPA_GET_CONFIG, config);
1627 if (ret) {
1628 error_setg(errp, "Fail to get config from vhost-vDPA device");
1629 return -ret;
1630 }
1631
1632 max_queue_pairs = (__virtio16 *)&config->buf;
1633
1634 return lduw_le_p(max_queue_pairs);
1635 }
1636
1637 return 1;
1638 }
1639
1640 int net_init_vhost_vdpa(const Netdev *netdev, const char *name,
1641 NetClientState *peer, Error **errp)
1642 {
1643 const NetdevVhostVDPAOptions *opts;
1644 uint64_t features;
1645 int vdpa_device_fd;
1646 g_autofree NetClientState **ncs = NULL;
1647 struct vhost_vdpa_iova_range iova_range;
1648 NetClientState *nc;
1649 int queue_pairs, r, i = 0, has_cvq = 0;
1650
1651 assert(netdev->type == NET_CLIENT_DRIVER_VHOST_VDPA);
1652 opts = &netdev->u.vhost_vdpa;
1653 if (!opts->vhostdev && !opts->vhostfd) {
1654 error_setg(errp,
1655 "vhost-vdpa: neither vhostdev= nor vhostfd= was specified");
1656 return -1;
1657 }
1658
1659 if (opts->vhostdev && opts->vhostfd) {
1660 error_setg(errp,
1661 "vhost-vdpa: vhostdev= and vhostfd= are mutually exclusive");
1662 return -1;
1663 }
1664
1665 if (opts->vhostdev) {
1666 vdpa_device_fd = qemu_open(opts->vhostdev, O_RDWR, errp);
1667 if (vdpa_device_fd == -1) {
1668 return -errno;
1669 }
1670 } else {
1671 /* has_vhostfd */
1672 vdpa_device_fd = monitor_fd_param(monitor_cur(), opts->vhostfd, errp);
1673 if (vdpa_device_fd == -1) {
1674 error_prepend(errp, "vhost-vdpa: unable to parse vhostfd: ");
1675 return -1;
1676 }
1677 }
1678
1679 r = vhost_vdpa_get_features(vdpa_device_fd, &features, errp);
1680 if (unlikely(r < 0)) {
1681 goto err;
1682 }
1683
1684 queue_pairs = vhost_vdpa_get_max_queue_pairs(vdpa_device_fd, features,
1685 &has_cvq, errp);
1686 if (queue_pairs < 0) {
1687 qemu_close(vdpa_device_fd);
1688 return queue_pairs;
1689 }
1690
1691 r = vhost_vdpa_get_iova_range(vdpa_device_fd, &iova_range);
1692 if (unlikely(r < 0)) {
1693 error_setg(errp, "vhost-vdpa: get iova range failed: %s",
1694 strerror(-r));
1695 goto err;
1696 }
1697
1698 if (opts->x_svq && !vhost_vdpa_net_valid_svq_features(features, errp)) {
1699 goto err;
1700 }
1701
1702 ncs = g_malloc0(sizeof(*ncs) * queue_pairs);
1703
1704 for (i = 0; i < queue_pairs; i++) {
1705 ncs[i] = net_vhost_vdpa_init(peer, TYPE_VHOST_VDPA, name,
1706 vdpa_device_fd, i, 2, true, opts->x_svq,
1707 iova_range, features, errp);
1708 if (!ncs[i])
1709 goto err;
1710 }
1711
1712 if (has_cvq) {
1713 nc = net_vhost_vdpa_init(peer, TYPE_VHOST_VDPA, name,
1714 vdpa_device_fd, i, 1, false,
1715 opts->x_svq, iova_range, features, errp);
1716 if (!nc)
1717 goto err;
1718 }
1719
1720 return 0;
1721
1722 err:
1723 if (i) {
1724 for (i--; i >= 0; i--) {
1725 qemu_del_net_client(ncs[i]);
1726 }
1727 }
1728
1729 qemu_close(vdpa_device_fd);
1730
1731 return -1;
1732 }