]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/vmw_vsock/af_vsock.c
Merge remote-tracking branches 'asoc/topic/adsp', 'asoc/topic/ak4613', 'asoc/topic...
[mirror_ubuntu-bionic-kernel.git] / net / vmw_vsock / af_vsock.c
1 /*
2 * VMware vSockets Driver
3 *
4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation version 2 and no later version.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 */
15
16 /* Implementation notes:
17 *
18 * - There are two kinds of sockets: those created by user action (such as
19 * calling socket(2)) and those created by incoming connection request packets.
20 *
21 * - There are two "global" tables, one for bound sockets (sockets that have
22 * specified an address that they are responsible for) and one for connected
23 * sockets (sockets that have established a connection with another socket).
24 * These tables are "global" in that all sockets on the system are placed
25 * within them. - Note, though, that the bound table contains an extra entry
26 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
27 * that list. The bound table is used solely for lookup of sockets when packets
28 * are received and that's not necessary for SOCK_DGRAM sockets since we create
29 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
30 * sockets out of the bound hash buckets will reduce the chance of collisions
31 * when looking for SOCK_STREAM sockets and prevents us from having to check the
32 * socket type in the hash table lookups.
33 *
34 * - Sockets created by user action will either be "client" sockets that
35 * initiate a connection or "server" sockets that listen for connections; we do
36 * not support simultaneous connects (two "client" sockets connecting).
37 *
38 * - "Server" sockets are referred to as listener sockets throughout this
39 * implementation because they are in the VSOCK_SS_LISTEN state. When a
40 * connection request is received (the second kind of socket mentioned above),
41 * we create a new socket and refer to it as a pending socket. These pending
42 * sockets are placed on the pending connection list of the listener socket.
43 * When future packets are received for the address the listener socket is
44 * bound to, we check if the source of the packet is from one that has an
45 * existing pending connection. If it does, we process the packet for the
46 * pending socket. When that socket reaches the connected state, it is removed
47 * from the listener socket's pending list and enqueued in the listener
48 * socket's accept queue. Callers of accept(2) will accept connected sockets
49 * from the listener socket's accept queue. If the socket cannot be accepted
50 * for some reason then it is marked rejected. Once the connection is
51 * accepted, it is owned by the user process and the responsibility for cleanup
52 * falls with that user process.
53 *
54 * - It is possible that these pending sockets will never reach the connected
55 * state; in fact, we may never receive another packet after the connection
56 * request. Because of this, we must schedule a cleanup function to run in the
57 * future, after some amount of time passes where a connection should have been
58 * established. This function ensures that the socket is off all lists so it
59 * cannot be retrieved, then drops all references to the socket so it is cleaned
60 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
61 * function will also cleanup rejected sockets, those that reach the connected
62 * state but leave it before they have been accepted.
63 *
64 * - Lock ordering for pending or accept queue sockets is:
65 *
66 * lock_sock(listener);
67 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
68 *
69 * Using explicit nested locking keeps lockdep happy since normally only one
70 * lock of a given class may be taken at a time.
71 *
72 * - Sockets created by user action will be cleaned up when the user process
73 * calls close(2), causing our release implementation to be called. Our release
74 * implementation will perform some cleanup then drop the last reference so our
75 * sk_destruct implementation is invoked. Our sk_destruct implementation will
76 * perform additional cleanup that's common for both types of sockets.
77 *
78 * - A socket's reference count is what ensures that the structure won't be
79 * freed. Each entry in a list (such as the "global" bound and connected tables
80 * and the listener socket's pending list and connected queue) ensures a
81 * reference. When we defer work until process context and pass a socket as our
82 * argument, we must ensure the reference count is increased to ensure the
83 * socket isn't freed before the function is run; the deferred function will
84 * then drop the reference.
85 */
86
87 #include <linux/types.h>
88 #include <linux/bitops.h>
89 #include <linux/cred.h>
90 #include <linux/init.h>
91 #include <linux/io.h>
92 #include <linux/kernel.h>
93 #include <linux/sched/signal.h>
94 #include <linux/kmod.h>
95 #include <linux/list.h>
96 #include <linux/miscdevice.h>
97 #include <linux/module.h>
98 #include <linux/mutex.h>
99 #include <linux/net.h>
100 #include <linux/poll.h>
101 #include <linux/skbuff.h>
102 #include <linux/smp.h>
103 #include <linux/socket.h>
104 #include <linux/stddef.h>
105 #include <linux/unistd.h>
106 #include <linux/wait.h>
107 #include <linux/workqueue.h>
108 #include <net/sock.h>
109 #include <net/af_vsock.h>
110
111 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
112 static void vsock_sk_destruct(struct sock *sk);
113 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
114
115 /* Protocol family. */
116 static struct proto vsock_proto = {
117 .name = "AF_VSOCK",
118 .owner = THIS_MODULE,
119 .obj_size = sizeof(struct vsock_sock),
120 };
121
122 /* The default peer timeout indicates how long we will wait for a peer response
123 * to a control message.
124 */
125 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
126
127 static const struct vsock_transport *transport;
128 static DEFINE_MUTEX(vsock_register_mutex);
129
130 /**** EXPORTS ****/
131
132 /* Get the ID of the local context. This is transport dependent. */
133
134 int vm_sockets_get_local_cid(void)
135 {
136 return transport->get_local_cid();
137 }
138 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
139
140 /**** UTILS ****/
141
142 /* Each bound VSocket is stored in the bind hash table and each connected
143 * VSocket is stored in the connected hash table.
144 *
145 * Unbound sockets are all put on the same list attached to the end of the hash
146 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
147 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
148 * represents the list that addr hashes to).
149 *
150 * Specifically, we initialize the vsock_bind_table array to a size of
151 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
152 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
153 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
154 * mods with VSOCK_HASH_SIZE to ensure this.
155 */
156 #define VSOCK_HASH_SIZE 251
157 #define MAX_PORT_RETRIES 24
158
159 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
160 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
161 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
162
163 /* XXX This can probably be implemented in a better way. */
164 #define VSOCK_CONN_HASH(src, dst) \
165 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
166 #define vsock_connected_sockets(src, dst) \
167 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
168 #define vsock_connected_sockets_vsk(vsk) \
169 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
170
171 static struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
172 static struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
173 static DEFINE_SPINLOCK(vsock_table_lock);
174
175 /* Autobind this socket to the local address if necessary. */
176 static int vsock_auto_bind(struct vsock_sock *vsk)
177 {
178 struct sock *sk = sk_vsock(vsk);
179 struct sockaddr_vm local_addr;
180
181 if (vsock_addr_bound(&vsk->local_addr))
182 return 0;
183 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
184 return __vsock_bind(sk, &local_addr);
185 }
186
187 static void vsock_init_tables(void)
188 {
189 int i;
190
191 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
192 INIT_LIST_HEAD(&vsock_bind_table[i]);
193
194 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
195 INIT_LIST_HEAD(&vsock_connected_table[i]);
196 }
197
198 static void __vsock_insert_bound(struct list_head *list,
199 struct vsock_sock *vsk)
200 {
201 sock_hold(&vsk->sk);
202 list_add(&vsk->bound_table, list);
203 }
204
205 static void __vsock_insert_connected(struct list_head *list,
206 struct vsock_sock *vsk)
207 {
208 sock_hold(&vsk->sk);
209 list_add(&vsk->connected_table, list);
210 }
211
212 static void __vsock_remove_bound(struct vsock_sock *vsk)
213 {
214 list_del_init(&vsk->bound_table);
215 sock_put(&vsk->sk);
216 }
217
218 static void __vsock_remove_connected(struct vsock_sock *vsk)
219 {
220 list_del_init(&vsk->connected_table);
221 sock_put(&vsk->sk);
222 }
223
224 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
225 {
226 struct vsock_sock *vsk;
227
228 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
229 if (addr->svm_port == vsk->local_addr.svm_port)
230 return sk_vsock(vsk);
231
232 return NULL;
233 }
234
235 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
236 struct sockaddr_vm *dst)
237 {
238 struct vsock_sock *vsk;
239
240 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
241 connected_table) {
242 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
243 dst->svm_port == vsk->local_addr.svm_port) {
244 return sk_vsock(vsk);
245 }
246 }
247
248 return NULL;
249 }
250
251 static bool __vsock_in_bound_table(struct vsock_sock *vsk)
252 {
253 return !list_empty(&vsk->bound_table);
254 }
255
256 static bool __vsock_in_connected_table(struct vsock_sock *vsk)
257 {
258 return !list_empty(&vsk->connected_table);
259 }
260
261 static void vsock_insert_unbound(struct vsock_sock *vsk)
262 {
263 spin_lock_bh(&vsock_table_lock);
264 __vsock_insert_bound(vsock_unbound_sockets, vsk);
265 spin_unlock_bh(&vsock_table_lock);
266 }
267
268 void vsock_insert_connected(struct vsock_sock *vsk)
269 {
270 struct list_head *list = vsock_connected_sockets(
271 &vsk->remote_addr, &vsk->local_addr);
272
273 spin_lock_bh(&vsock_table_lock);
274 __vsock_insert_connected(list, vsk);
275 spin_unlock_bh(&vsock_table_lock);
276 }
277 EXPORT_SYMBOL_GPL(vsock_insert_connected);
278
279 void vsock_remove_bound(struct vsock_sock *vsk)
280 {
281 spin_lock_bh(&vsock_table_lock);
282 __vsock_remove_bound(vsk);
283 spin_unlock_bh(&vsock_table_lock);
284 }
285 EXPORT_SYMBOL_GPL(vsock_remove_bound);
286
287 void vsock_remove_connected(struct vsock_sock *vsk)
288 {
289 spin_lock_bh(&vsock_table_lock);
290 __vsock_remove_connected(vsk);
291 spin_unlock_bh(&vsock_table_lock);
292 }
293 EXPORT_SYMBOL_GPL(vsock_remove_connected);
294
295 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
296 {
297 struct sock *sk;
298
299 spin_lock_bh(&vsock_table_lock);
300 sk = __vsock_find_bound_socket(addr);
301 if (sk)
302 sock_hold(sk);
303
304 spin_unlock_bh(&vsock_table_lock);
305
306 return sk;
307 }
308 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
309
310 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
311 struct sockaddr_vm *dst)
312 {
313 struct sock *sk;
314
315 spin_lock_bh(&vsock_table_lock);
316 sk = __vsock_find_connected_socket(src, dst);
317 if (sk)
318 sock_hold(sk);
319
320 spin_unlock_bh(&vsock_table_lock);
321
322 return sk;
323 }
324 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
325
326 static bool vsock_in_bound_table(struct vsock_sock *vsk)
327 {
328 bool ret;
329
330 spin_lock_bh(&vsock_table_lock);
331 ret = __vsock_in_bound_table(vsk);
332 spin_unlock_bh(&vsock_table_lock);
333
334 return ret;
335 }
336
337 static bool vsock_in_connected_table(struct vsock_sock *vsk)
338 {
339 bool ret;
340
341 spin_lock_bh(&vsock_table_lock);
342 ret = __vsock_in_connected_table(vsk);
343 spin_unlock_bh(&vsock_table_lock);
344
345 return ret;
346 }
347
348 void vsock_remove_sock(struct vsock_sock *vsk)
349 {
350 if (vsock_in_bound_table(vsk))
351 vsock_remove_bound(vsk);
352
353 if (vsock_in_connected_table(vsk))
354 vsock_remove_connected(vsk);
355 }
356 EXPORT_SYMBOL_GPL(vsock_remove_sock);
357
358 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
359 {
360 int i;
361
362 spin_lock_bh(&vsock_table_lock);
363
364 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
365 struct vsock_sock *vsk;
366 list_for_each_entry(vsk, &vsock_connected_table[i],
367 connected_table)
368 fn(sk_vsock(vsk));
369 }
370
371 spin_unlock_bh(&vsock_table_lock);
372 }
373 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
374
375 void vsock_add_pending(struct sock *listener, struct sock *pending)
376 {
377 struct vsock_sock *vlistener;
378 struct vsock_sock *vpending;
379
380 vlistener = vsock_sk(listener);
381 vpending = vsock_sk(pending);
382
383 sock_hold(pending);
384 sock_hold(listener);
385 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
386 }
387 EXPORT_SYMBOL_GPL(vsock_add_pending);
388
389 void vsock_remove_pending(struct sock *listener, struct sock *pending)
390 {
391 struct vsock_sock *vpending = vsock_sk(pending);
392
393 list_del_init(&vpending->pending_links);
394 sock_put(listener);
395 sock_put(pending);
396 }
397 EXPORT_SYMBOL_GPL(vsock_remove_pending);
398
399 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
400 {
401 struct vsock_sock *vlistener;
402 struct vsock_sock *vconnected;
403
404 vlistener = vsock_sk(listener);
405 vconnected = vsock_sk(connected);
406
407 sock_hold(connected);
408 sock_hold(listener);
409 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
410 }
411 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
412
413 static struct sock *vsock_dequeue_accept(struct sock *listener)
414 {
415 struct vsock_sock *vlistener;
416 struct vsock_sock *vconnected;
417
418 vlistener = vsock_sk(listener);
419
420 if (list_empty(&vlistener->accept_queue))
421 return NULL;
422
423 vconnected = list_entry(vlistener->accept_queue.next,
424 struct vsock_sock, accept_queue);
425
426 list_del_init(&vconnected->accept_queue);
427 sock_put(listener);
428 /* The caller will need a reference on the connected socket so we let
429 * it call sock_put().
430 */
431
432 return sk_vsock(vconnected);
433 }
434
435 static bool vsock_is_accept_queue_empty(struct sock *sk)
436 {
437 struct vsock_sock *vsk = vsock_sk(sk);
438 return list_empty(&vsk->accept_queue);
439 }
440
441 static bool vsock_is_pending(struct sock *sk)
442 {
443 struct vsock_sock *vsk = vsock_sk(sk);
444 return !list_empty(&vsk->pending_links);
445 }
446
447 static int vsock_send_shutdown(struct sock *sk, int mode)
448 {
449 return transport->shutdown(vsock_sk(sk), mode);
450 }
451
452 void vsock_pending_work(struct work_struct *work)
453 {
454 struct sock *sk;
455 struct sock *listener;
456 struct vsock_sock *vsk;
457 bool cleanup;
458
459 vsk = container_of(work, struct vsock_sock, dwork.work);
460 sk = sk_vsock(vsk);
461 listener = vsk->listener;
462 cleanup = true;
463
464 lock_sock(listener);
465 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
466
467 if (vsock_is_pending(sk)) {
468 vsock_remove_pending(listener, sk);
469
470 listener->sk_ack_backlog--;
471 } else if (!vsk->rejected) {
472 /* We are not on the pending list and accept() did not reject
473 * us, so we must have been accepted by our user process. We
474 * just need to drop our references to the sockets and be on
475 * our way.
476 */
477 cleanup = false;
478 goto out;
479 }
480
481 /* We need to remove ourself from the global connected sockets list so
482 * incoming packets can't find this socket, and to reduce the reference
483 * count.
484 */
485 if (vsock_in_connected_table(vsk))
486 vsock_remove_connected(vsk);
487
488 sk->sk_state = SS_FREE;
489
490 out:
491 release_sock(sk);
492 release_sock(listener);
493 if (cleanup)
494 sock_put(sk);
495
496 sock_put(sk);
497 sock_put(listener);
498 }
499 EXPORT_SYMBOL_GPL(vsock_pending_work);
500
501 /**** SOCKET OPERATIONS ****/
502
503 static int __vsock_bind_stream(struct vsock_sock *vsk,
504 struct sockaddr_vm *addr)
505 {
506 static u32 port = LAST_RESERVED_PORT + 1;
507 struct sockaddr_vm new_addr;
508
509 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
510
511 if (addr->svm_port == VMADDR_PORT_ANY) {
512 bool found = false;
513 unsigned int i;
514
515 for (i = 0; i < MAX_PORT_RETRIES; i++) {
516 if (port <= LAST_RESERVED_PORT)
517 port = LAST_RESERVED_PORT + 1;
518
519 new_addr.svm_port = port++;
520
521 if (!__vsock_find_bound_socket(&new_addr)) {
522 found = true;
523 break;
524 }
525 }
526
527 if (!found)
528 return -EADDRNOTAVAIL;
529 } else {
530 /* If port is in reserved range, ensure caller
531 * has necessary privileges.
532 */
533 if (addr->svm_port <= LAST_RESERVED_PORT &&
534 !capable(CAP_NET_BIND_SERVICE)) {
535 return -EACCES;
536 }
537
538 if (__vsock_find_bound_socket(&new_addr))
539 return -EADDRINUSE;
540 }
541
542 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
543
544 /* Remove stream sockets from the unbound list and add them to the hash
545 * table for easy lookup by its address. The unbound list is simply an
546 * extra entry at the end of the hash table, a trick used by AF_UNIX.
547 */
548 __vsock_remove_bound(vsk);
549 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
550
551 return 0;
552 }
553
554 static int __vsock_bind_dgram(struct vsock_sock *vsk,
555 struct sockaddr_vm *addr)
556 {
557 return transport->dgram_bind(vsk, addr);
558 }
559
560 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
561 {
562 struct vsock_sock *vsk = vsock_sk(sk);
563 u32 cid;
564 int retval;
565
566 /* First ensure this socket isn't already bound. */
567 if (vsock_addr_bound(&vsk->local_addr))
568 return -EINVAL;
569
570 /* Now bind to the provided address or select appropriate values if
571 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
572 * like AF_INET prevents binding to a non-local IP address (in most
573 * cases), we only allow binding to the local CID.
574 */
575 cid = transport->get_local_cid();
576 if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
577 return -EADDRNOTAVAIL;
578
579 switch (sk->sk_socket->type) {
580 case SOCK_STREAM:
581 spin_lock_bh(&vsock_table_lock);
582 retval = __vsock_bind_stream(vsk, addr);
583 spin_unlock_bh(&vsock_table_lock);
584 break;
585
586 case SOCK_DGRAM:
587 retval = __vsock_bind_dgram(vsk, addr);
588 break;
589
590 default:
591 retval = -EINVAL;
592 break;
593 }
594
595 return retval;
596 }
597
598 struct sock *__vsock_create(struct net *net,
599 struct socket *sock,
600 struct sock *parent,
601 gfp_t priority,
602 unsigned short type,
603 int kern)
604 {
605 struct sock *sk;
606 struct vsock_sock *psk;
607 struct vsock_sock *vsk;
608
609 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
610 if (!sk)
611 return NULL;
612
613 sock_init_data(sock, sk);
614
615 /* sk->sk_type is normally set in sock_init_data, but only if sock is
616 * non-NULL. We make sure that our sockets always have a type by
617 * setting it here if needed.
618 */
619 if (!sock)
620 sk->sk_type = type;
621
622 vsk = vsock_sk(sk);
623 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
624 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
625
626 sk->sk_destruct = vsock_sk_destruct;
627 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
628 sk->sk_state = 0;
629 sock_reset_flag(sk, SOCK_DONE);
630
631 INIT_LIST_HEAD(&vsk->bound_table);
632 INIT_LIST_HEAD(&vsk->connected_table);
633 vsk->listener = NULL;
634 INIT_LIST_HEAD(&vsk->pending_links);
635 INIT_LIST_HEAD(&vsk->accept_queue);
636 vsk->rejected = false;
637 vsk->sent_request = false;
638 vsk->ignore_connecting_rst = false;
639 vsk->peer_shutdown = 0;
640
641 psk = parent ? vsock_sk(parent) : NULL;
642 if (parent) {
643 vsk->trusted = psk->trusted;
644 vsk->owner = get_cred(psk->owner);
645 vsk->connect_timeout = psk->connect_timeout;
646 } else {
647 vsk->trusted = capable(CAP_NET_ADMIN);
648 vsk->owner = get_current_cred();
649 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
650 }
651
652 if (transport->init(vsk, psk) < 0) {
653 sk_free(sk);
654 return NULL;
655 }
656
657 if (sock)
658 vsock_insert_unbound(vsk);
659
660 return sk;
661 }
662 EXPORT_SYMBOL_GPL(__vsock_create);
663
664 static void __vsock_release(struct sock *sk)
665 {
666 if (sk) {
667 struct sk_buff *skb;
668 struct sock *pending;
669 struct vsock_sock *vsk;
670
671 vsk = vsock_sk(sk);
672 pending = NULL; /* Compiler warning. */
673
674 transport->release(vsk);
675
676 lock_sock(sk);
677 sock_orphan(sk);
678 sk->sk_shutdown = SHUTDOWN_MASK;
679
680 while ((skb = skb_dequeue(&sk->sk_receive_queue)))
681 kfree_skb(skb);
682
683 /* Clean up any sockets that never were accepted. */
684 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
685 __vsock_release(pending);
686 sock_put(pending);
687 }
688
689 release_sock(sk);
690 sock_put(sk);
691 }
692 }
693
694 static void vsock_sk_destruct(struct sock *sk)
695 {
696 struct vsock_sock *vsk = vsock_sk(sk);
697
698 transport->destruct(vsk);
699
700 /* When clearing these addresses, there's no need to set the family and
701 * possibly register the address family with the kernel.
702 */
703 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
704 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
705
706 put_cred(vsk->owner);
707 }
708
709 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
710 {
711 int err;
712
713 err = sock_queue_rcv_skb(sk, skb);
714 if (err)
715 kfree_skb(skb);
716
717 return err;
718 }
719
720 s64 vsock_stream_has_data(struct vsock_sock *vsk)
721 {
722 return transport->stream_has_data(vsk);
723 }
724 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
725
726 s64 vsock_stream_has_space(struct vsock_sock *vsk)
727 {
728 return transport->stream_has_space(vsk);
729 }
730 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
731
732 static int vsock_release(struct socket *sock)
733 {
734 __vsock_release(sock->sk);
735 sock->sk = NULL;
736 sock->state = SS_FREE;
737
738 return 0;
739 }
740
741 static int
742 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
743 {
744 int err;
745 struct sock *sk;
746 struct sockaddr_vm *vm_addr;
747
748 sk = sock->sk;
749
750 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
751 return -EINVAL;
752
753 lock_sock(sk);
754 err = __vsock_bind(sk, vm_addr);
755 release_sock(sk);
756
757 return err;
758 }
759
760 static int vsock_getname(struct socket *sock,
761 struct sockaddr *addr, int *addr_len, int peer)
762 {
763 int err;
764 struct sock *sk;
765 struct vsock_sock *vsk;
766 struct sockaddr_vm *vm_addr;
767
768 sk = sock->sk;
769 vsk = vsock_sk(sk);
770 err = 0;
771
772 lock_sock(sk);
773
774 if (peer) {
775 if (sock->state != SS_CONNECTED) {
776 err = -ENOTCONN;
777 goto out;
778 }
779 vm_addr = &vsk->remote_addr;
780 } else {
781 vm_addr = &vsk->local_addr;
782 }
783
784 if (!vm_addr) {
785 err = -EINVAL;
786 goto out;
787 }
788
789 /* sys_getsockname() and sys_getpeername() pass us a
790 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
791 * that macro is defined in socket.c instead of .h, so we hardcode its
792 * value here.
793 */
794 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
795 memcpy(addr, vm_addr, sizeof(*vm_addr));
796 *addr_len = sizeof(*vm_addr);
797
798 out:
799 release_sock(sk);
800 return err;
801 }
802
803 static int vsock_shutdown(struct socket *sock, int mode)
804 {
805 int err;
806 struct sock *sk;
807
808 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
809 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
810 * here like the other address families do. Note also that the
811 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
812 * which is what we want.
813 */
814 mode++;
815
816 if ((mode & ~SHUTDOWN_MASK) || !mode)
817 return -EINVAL;
818
819 /* If this is a STREAM socket and it is not connected then bail out
820 * immediately. If it is a DGRAM socket then we must first kick the
821 * socket so that it wakes up from any sleeping calls, for example
822 * recv(), and then afterwards return the error.
823 */
824
825 sk = sock->sk;
826 if (sock->state == SS_UNCONNECTED) {
827 err = -ENOTCONN;
828 if (sk->sk_type == SOCK_STREAM)
829 return err;
830 } else {
831 sock->state = SS_DISCONNECTING;
832 err = 0;
833 }
834
835 /* Receive and send shutdowns are treated alike. */
836 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
837 if (mode) {
838 lock_sock(sk);
839 sk->sk_shutdown |= mode;
840 sk->sk_state_change(sk);
841 release_sock(sk);
842
843 if (sk->sk_type == SOCK_STREAM) {
844 sock_reset_flag(sk, SOCK_DONE);
845 vsock_send_shutdown(sk, mode);
846 }
847 }
848
849 return err;
850 }
851
852 static unsigned int vsock_poll(struct file *file, struct socket *sock,
853 poll_table *wait)
854 {
855 struct sock *sk;
856 unsigned int mask;
857 struct vsock_sock *vsk;
858
859 sk = sock->sk;
860 vsk = vsock_sk(sk);
861
862 poll_wait(file, sk_sleep(sk), wait);
863 mask = 0;
864
865 if (sk->sk_err)
866 /* Signify that there has been an error on this socket. */
867 mask |= POLLERR;
868
869 /* INET sockets treat local write shutdown and peer write shutdown as a
870 * case of POLLHUP set.
871 */
872 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
873 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
874 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
875 mask |= POLLHUP;
876 }
877
878 if (sk->sk_shutdown & RCV_SHUTDOWN ||
879 vsk->peer_shutdown & SEND_SHUTDOWN) {
880 mask |= POLLRDHUP;
881 }
882
883 if (sock->type == SOCK_DGRAM) {
884 /* For datagram sockets we can read if there is something in
885 * the queue and write as long as the socket isn't shutdown for
886 * sending.
887 */
888 if (!skb_queue_empty(&sk->sk_receive_queue) ||
889 (sk->sk_shutdown & RCV_SHUTDOWN)) {
890 mask |= POLLIN | POLLRDNORM;
891 }
892
893 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
894 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
895
896 } else if (sock->type == SOCK_STREAM) {
897 lock_sock(sk);
898
899 /* Listening sockets that have connections in their accept
900 * queue can be read.
901 */
902 if (sk->sk_state == VSOCK_SS_LISTEN
903 && !vsock_is_accept_queue_empty(sk))
904 mask |= POLLIN | POLLRDNORM;
905
906 /* If there is something in the queue then we can read. */
907 if (transport->stream_is_active(vsk) &&
908 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
909 bool data_ready_now = false;
910 int ret = transport->notify_poll_in(
911 vsk, 1, &data_ready_now);
912 if (ret < 0) {
913 mask |= POLLERR;
914 } else {
915 if (data_ready_now)
916 mask |= POLLIN | POLLRDNORM;
917
918 }
919 }
920
921 /* Sockets whose connections have been closed, reset, or
922 * terminated should also be considered read, and we check the
923 * shutdown flag for that.
924 */
925 if (sk->sk_shutdown & RCV_SHUTDOWN ||
926 vsk->peer_shutdown & SEND_SHUTDOWN) {
927 mask |= POLLIN | POLLRDNORM;
928 }
929
930 /* Connected sockets that can produce data can be written. */
931 if (sk->sk_state == SS_CONNECTED) {
932 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
933 bool space_avail_now = false;
934 int ret = transport->notify_poll_out(
935 vsk, 1, &space_avail_now);
936 if (ret < 0) {
937 mask |= POLLERR;
938 } else {
939 if (space_avail_now)
940 /* Remove POLLWRBAND since INET
941 * sockets are not setting it.
942 */
943 mask |= POLLOUT | POLLWRNORM;
944
945 }
946 }
947 }
948
949 /* Simulate INET socket poll behaviors, which sets
950 * POLLOUT|POLLWRNORM when peer is closed and nothing to read,
951 * but local send is not shutdown.
952 */
953 if (sk->sk_state == SS_UNCONNECTED) {
954 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
955 mask |= POLLOUT | POLLWRNORM;
956
957 }
958
959 release_sock(sk);
960 }
961
962 return mask;
963 }
964
965 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
966 size_t len)
967 {
968 int err;
969 struct sock *sk;
970 struct vsock_sock *vsk;
971 struct sockaddr_vm *remote_addr;
972
973 if (msg->msg_flags & MSG_OOB)
974 return -EOPNOTSUPP;
975
976 /* For now, MSG_DONTWAIT is always assumed... */
977 err = 0;
978 sk = sock->sk;
979 vsk = vsock_sk(sk);
980
981 lock_sock(sk);
982
983 err = vsock_auto_bind(vsk);
984 if (err)
985 goto out;
986
987
988 /* If the provided message contains an address, use that. Otherwise
989 * fall back on the socket's remote handle (if it has been connected).
990 */
991 if (msg->msg_name &&
992 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
993 &remote_addr) == 0) {
994 /* Ensure this address is of the right type and is a valid
995 * destination.
996 */
997
998 if (remote_addr->svm_cid == VMADDR_CID_ANY)
999 remote_addr->svm_cid = transport->get_local_cid();
1000
1001 if (!vsock_addr_bound(remote_addr)) {
1002 err = -EINVAL;
1003 goto out;
1004 }
1005 } else if (sock->state == SS_CONNECTED) {
1006 remote_addr = &vsk->remote_addr;
1007
1008 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1009 remote_addr->svm_cid = transport->get_local_cid();
1010
1011 /* XXX Should connect() or this function ensure remote_addr is
1012 * bound?
1013 */
1014 if (!vsock_addr_bound(&vsk->remote_addr)) {
1015 err = -EINVAL;
1016 goto out;
1017 }
1018 } else {
1019 err = -EINVAL;
1020 goto out;
1021 }
1022
1023 if (!transport->dgram_allow(remote_addr->svm_cid,
1024 remote_addr->svm_port)) {
1025 err = -EINVAL;
1026 goto out;
1027 }
1028
1029 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1030
1031 out:
1032 release_sock(sk);
1033 return err;
1034 }
1035
1036 static int vsock_dgram_connect(struct socket *sock,
1037 struct sockaddr *addr, int addr_len, int flags)
1038 {
1039 int err;
1040 struct sock *sk;
1041 struct vsock_sock *vsk;
1042 struct sockaddr_vm *remote_addr;
1043
1044 sk = sock->sk;
1045 vsk = vsock_sk(sk);
1046
1047 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1048 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1049 lock_sock(sk);
1050 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1051 VMADDR_PORT_ANY);
1052 sock->state = SS_UNCONNECTED;
1053 release_sock(sk);
1054 return 0;
1055 } else if (err != 0)
1056 return -EINVAL;
1057
1058 lock_sock(sk);
1059
1060 err = vsock_auto_bind(vsk);
1061 if (err)
1062 goto out;
1063
1064 if (!transport->dgram_allow(remote_addr->svm_cid,
1065 remote_addr->svm_port)) {
1066 err = -EINVAL;
1067 goto out;
1068 }
1069
1070 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1071 sock->state = SS_CONNECTED;
1072
1073 out:
1074 release_sock(sk);
1075 return err;
1076 }
1077
1078 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1079 size_t len, int flags)
1080 {
1081 return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags);
1082 }
1083
1084 static const struct proto_ops vsock_dgram_ops = {
1085 .family = PF_VSOCK,
1086 .owner = THIS_MODULE,
1087 .release = vsock_release,
1088 .bind = vsock_bind,
1089 .connect = vsock_dgram_connect,
1090 .socketpair = sock_no_socketpair,
1091 .accept = sock_no_accept,
1092 .getname = vsock_getname,
1093 .poll = vsock_poll,
1094 .ioctl = sock_no_ioctl,
1095 .listen = sock_no_listen,
1096 .shutdown = vsock_shutdown,
1097 .setsockopt = sock_no_setsockopt,
1098 .getsockopt = sock_no_getsockopt,
1099 .sendmsg = vsock_dgram_sendmsg,
1100 .recvmsg = vsock_dgram_recvmsg,
1101 .mmap = sock_no_mmap,
1102 .sendpage = sock_no_sendpage,
1103 };
1104
1105 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1106 {
1107 if (!transport->cancel_pkt)
1108 return -EOPNOTSUPP;
1109
1110 return transport->cancel_pkt(vsk);
1111 }
1112
1113 static void vsock_connect_timeout(struct work_struct *work)
1114 {
1115 struct sock *sk;
1116 struct vsock_sock *vsk;
1117 int cancel = 0;
1118
1119 vsk = container_of(work, struct vsock_sock, dwork.work);
1120 sk = sk_vsock(vsk);
1121
1122 lock_sock(sk);
1123 if (sk->sk_state == SS_CONNECTING &&
1124 (sk->sk_shutdown != SHUTDOWN_MASK)) {
1125 sk->sk_state = SS_UNCONNECTED;
1126 sk->sk_err = ETIMEDOUT;
1127 sk->sk_error_report(sk);
1128 cancel = 1;
1129 }
1130 release_sock(sk);
1131 if (cancel)
1132 vsock_transport_cancel_pkt(vsk);
1133
1134 sock_put(sk);
1135 }
1136
1137 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1138 int addr_len, int flags)
1139 {
1140 int err;
1141 struct sock *sk;
1142 struct vsock_sock *vsk;
1143 struct sockaddr_vm *remote_addr;
1144 long timeout;
1145 DEFINE_WAIT(wait);
1146
1147 err = 0;
1148 sk = sock->sk;
1149 vsk = vsock_sk(sk);
1150
1151 lock_sock(sk);
1152
1153 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1154 switch (sock->state) {
1155 case SS_CONNECTED:
1156 err = -EISCONN;
1157 goto out;
1158 case SS_DISCONNECTING:
1159 err = -EINVAL;
1160 goto out;
1161 case SS_CONNECTING:
1162 /* This continues on so we can move sock into the SS_CONNECTED
1163 * state once the connection has completed (at which point err
1164 * will be set to zero also). Otherwise, we will either wait
1165 * for the connection or return -EALREADY should this be a
1166 * non-blocking call.
1167 */
1168 err = -EALREADY;
1169 break;
1170 default:
1171 if ((sk->sk_state == VSOCK_SS_LISTEN) ||
1172 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1173 err = -EINVAL;
1174 goto out;
1175 }
1176
1177 /* The hypervisor and well-known contexts do not have socket
1178 * endpoints.
1179 */
1180 if (!transport->stream_allow(remote_addr->svm_cid,
1181 remote_addr->svm_port)) {
1182 err = -ENETUNREACH;
1183 goto out;
1184 }
1185
1186 /* Set the remote address that we are connecting to. */
1187 memcpy(&vsk->remote_addr, remote_addr,
1188 sizeof(vsk->remote_addr));
1189
1190 err = vsock_auto_bind(vsk);
1191 if (err)
1192 goto out;
1193
1194 sk->sk_state = SS_CONNECTING;
1195
1196 err = transport->connect(vsk);
1197 if (err < 0)
1198 goto out;
1199
1200 /* Mark sock as connecting and set the error code to in
1201 * progress in case this is a non-blocking connect.
1202 */
1203 sock->state = SS_CONNECTING;
1204 err = -EINPROGRESS;
1205 }
1206
1207 /* The receive path will handle all communication until we are able to
1208 * enter the connected state. Here we wait for the connection to be
1209 * completed or a notification of an error.
1210 */
1211 timeout = vsk->connect_timeout;
1212 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1213
1214 while (sk->sk_state != SS_CONNECTED && sk->sk_err == 0) {
1215 if (flags & O_NONBLOCK) {
1216 /* If we're not going to block, we schedule a timeout
1217 * function to generate a timeout on the connection
1218 * attempt, in case the peer doesn't respond in a
1219 * timely manner. We hold on to the socket until the
1220 * timeout fires.
1221 */
1222 sock_hold(sk);
1223 INIT_DELAYED_WORK(&vsk->dwork,
1224 vsock_connect_timeout);
1225 schedule_delayed_work(&vsk->dwork, timeout);
1226
1227 /* Skip ahead to preserve error code set above. */
1228 goto out_wait;
1229 }
1230
1231 release_sock(sk);
1232 timeout = schedule_timeout(timeout);
1233 lock_sock(sk);
1234
1235 if (signal_pending(current)) {
1236 err = sock_intr_errno(timeout);
1237 sk->sk_state = SS_UNCONNECTED;
1238 sock->state = SS_UNCONNECTED;
1239 vsock_transport_cancel_pkt(vsk);
1240 goto out_wait;
1241 } else if (timeout == 0) {
1242 err = -ETIMEDOUT;
1243 sk->sk_state = SS_UNCONNECTED;
1244 sock->state = SS_UNCONNECTED;
1245 vsock_transport_cancel_pkt(vsk);
1246 goto out_wait;
1247 }
1248
1249 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1250 }
1251
1252 if (sk->sk_err) {
1253 err = -sk->sk_err;
1254 sk->sk_state = SS_UNCONNECTED;
1255 sock->state = SS_UNCONNECTED;
1256 } else {
1257 err = 0;
1258 }
1259
1260 out_wait:
1261 finish_wait(sk_sleep(sk), &wait);
1262 out:
1263 release_sock(sk);
1264 return err;
1265 }
1266
1267 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1268 bool kern)
1269 {
1270 struct sock *listener;
1271 int err;
1272 struct sock *connected;
1273 struct vsock_sock *vconnected;
1274 long timeout;
1275 DEFINE_WAIT(wait);
1276
1277 err = 0;
1278 listener = sock->sk;
1279
1280 lock_sock(listener);
1281
1282 if (sock->type != SOCK_STREAM) {
1283 err = -EOPNOTSUPP;
1284 goto out;
1285 }
1286
1287 if (listener->sk_state != VSOCK_SS_LISTEN) {
1288 err = -EINVAL;
1289 goto out;
1290 }
1291
1292 /* Wait for children sockets to appear; these are the new sockets
1293 * created upon connection establishment.
1294 */
1295 timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1296 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1297
1298 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1299 listener->sk_err == 0) {
1300 release_sock(listener);
1301 timeout = schedule_timeout(timeout);
1302 finish_wait(sk_sleep(listener), &wait);
1303 lock_sock(listener);
1304
1305 if (signal_pending(current)) {
1306 err = sock_intr_errno(timeout);
1307 goto out;
1308 } else if (timeout == 0) {
1309 err = -EAGAIN;
1310 goto out;
1311 }
1312
1313 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1314 }
1315 finish_wait(sk_sleep(listener), &wait);
1316
1317 if (listener->sk_err)
1318 err = -listener->sk_err;
1319
1320 if (connected) {
1321 listener->sk_ack_backlog--;
1322
1323 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1324 vconnected = vsock_sk(connected);
1325
1326 /* If the listener socket has received an error, then we should
1327 * reject this socket and return. Note that we simply mark the
1328 * socket rejected, drop our reference, and let the cleanup
1329 * function handle the cleanup; the fact that we found it in
1330 * the listener's accept queue guarantees that the cleanup
1331 * function hasn't run yet.
1332 */
1333 if (err) {
1334 vconnected->rejected = true;
1335 } else {
1336 newsock->state = SS_CONNECTED;
1337 sock_graft(connected, newsock);
1338 }
1339
1340 release_sock(connected);
1341 sock_put(connected);
1342 }
1343
1344 out:
1345 release_sock(listener);
1346 return err;
1347 }
1348
1349 static int vsock_listen(struct socket *sock, int backlog)
1350 {
1351 int err;
1352 struct sock *sk;
1353 struct vsock_sock *vsk;
1354
1355 sk = sock->sk;
1356
1357 lock_sock(sk);
1358
1359 if (sock->type != SOCK_STREAM) {
1360 err = -EOPNOTSUPP;
1361 goto out;
1362 }
1363
1364 if (sock->state != SS_UNCONNECTED) {
1365 err = -EINVAL;
1366 goto out;
1367 }
1368
1369 vsk = vsock_sk(sk);
1370
1371 if (!vsock_addr_bound(&vsk->local_addr)) {
1372 err = -EINVAL;
1373 goto out;
1374 }
1375
1376 sk->sk_max_ack_backlog = backlog;
1377 sk->sk_state = VSOCK_SS_LISTEN;
1378
1379 err = 0;
1380
1381 out:
1382 release_sock(sk);
1383 return err;
1384 }
1385
1386 static int vsock_stream_setsockopt(struct socket *sock,
1387 int level,
1388 int optname,
1389 char __user *optval,
1390 unsigned int optlen)
1391 {
1392 int err;
1393 struct sock *sk;
1394 struct vsock_sock *vsk;
1395 u64 val;
1396
1397 if (level != AF_VSOCK)
1398 return -ENOPROTOOPT;
1399
1400 #define COPY_IN(_v) \
1401 do { \
1402 if (optlen < sizeof(_v)) { \
1403 err = -EINVAL; \
1404 goto exit; \
1405 } \
1406 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \
1407 err = -EFAULT; \
1408 goto exit; \
1409 } \
1410 } while (0)
1411
1412 err = 0;
1413 sk = sock->sk;
1414 vsk = vsock_sk(sk);
1415
1416 lock_sock(sk);
1417
1418 switch (optname) {
1419 case SO_VM_SOCKETS_BUFFER_SIZE:
1420 COPY_IN(val);
1421 transport->set_buffer_size(vsk, val);
1422 break;
1423
1424 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1425 COPY_IN(val);
1426 transport->set_max_buffer_size(vsk, val);
1427 break;
1428
1429 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1430 COPY_IN(val);
1431 transport->set_min_buffer_size(vsk, val);
1432 break;
1433
1434 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1435 struct timeval tv;
1436 COPY_IN(tv);
1437 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1438 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1439 vsk->connect_timeout = tv.tv_sec * HZ +
1440 DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1441 if (vsk->connect_timeout == 0)
1442 vsk->connect_timeout =
1443 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1444
1445 } else {
1446 err = -ERANGE;
1447 }
1448 break;
1449 }
1450
1451 default:
1452 err = -ENOPROTOOPT;
1453 break;
1454 }
1455
1456 #undef COPY_IN
1457
1458 exit:
1459 release_sock(sk);
1460 return err;
1461 }
1462
1463 static int vsock_stream_getsockopt(struct socket *sock,
1464 int level, int optname,
1465 char __user *optval,
1466 int __user *optlen)
1467 {
1468 int err;
1469 int len;
1470 struct sock *sk;
1471 struct vsock_sock *vsk;
1472 u64 val;
1473
1474 if (level != AF_VSOCK)
1475 return -ENOPROTOOPT;
1476
1477 err = get_user(len, optlen);
1478 if (err != 0)
1479 return err;
1480
1481 #define COPY_OUT(_v) \
1482 do { \
1483 if (len < sizeof(_v)) \
1484 return -EINVAL; \
1485 \
1486 len = sizeof(_v); \
1487 if (copy_to_user(optval, &_v, len) != 0) \
1488 return -EFAULT; \
1489 \
1490 } while (0)
1491
1492 err = 0;
1493 sk = sock->sk;
1494 vsk = vsock_sk(sk);
1495
1496 switch (optname) {
1497 case SO_VM_SOCKETS_BUFFER_SIZE:
1498 val = transport->get_buffer_size(vsk);
1499 COPY_OUT(val);
1500 break;
1501
1502 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1503 val = transport->get_max_buffer_size(vsk);
1504 COPY_OUT(val);
1505 break;
1506
1507 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1508 val = transport->get_min_buffer_size(vsk);
1509 COPY_OUT(val);
1510 break;
1511
1512 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1513 struct timeval tv;
1514 tv.tv_sec = vsk->connect_timeout / HZ;
1515 tv.tv_usec =
1516 (vsk->connect_timeout -
1517 tv.tv_sec * HZ) * (1000000 / HZ);
1518 COPY_OUT(tv);
1519 break;
1520 }
1521 default:
1522 return -ENOPROTOOPT;
1523 }
1524
1525 err = put_user(len, optlen);
1526 if (err != 0)
1527 return -EFAULT;
1528
1529 #undef COPY_OUT
1530
1531 return 0;
1532 }
1533
1534 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1535 size_t len)
1536 {
1537 struct sock *sk;
1538 struct vsock_sock *vsk;
1539 ssize_t total_written;
1540 long timeout;
1541 int err;
1542 struct vsock_transport_send_notify_data send_data;
1543
1544 DEFINE_WAIT(wait);
1545
1546 sk = sock->sk;
1547 vsk = vsock_sk(sk);
1548 total_written = 0;
1549 err = 0;
1550
1551 if (msg->msg_flags & MSG_OOB)
1552 return -EOPNOTSUPP;
1553
1554 lock_sock(sk);
1555
1556 /* Callers should not provide a destination with stream sockets. */
1557 if (msg->msg_namelen) {
1558 err = sk->sk_state == SS_CONNECTED ? -EISCONN : -EOPNOTSUPP;
1559 goto out;
1560 }
1561
1562 /* Send data only if both sides are not shutdown in the direction. */
1563 if (sk->sk_shutdown & SEND_SHUTDOWN ||
1564 vsk->peer_shutdown & RCV_SHUTDOWN) {
1565 err = -EPIPE;
1566 goto out;
1567 }
1568
1569 if (sk->sk_state != SS_CONNECTED ||
1570 !vsock_addr_bound(&vsk->local_addr)) {
1571 err = -ENOTCONN;
1572 goto out;
1573 }
1574
1575 if (!vsock_addr_bound(&vsk->remote_addr)) {
1576 err = -EDESTADDRREQ;
1577 goto out;
1578 }
1579
1580 /* Wait for room in the produce queue to enqueue our user's data. */
1581 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1582
1583 err = transport->notify_send_init(vsk, &send_data);
1584 if (err < 0)
1585 goto out;
1586
1587
1588 while (total_written < len) {
1589 ssize_t written;
1590
1591 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1592 while (vsock_stream_has_space(vsk) == 0 &&
1593 sk->sk_err == 0 &&
1594 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1595 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1596
1597 /* Don't wait for non-blocking sockets. */
1598 if (timeout == 0) {
1599 err = -EAGAIN;
1600 finish_wait(sk_sleep(sk), &wait);
1601 goto out_err;
1602 }
1603
1604 err = transport->notify_send_pre_block(vsk, &send_data);
1605 if (err < 0) {
1606 finish_wait(sk_sleep(sk), &wait);
1607 goto out_err;
1608 }
1609
1610 release_sock(sk);
1611 timeout = schedule_timeout(timeout);
1612 lock_sock(sk);
1613 if (signal_pending(current)) {
1614 err = sock_intr_errno(timeout);
1615 finish_wait(sk_sleep(sk), &wait);
1616 goto out_err;
1617 } else if (timeout == 0) {
1618 err = -EAGAIN;
1619 finish_wait(sk_sleep(sk), &wait);
1620 goto out_err;
1621 }
1622
1623 prepare_to_wait(sk_sleep(sk), &wait,
1624 TASK_INTERRUPTIBLE);
1625 }
1626 finish_wait(sk_sleep(sk), &wait);
1627
1628 /* These checks occur both as part of and after the loop
1629 * conditional since we need to check before and after
1630 * sleeping.
1631 */
1632 if (sk->sk_err) {
1633 err = -sk->sk_err;
1634 goto out_err;
1635 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1636 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1637 err = -EPIPE;
1638 goto out_err;
1639 }
1640
1641 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1642 if (err < 0)
1643 goto out_err;
1644
1645 /* Note that enqueue will only write as many bytes as are free
1646 * in the produce queue, so we don't need to ensure len is
1647 * smaller than the queue size. It is the caller's
1648 * responsibility to check how many bytes we were able to send.
1649 */
1650
1651 written = transport->stream_enqueue(
1652 vsk, msg,
1653 len - total_written);
1654 if (written < 0) {
1655 err = -ENOMEM;
1656 goto out_err;
1657 }
1658
1659 total_written += written;
1660
1661 err = transport->notify_send_post_enqueue(
1662 vsk, written, &send_data);
1663 if (err < 0)
1664 goto out_err;
1665
1666 }
1667
1668 out_err:
1669 if (total_written > 0)
1670 err = total_written;
1671 out:
1672 release_sock(sk);
1673 return err;
1674 }
1675
1676
1677 static int
1678 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1679 int flags)
1680 {
1681 struct sock *sk;
1682 struct vsock_sock *vsk;
1683 int err;
1684 size_t target;
1685 ssize_t copied;
1686 long timeout;
1687 struct vsock_transport_recv_notify_data recv_data;
1688
1689 DEFINE_WAIT(wait);
1690
1691 sk = sock->sk;
1692 vsk = vsock_sk(sk);
1693 err = 0;
1694
1695 lock_sock(sk);
1696
1697 if (sk->sk_state != SS_CONNECTED) {
1698 /* Recvmsg is supposed to return 0 if a peer performs an
1699 * orderly shutdown. Differentiate between that case and when a
1700 * peer has not connected or a local shutdown occured with the
1701 * SOCK_DONE flag.
1702 */
1703 if (sock_flag(sk, SOCK_DONE))
1704 err = 0;
1705 else
1706 err = -ENOTCONN;
1707
1708 goto out;
1709 }
1710
1711 if (flags & MSG_OOB) {
1712 err = -EOPNOTSUPP;
1713 goto out;
1714 }
1715
1716 /* We don't check peer_shutdown flag here since peer may actually shut
1717 * down, but there can be data in the queue that a local socket can
1718 * receive.
1719 */
1720 if (sk->sk_shutdown & RCV_SHUTDOWN) {
1721 err = 0;
1722 goto out;
1723 }
1724
1725 /* It is valid on Linux to pass in a zero-length receive buffer. This
1726 * is not an error. We may as well bail out now.
1727 */
1728 if (!len) {
1729 err = 0;
1730 goto out;
1731 }
1732
1733 /* We must not copy less than target bytes into the user's buffer
1734 * before returning successfully, so we wait for the consume queue to
1735 * have that much data to consume before dequeueing. Note that this
1736 * makes it impossible to handle cases where target is greater than the
1737 * queue size.
1738 */
1739 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1740 if (target >= transport->stream_rcvhiwat(vsk)) {
1741 err = -ENOMEM;
1742 goto out;
1743 }
1744 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1745 copied = 0;
1746
1747 err = transport->notify_recv_init(vsk, target, &recv_data);
1748 if (err < 0)
1749 goto out;
1750
1751
1752 while (1) {
1753 s64 ready;
1754
1755 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1756 ready = vsock_stream_has_data(vsk);
1757
1758 if (ready == 0) {
1759 if (sk->sk_err != 0 ||
1760 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1761 (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1762 finish_wait(sk_sleep(sk), &wait);
1763 break;
1764 }
1765 /* Don't wait for non-blocking sockets. */
1766 if (timeout == 0) {
1767 err = -EAGAIN;
1768 finish_wait(sk_sleep(sk), &wait);
1769 break;
1770 }
1771
1772 err = transport->notify_recv_pre_block(
1773 vsk, target, &recv_data);
1774 if (err < 0) {
1775 finish_wait(sk_sleep(sk), &wait);
1776 break;
1777 }
1778 release_sock(sk);
1779 timeout = schedule_timeout(timeout);
1780 lock_sock(sk);
1781
1782 if (signal_pending(current)) {
1783 err = sock_intr_errno(timeout);
1784 finish_wait(sk_sleep(sk), &wait);
1785 break;
1786 } else if (timeout == 0) {
1787 err = -EAGAIN;
1788 finish_wait(sk_sleep(sk), &wait);
1789 break;
1790 }
1791 } else {
1792 ssize_t read;
1793
1794 finish_wait(sk_sleep(sk), &wait);
1795
1796 if (ready < 0) {
1797 /* Invalid queue pair content. XXX This should
1798 * be changed to a connection reset in a later
1799 * change.
1800 */
1801
1802 err = -ENOMEM;
1803 goto out;
1804 }
1805
1806 err = transport->notify_recv_pre_dequeue(
1807 vsk, target, &recv_data);
1808 if (err < 0)
1809 break;
1810
1811 read = transport->stream_dequeue(
1812 vsk, msg,
1813 len - copied, flags);
1814 if (read < 0) {
1815 err = -ENOMEM;
1816 break;
1817 }
1818
1819 copied += read;
1820
1821 err = transport->notify_recv_post_dequeue(
1822 vsk, target, read,
1823 !(flags & MSG_PEEK), &recv_data);
1824 if (err < 0)
1825 goto out;
1826
1827 if (read >= target || flags & MSG_PEEK)
1828 break;
1829
1830 target -= read;
1831 }
1832 }
1833
1834 if (sk->sk_err)
1835 err = -sk->sk_err;
1836 else if (sk->sk_shutdown & RCV_SHUTDOWN)
1837 err = 0;
1838
1839 if (copied > 0)
1840 err = copied;
1841
1842 out:
1843 release_sock(sk);
1844 return err;
1845 }
1846
1847 static const struct proto_ops vsock_stream_ops = {
1848 .family = PF_VSOCK,
1849 .owner = THIS_MODULE,
1850 .release = vsock_release,
1851 .bind = vsock_bind,
1852 .connect = vsock_stream_connect,
1853 .socketpair = sock_no_socketpair,
1854 .accept = vsock_accept,
1855 .getname = vsock_getname,
1856 .poll = vsock_poll,
1857 .ioctl = sock_no_ioctl,
1858 .listen = vsock_listen,
1859 .shutdown = vsock_shutdown,
1860 .setsockopt = vsock_stream_setsockopt,
1861 .getsockopt = vsock_stream_getsockopt,
1862 .sendmsg = vsock_stream_sendmsg,
1863 .recvmsg = vsock_stream_recvmsg,
1864 .mmap = sock_no_mmap,
1865 .sendpage = sock_no_sendpage,
1866 };
1867
1868 static int vsock_create(struct net *net, struct socket *sock,
1869 int protocol, int kern)
1870 {
1871 if (!sock)
1872 return -EINVAL;
1873
1874 if (protocol && protocol != PF_VSOCK)
1875 return -EPROTONOSUPPORT;
1876
1877 switch (sock->type) {
1878 case SOCK_DGRAM:
1879 sock->ops = &vsock_dgram_ops;
1880 break;
1881 case SOCK_STREAM:
1882 sock->ops = &vsock_stream_ops;
1883 break;
1884 default:
1885 return -ESOCKTNOSUPPORT;
1886 }
1887
1888 sock->state = SS_UNCONNECTED;
1889
1890 return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM;
1891 }
1892
1893 static const struct net_proto_family vsock_family_ops = {
1894 .family = AF_VSOCK,
1895 .create = vsock_create,
1896 .owner = THIS_MODULE,
1897 };
1898
1899 static long vsock_dev_do_ioctl(struct file *filp,
1900 unsigned int cmd, void __user *ptr)
1901 {
1902 u32 __user *p = ptr;
1903 int retval = 0;
1904
1905 switch (cmd) {
1906 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1907 if (put_user(transport->get_local_cid(), p) != 0)
1908 retval = -EFAULT;
1909 break;
1910
1911 default:
1912 pr_err("Unknown ioctl %d\n", cmd);
1913 retval = -EINVAL;
1914 }
1915
1916 return retval;
1917 }
1918
1919 static long vsock_dev_ioctl(struct file *filp,
1920 unsigned int cmd, unsigned long arg)
1921 {
1922 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1923 }
1924
1925 #ifdef CONFIG_COMPAT
1926 static long vsock_dev_compat_ioctl(struct file *filp,
1927 unsigned int cmd, unsigned long arg)
1928 {
1929 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1930 }
1931 #endif
1932
1933 static const struct file_operations vsock_device_ops = {
1934 .owner = THIS_MODULE,
1935 .unlocked_ioctl = vsock_dev_ioctl,
1936 #ifdef CONFIG_COMPAT
1937 .compat_ioctl = vsock_dev_compat_ioctl,
1938 #endif
1939 .open = nonseekable_open,
1940 };
1941
1942 static struct miscdevice vsock_device = {
1943 .name = "vsock",
1944 .fops = &vsock_device_ops,
1945 };
1946
1947 int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
1948 {
1949 int err = mutex_lock_interruptible(&vsock_register_mutex);
1950
1951 if (err)
1952 return err;
1953
1954 if (transport) {
1955 err = -EBUSY;
1956 goto err_busy;
1957 }
1958
1959 /* Transport must be the owner of the protocol so that it can't
1960 * unload while there are open sockets.
1961 */
1962 vsock_proto.owner = owner;
1963 transport = t;
1964
1965 vsock_init_tables();
1966
1967 vsock_device.minor = MISC_DYNAMIC_MINOR;
1968 err = misc_register(&vsock_device);
1969 if (err) {
1970 pr_err("Failed to register misc device\n");
1971 goto err_reset_transport;
1972 }
1973
1974 err = proto_register(&vsock_proto, 1); /* we want our slab */
1975 if (err) {
1976 pr_err("Cannot register vsock protocol\n");
1977 goto err_deregister_misc;
1978 }
1979
1980 err = sock_register(&vsock_family_ops);
1981 if (err) {
1982 pr_err("could not register af_vsock (%d) address family: %d\n",
1983 AF_VSOCK, err);
1984 goto err_unregister_proto;
1985 }
1986
1987 mutex_unlock(&vsock_register_mutex);
1988 return 0;
1989
1990 err_unregister_proto:
1991 proto_unregister(&vsock_proto);
1992 err_deregister_misc:
1993 misc_deregister(&vsock_device);
1994 err_reset_transport:
1995 transport = NULL;
1996 err_busy:
1997 mutex_unlock(&vsock_register_mutex);
1998 return err;
1999 }
2000 EXPORT_SYMBOL_GPL(__vsock_core_init);
2001
2002 void vsock_core_exit(void)
2003 {
2004 mutex_lock(&vsock_register_mutex);
2005
2006 misc_deregister(&vsock_device);
2007 sock_unregister(AF_VSOCK);
2008 proto_unregister(&vsock_proto);
2009
2010 /* We do not want the assignment below re-ordered. */
2011 mb();
2012 transport = NULL;
2013
2014 mutex_unlock(&vsock_register_mutex);
2015 }
2016 EXPORT_SYMBOL_GPL(vsock_core_exit);
2017
2018 const struct vsock_transport *vsock_core_get_transport(void)
2019 {
2020 /* vsock_register_mutex not taken since only the transport uses this
2021 * function and only while registered.
2022 */
2023 return transport;
2024 }
2025 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2026
2027 MODULE_AUTHOR("VMware, Inc.");
2028 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2029 MODULE_VERSION("1.0.2.0-k");
2030 MODULE_LICENSE("GPL v2");