]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/vmw_vsock/af_vsock.c
xfrm: clone missing x->lastused in xfrm_do_migrate
[mirror_ubuntu-jammy-kernel.git] / net / vmw_vsock / af_vsock.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VMware vSockets Driver
4 *
5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 */
7
8 /* Implementation notes:
9 *
10 * - There are two kinds of sockets: those created by user action (such as
11 * calling socket(2)) and those created by incoming connection request packets.
12 *
13 * - There are two "global" tables, one for bound sockets (sockets that have
14 * specified an address that they are responsible for) and one for connected
15 * sockets (sockets that have established a connection with another socket).
16 * These tables are "global" in that all sockets on the system are placed
17 * within them. - Note, though, that the bound table contains an extra entry
18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19 * that list. The bound table is used solely for lookup of sockets when packets
20 * are received and that's not necessary for SOCK_DGRAM sockets since we create
21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
22 * sockets out of the bound hash buckets will reduce the chance of collisions
23 * when looking for SOCK_STREAM sockets and prevents us from having to check the
24 * socket type in the hash table lookups.
25 *
26 * - Sockets created by user action will either be "client" sockets that
27 * initiate a connection or "server" sockets that listen for connections; we do
28 * not support simultaneous connects (two "client" sockets connecting).
29 *
30 * - "Server" sockets are referred to as listener sockets throughout this
31 * implementation because they are in the TCP_LISTEN state. When a
32 * connection request is received (the second kind of socket mentioned above),
33 * we create a new socket and refer to it as a pending socket. These pending
34 * sockets are placed on the pending connection list of the listener socket.
35 * When future packets are received for the address the listener socket is
36 * bound to, we check if the source of the packet is from one that has an
37 * existing pending connection. If it does, we process the packet for the
38 * pending socket. When that socket reaches the connected state, it is removed
39 * from the listener socket's pending list and enqueued in the listener
40 * socket's accept queue. Callers of accept(2) will accept connected sockets
41 * from the listener socket's accept queue. If the socket cannot be accepted
42 * for some reason then it is marked rejected. Once the connection is
43 * accepted, it is owned by the user process and the responsibility for cleanup
44 * falls with that user process.
45 *
46 * - It is possible that these pending sockets will never reach the connected
47 * state; in fact, we may never receive another packet after the connection
48 * request. Because of this, we must schedule a cleanup function to run in the
49 * future, after some amount of time passes where a connection should have been
50 * established. This function ensures that the socket is off all lists so it
51 * cannot be retrieved, then drops all references to the socket so it is cleaned
52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
53 * function will also cleanup rejected sockets, those that reach the connected
54 * state but leave it before they have been accepted.
55 *
56 * - Lock ordering for pending or accept queue sockets is:
57 *
58 * lock_sock(listener);
59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60 *
61 * Using explicit nested locking keeps lockdep happy since normally only one
62 * lock of a given class may be taken at a time.
63 *
64 * - Sockets created by user action will be cleaned up when the user process
65 * calls close(2), causing our release implementation to be called. Our release
66 * implementation will perform some cleanup then drop the last reference so our
67 * sk_destruct implementation is invoked. Our sk_destruct implementation will
68 * perform additional cleanup that's common for both types of sockets.
69 *
70 * - A socket's reference count is what ensures that the structure won't be
71 * freed. Each entry in a list (such as the "global" bound and connected tables
72 * and the listener socket's pending list and connected queue) ensures a
73 * reference. When we defer work until process context and pass a socket as our
74 * argument, we must ensure the reference count is increased to ensure the
75 * socket isn't freed before the function is run; the deferred function will
76 * then drop the reference.
77 *
78 * - sk->sk_state uses the TCP state constants because they are widely used by
79 * other address families and exposed to userspace tools like ss(8):
80 *
81 * TCP_CLOSE - unconnected
82 * TCP_SYN_SENT - connecting
83 * TCP_ESTABLISHED - connected
84 * TCP_CLOSING - disconnecting
85 * TCP_LISTEN - listening
86 */
87
88 #include <linux/types.h>
89 #include <linux/bitops.h>
90 #include <linux/cred.h>
91 #include <linux/init.h>
92 #include <linux/io.h>
93 #include <linux/kernel.h>
94 #include <linux/sched/signal.h>
95 #include <linux/kmod.h>
96 #include <linux/list.h>
97 #include <linux/miscdevice.h>
98 #include <linux/module.h>
99 #include <linux/mutex.h>
100 #include <linux/net.h>
101 #include <linux/poll.h>
102 #include <linux/random.h>
103 #include <linux/skbuff.h>
104 #include <linux/smp.h>
105 #include <linux/socket.h>
106 #include <linux/stddef.h>
107 #include <linux/unistd.h>
108 #include <linux/wait.h>
109 #include <linux/workqueue.h>
110 #include <net/sock.h>
111 #include <net/af_vsock.h>
112
113 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
114 static void vsock_sk_destruct(struct sock *sk);
115 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
116
117 /* Protocol family. */
118 static struct proto vsock_proto = {
119 .name = "AF_VSOCK",
120 .owner = THIS_MODULE,
121 .obj_size = sizeof(struct vsock_sock),
122 };
123
124 /* The default peer timeout indicates how long we will wait for a peer response
125 * to a control message.
126 */
127 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
128
129 #define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256)
130 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
131 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
132
133 /* Transport used for host->guest communication */
134 static const struct vsock_transport *transport_h2g;
135 /* Transport used for guest->host communication */
136 static const struct vsock_transport *transport_g2h;
137 /* Transport used for DGRAM communication */
138 static const struct vsock_transport *transport_dgram;
139 /* Transport used for local communication */
140 static const struct vsock_transport *transport_local;
141 static DEFINE_MUTEX(vsock_register_mutex);
142
143 /**** UTILS ****/
144
145 /* Each bound VSocket is stored in the bind hash table and each connected
146 * VSocket is stored in the connected hash table.
147 *
148 * Unbound sockets are all put on the same list attached to the end of the hash
149 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
150 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
151 * represents the list that addr hashes to).
152 *
153 * Specifically, we initialize the vsock_bind_table array to a size of
154 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
155 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
156 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
157 * mods with VSOCK_HASH_SIZE to ensure this.
158 */
159 #define MAX_PORT_RETRIES 24
160
161 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
162 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
163 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
164
165 /* XXX This can probably be implemented in a better way. */
166 #define VSOCK_CONN_HASH(src, dst) \
167 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
168 #define vsock_connected_sockets(src, dst) \
169 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
170 #define vsock_connected_sockets_vsk(vsk) \
171 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
172
173 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
174 EXPORT_SYMBOL_GPL(vsock_bind_table);
175 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
176 EXPORT_SYMBOL_GPL(vsock_connected_table);
177 DEFINE_SPINLOCK(vsock_table_lock);
178 EXPORT_SYMBOL_GPL(vsock_table_lock);
179
180 /* Autobind this socket to the local address if necessary. */
181 static int vsock_auto_bind(struct vsock_sock *vsk)
182 {
183 struct sock *sk = sk_vsock(vsk);
184 struct sockaddr_vm local_addr;
185
186 if (vsock_addr_bound(&vsk->local_addr))
187 return 0;
188 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
189 return __vsock_bind(sk, &local_addr);
190 }
191
192 static void vsock_init_tables(void)
193 {
194 int i;
195
196 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
197 INIT_LIST_HEAD(&vsock_bind_table[i]);
198
199 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
200 INIT_LIST_HEAD(&vsock_connected_table[i]);
201 }
202
203 static void __vsock_insert_bound(struct list_head *list,
204 struct vsock_sock *vsk)
205 {
206 sock_hold(&vsk->sk);
207 list_add(&vsk->bound_table, list);
208 }
209
210 static void __vsock_insert_connected(struct list_head *list,
211 struct vsock_sock *vsk)
212 {
213 sock_hold(&vsk->sk);
214 list_add(&vsk->connected_table, list);
215 }
216
217 static void __vsock_remove_bound(struct vsock_sock *vsk)
218 {
219 list_del_init(&vsk->bound_table);
220 sock_put(&vsk->sk);
221 }
222
223 static void __vsock_remove_connected(struct vsock_sock *vsk)
224 {
225 list_del_init(&vsk->connected_table);
226 sock_put(&vsk->sk);
227 }
228
229 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
230 {
231 struct vsock_sock *vsk;
232
233 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
234 if (vsock_addr_equals_addr(addr, &vsk->local_addr))
235 return sk_vsock(vsk);
236
237 if (addr->svm_port == vsk->local_addr.svm_port &&
238 (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
239 addr->svm_cid == VMADDR_CID_ANY))
240 return sk_vsock(vsk);
241 }
242
243 return NULL;
244 }
245
246 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
247 struct sockaddr_vm *dst)
248 {
249 struct vsock_sock *vsk;
250
251 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
252 connected_table) {
253 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
254 dst->svm_port == vsk->local_addr.svm_port) {
255 return sk_vsock(vsk);
256 }
257 }
258
259 return NULL;
260 }
261
262 static void vsock_insert_unbound(struct vsock_sock *vsk)
263 {
264 spin_lock_bh(&vsock_table_lock);
265 __vsock_insert_bound(vsock_unbound_sockets, vsk);
266 spin_unlock_bh(&vsock_table_lock);
267 }
268
269 void vsock_insert_connected(struct vsock_sock *vsk)
270 {
271 struct list_head *list = vsock_connected_sockets(
272 &vsk->remote_addr, &vsk->local_addr);
273
274 spin_lock_bh(&vsock_table_lock);
275 __vsock_insert_connected(list, vsk);
276 spin_unlock_bh(&vsock_table_lock);
277 }
278 EXPORT_SYMBOL_GPL(vsock_insert_connected);
279
280 void vsock_remove_bound(struct vsock_sock *vsk)
281 {
282 spin_lock_bh(&vsock_table_lock);
283 if (__vsock_in_bound_table(vsk))
284 __vsock_remove_bound(vsk);
285 spin_unlock_bh(&vsock_table_lock);
286 }
287 EXPORT_SYMBOL_GPL(vsock_remove_bound);
288
289 void vsock_remove_connected(struct vsock_sock *vsk)
290 {
291 spin_lock_bh(&vsock_table_lock);
292 if (__vsock_in_connected_table(vsk))
293 __vsock_remove_connected(vsk);
294 spin_unlock_bh(&vsock_table_lock);
295 }
296 EXPORT_SYMBOL_GPL(vsock_remove_connected);
297
298 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
299 {
300 struct sock *sk;
301
302 spin_lock_bh(&vsock_table_lock);
303 sk = __vsock_find_bound_socket(addr);
304 if (sk)
305 sock_hold(sk);
306
307 spin_unlock_bh(&vsock_table_lock);
308
309 return sk;
310 }
311 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
312
313 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
314 struct sockaddr_vm *dst)
315 {
316 struct sock *sk;
317
318 spin_lock_bh(&vsock_table_lock);
319 sk = __vsock_find_connected_socket(src, dst);
320 if (sk)
321 sock_hold(sk);
322
323 spin_unlock_bh(&vsock_table_lock);
324
325 return sk;
326 }
327 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
328
329 void vsock_remove_sock(struct vsock_sock *vsk)
330 {
331 vsock_remove_bound(vsk);
332 vsock_remove_connected(vsk);
333 }
334 EXPORT_SYMBOL_GPL(vsock_remove_sock);
335
336 void vsock_for_each_connected_socket(struct vsock_transport *transport,
337 void (*fn)(struct sock *sk))
338 {
339 int i;
340
341 spin_lock_bh(&vsock_table_lock);
342
343 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
344 struct vsock_sock *vsk;
345 list_for_each_entry(vsk, &vsock_connected_table[i],
346 connected_table) {
347 if (vsk->transport != transport)
348 continue;
349
350 fn(sk_vsock(vsk));
351 }
352 }
353
354 spin_unlock_bh(&vsock_table_lock);
355 }
356 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
357
358 void vsock_add_pending(struct sock *listener, struct sock *pending)
359 {
360 struct vsock_sock *vlistener;
361 struct vsock_sock *vpending;
362
363 vlistener = vsock_sk(listener);
364 vpending = vsock_sk(pending);
365
366 sock_hold(pending);
367 sock_hold(listener);
368 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
369 }
370 EXPORT_SYMBOL_GPL(vsock_add_pending);
371
372 void vsock_remove_pending(struct sock *listener, struct sock *pending)
373 {
374 struct vsock_sock *vpending = vsock_sk(pending);
375
376 list_del_init(&vpending->pending_links);
377 sock_put(listener);
378 sock_put(pending);
379 }
380 EXPORT_SYMBOL_GPL(vsock_remove_pending);
381
382 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
383 {
384 struct vsock_sock *vlistener;
385 struct vsock_sock *vconnected;
386
387 vlistener = vsock_sk(listener);
388 vconnected = vsock_sk(connected);
389
390 sock_hold(connected);
391 sock_hold(listener);
392 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
393 }
394 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
395
396 static bool vsock_use_local_transport(unsigned int remote_cid)
397 {
398 if (!transport_local)
399 return false;
400
401 if (remote_cid == VMADDR_CID_LOCAL)
402 return true;
403
404 if (transport_g2h) {
405 return remote_cid == transport_g2h->get_local_cid();
406 } else {
407 return remote_cid == VMADDR_CID_HOST;
408 }
409 }
410
411 static void vsock_deassign_transport(struct vsock_sock *vsk)
412 {
413 if (!vsk->transport)
414 return;
415
416 vsk->transport->destruct(vsk);
417 module_put(vsk->transport->module);
418 vsk->transport = NULL;
419 }
420
421 /* Assign a transport to a socket and call the .init transport callback.
422 *
423 * Note: for connection oriented socket this must be called when vsk->remote_addr
424 * is set (e.g. during the connect() or when a connection request on a listener
425 * socket is received).
426 * The vsk->remote_addr is used to decide which transport to use:
427 * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
428 * g2h is not loaded, will use local transport;
429 * - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
430 * includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
431 * - remote CID > VMADDR_CID_HOST will use host->guest transport;
432 */
433 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
434 {
435 const struct vsock_transport *new_transport;
436 struct sock *sk = sk_vsock(vsk);
437 unsigned int remote_cid = vsk->remote_addr.svm_cid;
438 __u8 remote_flags;
439 int ret;
440
441 /* If the packet is coming with the source and destination CIDs higher
442 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
443 * forwarded to the host should be established. Then the host will
444 * need to forward the packets to the guest.
445 *
446 * The flag is set on the (listen) receive path (psk is not NULL). On
447 * the connect path the flag can be set by the user space application.
448 */
449 if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
450 vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
451 vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
452
453 remote_flags = vsk->remote_addr.svm_flags;
454
455 switch (sk->sk_type) {
456 case SOCK_DGRAM:
457 new_transport = transport_dgram;
458 break;
459 case SOCK_STREAM:
460 case SOCK_SEQPACKET:
461 if (vsock_use_local_transport(remote_cid))
462 new_transport = transport_local;
463 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
464 (remote_flags & VMADDR_FLAG_TO_HOST))
465 new_transport = transport_g2h;
466 else
467 new_transport = transport_h2g;
468 break;
469 default:
470 return -ESOCKTNOSUPPORT;
471 }
472
473 if (vsk->transport) {
474 if (vsk->transport == new_transport)
475 return 0;
476
477 /* transport->release() must be called with sock lock acquired.
478 * This path can only be taken during vsock_connect(), where we
479 * have already held the sock lock. In the other cases, this
480 * function is called on a new socket which is not assigned to
481 * any transport.
482 */
483 vsk->transport->release(vsk);
484 vsock_deassign_transport(vsk);
485 }
486
487 /* We increase the module refcnt to prevent the transport unloading
488 * while there are open sockets assigned to it.
489 */
490 if (!new_transport || !try_module_get(new_transport->module))
491 return -ENODEV;
492
493 if (sk->sk_type == SOCK_SEQPACKET) {
494 if (!new_transport->seqpacket_allow ||
495 !new_transport->seqpacket_allow(remote_cid)) {
496 module_put(new_transport->module);
497 return -ESOCKTNOSUPPORT;
498 }
499 }
500
501 ret = new_transport->init(vsk, psk);
502 if (ret) {
503 module_put(new_transport->module);
504 return ret;
505 }
506
507 vsk->transport = new_transport;
508
509 return 0;
510 }
511 EXPORT_SYMBOL_GPL(vsock_assign_transport);
512
513 bool vsock_find_cid(unsigned int cid)
514 {
515 if (transport_g2h && cid == transport_g2h->get_local_cid())
516 return true;
517
518 if (transport_h2g && cid == VMADDR_CID_HOST)
519 return true;
520
521 if (transport_local && cid == VMADDR_CID_LOCAL)
522 return true;
523
524 return false;
525 }
526 EXPORT_SYMBOL_GPL(vsock_find_cid);
527
528 static struct sock *vsock_dequeue_accept(struct sock *listener)
529 {
530 struct vsock_sock *vlistener;
531 struct vsock_sock *vconnected;
532
533 vlistener = vsock_sk(listener);
534
535 if (list_empty(&vlistener->accept_queue))
536 return NULL;
537
538 vconnected = list_entry(vlistener->accept_queue.next,
539 struct vsock_sock, accept_queue);
540
541 list_del_init(&vconnected->accept_queue);
542 sock_put(listener);
543 /* The caller will need a reference on the connected socket so we let
544 * it call sock_put().
545 */
546
547 return sk_vsock(vconnected);
548 }
549
550 static bool vsock_is_accept_queue_empty(struct sock *sk)
551 {
552 struct vsock_sock *vsk = vsock_sk(sk);
553 return list_empty(&vsk->accept_queue);
554 }
555
556 static bool vsock_is_pending(struct sock *sk)
557 {
558 struct vsock_sock *vsk = vsock_sk(sk);
559 return !list_empty(&vsk->pending_links);
560 }
561
562 static int vsock_send_shutdown(struct sock *sk, int mode)
563 {
564 struct vsock_sock *vsk = vsock_sk(sk);
565
566 if (!vsk->transport)
567 return -ENODEV;
568
569 return vsk->transport->shutdown(vsk, mode);
570 }
571
572 static void vsock_pending_work(struct work_struct *work)
573 {
574 struct sock *sk;
575 struct sock *listener;
576 struct vsock_sock *vsk;
577 bool cleanup;
578
579 vsk = container_of(work, struct vsock_sock, pending_work.work);
580 sk = sk_vsock(vsk);
581 listener = vsk->listener;
582 cleanup = true;
583
584 lock_sock(listener);
585 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
586
587 if (vsock_is_pending(sk)) {
588 vsock_remove_pending(listener, sk);
589
590 sk_acceptq_removed(listener);
591 } else if (!vsk->rejected) {
592 /* We are not on the pending list and accept() did not reject
593 * us, so we must have been accepted by our user process. We
594 * just need to drop our references to the sockets and be on
595 * our way.
596 */
597 cleanup = false;
598 goto out;
599 }
600
601 /* We need to remove ourself from the global connected sockets list so
602 * incoming packets can't find this socket, and to reduce the reference
603 * count.
604 */
605 vsock_remove_connected(vsk);
606
607 sk->sk_state = TCP_CLOSE;
608
609 out:
610 release_sock(sk);
611 release_sock(listener);
612 if (cleanup)
613 sock_put(sk);
614
615 sock_put(sk);
616 sock_put(listener);
617 }
618
619 /**** SOCKET OPERATIONS ****/
620
621 static int __vsock_bind_connectible(struct vsock_sock *vsk,
622 struct sockaddr_vm *addr)
623 {
624 static u32 port;
625 struct sockaddr_vm new_addr;
626
627 if (!port)
628 port = LAST_RESERVED_PORT + 1 +
629 prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
630
631 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
632
633 if (addr->svm_port == VMADDR_PORT_ANY) {
634 bool found = false;
635 unsigned int i;
636
637 for (i = 0; i < MAX_PORT_RETRIES; i++) {
638 if (port <= LAST_RESERVED_PORT)
639 port = LAST_RESERVED_PORT + 1;
640
641 new_addr.svm_port = port++;
642
643 if (!__vsock_find_bound_socket(&new_addr)) {
644 found = true;
645 break;
646 }
647 }
648
649 if (!found)
650 return -EADDRNOTAVAIL;
651 } else {
652 /* If port is in reserved range, ensure caller
653 * has necessary privileges.
654 */
655 if (addr->svm_port <= LAST_RESERVED_PORT &&
656 !capable(CAP_NET_BIND_SERVICE)) {
657 return -EACCES;
658 }
659
660 if (__vsock_find_bound_socket(&new_addr))
661 return -EADDRINUSE;
662 }
663
664 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
665
666 /* Remove connection oriented sockets from the unbound list and add them
667 * to the hash table for easy lookup by its address. The unbound list
668 * is simply an extra entry at the end of the hash table, a trick used
669 * by AF_UNIX.
670 */
671 __vsock_remove_bound(vsk);
672 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
673
674 return 0;
675 }
676
677 static int __vsock_bind_dgram(struct vsock_sock *vsk,
678 struct sockaddr_vm *addr)
679 {
680 return vsk->transport->dgram_bind(vsk, addr);
681 }
682
683 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
684 {
685 struct vsock_sock *vsk = vsock_sk(sk);
686 int retval;
687
688 /* First ensure this socket isn't already bound. */
689 if (vsock_addr_bound(&vsk->local_addr))
690 return -EINVAL;
691
692 /* Now bind to the provided address or select appropriate values if
693 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
694 * like AF_INET prevents binding to a non-local IP address (in most
695 * cases), we only allow binding to a local CID.
696 */
697 if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
698 return -EADDRNOTAVAIL;
699
700 switch (sk->sk_socket->type) {
701 case SOCK_STREAM:
702 case SOCK_SEQPACKET:
703 spin_lock_bh(&vsock_table_lock);
704 retval = __vsock_bind_connectible(vsk, addr);
705 spin_unlock_bh(&vsock_table_lock);
706 break;
707
708 case SOCK_DGRAM:
709 retval = __vsock_bind_dgram(vsk, addr);
710 break;
711
712 default:
713 retval = -EINVAL;
714 break;
715 }
716
717 return retval;
718 }
719
720 static void vsock_connect_timeout(struct work_struct *work);
721
722 static struct sock *__vsock_create(struct net *net,
723 struct socket *sock,
724 struct sock *parent,
725 gfp_t priority,
726 unsigned short type,
727 int kern)
728 {
729 struct sock *sk;
730 struct vsock_sock *psk;
731 struct vsock_sock *vsk;
732
733 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
734 if (!sk)
735 return NULL;
736
737 sock_init_data(sock, sk);
738
739 /* sk->sk_type is normally set in sock_init_data, but only if sock is
740 * non-NULL. We make sure that our sockets always have a type by
741 * setting it here if needed.
742 */
743 if (!sock)
744 sk->sk_type = type;
745
746 vsk = vsock_sk(sk);
747 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
748 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
749
750 sk->sk_destruct = vsock_sk_destruct;
751 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
752 sock_reset_flag(sk, SOCK_DONE);
753
754 INIT_LIST_HEAD(&vsk->bound_table);
755 INIT_LIST_HEAD(&vsk->connected_table);
756 vsk->listener = NULL;
757 INIT_LIST_HEAD(&vsk->pending_links);
758 INIT_LIST_HEAD(&vsk->accept_queue);
759 vsk->rejected = false;
760 vsk->sent_request = false;
761 vsk->ignore_connecting_rst = false;
762 vsk->peer_shutdown = 0;
763 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
764 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
765
766 psk = parent ? vsock_sk(parent) : NULL;
767 if (parent) {
768 vsk->trusted = psk->trusted;
769 vsk->owner = get_cred(psk->owner);
770 vsk->connect_timeout = psk->connect_timeout;
771 vsk->buffer_size = psk->buffer_size;
772 vsk->buffer_min_size = psk->buffer_min_size;
773 vsk->buffer_max_size = psk->buffer_max_size;
774 security_sk_clone(parent, sk);
775 } else {
776 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
777 vsk->owner = get_current_cred();
778 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
779 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
780 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
781 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
782 }
783
784 return sk;
785 }
786
787 static bool sock_type_connectible(u16 type)
788 {
789 return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
790 }
791
792 static void __vsock_release(struct sock *sk, int level)
793 {
794 if (sk) {
795 struct sock *pending;
796 struct vsock_sock *vsk;
797
798 vsk = vsock_sk(sk);
799 pending = NULL; /* Compiler warning. */
800
801 /* When "level" is SINGLE_DEPTH_NESTING, use the nested
802 * version to avoid the warning "possible recursive locking
803 * detected". When "level" is 0, lock_sock_nested(sk, level)
804 * is the same as lock_sock(sk).
805 */
806 lock_sock_nested(sk, level);
807
808 if (vsk->transport)
809 vsk->transport->release(vsk);
810 else if (sock_type_connectible(sk->sk_type))
811 vsock_remove_sock(vsk);
812
813 sock_orphan(sk);
814 sk->sk_shutdown = SHUTDOWN_MASK;
815
816 skb_queue_purge(&sk->sk_receive_queue);
817
818 /* Clean up any sockets that never were accepted. */
819 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
820 __vsock_release(pending, SINGLE_DEPTH_NESTING);
821 sock_put(pending);
822 }
823
824 release_sock(sk);
825 sock_put(sk);
826 }
827 }
828
829 static void vsock_sk_destruct(struct sock *sk)
830 {
831 struct vsock_sock *vsk = vsock_sk(sk);
832
833 vsock_deassign_transport(vsk);
834
835 /* When clearing these addresses, there's no need to set the family and
836 * possibly register the address family with the kernel.
837 */
838 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
839 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
840
841 put_cred(vsk->owner);
842 }
843
844 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
845 {
846 int err;
847
848 err = sock_queue_rcv_skb(sk, skb);
849 if (err)
850 kfree_skb(skb);
851
852 return err;
853 }
854
855 struct sock *vsock_create_connected(struct sock *parent)
856 {
857 return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
858 parent->sk_type, 0);
859 }
860 EXPORT_SYMBOL_GPL(vsock_create_connected);
861
862 s64 vsock_stream_has_data(struct vsock_sock *vsk)
863 {
864 return vsk->transport->stream_has_data(vsk);
865 }
866 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
867
868 static s64 vsock_connectible_has_data(struct vsock_sock *vsk)
869 {
870 struct sock *sk = sk_vsock(vsk);
871
872 if (sk->sk_type == SOCK_SEQPACKET)
873 return vsk->transport->seqpacket_has_data(vsk);
874 else
875 return vsock_stream_has_data(vsk);
876 }
877
878 s64 vsock_stream_has_space(struct vsock_sock *vsk)
879 {
880 return vsk->transport->stream_has_space(vsk);
881 }
882 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
883
884 static int vsock_release(struct socket *sock)
885 {
886 __vsock_release(sock->sk, 0);
887 sock->sk = NULL;
888 sock->state = SS_FREE;
889
890 return 0;
891 }
892
893 static int
894 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
895 {
896 int err;
897 struct sock *sk;
898 struct sockaddr_vm *vm_addr;
899
900 sk = sock->sk;
901
902 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
903 return -EINVAL;
904
905 lock_sock(sk);
906 err = __vsock_bind(sk, vm_addr);
907 release_sock(sk);
908
909 return err;
910 }
911
912 static int vsock_getname(struct socket *sock,
913 struct sockaddr *addr, int peer)
914 {
915 int err;
916 struct sock *sk;
917 struct vsock_sock *vsk;
918 struct sockaddr_vm *vm_addr;
919
920 sk = sock->sk;
921 vsk = vsock_sk(sk);
922 err = 0;
923
924 lock_sock(sk);
925
926 if (peer) {
927 if (sock->state != SS_CONNECTED) {
928 err = -ENOTCONN;
929 goto out;
930 }
931 vm_addr = &vsk->remote_addr;
932 } else {
933 vm_addr = &vsk->local_addr;
934 }
935
936 if (!vm_addr) {
937 err = -EINVAL;
938 goto out;
939 }
940
941 /* sys_getsockname() and sys_getpeername() pass us a
942 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
943 * that macro is defined in socket.c instead of .h, so we hardcode its
944 * value here.
945 */
946 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
947 memcpy(addr, vm_addr, sizeof(*vm_addr));
948 err = sizeof(*vm_addr);
949
950 out:
951 release_sock(sk);
952 return err;
953 }
954
955 static int vsock_shutdown(struct socket *sock, int mode)
956 {
957 int err;
958 struct sock *sk;
959
960 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
961 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
962 * here like the other address families do. Note also that the
963 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
964 * which is what we want.
965 */
966 mode++;
967
968 if ((mode & ~SHUTDOWN_MASK) || !mode)
969 return -EINVAL;
970
971 /* If this is a connection oriented socket and it is not connected then
972 * bail out immediately. If it is a DGRAM socket then we must first
973 * kick the socket so that it wakes up from any sleeping calls, for
974 * example recv(), and then afterwards return the error.
975 */
976
977 sk = sock->sk;
978
979 lock_sock(sk);
980 if (sock->state == SS_UNCONNECTED) {
981 err = -ENOTCONN;
982 if (sock_type_connectible(sk->sk_type))
983 goto out;
984 } else {
985 sock->state = SS_DISCONNECTING;
986 err = 0;
987 }
988
989 /* Receive and send shutdowns are treated alike. */
990 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
991 if (mode) {
992 sk->sk_shutdown |= mode;
993 sk->sk_state_change(sk);
994
995 if (sock_type_connectible(sk->sk_type)) {
996 sock_reset_flag(sk, SOCK_DONE);
997 vsock_send_shutdown(sk, mode);
998 }
999 }
1000
1001 out:
1002 release_sock(sk);
1003 return err;
1004 }
1005
1006 static __poll_t vsock_poll(struct file *file, struct socket *sock,
1007 poll_table *wait)
1008 {
1009 struct sock *sk;
1010 __poll_t mask;
1011 struct vsock_sock *vsk;
1012
1013 sk = sock->sk;
1014 vsk = vsock_sk(sk);
1015
1016 poll_wait(file, sk_sleep(sk), wait);
1017 mask = 0;
1018
1019 if (sk->sk_err)
1020 /* Signify that there has been an error on this socket. */
1021 mask |= EPOLLERR;
1022
1023 /* INET sockets treat local write shutdown and peer write shutdown as a
1024 * case of EPOLLHUP set.
1025 */
1026 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1027 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1028 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1029 mask |= EPOLLHUP;
1030 }
1031
1032 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1033 vsk->peer_shutdown & SEND_SHUTDOWN) {
1034 mask |= EPOLLRDHUP;
1035 }
1036
1037 if (sock->type == SOCK_DGRAM) {
1038 /* For datagram sockets we can read if there is something in
1039 * the queue and write as long as the socket isn't shutdown for
1040 * sending.
1041 */
1042 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1043 (sk->sk_shutdown & RCV_SHUTDOWN)) {
1044 mask |= EPOLLIN | EPOLLRDNORM;
1045 }
1046
1047 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1048 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1049
1050 } else if (sock_type_connectible(sk->sk_type)) {
1051 const struct vsock_transport *transport;
1052
1053 lock_sock(sk);
1054
1055 transport = vsk->transport;
1056
1057 /* Listening sockets that have connections in their accept
1058 * queue can be read.
1059 */
1060 if (sk->sk_state == TCP_LISTEN
1061 && !vsock_is_accept_queue_empty(sk))
1062 mask |= EPOLLIN | EPOLLRDNORM;
1063
1064 /* If there is something in the queue then we can read. */
1065 if (transport && transport->stream_is_active(vsk) &&
1066 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1067 bool data_ready_now = false;
1068 int ret = transport->notify_poll_in(
1069 vsk, 1, &data_ready_now);
1070 if (ret < 0) {
1071 mask |= EPOLLERR;
1072 } else {
1073 if (data_ready_now)
1074 mask |= EPOLLIN | EPOLLRDNORM;
1075
1076 }
1077 }
1078
1079 /* Sockets whose connections have been closed, reset, or
1080 * terminated should also be considered read, and we check the
1081 * shutdown flag for that.
1082 */
1083 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1084 vsk->peer_shutdown & SEND_SHUTDOWN) {
1085 mask |= EPOLLIN | EPOLLRDNORM;
1086 }
1087
1088 /* Connected sockets that can produce data can be written. */
1089 if (transport && sk->sk_state == TCP_ESTABLISHED) {
1090 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1091 bool space_avail_now = false;
1092 int ret = transport->notify_poll_out(
1093 vsk, 1, &space_avail_now);
1094 if (ret < 0) {
1095 mask |= EPOLLERR;
1096 } else {
1097 if (space_avail_now)
1098 /* Remove EPOLLWRBAND since INET
1099 * sockets are not setting it.
1100 */
1101 mask |= EPOLLOUT | EPOLLWRNORM;
1102
1103 }
1104 }
1105 }
1106
1107 /* Simulate INET socket poll behaviors, which sets
1108 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1109 * but local send is not shutdown.
1110 */
1111 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1112 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1113 mask |= EPOLLOUT | EPOLLWRNORM;
1114
1115 }
1116
1117 release_sock(sk);
1118 }
1119
1120 return mask;
1121 }
1122
1123 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1124 size_t len)
1125 {
1126 int err;
1127 struct sock *sk;
1128 struct vsock_sock *vsk;
1129 struct sockaddr_vm *remote_addr;
1130 const struct vsock_transport *transport;
1131
1132 if (msg->msg_flags & MSG_OOB)
1133 return -EOPNOTSUPP;
1134
1135 /* For now, MSG_DONTWAIT is always assumed... */
1136 err = 0;
1137 sk = sock->sk;
1138 vsk = vsock_sk(sk);
1139
1140 lock_sock(sk);
1141
1142 transport = vsk->transport;
1143
1144 err = vsock_auto_bind(vsk);
1145 if (err)
1146 goto out;
1147
1148
1149 /* If the provided message contains an address, use that. Otherwise
1150 * fall back on the socket's remote handle (if it has been connected).
1151 */
1152 if (msg->msg_name &&
1153 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1154 &remote_addr) == 0) {
1155 /* Ensure this address is of the right type and is a valid
1156 * destination.
1157 */
1158
1159 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1160 remote_addr->svm_cid = transport->get_local_cid();
1161
1162 if (!vsock_addr_bound(remote_addr)) {
1163 err = -EINVAL;
1164 goto out;
1165 }
1166 } else if (sock->state == SS_CONNECTED) {
1167 remote_addr = &vsk->remote_addr;
1168
1169 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1170 remote_addr->svm_cid = transport->get_local_cid();
1171
1172 /* XXX Should connect() or this function ensure remote_addr is
1173 * bound?
1174 */
1175 if (!vsock_addr_bound(&vsk->remote_addr)) {
1176 err = -EINVAL;
1177 goto out;
1178 }
1179 } else {
1180 err = -EINVAL;
1181 goto out;
1182 }
1183
1184 if (!transport->dgram_allow(remote_addr->svm_cid,
1185 remote_addr->svm_port)) {
1186 err = -EINVAL;
1187 goto out;
1188 }
1189
1190 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1191
1192 out:
1193 release_sock(sk);
1194 return err;
1195 }
1196
1197 static int vsock_dgram_connect(struct socket *sock,
1198 struct sockaddr *addr, int addr_len, int flags)
1199 {
1200 int err;
1201 struct sock *sk;
1202 struct vsock_sock *vsk;
1203 struct sockaddr_vm *remote_addr;
1204
1205 sk = sock->sk;
1206 vsk = vsock_sk(sk);
1207
1208 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1209 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1210 lock_sock(sk);
1211 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1212 VMADDR_PORT_ANY);
1213 sock->state = SS_UNCONNECTED;
1214 release_sock(sk);
1215 return 0;
1216 } else if (err != 0)
1217 return -EINVAL;
1218
1219 lock_sock(sk);
1220
1221 err = vsock_auto_bind(vsk);
1222 if (err)
1223 goto out;
1224
1225 if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1226 remote_addr->svm_port)) {
1227 err = -EINVAL;
1228 goto out;
1229 }
1230
1231 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1232 sock->state = SS_CONNECTED;
1233
1234 out:
1235 release_sock(sk);
1236 return err;
1237 }
1238
1239 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1240 size_t len, int flags)
1241 {
1242 struct vsock_sock *vsk = vsock_sk(sock->sk);
1243
1244 return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1245 }
1246
1247 static const struct proto_ops vsock_dgram_ops = {
1248 .family = PF_VSOCK,
1249 .owner = THIS_MODULE,
1250 .release = vsock_release,
1251 .bind = vsock_bind,
1252 .connect = vsock_dgram_connect,
1253 .socketpair = sock_no_socketpair,
1254 .accept = sock_no_accept,
1255 .getname = vsock_getname,
1256 .poll = vsock_poll,
1257 .ioctl = sock_no_ioctl,
1258 .listen = sock_no_listen,
1259 .shutdown = vsock_shutdown,
1260 .sendmsg = vsock_dgram_sendmsg,
1261 .recvmsg = vsock_dgram_recvmsg,
1262 .mmap = sock_no_mmap,
1263 .sendpage = sock_no_sendpage,
1264 };
1265
1266 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1267 {
1268 const struct vsock_transport *transport = vsk->transport;
1269
1270 if (!transport || !transport->cancel_pkt)
1271 return -EOPNOTSUPP;
1272
1273 return transport->cancel_pkt(vsk);
1274 }
1275
1276 static void vsock_connect_timeout(struct work_struct *work)
1277 {
1278 struct sock *sk;
1279 struct vsock_sock *vsk;
1280
1281 vsk = container_of(work, struct vsock_sock, connect_work.work);
1282 sk = sk_vsock(vsk);
1283
1284 lock_sock(sk);
1285 if (sk->sk_state == TCP_SYN_SENT &&
1286 (sk->sk_shutdown != SHUTDOWN_MASK)) {
1287 sk->sk_state = TCP_CLOSE;
1288 sk->sk_socket->state = SS_UNCONNECTED;
1289 sk->sk_err = ETIMEDOUT;
1290 sk_error_report(sk);
1291 vsock_transport_cancel_pkt(vsk);
1292 }
1293 release_sock(sk);
1294
1295 sock_put(sk);
1296 }
1297
1298 static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1299 int addr_len, int flags)
1300 {
1301 int err;
1302 struct sock *sk;
1303 struct vsock_sock *vsk;
1304 const struct vsock_transport *transport;
1305 struct sockaddr_vm *remote_addr;
1306 long timeout;
1307 DEFINE_WAIT(wait);
1308
1309 err = 0;
1310 sk = sock->sk;
1311 vsk = vsock_sk(sk);
1312
1313 lock_sock(sk);
1314
1315 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1316 switch (sock->state) {
1317 case SS_CONNECTED:
1318 err = -EISCONN;
1319 goto out;
1320 case SS_DISCONNECTING:
1321 err = -EINVAL;
1322 goto out;
1323 case SS_CONNECTING:
1324 /* This continues on so we can move sock into the SS_CONNECTED
1325 * state once the connection has completed (at which point err
1326 * will be set to zero also). Otherwise, we will either wait
1327 * for the connection or return -EALREADY should this be a
1328 * non-blocking call.
1329 */
1330 err = -EALREADY;
1331 if (flags & O_NONBLOCK)
1332 goto out;
1333 break;
1334 default:
1335 if ((sk->sk_state == TCP_LISTEN) ||
1336 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1337 err = -EINVAL;
1338 goto out;
1339 }
1340
1341 /* Set the remote address that we are connecting to. */
1342 memcpy(&vsk->remote_addr, remote_addr,
1343 sizeof(vsk->remote_addr));
1344
1345 err = vsock_assign_transport(vsk, NULL);
1346 if (err)
1347 goto out;
1348
1349 transport = vsk->transport;
1350
1351 /* The hypervisor and well-known contexts do not have socket
1352 * endpoints.
1353 */
1354 if (!transport ||
1355 !transport->stream_allow(remote_addr->svm_cid,
1356 remote_addr->svm_port)) {
1357 err = -ENETUNREACH;
1358 goto out;
1359 }
1360
1361 err = vsock_auto_bind(vsk);
1362 if (err)
1363 goto out;
1364
1365 sk->sk_state = TCP_SYN_SENT;
1366
1367 err = transport->connect(vsk);
1368 if (err < 0)
1369 goto out;
1370
1371 /* Mark sock as connecting and set the error code to in
1372 * progress in case this is a non-blocking connect.
1373 */
1374 sock->state = SS_CONNECTING;
1375 err = -EINPROGRESS;
1376 }
1377
1378 /* The receive path will handle all communication until we are able to
1379 * enter the connected state. Here we wait for the connection to be
1380 * completed or a notification of an error.
1381 */
1382 timeout = vsk->connect_timeout;
1383 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1384
1385 while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1386 if (flags & O_NONBLOCK) {
1387 /* If we're not going to block, we schedule a timeout
1388 * function to generate a timeout on the connection
1389 * attempt, in case the peer doesn't respond in a
1390 * timely manner. We hold on to the socket until the
1391 * timeout fires.
1392 */
1393 sock_hold(sk);
1394
1395 /* If the timeout function is already scheduled,
1396 * reschedule it, then ungrab the socket refcount to
1397 * keep it balanced.
1398 */
1399 if (mod_delayed_work(system_wq, &vsk->connect_work,
1400 timeout))
1401 sock_put(sk);
1402
1403 /* Skip ahead to preserve error code set above. */
1404 goto out_wait;
1405 }
1406
1407 release_sock(sk);
1408 timeout = schedule_timeout(timeout);
1409 lock_sock(sk);
1410
1411 if (signal_pending(current)) {
1412 err = sock_intr_errno(timeout);
1413 sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1414 sock->state = SS_UNCONNECTED;
1415 vsock_transport_cancel_pkt(vsk);
1416 vsock_remove_connected(vsk);
1417 goto out_wait;
1418 } else if (timeout == 0) {
1419 err = -ETIMEDOUT;
1420 sk->sk_state = TCP_CLOSE;
1421 sock->state = SS_UNCONNECTED;
1422 vsock_transport_cancel_pkt(vsk);
1423 goto out_wait;
1424 }
1425
1426 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1427 }
1428
1429 if (sk->sk_err) {
1430 err = -sk->sk_err;
1431 sk->sk_state = TCP_CLOSE;
1432 sock->state = SS_UNCONNECTED;
1433 } else {
1434 err = 0;
1435 }
1436
1437 out_wait:
1438 finish_wait(sk_sleep(sk), &wait);
1439 out:
1440 release_sock(sk);
1441 return err;
1442 }
1443
1444 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1445 bool kern)
1446 {
1447 struct sock *listener;
1448 int err;
1449 struct sock *connected;
1450 struct vsock_sock *vconnected;
1451 long timeout;
1452 DEFINE_WAIT(wait);
1453
1454 err = 0;
1455 listener = sock->sk;
1456
1457 lock_sock(listener);
1458
1459 if (!sock_type_connectible(sock->type)) {
1460 err = -EOPNOTSUPP;
1461 goto out;
1462 }
1463
1464 if (listener->sk_state != TCP_LISTEN) {
1465 err = -EINVAL;
1466 goto out;
1467 }
1468
1469 /* Wait for children sockets to appear; these are the new sockets
1470 * created upon connection establishment.
1471 */
1472 timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1473 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1474
1475 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1476 listener->sk_err == 0) {
1477 release_sock(listener);
1478 timeout = schedule_timeout(timeout);
1479 finish_wait(sk_sleep(listener), &wait);
1480 lock_sock(listener);
1481
1482 if (signal_pending(current)) {
1483 err = sock_intr_errno(timeout);
1484 goto out;
1485 } else if (timeout == 0) {
1486 err = -EAGAIN;
1487 goto out;
1488 }
1489
1490 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1491 }
1492 finish_wait(sk_sleep(listener), &wait);
1493
1494 if (listener->sk_err)
1495 err = -listener->sk_err;
1496
1497 if (connected) {
1498 sk_acceptq_removed(listener);
1499
1500 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1501 vconnected = vsock_sk(connected);
1502
1503 /* If the listener socket has received an error, then we should
1504 * reject this socket and return. Note that we simply mark the
1505 * socket rejected, drop our reference, and let the cleanup
1506 * function handle the cleanup; the fact that we found it in
1507 * the listener's accept queue guarantees that the cleanup
1508 * function hasn't run yet.
1509 */
1510 if (err) {
1511 vconnected->rejected = true;
1512 } else {
1513 newsock->state = SS_CONNECTED;
1514 sock_graft(connected, newsock);
1515 }
1516
1517 release_sock(connected);
1518 sock_put(connected);
1519 }
1520
1521 out:
1522 release_sock(listener);
1523 return err;
1524 }
1525
1526 static int vsock_listen(struct socket *sock, int backlog)
1527 {
1528 int err;
1529 struct sock *sk;
1530 struct vsock_sock *vsk;
1531
1532 sk = sock->sk;
1533
1534 lock_sock(sk);
1535
1536 if (!sock_type_connectible(sk->sk_type)) {
1537 err = -EOPNOTSUPP;
1538 goto out;
1539 }
1540
1541 if (sock->state != SS_UNCONNECTED) {
1542 err = -EINVAL;
1543 goto out;
1544 }
1545
1546 vsk = vsock_sk(sk);
1547
1548 if (!vsock_addr_bound(&vsk->local_addr)) {
1549 err = -EINVAL;
1550 goto out;
1551 }
1552
1553 sk->sk_max_ack_backlog = backlog;
1554 sk->sk_state = TCP_LISTEN;
1555
1556 err = 0;
1557
1558 out:
1559 release_sock(sk);
1560 return err;
1561 }
1562
1563 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1564 const struct vsock_transport *transport,
1565 u64 val)
1566 {
1567 if (val > vsk->buffer_max_size)
1568 val = vsk->buffer_max_size;
1569
1570 if (val < vsk->buffer_min_size)
1571 val = vsk->buffer_min_size;
1572
1573 if (val != vsk->buffer_size &&
1574 transport && transport->notify_buffer_size)
1575 transport->notify_buffer_size(vsk, &val);
1576
1577 vsk->buffer_size = val;
1578 }
1579
1580 static int vsock_connectible_setsockopt(struct socket *sock,
1581 int level,
1582 int optname,
1583 sockptr_t optval,
1584 unsigned int optlen)
1585 {
1586 int err;
1587 struct sock *sk;
1588 struct vsock_sock *vsk;
1589 const struct vsock_transport *transport;
1590 u64 val;
1591
1592 if (level != AF_VSOCK)
1593 return -ENOPROTOOPT;
1594
1595 #define COPY_IN(_v) \
1596 do { \
1597 if (optlen < sizeof(_v)) { \
1598 err = -EINVAL; \
1599 goto exit; \
1600 } \
1601 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) { \
1602 err = -EFAULT; \
1603 goto exit; \
1604 } \
1605 } while (0)
1606
1607 err = 0;
1608 sk = sock->sk;
1609 vsk = vsock_sk(sk);
1610
1611 lock_sock(sk);
1612
1613 transport = vsk->transport;
1614
1615 switch (optname) {
1616 case SO_VM_SOCKETS_BUFFER_SIZE:
1617 COPY_IN(val);
1618 vsock_update_buffer_size(vsk, transport, val);
1619 break;
1620
1621 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1622 COPY_IN(val);
1623 vsk->buffer_max_size = val;
1624 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1625 break;
1626
1627 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1628 COPY_IN(val);
1629 vsk->buffer_min_size = val;
1630 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1631 break;
1632
1633 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1634 struct __kernel_old_timeval tv;
1635 COPY_IN(tv);
1636 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1637 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1638 vsk->connect_timeout = tv.tv_sec * HZ +
1639 DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1640 if (vsk->connect_timeout == 0)
1641 vsk->connect_timeout =
1642 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1643
1644 } else {
1645 err = -ERANGE;
1646 }
1647 break;
1648 }
1649
1650 default:
1651 err = -ENOPROTOOPT;
1652 break;
1653 }
1654
1655 #undef COPY_IN
1656
1657 exit:
1658 release_sock(sk);
1659 return err;
1660 }
1661
1662 static int vsock_connectible_getsockopt(struct socket *sock,
1663 int level, int optname,
1664 char __user *optval,
1665 int __user *optlen)
1666 {
1667 int err;
1668 int len;
1669 struct sock *sk;
1670 struct vsock_sock *vsk;
1671 u64 val;
1672
1673 if (level != AF_VSOCK)
1674 return -ENOPROTOOPT;
1675
1676 err = get_user(len, optlen);
1677 if (err != 0)
1678 return err;
1679
1680 #define COPY_OUT(_v) \
1681 do { \
1682 if (len < sizeof(_v)) \
1683 return -EINVAL; \
1684 \
1685 len = sizeof(_v); \
1686 if (copy_to_user(optval, &_v, len) != 0) \
1687 return -EFAULT; \
1688 \
1689 } while (0)
1690
1691 err = 0;
1692 sk = sock->sk;
1693 vsk = vsock_sk(sk);
1694
1695 switch (optname) {
1696 case SO_VM_SOCKETS_BUFFER_SIZE:
1697 val = vsk->buffer_size;
1698 COPY_OUT(val);
1699 break;
1700
1701 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1702 val = vsk->buffer_max_size;
1703 COPY_OUT(val);
1704 break;
1705
1706 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1707 val = vsk->buffer_min_size;
1708 COPY_OUT(val);
1709 break;
1710
1711 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1712 struct __kernel_old_timeval tv;
1713 tv.tv_sec = vsk->connect_timeout / HZ;
1714 tv.tv_usec =
1715 (vsk->connect_timeout -
1716 tv.tv_sec * HZ) * (1000000 / HZ);
1717 COPY_OUT(tv);
1718 break;
1719 }
1720 default:
1721 return -ENOPROTOOPT;
1722 }
1723
1724 err = put_user(len, optlen);
1725 if (err != 0)
1726 return -EFAULT;
1727
1728 #undef COPY_OUT
1729
1730 return 0;
1731 }
1732
1733 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
1734 size_t len)
1735 {
1736 struct sock *sk;
1737 struct vsock_sock *vsk;
1738 const struct vsock_transport *transport;
1739 ssize_t total_written;
1740 long timeout;
1741 int err;
1742 struct vsock_transport_send_notify_data send_data;
1743 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1744
1745 sk = sock->sk;
1746 vsk = vsock_sk(sk);
1747 total_written = 0;
1748 err = 0;
1749
1750 if (msg->msg_flags & MSG_OOB)
1751 return -EOPNOTSUPP;
1752
1753 lock_sock(sk);
1754
1755 transport = vsk->transport;
1756
1757 /* Callers should not provide a destination with connection oriented
1758 * sockets.
1759 */
1760 if (msg->msg_namelen) {
1761 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1762 goto out;
1763 }
1764
1765 /* Send data only if both sides are not shutdown in the direction. */
1766 if (sk->sk_shutdown & SEND_SHUTDOWN ||
1767 vsk->peer_shutdown & RCV_SHUTDOWN) {
1768 err = -EPIPE;
1769 goto out;
1770 }
1771
1772 if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1773 !vsock_addr_bound(&vsk->local_addr)) {
1774 err = -ENOTCONN;
1775 goto out;
1776 }
1777
1778 if (!vsock_addr_bound(&vsk->remote_addr)) {
1779 err = -EDESTADDRREQ;
1780 goto out;
1781 }
1782
1783 /* Wait for room in the produce queue to enqueue our user's data. */
1784 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1785
1786 err = transport->notify_send_init(vsk, &send_data);
1787 if (err < 0)
1788 goto out;
1789
1790 while (total_written < len) {
1791 ssize_t written;
1792
1793 add_wait_queue(sk_sleep(sk), &wait);
1794 while (vsock_stream_has_space(vsk) == 0 &&
1795 sk->sk_err == 0 &&
1796 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1797 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1798
1799 /* Don't wait for non-blocking sockets. */
1800 if (timeout == 0) {
1801 err = -EAGAIN;
1802 remove_wait_queue(sk_sleep(sk), &wait);
1803 goto out_err;
1804 }
1805
1806 err = transport->notify_send_pre_block(vsk, &send_data);
1807 if (err < 0) {
1808 remove_wait_queue(sk_sleep(sk), &wait);
1809 goto out_err;
1810 }
1811
1812 release_sock(sk);
1813 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1814 lock_sock(sk);
1815 if (signal_pending(current)) {
1816 err = sock_intr_errno(timeout);
1817 remove_wait_queue(sk_sleep(sk), &wait);
1818 goto out_err;
1819 } else if (timeout == 0) {
1820 err = -EAGAIN;
1821 remove_wait_queue(sk_sleep(sk), &wait);
1822 goto out_err;
1823 }
1824 }
1825 remove_wait_queue(sk_sleep(sk), &wait);
1826
1827 /* These checks occur both as part of and after the loop
1828 * conditional since we need to check before and after
1829 * sleeping.
1830 */
1831 if (sk->sk_err) {
1832 err = -sk->sk_err;
1833 goto out_err;
1834 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1835 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1836 err = -EPIPE;
1837 goto out_err;
1838 }
1839
1840 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1841 if (err < 0)
1842 goto out_err;
1843
1844 /* Note that enqueue will only write as many bytes as are free
1845 * in the produce queue, so we don't need to ensure len is
1846 * smaller than the queue size. It is the caller's
1847 * responsibility to check how many bytes we were able to send.
1848 */
1849
1850 if (sk->sk_type == SOCK_SEQPACKET) {
1851 written = transport->seqpacket_enqueue(vsk,
1852 msg, len - total_written);
1853 } else {
1854 written = transport->stream_enqueue(vsk,
1855 msg, len - total_written);
1856 }
1857 if (written < 0) {
1858 err = -ENOMEM;
1859 goto out_err;
1860 }
1861
1862 total_written += written;
1863
1864 err = transport->notify_send_post_enqueue(
1865 vsk, written, &send_data);
1866 if (err < 0)
1867 goto out_err;
1868
1869 }
1870
1871 out_err:
1872 if (total_written > 0) {
1873 /* Return number of written bytes only if:
1874 * 1) SOCK_STREAM socket.
1875 * 2) SOCK_SEQPACKET socket when whole buffer is sent.
1876 */
1877 if (sk->sk_type == SOCK_STREAM || total_written == len)
1878 err = total_written;
1879 }
1880 out:
1881 release_sock(sk);
1882 return err;
1883 }
1884
1885 static int vsock_connectible_wait_data(struct sock *sk,
1886 struct wait_queue_entry *wait,
1887 long timeout,
1888 struct vsock_transport_recv_notify_data *recv_data,
1889 size_t target)
1890 {
1891 const struct vsock_transport *transport;
1892 struct vsock_sock *vsk;
1893 s64 data;
1894 int err;
1895
1896 vsk = vsock_sk(sk);
1897 err = 0;
1898 transport = vsk->transport;
1899
1900 while ((data = vsock_connectible_has_data(vsk)) == 0) {
1901 prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
1902
1903 if (sk->sk_err != 0 ||
1904 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1905 (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1906 break;
1907 }
1908
1909 /* Don't wait for non-blocking sockets. */
1910 if (timeout == 0) {
1911 err = -EAGAIN;
1912 break;
1913 }
1914
1915 if (recv_data) {
1916 err = transport->notify_recv_pre_block(vsk, target, recv_data);
1917 if (err < 0)
1918 break;
1919 }
1920
1921 release_sock(sk);
1922 timeout = schedule_timeout(timeout);
1923 lock_sock(sk);
1924
1925 if (signal_pending(current)) {
1926 err = sock_intr_errno(timeout);
1927 break;
1928 } else if (timeout == 0) {
1929 err = -EAGAIN;
1930 break;
1931 }
1932 }
1933
1934 finish_wait(sk_sleep(sk), wait);
1935
1936 if (err)
1937 return err;
1938
1939 /* Internal transport error when checking for available
1940 * data. XXX This should be changed to a connection
1941 * reset in a later change.
1942 */
1943 if (data < 0)
1944 return -ENOMEM;
1945
1946 return data;
1947 }
1948
1949 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
1950 size_t len, int flags)
1951 {
1952 struct vsock_transport_recv_notify_data recv_data;
1953 const struct vsock_transport *transport;
1954 struct vsock_sock *vsk;
1955 ssize_t copied;
1956 size_t target;
1957 long timeout;
1958 int err;
1959
1960 DEFINE_WAIT(wait);
1961
1962 vsk = vsock_sk(sk);
1963 transport = vsk->transport;
1964
1965 /* We must not copy less than target bytes into the user's buffer
1966 * before returning successfully, so we wait for the consume queue to
1967 * have that much data to consume before dequeueing. Note that this
1968 * makes it impossible to handle cases where target is greater than the
1969 * queue size.
1970 */
1971 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1972 if (target >= transport->stream_rcvhiwat(vsk)) {
1973 err = -ENOMEM;
1974 goto out;
1975 }
1976 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1977 copied = 0;
1978
1979 err = transport->notify_recv_init(vsk, target, &recv_data);
1980 if (err < 0)
1981 goto out;
1982
1983
1984 while (1) {
1985 ssize_t read;
1986
1987 err = vsock_connectible_wait_data(sk, &wait, timeout,
1988 &recv_data, target);
1989 if (err <= 0)
1990 break;
1991
1992 err = transport->notify_recv_pre_dequeue(vsk, target,
1993 &recv_data);
1994 if (err < 0)
1995 break;
1996
1997 read = transport->stream_dequeue(vsk, msg, len - copied, flags);
1998 if (read < 0) {
1999 err = -ENOMEM;
2000 break;
2001 }
2002
2003 copied += read;
2004
2005 err = transport->notify_recv_post_dequeue(vsk, target, read,
2006 !(flags & MSG_PEEK), &recv_data);
2007 if (err < 0)
2008 goto out;
2009
2010 if (read >= target || flags & MSG_PEEK)
2011 break;
2012
2013 target -= read;
2014 }
2015
2016 if (sk->sk_err)
2017 err = -sk->sk_err;
2018 else if (sk->sk_shutdown & RCV_SHUTDOWN)
2019 err = 0;
2020
2021 if (copied > 0)
2022 err = copied;
2023
2024 out:
2025 return err;
2026 }
2027
2028 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2029 size_t len, int flags)
2030 {
2031 const struct vsock_transport *transport;
2032 struct vsock_sock *vsk;
2033 ssize_t msg_len;
2034 long timeout;
2035 int err = 0;
2036 DEFINE_WAIT(wait);
2037
2038 vsk = vsock_sk(sk);
2039 transport = vsk->transport;
2040
2041 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2042
2043 err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2044 if (err <= 0)
2045 goto out;
2046
2047 msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2048
2049 if (msg_len < 0) {
2050 err = -ENOMEM;
2051 goto out;
2052 }
2053
2054 if (sk->sk_err) {
2055 err = -sk->sk_err;
2056 } else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2057 err = 0;
2058 } else {
2059 /* User sets MSG_TRUNC, so return real length of
2060 * packet.
2061 */
2062 if (flags & MSG_TRUNC)
2063 err = msg_len;
2064 else
2065 err = len - msg_data_left(msg);
2066
2067 /* Always set MSG_TRUNC if real length of packet is
2068 * bigger than user's buffer.
2069 */
2070 if (msg_len > len)
2071 msg->msg_flags |= MSG_TRUNC;
2072 }
2073
2074 out:
2075 return err;
2076 }
2077
2078 static int
2079 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2080 int flags)
2081 {
2082 struct sock *sk;
2083 struct vsock_sock *vsk;
2084 const struct vsock_transport *transport;
2085 int err;
2086
2087 DEFINE_WAIT(wait);
2088
2089 sk = sock->sk;
2090 vsk = vsock_sk(sk);
2091 err = 0;
2092
2093 lock_sock(sk);
2094
2095 transport = vsk->transport;
2096
2097 if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2098 /* Recvmsg is supposed to return 0 if a peer performs an
2099 * orderly shutdown. Differentiate between that case and when a
2100 * peer has not connected or a local shutdown occurred with the
2101 * SOCK_DONE flag.
2102 */
2103 if (sock_flag(sk, SOCK_DONE))
2104 err = 0;
2105 else
2106 err = -ENOTCONN;
2107
2108 goto out;
2109 }
2110
2111 if (flags & MSG_OOB) {
2112 err = -EOPNOTSUPP;
2113 goto out;
2114 }
2115
2116 /* We don't check peer_shutdown flag here since peer may actually shut
2117 * down, but there can be data in the queue that a local socket can
2118 * receive.
2119 */
2120 if (sk->sk_shutdown & RCV_SHUTDOWN) {
2121 err = 0;
2122 goto out;
2123 }
2124
2125 /* It is valid on Linux to pass in a zero-length receive buffer. This
2126 * is not an error. We may as well bail out now.
2127 */
2128 if (!len) {
2129 err = 0;
2130 goto out;
2131 }
2132
2133 if (sk->sk_type == SOCK_STREAM)
2134 err = __vsock_stream_recvmsg(sk, msg, len, flags);
2135 else
2136 err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2137
2138 out:
2139 release_sock(sk);
2140 return err;
2141 }
2142
2143 static const struct proto_ops vsock_stream_ops = {
2144 .family = PF_VSOCK,
2145 .owner = THIS_MODULE,
2146 .release = vsock_release,
2147 .bind = vsock_bind,
2148 .connect = vsock_connect,
2149 .socketpair = sock_no_socketpair,
2150 .accept = vsock_accept,
2151 .getname = vsock_getname,
2152 .poll = vsock_poll,
2153 .ioctl = sock_no_ioctl,
2154 .listen = vsock_listen,
2155 .shutdown = vsock_shutdown,
2156 .setsockopt = vsock_connectible_setsockopt,
2157 .getsockopt = vsock_connectible_getsockopt,
2158 .sendmsg = vsock_connectible_sendmsg,
2159 .recvmsg = vsock_connectible_recvmsg,
2160 .mmap = sock_no_mmap,
2161 .sendpage = sock_no_sendpage,
2162 };
2163
2164 static const struct proto_ops vsock_seqpacket_ops = {
2165 .family = PF_VSOCK,
2166 .owner = THIS_MODULE,
2167 .release = vsock_release,
2168 .bind = vsock_bind,
2169 .connect = vsock_connect,
2170 .socketpair = sock_no_socketpair,
2171 .accept = vsock_accept,
2172 .getname = vsock_getname,
2173 .poll = vsock_poll,
2174 .ioctl = sock_no_ioctl,
2175 .listen = vsock_listen,
2176 .shutdown = vsock_shutdown,
2177 .setsockopt = vsock_connectible_setsockopt,
2178 .getsockopt = vsock_connectible_getsockopt,
2179 .sendmsg = vsock_connectible_sendmsg,
2180 .recvmsg = vsock_connectible_recvmsg,
2181 .mmap = sock_no_mmap,
2182 .sendpage = sock_no_sendpage,
2183 };
2184
2185 static int vsock_create(struct net *net, struct socket *sock,
2186 int protocol, int kern)
2187 {
2188 struct vsock_sock *vsk;
2189 struct sock *sk;
2190 int ret;
2191
2192 if (!sock)
2193 return -EINVAL;
2194
2195 if (protocol && protocol != PF_VSOCK)
2196 return -EPROTONOSUPPORT;
2197
2198 switch (sock->type) {
2199 case SOCK_DGRAM:
2200 sock->ops = &vsock_dgram_ops;
2201 break;
2202 case SOCK_STREAM:
2203 sock->ops = &vsock_stream_ops;
2204 break;
2205 case SOCK_SEQPACKET:
2206 sock->ops = &vsock_seqpacket_ops;
2207 break;
2208 default:
2209 return -ESOCKTNOSUPPORT;
2210 }
2211
2212 sock->state = SS_UNCONNECTED;
2213
2214 sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2215 if (!sk)
2216 return -ENOMEM;
2217
2218 vsk = vsock_sk(sk);
2219
2220 if (sock->type == SOCK_DGRAM) {
2221 ret = vsock_assign_transport(vsk, NULL);
2222 if (ret < 0) {
2223 sock_put(sk);
2224 return ret;
2225 }
2226 }
2227
2228 vsock_insert_unbound(vsk);
2229
2230 return 0;
2231 }
2232
2233 static const struct net_proto_family vsock_family_ops = {
2234 .family = AF_VSOCK,
2235 .create = vsock_create,
2236 .owner = THIS_MODULE,
2237 };
2238
2239 static long vsock_dev_do_ioctl(struct file *filp,
2240 unsigned int cmd, void __user *ptr)
2241 {
2242 u32 __user *p = ptr;
2243 u32 cid = VMADDR_CID_ANY;
2244 int retval = 0;
2245
2246 switch (cmd) {
2247 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2248 /* To be compatible with the VMCI behavior, we prioritize the
2249 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2250 */
2251 if (transport_g2h)
2252 cid = transport_g2h->get_local_cid();
2253 else if (transport_h2g)
2254 cid = transport_h2g->get_local_cid();
2255
2256 if (put_user(cid, p) != 0)
2257 retval = -EFAULT;
2258 break;
2259
2260 default:
2261 retval = -ENOIOCTLCMD;
2262 }
2263
2264 return retval;
2265 }
2266
2267 static long vsock_dev_ioctl(struct file *filp,
2268 unsigned int cmd, unsigned long arg)
2269 {
2270 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2271 }
2272
2273 #ifdef CONFIG_COMPAT
2274 static long vsock_dev_compat_ioctl(struct file *filp,
2275 unsigned int cmd, unsigned long arg)
2276 {
2277 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2278 }
2279 #endif
2280
2281 static const struct file_operations vsock_device_ops = {
2282 .owner = THIS_MODULE,
2283 .unlocked_ioctl = vsock_dev_ioctl,
2284 #ifdef CONFIG_COMPAT
2285 .compat_ioctl = vsock_dev_compat_ioctl,
2286 #endif
2287 .open = nonseekable_open,
2288 };
2289
2290 static struct miscdevice vsock_device = {
2291 .name = "vsock",
2292 .fops = &vsock_device_ops,
2293 };
2294
2295 static int __init vsock_init(void)
2296 {
2297 int err = 0;
2298
2299 vsock_init_tables();
2300
2301 vsock_proto.owner = THIS_MODULE;
2302 vsock_device.minor = MISC_DYNAMIC_MINOR;
2303 err = misc_register(&vsock_device);
2304 if (err) {
2305 pr_err("Failed to register misc device\n");
2306 goto err_reset_transport;
2307 }
2308
2309 err = proto_register(&vsock_proto, 1); /* we want our slab */
2310 if (err) {
2311 pr_err("Cannot register vsock protocol\n");
2312 goto err_deregister_misc;
2313 }
2314
2315 err = sock_register(&vsock_family_ops);
2316 if (err) {
2317 pr_err("could not register af_vsock (%d) address family: %d\n",
2318 AF_VSOCK, err);
2319 goto err_unregister_proto;
2320 }
2321
2322 return 0;
2323
2324 err_unregister_proto:
2325 proto_unregister(&vsock_proto);
2326 err_deregister_misc:
2327 misc_deregister(&vsock_device);
2328 err_reset_transport:
2329 return err;
2330 }
2331
2332 static void __exit vsock_exit(void)
2333 {
2334 misc_deregister(&vsock_device);
2335 sock_unregister(AF_VSOCK);
2336 proto_unregister(&vsock_proto);
2337 }
2338
2339 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2340 {
2341 return vsk->transport;
2342 }
2343 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2344
2345 int vsock_core_register(const struct vsock_transport *t, int features)
2346 {
2347 const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2348 int err = mutex_lock_interruptible(&vsock_register_mutex);
2349
2350 if (err)
2351 return err;
2352
2353 t_h2g = transport_h2g;
2354 t_g2h = transport_g2h;
2355 t_dgram = transport_dgram;
2356 t_local = transport_local;
2357
2358 if (features & VSOCK_TRANSPORT_F_H2G) {
2359 if (t_h2g) {
2360 err = -EBUSY;
2361 goto err_busy;
2362 }
2363 t_h2g = t;
2364 }
2365
2366 if (features & VSOCK_TRANSPORT_F_G2H) {
2367 if (t_g2h) {
2368 err = -EBUSY;
2369 goto err_busy;
2370 }
2371 t_g2h = t;
2372 }
2373
2374 if (features & VSOCK_TRANSPORT_F_DGRAM) {
2375 if (t_dgram) {
2376 err = -EBUSY;
2377 goto err_busy;
2378 }
2379 t_dgram = t;
2380 }
2381
2382 if (features & VSOCK_TRANSPORT_F_LOCAL) {
2383 if (t_local) {
2384 err = -EBUSY;
2385 goto err_busy;
2386 }
2387 t_local = t;
2388 }
2389
2390 transport_h2g = t_h2g;
2391 transport_g2h = t_g2h;
2392 transport_dgram = t_dgram;
2393 transport_local = t_local;
2394
2395 err_busy:
2396 mutex_unlock(&vsock_register_mutex);
2397 return err;
2398 }
2399 EXPORT_SYMBOL_GPL(vsock_core_register);
2400
2401 void vsock_core_unregister(const struct vsock_transport *t)
2402 {
2403 mutex_lock(&vsock_register_mutex);
2404
2405 if (transport_h2g == t)
2406 transport_h2g = NULL;
2407
2408 if (transport_g2h == t)
2409 transport_g2h = NULL;
2410
2411 if (transport_dgram == t)
2412 transport_dgram = NULL;
2413
2414 if (transport_local == t)
2415 transport_local = NULL;
2416
2417 mutex_unlock(&vsock_register_mutex);
2418 }
2419 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2420
2421 module_init(vsock_init);
2422 module_exit(vsock_exit);
2423
2424 MODULE_AUTHOR("VMware, Inc.");
2425 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2426 MODULE_VERSION("1.0.2.0-k");
2427 MODULE_LICENSE("GPL v2");