]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/vmw_vsock/af_vsock.c
efi/arm: Fix boot crash with CONFIG_CPUMASK_OFFSTACK=y
[mirror_ubuntu-artful-kernel.git] / net / vmw_vsock / af_vsock.c
1 /*
2 * VMware vSockets Driver
3 *
4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation version 2 and no later version.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 */
15
16 /* Implementation notes:
17 *
18 * - There are two kinds of sockets: those created by user action (such as
19 * calling socket(2)) and those created by incoming connection request packets.
20 *
21 * - There are two "global" tables, one for bound sockets (sockets that have
22 * specified an address that they are responsible for) and one for connected
23 * sockets (sockets that have established a connection with another socket).
24 * These tables are "global" in that all sockets on the system are placed
25 * within them. - Note, though, that the bound table contains an extra entry
26 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
27 * that list. The bound table is used solely for lookup of sockets when packets
28 * are received and that's not necessary for SOCK_DGRAM sockets since we create
29 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
30 * sockets out of the bound hash buckets will reduce the chance of collisions
31 * when looking for SOCK_STREAM sockets and prevents us from having to check the
32 * socket type in the hash table lookups.
33 *
34 * - Sockets created by user action will either be "client" sockets that
35 * initiate a connection or "server" sockets that listen for connections; we do
36 * not support simultaneous connects (two "client" sockets connecting).
37 *
38 * - "Server" sockets are referred to as listener sockets throughout this
39 * implementation because they are in the VSOCK_SS_LISTEN state. When a
40 * connection request is received (the second kind of socket mentioned above),
41 * we create a new socket and refer to it as a pending socket. These pending
42 * sockets are placed on the pending connection list of the listener socket.
43 * When future packets are received for the address the listener socket is
44 * bound to, we check if the source of the packet is from one that has an
45 * existing pending connection. If it does, we process the packet for the
46 * pending socket. When that socket reaches the connected state, it is removed
47 * from the listener socket's pending list and enqueued in the listener
48 * socket's accept queue. Callers of accept(2) will accept connected sockets
49 * from the listener socket's accept queue. If the socket cannot be accepted
50 * for some reason then it is marked rejected. Once the connection is
51 * accepted, it is owned by the user process and the responsibility for cleanup
52 * falls with that user process.
53 *
54 * - It is possible that these pending sockets will never reach the connected
55 * state; in fact, we may never receive another packet after the connection
56 * request. Because of this, we must schedule a cleanup function to run in the
57 * future, after some amount of time passes where a connection should have been
58 * established. This function ensures that the socket is off all lists so it
59 * cannot be retrieved, then drops all references to the socket so it is cleaned
60 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
61 * function will also cleanup rejected sockets, those that reach the connected
62 * state but leave it before they have been accepted.
63 *
64 * - Lock ordering for pending or accept queue sockets is:
65 *
66 * lock_sock(listener);
67 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
68 *
69 * Using explicit nested locking keeps lockdep happy since normally only one
70 * lock of a given class may be taken at a time.
71 *
72 * - Sockets created by user action will be cleaned up when the user process
73 * calls close(2), causing our release implementation to be called. Our release
74 * implementation will perform some cleanup then drop the last reference so our
75 * sk_destruct implementation is invoked. Our sk_destruct implementation will
76 * perform additional cleanup that's common for both types of sockets.
77 *
78 * - A socket's reference count is what ensures that the structure won't be
79 * freed. Each entry in a list (such as the "global" bound and connected tables
80 * and the listener socket's pending list and connected queue) ensures a
81 * reference. When we defer work until process context and pass a socket as our
82 * argument, we must ensure the reference count is increased to ensure the
83 * socket isn't freed before the function is run; the deferred function will
84 * then drop the reference.
85 */
86
87 #include <linux/types.h>
88 #include <linux/bitops.h>
89 #include <linux/cred.h>
90 #include <linux/init.h>
91 #include <linux/io.h>
92 #include <linux/kernel.h>
93 #include <linux/kmod.h>
94 #include <linux/list.h>
95 #include <linux/miscdevice.h>
96 #include <linux/module.h>
97 #include <linux/mutex.h>
98 #include <linux/net.h>
99 #include <linux/poll.h>
100 #include <linux/skbuff.h>
101 #include <linux/smp.h>
102 #include <linux/socket.h>
103 #include <linux/stddef.h>
104 #include <linux/unistd.h>
105 #include <linux/wait.h>
106 #include <linux/workqueue.h>
107 #include <net/sock.h>
108 #include <net/af_vsock.h>
109
110 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
111 static void vsock_sk_destruct(struct sock *sk);
112 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
113
114 /* Protocol family. */
115 static struct proto vsock_proto = {
116 .name = "AF_VSOCK",
117 .owner = THIS_MODULE,
118 .obj_size = sizeof(struct vsock_sock),
119 };
120
121 /* The default peer timeout indicates how long we will wait for a peer response
122 * to a control message.
123 */
124 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
125
126 static const struct vsock_transport *transport;
127 static DEFINE_MUTEX(vsock_register_mutex);
128
129 /**** EXPORTS ****/
130
131 /* Get the ID of the local context. This is transport dependent. */
132
133 int vm_sockets_get_local_cid(void)
134 {
135 return transport->get_local_cid();
136 }
137 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
138
139 /**** UTILS ****/
140
141 /* Each bound VSocket is stored in the bind hash table and each connected
142 * VSocket is stored in the connected hash table.
143 *
144 * Unbound sockets are all put on the same list attached to the end of the hash
145 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
146 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
147 * represents the list that addr hashes to).
148 *
149 * Specifically, we initialize the vsock_bind_table array to a size of
150 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
151 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
152 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
153 * mods with VSOCK_HASH_SIZE to ensure this.
154 */
155 #define VSOCK_HASH_SIZE 251
156 #define MAX_PORT_RETRIES 24
157
158 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
159 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
160 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
161
162 /* XXX This can probably be implemented in a better way. */
163 #define VSOCK_CONN_HASH(src, dst) \
164 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
165 #define vsock_connected_sockets(src, dst) \
166 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
167 #define vsock_connected_sockets_vsk(vsk) \
168 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
169
170 static struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
171 static struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
172 static DEFINE_SPINLOCK(vsock_table_lock);
173
174 /* Autobind this socket to the local address if necessary. */
175 static int vsock_auto_bind(struct vsock_sock *vsk)
176 {
177 struct sock *sk = sk_vsock(vsk);
178 struct sockaddr_vm local_addr;
179
180 if (vsock_addr_bound(&vsk->local_addr))
181 return 0;
182 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
183 return __vsock_bind(sk, &local_addr);
184 }
185
186 static void vsock_init_tables(void)
187 {
188 int i;
189
190 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
191 INIT_LIST_HEAD(&vsock_bind_table[i]);
192
193 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
194 INIT_LIST_HEAD(&vsock_connected_table[i]);
195 }
196
197 static void __vsock_insert_bound(struct list_head *list,
198 struct vsock_sock *vsk)
199 {
200 sock_hold(&vsk->sk);
201 list_add(&vsk->bound_table, list);
202 }
203
204 static void __vsock_insert_connected(struct list_head *list,
205 struct vsock_sock *vsk)
206 {
207 sock_hold(&vsk->sk);
208 list_add(&vsk->connected_table, list);
209 }
210
211 static void __vsock_remove_bound(struct vsock_sock *vsk)
212 {
213 list_del_init(&vsk->bound_table);
214 sock_put(&vsk->sk);
215 }
216
217 static void __vsock_remove_connected(struct vsock_sock *vsk)
218 {
219 list_del_init(&vsk->connected_table);
220 sock_put(&vsk->sk);
221 }
222
223 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
224 {
225 struct vsock_sock *vsk;
226
227 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
228 if (addr->svm_port == vsk->local_addr.svm_port)
229 return sk_vsock(vsk);
230
231 return NULL;
232 }
233
234 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
235 struct sockaddr_vm *dst)
236 {
237 struct vsock_sock *vsk;
238
239 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
240 connected_table) {
241 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
242 dst->svm_port == vsk->local_addr.svm_port) {
243 return sk_vsock(vsk);
244 }
245 }
246
247 return NULL;
248 }
249
250 static bool __vsock_in_bound_table(struct vsock_sock *vsk)
251 {
252 return !list_empty(&vsk->bound_table);
253 }
254
255 static bool __vsock_in_connected_table(struct vsock_sock *vsk)
256 {
257 return !list_empty(&vsk->connected_table);
258 }
259
260 static void vsock_insert_unbound(struct vsock_sock *vsk)
261 {
262 spin_lock_bh(&vsock_table_lock);
263 __vsock_insert_bound(vsock_unbound_sockets, vsk);
264 spin_unlock_bh(&vsock_table_lock);
265 }
266
267 void vsock_insert_connected(struct vsock_sock *vsk)
268 {
269 struct list_head *list = vsock_connected_sockets(
270 &vsk->remote_addr, &vsk->local_addr);
271
272 spin_lock_bh(&vsock_table_lock);
273 __vsock_insert_connected(list, vsk);
274 spin_unlock_bh(&vsock_table_lock);
275 }
276 EXPORT_SYMBOL_GPL(vsock_insert_connected);
277
278 void vsock_remove_bound(struct vsock_sock *vsk)
279 {
280 spin_lock_bh(&vsock_table_lock);
281 __vsock_remove_bound(vsk);
282 spin_unlock_bh(&vsock_table_lock);
283 }
284 EXPORT_SYMBOL_GPL(vsock_remove_bound);
285
286 void vsock_remove_connected(struct vsock_sock *vsk)
287 {
288 spin_lock_bh(&vsock_table_lock);
289 __vsock_remove_connected(vsk);
290 spin_unlock_bh(&vsock_table_lock);
291 }
292 EXPORT_SYMBOL_GPL(vsock_remove_connected);
293
294 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
295 {
296 struct sock *sk;
297
298 spin_lock_bh(&vsock_table_lock);
299 sk = __vsock_find_bound_socket(addr);
300 if (sk)
301 sock_hold(sk);
302
303 spin_unlock_bh(&vsock_table_lock);
304
305 return sk;
306 }
307 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
308
309 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
310 struct sockaddr_vm *dst)
311 {
312 struct sock *sk;
313
314 spin_lock_bh(&vsock_table_lock);
315 sk = __vsock_find_connected_socket(src, dst);
316 if (sk)
317 sock_hold(sk);
318
319 spin_unlock_bh(&vsock_table_lock);
320
321 return sk;
322 }
323 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
324
325 static bool vsock_in_bound_table(struct vsock_sock *vsk)
326 {
327 bool ret;
328
329 spin_lock_bh(&vsock_table_lock);
330 ret = __vsock_in_bound_table(vsk);
331 spin_unlock_bh(&vsock_table_lock);
332
333 return ret;
334 }
335
336 static bool vsock_in_connected_table(struct vsock_sock *vsk)
337 {
338 bool ret;
339
340 spin_lock_bh(&vsock_table_lock);
341 ret = __vsock_in_connected_table(vsk);
342 spin_unlock_bh(&vsock_table_lock);
343
344 return ret;
345 }
346
347 void vsock_remove_sock(struct vsock_sock *vsk)
348 {
349 if (vsock_in_bound_table(vsk))
350 vsock_remove_bound(vsk);
351
352 if (vsock_in_connected_table(vsk))
353 vsock_remove_connected(vsk);
354 }
355 EXPORT_SYMBOL_GPL(vsock_remove_sock);
356
357 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
358 {
359 int i;
360
361 spin_lock_bh(&vsock_table_lock);
362
363 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
364 struct vsock_sock *vsk;
365 list_for_each_entry(vsk, &vsock_connected_table[i],
366 connected_table)
367 fn(sk_vsock(vsk));
368 }
369
370 spin_unlock_bh(&vsock_table_lock);
371 }
372 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
373
374 void vsock_add_pending(struct sock *listener, struct sock *pending)
375 {
376 struct vsock_sock *vlistener;
377 struct vsock_sock *vpending;
378
379 vlistener = vsock_sk(listener);
380 vpending = vsock_sk(pending);
381
382 sock_hold(pending);
383 sock_hold(listener);
384 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
385 }
386 EXPORT_SYMBOL_GPL(vsock_add_pending);
387
388 void vsock_remove_pending(struct sock *listener, struct sock *pending)
389 {
390 struct vsock_sock *vpending = vsock_sk(pending);
391
392 list_del_init(&vpending->pending_links);
393 sock_put(listener);
394 sock_put(pending);
395 }
396 EXPORT_SYMBOL_GPL(vsock_remove_pending);
397
398 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
399 {
400 struct vsock_sock *vlistener;
401 struct vsock_sock *vconnected;
402
403 vlistener = vsock_sk(listener);
404 vconnected = vsock_sk(connected);
405
406 sock_hold(connected);
407 sock_hold(listener);
408 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
409 }
410 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
411
412 static struct sock *vsock_dequeue_accept(struct sock *listener)
413 {
414 struct vsock_sock *vlistener;
415 struct vsock_sock *vconnected;
416
417 vlistener = vsock_sk(listener);
418
419 if (list_empty(&vlistener->accept_queue))
420 return NULL;
421
422 vconnected = list_entry(vlistener->accept_queue.next,
423 struct vsock_sock, accept_queue);
424
425 list_del_init(&vconnected->accept_queue);
426 sock_put(listener);
427 /* The caller will need a reference on the connected socket so we let
428 * it call sock_put().
429 */
430
431 return sk_vsock(vconnected);
432 }
433
434 static bool vsock_is_accept_queue_empty(struct sock *sk)
435 {
436 struct vsock_sock *vsk = vsock_sk(sk);
437 return list_empty(&vsk->accept_queue);
438 }
439
440 static bool vsock_is_pending(struct sock *sk)
441 {
442 struct vsock_sock *vsk = vsock_sk(sk);
443 return !list_empty(&vsk->pending_links);
444 }
445
446 static int vsock_send_shutdown(struct sock *sk, int mode)
447 {
448 return transport->shutdown(vsock_sk(sk), mode);
449 }
450
451 void vsock_pending_work(struct work_struct *work)
452 {
453 struct sock *sk;
454 struct sock *listener;
455 struct vsock_sock *vsk;
456 bool cleanup;
457
458 vsk = container_of(work, struct vsock_sock, dwork.work);
459 sk = sk_vsock(vsk);
460 listener = vsk->listener;
461 cleanup = true;
462
463 lock_sock(listener);
464 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
465
466 if (vsock_is_pending(sk)) {
467 vsock_remove_pending(listener, sk);
468
469 listener->sk_ack_backlog--;
470 } else if (!vsk->rejected) {
471 /* We are not on the pending list and accept() did not reject
472 * us, so we must have been accepted by our user process. We
473 * just need to drop our references to the sockets and be on
474 * our way.
475 */
476 cleanup = false;
477 goto out;
478 }
479
480 /* We need to remove ourself from the global connected sockets list so
481 * incoming packets can't find this socket, and to reduce the reference
482 * count.
483 */
484 if (vsock_in_connected_table(vsk))
485 vsock_remove_connected(vsk);
486
487 sk->sk_state = SS_FREE;
488
489 out:
490 release_sock(sk);
491 release_sock(listener);
492 if (cleanup)
493 sock_put(sk);
494
495 sock_put(sk);
496 sock_put(listener);
497 }
498 EXPORT_SYMBOL_GPL(vsock_pending_work);
499
500 /**** SOCKET OPERATIONS ****/
501
502 static int __vsock_bind_stream(struct vsock_sock *vsk,
503 struct sockaddr_vm *addr)
504 {
505 static u32 port = LAST_RESERVED_PORT + 1;
506 struct sockaddr_vm new_addr;
507
508 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
509
510 if (addr->svm_port == VMADDR_PORT_ANY) {
511 bool found = false;
512 unsigned int i;
513
514 for (i = 0; i < MAX_PORT_RETRIES; i++) {
515 if (port <= LAST_RESERVED_PORT)
516 port = LAST_RESERVED_PORT + 1;
517
518 new_addr.svm_port = port++;
519
520 if (!__vsock_find_bound_socket(&new_addr)) {
521 found = true;
522 break;
523 }
524 }
525
526 if (!found)
527 return -EADDRNOTAVAIL;
528 } else {
529 /* If port is in reserved range, ensure caller
530 * has necessary privileges.
531 */
532 if (addr->svm_port <= LAST_RESERVED_PORT &&
533 !capable(CAP_NET_BIND_SERVICE)) {
534 return -EACCES;
535 }
536
537 if (__vsock_find_bound_socket(&new_addr))
538 return -EADDRINUSE;
539 }
540
541 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
542
543 /* Remove stream sockets from the unbound list and add them to the hash
544 * table for easy lookup by its address. The unbound list is simply an
545 * extra entry at the end of the hash table, a trick used by AF_UNIX.
546 */
547 __vsock_remove_bound(vsk);
548 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
549
550 return 0;
551 }
552
553 static int __vsock_bind_dgram(struct vsock_sock *vsk,
554 struct sockaddr_vm *addr)
555 {
556 return transport->dgram_bind(vsk, addr);
557 }
558
559 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
560 {
561 struct vsock_sock *vsk = vsock_sk(sk);
562 u32 cid;
563 int retval;
564
565 /* First ensure this socket isn't already bound. */
566 if (vsock_addr_bound(&vsk->local_addr))
567 return -EINVAL;
568
569 /* Now bind to the provided address or select appropriate values if
570 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
571 * like AF_INET prevents binding to a non-local IP address (in most
572 * cases), we only allow binding to the local CID.
573 */
574 cid = transport->get_local_cid();
575 if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
576 return -EADDRNOTAVAIL;
577
578 switch (sk->sk_socket->type) {
579 case SOCK_STREAM:
580 spin_lock_bh(&vsock_table_lock);
581 retval = __vsock_bind_stream(vsk, addr);
582 spin_unlock_bh(&vsock_table_lock);
583 break;
584
585 case SOCK_DGRAM:
586 retval = __vsock_bind_dgram(vsk, addr);
587 break;
588
589 default:
590 retval = -EINVAL;
591 break;
592 }
593
594 return retval;
595 }
596
597 struct sock *__vsock_create(struct net *net,
598 struct socket *sock,
599 struct sock *parent,
600 gfp_t priority,
601 unsigned short type,
602 int kern)
603 {
604 struct sock *sk;
605 struct vsock_sock *psk;
606 struct vsock_sock *vsk;
607
608 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
609 if (!sk)
610 return NULL;
611
612 sock_init_data(sock, sk);
613
614 /* sk->sk_type is normally set in sock_init_data, but only if sock is
615 * non-NULL. We make sure that our sockets always have a type by
616 * setting it here if needed.
617 */
618 if (!sock)
619 sk->sk_type = type;
620
621 vsk = vsock_sk(sk);
622 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
623 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
624
625 sk->sk_destruct = vsock_sk_destruct;
626 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
627 sk->sk_state = 0;
628 sock_reset_flag(sk, SOCK_DONE);
629
630 INIT_LIST_HEAD(&vsk->bound_table);
631 INIT_LIST_HEAD(&vsk->connected_table);
632 vsk->listener = NULL;
633 INIT_LIST_HEAD(&vsk->pending_links);
634 INIT_LIST_HEAD(&vsk->accept_queue);
635 vsk->rejected = false;
636 vsk->sent_request = false;
637 vsk->ignore_connecting_rst = false;
638 vsk->peer_shutdown = 0;
639
640 psk = parent ? vsock_sk(parent) : NULL;
641 if (parent) {
642 vsk->trusted = psk->trusted;
643 vsk->owner = get_cred(psk->owner);
644 vsk->connect_timeout = psk->connect_timeout;
645 } else {
646 vsk->trusted = capable(CAP_NET_ADMIN);
647 vsk->owner = get_current_cred();
648 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
649 }
650
651 if (transport->init(vsk, psk) < 0) {
652 sk_free(sk);
653 return NULL;
654 }
655
656 if (sock)
657 vsock_insert_unbound(vsk);
658
659 return sk;
660 }
661 EXPORT_SYMBOL_GPL(__vsock_create);
662
663 static void __vsock_release(struct sock *sk)
664 {
665 if (sk) {
666 struct sk_buff *skb;
667 struct sock *pending;
668 struct vsock_sock *vsk;
669
670 vsk = vsock_sk(sk);
671 pending = NULL; /* Compiler warning. */
672
673 transport->release(vsk);
674
675 lock_sock(sk);
676 sock_orphan(sk);
677 sk->sk_shutdown = SHUTDOWN_MASK;
678
679 while ((skb = skb_dequeue(&sk->sk_receive_queue)))
680 kfree_skb(skb);
681
682 /* Clean up any sockets that never were accepted. */
683 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
684 __vsock_release(pending);
685 sock_put(pending);
686 }
687
688 release_sock(sk);
689 sock_put(sk);
690 }
691 }
692
693 static void vsock_sk_destruct(struct sock *sk)
694 {
695 struct vsock_sock *vsk = vsock_sk(sk);
696
697 transport->destruct(vsk);
698
699 /* When clearing these addresses, there's no need to set the family and
700 * possibly register the address family with the kernel.
701 */
702 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
703 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
704
705 put_cred(vsk->owner);
706 }
707
708 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
709 {
710 int err;
711
712 err = sock_queue_rcv_skb(sk, skb);
713 if (err)
714 kfree_skb(skb);
715
716 return err;
717 }
718
719 s64 vsock_stream_has_data(struct vsock_sock *vsk)
720 {
721 return transport->stream_has_data(vsk);
722 }
723 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
724
725 s64 vsock_stream_has_space(struct vsock_sock *vsk)
726 {
727 return transport->stream_has_space(vsk);
728 }
729 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
730
731 static int vsock_release(struct socket *sock)
732 {
733 __vsock_release(sock->sk);
734 sock->sk = NULL;
735 sock->state = SS_FREE;
736
737 return 0;
738 }
739
740 static int
741 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
742 {
743 int err;
744 struct sock *sk;
745 struct sockaddr_vm *vm_addr;
746
747 sk = sock->sk;
748
749 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
750 return -EINVAL;
751
752 lock_sock(sk);
753 err = __vsock_bind(sk, vm_addr);
754 release_sock(sk);
755
756 return err;
757 }
758
759 static int vsock_getname(struct socket *sock,
760 struct sockaddr *addr, int *addr_len, int peer)
761 {
762 int err;
763 struct sock *sk;
764 struct vsock_sock *vsk;
765 struct sockaddr_vm *vm_addr;
766
767 sk = sock->sk;
768 vsk = vsock_sk(sk);
769 err = 0;
770
771 lock_sock(sk);
772
773 if (peer) {
774 if (sock->state != SS_CONNECTED) {
775 err = -ENOTCONN;
776 goto out;
777 }
778 vm_addr = &vsk->remote_addr;
779 } else {
780 vm_addr = &vsk->local_addr;
781 }
782
783 if (!vm_addr) {
784 err = -EINVAL;
785 goto out;
786 }
787
788 /* sys_getsockname() and sys_getpeername() pass us a
789 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
790 * that macro is defined in socket.c instead of .h, so we hardcode its
791 * value here.
792 */
793 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
794 memcpy(addr, vm_addr, sizeof(*vm_addr));
795 *addr_len = sizeof(*vm_addr);
796
797 out:
798 release_sock(sk);
799 return err;
800 }
801
802 static int vsock_shutdown(struct socket *sock, int mode)
803 {
804 int err;
805 struct sock *sk;
806
807 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
808 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
809 * here like the other address families do. Note also that the
810 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
811 * which is what we want.
812 */
813 mode++;
814
815 if ((mode & ~SHUTDOWN_MASK) || !mode)
816 return -EINVAL;
817
818 /* If this is a STREAM socket and it is not connected then bail out
819 * immediately. If it is a DGRAM socket then we must first kick the
820 * socket so that it wakes up from any sleeping calls, for example
821 * recv(), and then afterwards return the error.
822 */
823
824 sk = sock->sk;
825 if (sock->state == SS_UNCONNECTED) {
826 err = -ENOTCONN;
827 if (sk->sk_type == SOCK_STREAM)
828 return err;
829 } else {
830 sock->state = SS_DISCONNECTING;
831 err = 0;
832 }
833
834 /* Receive and send shutdowns are treated alike. */
835 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
836 if (mode) {
837 lock_sock(sk);
838 sk->sk_shutdown |= mode;
839 sk->sk_state_change(sk);
840 release_sock(sk);
841
842 if (sk->sk_type == SOCK_STREAM) {
843 sock_reset_flag(sk, SOCK_DONE);
844 vsock_send_shutdown(sk, mode);
845 }
846 }
847
848 return err;
849 }
850
851 static unsigned int vsock_poll(struct file *file, struct socket *sock,
852 poll_table *wait)
853 {
854 struct sock *sk;
855 unsigned int mask;
856 struct vsock_sock *vsk;
857
858 sk = sock->sk;
859 vsk = vsock_sk(sk);
860
861 poll_wait(file, sk_sleep(sk), wait);
862 mask = 0;
863
864 if (sk->sk_err)
865 /* Signify that there has been an error on this socket. */
866 mask |= POLLERR;
867
868 /* INET sockets treat local write shutdown and peer write shutdown as a
869 * case of POLLHUP set.
870 */
871 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
872 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
873 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
874 mask |= POLLHUP;
875 }
876
877 if (sk->sk_shutdown & RCV_SHUTDOWN ||
878 vsk->peer_shutdown & SEND_SHUTDOWN) {
879 mask |= POLLRDHUP;
880 }
881
882 if (sock->type == SOCK_DGRAM) {
883 /* For datagram sockets we can read if there is something in
884 * the queue and write as long as the socket isn't shutdown for
885 * sending.
886 */
887 if (!skb_queue_empty(&sk->sk_receive_queue) ||
888 (sk->sk_shutdown & RCV_SHUTDOWN)) {
889 mask |= POLLIN | POLLRDNORM;
890 }
891
892 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
893 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
894
895 } else if (sock->type == SOCK_STREAM) {
896 lock_sock(sk);
897
898 /* Listening sockets that have connections in their accept
899 * queue can be read.
900 */
901 if (sk->sk_state == VSOCK_SS_LISTEN
902 && !vsock_is_accept_queue_empty(sk))
903 mask |= POLLIN | POLLRDNORM;
904
905 /* If there is something in the queue then we can read. */
906 if (transport->stream_is_active(vsk) &&
907 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
908 bool data_ready_now = false;
909 int ret = transport->notify_poll_in(
910 vsk, 1, &data_ready_now);
911 if (ret < 0) {
912 mask |= POLLERR;
913 } else {
914 if (data_ready_now)
915 mask |= POLLIN | POLLRDNORM;
916
917 }
918 }
919
920 /* Sockets whose connections have been closed, reset, or
921 * terminated should also be considered read, and we check the
922 * shutdown flag for that.
923 */
924 if (sk->sk_shutdown & RCV_SHUTDOWN ||
925 vsk->peer_shutdown & SEND_SHUTDOWN) {
926 mask |= POLLIN | POLLRDNORM;
927 }
928
929 /* Connected sockets that can produce data can be written. */
930 if (sk->sk_state == SS_CONNECTED) {
931 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
932 bool space_avail_now = false;
933 int ret = transport->notify_poll_out(
934 vsk, 1, &space_avail_now);
935 if (ret < 0) {
936 mask |= POLLERR;
937 } else {
938 if (space_avail_now)
939 /* Remove POLLWRBAND since INET
940 * sockets are not setting it.
941 */
942 mask |= POLLOUT | POLLWRNORM;
943
944 }
945 }
946 }
947
948 /* Simulate INET socket poll behaviors, which sets
949 * POLLOUT|POLLWRNORM when peer is closed and nothing to read,
950 * but local send is not shutdown.
951 */
952 if (sk->sk_state == SS_UNCONNECTED) {
953 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
954 mask |= POLLOUT | POLLWRNORM;
955
956 }
957
958 release_sock(sk);
959 }
960
961 return mask;
962 }
963
964 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
965 size_t len)
966 {
967 int err;
968 struct sock *sk;
969 struct vsock_sock *vsk;
970 struct sockaddr_vm *remote_addr;
971
972 if (msg->msg_flags & MSG_OOB)
973 return -EOPNOTSUPP;
974
975 /* For now, MSG_DONTWAIT is always assumed... */
976 err = 0;
977 sk = sock->sk;
978 vsk = vsock_sk(sk);
979
980 lock_sock(sk);
981
982 err = vsock_auto_bind(vsk);
983 if (err)
984 goto out;
985
986
987 /* If the provided message contains an address, use that. Otherwise
988 * fall back on the socket's remote handle (if it has been connected).
989 */
990 if (msg->msg_name &&
991 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
992 &remote_addr) == 0) {
993 /* Ensure this address is of the right type and is a valid
994 * destination.
995 */
996
997 if (remote_addr->svm_cid == VMADDR_CID_ANY)
998 remote_addr->svm_cid = transport->get_local_cid();
999
1000 if (!vsock_addr_bound(remote_addr)) {
1001 err = -EINVAL;
1002 goto out;
1003 }
1004 } else if (sock->state == SS_CONNECTED) {
1005 remote_addr = &vsk->remote_addr;
1006
1007 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1008 remote_addr->svm_cid = transport->get_local_cid();
1009
1010 /* XXX Should connect() or this function ensure remote_addr is
1011 * bound?
1012 */
1013 if (!vsock_addr_bound(&vsk->remote_addr)) {
1014 err = -EINVAL;
1015 goto out;
1016 }
1017 } else {
1018 err = -EINVAL;
1019 goto out;
1020 }
1021
1022 if (!transport->dgram_allow(remote_addr->svm_cid,
1023 remote_addr->svm_port)) {
1024 err = -EINVAL;
1025 goto out;
1026 }
1027
1028 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1029
1030 out:
1031 release_sock(sk);
1032 return err;
1033 }
1034
1035 static int vsock_dgram_connect(struct socket *sock,
1036 struct sockaddr *addr, int addr_len, int flags)
1037 {
1038 int err;
1039 struct sock *sk;
1040 struct vsock_sock *vsk;
1041 struct sockaddr_vm *remote_addr;
1042
1043 sk = sock->sk;
1044 vsk = vsock_sk(sk);
1045
1046 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1047 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1048 lock_sock(sk);
1049 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1050 VMADDR_PORT_ANY);
1051 sock->state = SS_UNCONNECTED;
1052 release_sock(sk);
1053 return 0;
1054 } else if (err != 0)
1055 return -EINVAL;
1056
1057 lock_sock(sk);
1058
1059 err = vsock_auto_bind(vsk);
1060 if (err)
1061 goto out;
1062
1063 if (!transport->dgram_allow(remote_addr->svm_cid,
1064 remote_addr->svm_port)) {
1065 err = -EINVAL;
1066 goto out;
1067 }
1068
1069 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1070 sock->state = SS_CONNECTED;
1071
1072 out:
1073 release_sock(sk);
1074 return err;
1075 }
1076
1077 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1078 size_t len, int flags)
1079 {
1080 return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags);
1081 }
1082
1083 static const struct proto_ops vsock_dgram_ops = {
1084 .family = PF_VSOCK,
1085 .owner = THIS_MODULE,
1086 .release = vsock_release,
1087 .bind = vsock_bind,
1088 .connect = vsock_dgram_connect,
1089 .socketpair = sock_no_socketpair,
1090 .accept = sock_no_accept,
1091 .getname = vsock_getname,
1092 .poll = vsock_poll,
1093 .ioctl = sock_no_ioctl,
1094 .listen = sock_no_listen,
1095 .shutdown = vsock_shutdown,
1096 .setsockopt = sock_no_setsockopt,
1097 .getsockopt = sock_no_getsockopt,
1098 .sendmsg = vsock_dgram_sendmsg,
1099 .recvmsg = vsock_dgram_recvmsg,
1100 .mmap = sock_no_mmap,
1101 .sendpage = sock_no_sendpage,
1102 };
1103
1104 static void vsock_connect_timeout(struct work_struct *work)
1105 {
1106 struct sock *sk;
1107 struct vsock_sock *vsk;
1108
1109 vsk = container_of(work, struct vsock_sock, dwork.work);
1110 sk = sk_vsock(vsk);
1111
1112 lock_sock(sk);
1113 if (sk->sk_state == SS_CONNECTING &&
1114 (sk->sk_shutdown != SHUTDOWN_MASK)) {
1115 sk->sk_state = SS_UNCONNECTED;
1116 sk->sk_err = ETIMEDOUT;
1117 sk->sk_error_report(sk);
1118 }
1119 release_sock(sk);
1120
1121 sock_put(sk);
1122 }
1123
1124 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1125 int addr_len, int flags)
1126 {
1127 int err;
1128 struct sock *sk;
1129 struct vsock_sock *vsk;
1130 struct sockaddr_vm *remote_addr;
1131 long timeout;
1132 DEFINE_WAIT(wait);
1133
1134 err = 0;
1135 sk = sock->sk;
1136 vsk = vsock_sk(sk);
1137
1138 lock_sock(sk);
1139
1140 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1141 switch (sock->state) {
1142 case SS_CONNECTED:
1143 err = -EISCONN;
1144 goto out;
1145 case SS_DISCONNECTING:
1146 err = -EINVAL;
1147 goto out;
1148 case SS_CONNECTING:
1149 /* This continues on so we can move sock into the SS_CONNECTED
1150 * state once the connection has completed (at which point err
1151 * will be set to zero also). Otherwise, we will either wait
1152 * for the connection or return -EALREADY should this be a
1153 * non-blocking call.
1154 */
1155 err = -EALREADY;
1156 break;
1157 default:
1158 if ((sk->sk_state == VSOCK_SS_LISTEN) ||
1159 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1160 err = -EINVAL;
1161 goto out;
1162 }
1163
1164 /* The hypervisor and well-known contexts do not have socket
1165 * endpoints.
1166 */
1167 if (!transport->stream_allow(remote_addr->svm_cid,
1168 remote_addr->svm_port)) {
1169 err = -ENETUNREACH;
1170 goto out;
1171 }
1172
1173 /* Set the remote address that we are connecting to. */
1174 memcpy(&vsk->remote_addr, remote_addr,
1175 sizeof(vsk->remote_addr));
1176
1177 err = vsock_auto_bind(vsk);
1178 if (err)
1179 goto out;
1180
1181 sk->sk_state = SS_CONNECTING;
1182
1183 err = transport->connect(vsk);
1184 if (err < 0)
1185 goto out;
1186
1187 /* Mark sock as connecting and set the error code to in
1188 * progress in case this is a non-blocking connect.
1189 */
1190 sock->state = SS_CONNECTING;
1191 err = -EINPROGRESS;
1192 }
1193
1194 /* The receive path will handle all communication until we are able to
1195 * enter the connected state. Here we wait for the connection to be
1196 * completed or a notification of an error.
1197 */
1198 timeout = vsk->connect_timeout;
1199 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1200
1201 while (sk->sk_state != SS_CONNECTED && sk->sk_err == 0) {
1202 if (flags & O_NONBLOCK) {
1203 /* If we're not going to block, we schedule a timeout
1204 * function to generate a timeout on the connection
1205 * attempt, in case the peer doesn't respond in a
1206 * timely manner. We hold on to the socket until the
1207 * timeout fires.
1208 */
1209 sock_hold(sk);
1210 INIT_DELAYED_WORK(&vsk->dwork,
1211 vsock_connect_timeout);
1212 schedule_delayed_work(&vsk->dwork, timeout);
1213
1214 /* Skip ahead to preserve error code set above. */
1215 goto out_wait;
1216 }
1217
1218 release_sock(sk);
1219 timeout = schedule_timeout(timeout);
1220 lock_sock(sk);
1221
1222 if (signal_pending(current)) {
1223 err = sock_intr_errno(timeout);
1224 sk->sk_state = SS_UNCONNECTED;
1225 sock->state = SS_UNCONNECTED;
1226 goto out_wait;
1227 } else if (timeout == 0) {
1228 err = -ETIMEDOUT;
1229 sk->sk_state = SS_UNCONNECTED;
1230 sock->state = SS_UNCONNECTED;
1231 goto out_wait;
1232 }
1233
1234 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1235 }
1236
1237 if (sk->sk_err) {
1238 err = -sk->sk_err;
1239 sk->sk_state = SS_UNCONNECTED;
1240 sock->state = SS_UNCONNECTED;
1241 } else {
1242 err = 0;
1243 }
1244
1245 out_wait:
1246 finish_wait(sk_sleep(sk), &wait);
1247 out:
1248 release_sock(sk);
1249 return err;
1250 }
1251
1252 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags)
1253 {
1254 struct sock *listener;
1255 int err;
1256 struct sock *connected;
1257 struct vsock_sock *vconnected;
1258 long timeout;
1259 DEFINE_WAIT(wait);
1260
1261 err = 0;
1262 listener = sock->sk;
1263
1264 lock_sock(listener);
1265
1266 if (sock->type != SOCK_STREAM) {
1267 err = -EOPNOTSUPP;
1268 goto out;
1269 }
1270
1271 if (listener->sk_state != VSOCK_SS_LISTEN) {
1272 err = -EINVAL;
1273 goto out;
1274 }
1275
1276 /* Wait for children sockets to appear; these are the new sockets
1277 * created upon connection establishment.
1278 */
1279 timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1280 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1281
1282 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1283 listener->sk_err == 0) {
1284 release_sock(listener);
1285 timeout = schedule_timeout(timeout);
1286 finish_wait(sk_sleep(listener), &wait);
1287 lock_sock(listener);
1288
1289 if (signal_pending(current)) {
1290 err = sock_intr_errno(timeout);
1291 goto out;
1292 } else if (timeout == 0) {
1293 err = -EAGAIN;
1294 goto out;
1295 }
1296
1297 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1298 }
1299 finish_wait(sk_sleep(listener), &wait);
1300
1301 if (listener->sk_err)
1302 err = -listener->sk_err;
1303
1304 if (connected) {
1305 listener->sk_ack_backlog--;
1306
1307 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1308 vconnected = vsock_sk(connected);
1309
1310 /* If the listener socket has received an error, then we should
1311 * reject this socket and return. Note that we simply mark the
1312 * socket rejected, drop our reference, and let the cleanup
1313 * function handle the cleanup; the fact that we found it in
1314 * the listener's accept queue guarantees that the cleanup
1315 * function hasn't run yet.
1316 */
1317 if (err) {
1318 vconnected->rejected = true;
1319 } else {
1320 newsock->state = SS_CONNECTED;
1321 sock_graft(connected, newsock);
1322 }
1323
1324 release_sock(connected);
1325 sock_put(connected);
1326 }
1327
1328 out:
1329 release_sock(listener);
1330 return err;
1331 }
1332
1333 static int vsock_listen(struct socket *sock, int backlog)
1334 {
1335 int err;
1336 struct sock *sk;
1337 struct vsock_sock *vsk;
1338
1339 sk = sock->sk;
1340
1341 lock_sock(sk);
1342
1343 if (sock->type != SOCK_STREAM) {
1344 err = -EOPNOTSUPP;
1345 goto out;
1346 }
1347
1348 if (sock->state != SS_UNCONNECTED) {
1349 err = -EINVAL;
1350 goto out;
1351 }
1352
1353 vsk = vsock_sk(sk);
1354
1355 if (!vsock_addr_bound(&vsk->local_addr)) {
1356 err = -EINVAL;
1357 goto out;
1358 }
1359
1360 sk->sk_max_ack_backlog = backlog;
1361 sk->sk_state = VSOCK_SS_LISTEN;
1362
1363 err = 0;
1364
1365 out:
1366 release_sock(sk);
1367 return err;
1368 }
1369
1370 static int vsock_stream_setsockopt(struct socket *sock,
1371 int level,
1372 int optname,
1373 char __user *optval,
1374 unsigned int optlen)
1375 {
1376 int err;
1377 struct sock *sk;
1378 struct vsock_sock *vsk;
1379 u64 val;
1380
1381 if (level != AF_VSOCK)
1382 return -ENOPROTOOPT;
1383
1384 #define COPY_IN(_v) \
1385 do { \
1386 if (optlen < sizeof(_v)) { \
1387 err = -EINVAL; \
1388 goto exit; \
1389 } \
1390 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \
1391 err = -EFAULT; \
1392 goto exit; \
1393 } \
1394 } while (0)
1395
1396 err = 0;
1397 sk = sock->sk;
1398 vsk = vsock_sk(sk);
1399
1400 lock_sock(sk);
1401
1402 switch (optname) {
1403 case SO_VM_SOCKETS_BUFFER_SIZE:
1404 COPY_IN(val);
1405 transport->set_buffer_size(vsk, val);
1406 break;
1407
1408 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1409 COPY_IN(val);
1410 transport->set_max_buffer_size(vsk, val);
1411 break;
1412
1413 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1414 COPY_IN(val);
1415 transport->set_min_buffer_size(vsk, val);
1416 break;
1417
1418 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1419 struct timeval tv;
1420 COPY_IN(tv);
1421 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1422 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1423 vsk->connect_timeout = tv.tv_sec * HZ +
1424 DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1425 if (vsk->connect_timeout == 0)
1426 vsk->connect_timeout =
1427 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1428
1429 } else {
1430 err = -ERANGE;
1431 }
1432 break;
1433 }
1434
1435 default:
1436 err = -ENOPROTOOPT;
1437 break;
1438 }
1439
1440 #undef COPY_IN
1441
1442 exit:
1443 release_sock(sk);
1444 return err;
1445 }
1446
1447 static int vsock_stream_getsockopt(struct socket *sock,
1448 int level, int optname,
1449 char __user *optval,
1450 int __user *optlen)
1451 {
1452 int err;
1453 int len;
1454 struct sock *sk;
1455 struct vsock_sock *vsk;
1456 u64 val;
1457
1458 if (level != AF_VSOCK)
1459 return -ENOPROTOOPT;
1460
1461 err = get_user(len, optlen);
1462 if (err != 0)
1463 return err;
1464
1465 #define COPY_OUT(_v) \
1466 do { \
1467 if (len < sizeof(_v)) \
1468 return -EINVAL; \
1469 \
1470 len = sizeof(_v); \
1471 if (copy_to_user(optval, &_v, len) != 0) \
1472 return -EFAULT; \
1473 \
1474 } while (0)
1475
1476 err = 0;
1477 sk = sock->sk;
1478 vsk = vsock_sk(sk);
1479
1480 switch (optname) {
1481 case SO_VM_SOCKETS_BUFFER_SIZE:
1482 val = transport->get_buffer_size(vsk);
1483 COPY_OUT(val);
1484 break;
1485
1486 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1487 val = transport->get_max_buffer_size(vsk);
1488 COPY_OUT(val);
1489 break;
1490
1491 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1492 val = transport->get_min_buffer_size(vsk);
1493 COPY_OUT(val);
1494 break;
1495
1496 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1497 struct timeval tv;
1498 tv.tv_sec = vsk->connect_timeout / HZ;
1499 tv.tv_usec =
1500 (vsk->connect_timeout -
1501 tv.tv_sec * HZ) * (1000000 / HZ);
1502 COPY_OUT(tv);
1503 break;
1504 }
1505 default:
1506 return -ENOPROTOOPT;
1507 }
1508
1509 err = put_user(len, optlen);
1510 if (err != 0)
1511 return -EFAULT;
1512
1513 #undef COPY_OUT
1514
1515 return 0;
1516 }
1517
1518 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1519 size_t len)
1520 {
1521 struct sock *sk;
1522 struct vsock_sock *vsk;
1523 ssize_t total_written;
1524 long timeout;
1525 int err;
1526 struct vsock_transport_send_notify_data send_data;
1527
1528 DEFINE_WAIT(wait);
1529
1530 sk = sock->sk;
1531 vsk = vsock_sk(sk);
1532 total_written = 0;
1533 err = 0;
1534
1535 if (msg->msg_flags & MSG_OOB)
1536 return -EOPNOTSUPP;
1537
1538 lock_sock(sk);
1539
1540 /* Callers should not provide a destination with stream sockets. */
1541 if (msg->msg_namelen) {
1542 err = sk->sk_state == SS_CONNECTED ? -EISCONN : -EOPNOTSUPP;
1543 goto out;
1544 }
1545
1546 /* Send data only if both sides are not shutdown in the direction. */
1547 if (sk->sk_shutdown & SEND_SHUTDOWN ||
1548 vsk->peer_shutdown & RCV_SHUTDOWN) {
1549 err = -EPIPE;
1550 goto out;
1551 }
1552
1553 if (sk->sk_state != SS_CONNECTED ||
1554 !vsock_addr_bound(&vsk->local_addr)) {
1555 err = -ENOTCONN;
1556 goto out;
1557 }
1558
1559 if (!vsock_addr_bound(&vsk->remote_addr)) {
1560 err = -EDESTADDRREQ;
1561 goto out;
1562 }
1563
1564 /* Wait for room in the produce queue to enqueue our user's data. */
1565 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1566
1567 err = transport->notify_send_init(vsk, &send_data);
1568 if (err < 0)
1569 goto out;
1570
1571
1572 while (total_written < len) {
1573 ssize_t written;
1574
1575 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1576 while (vsock_stream_has_space(vsk) == 0 &&
1577 sk->sk_err == 0 &&
1578 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1579 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1580
1581 /* Don't wait for non-blocking sockets. */
1582 if (timeout == 0) {
1583 err = -EAGAIN;
1584 finish_wait(sk_sleep(sk), &wait);
1585 goto out_err;
1586 }
1587
1588 err = transport->notify_send_pre_block(vsk, &send_data);
1589 if (err < 0) {
1590 finish_wait(sk_sleep(sk), &wait);
1591 goto out_err;
1592 }
1593
1594 release_sock(sk);
1595 timeout = schedule_timeout(timeout);
1596 lock_sock(sk);
1597 if (signal_pending(current)) {
1598 err = sock_intr_errno(timeout);
1599 finish_wait(sk_sleep(sk), &wait);
1600 goto out_err;
1601 } else if (timeout == 0) {
1602 err = -EAGAIN;
1603 finish_wait(sk_sleep(sk), &wait);
1604 goto out_err;
1605 }
1606
1607 prepare_to_wait(sk_sleep(sk), &wait,
1608 TASK_INTERRUPTIBLE);
1609 }
1610 finish_wait(sk_sleep(sk), &wait);
1611
1612 /* These checks occur both as part of and after the loop
1613 * conditional since we need to check before and after
1614 * sleeping.
1615 */
1616 if (sk->sk_err) {
1617 err = -sk->sk_err;
1618 goto out_err;
1619 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1620 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1621 err = -EPIPE;
1622 goto out_err;
1623 }
1624
1625 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1626 if (err < 0)
1627 goto out_err;
1628
1629 /* Note that enqueue will only write as many bytes as are free
1630 * in the produce queue, so we don't need to ensure len is
1631 * smaller than the queue size. It is the caller's
1632 * responsibility to check how many bytes we were able to send.
1633 */
1634
1635 written = transport->stream_enqueue(
1636 vsk, msg,
1637 len - total_written);
1638 if (written < 0) {
1639 err = -ENOMEM;
1640 goto out_err;
1641 }
1642
1643 total_written += written;
1644
1645 err = transport->notify_send_post_enqueue(
1646 vsk, written, &send_data);
1647 if (err < 0)
1648 goto out_err;
1649
1650 }
1651
1652 out_err:
1653 if (total_written > 0)
1654 err = total_written;
1655 out:
1656 release_sock(sk);
1657 return err;
1658 }
1659
1660
1661 static int
1662 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1663 int flags)
1664 {
1665 struct sock *sk;
1666 struct vsock_sock *vsk;
1667 int err;
1668 size_t target;
1669 ssize_t copied;
1670 long timeout;
1671 struct vsock_transport_recv_notify_data recv_data;
1672
1673 DEFINE_WAIT(wait);
1674
1675 sk = sock->sk;
1676 vsk = vsock_sk(sk);
1677 err = 0;
1678
1679 lock_sock(sk);
1680
1681 if (sk->sk_state != SS_CONNECTED) {
1682 /* Recvmsg is supposed to return 0 if a peer performs an
1683 * orderly shutdown. Differentiate between that case and when a
1684 * peer has not connected or a local shutdown occured with the
1685 * SOCK_DONE flag.
1686 */
1687 if (sock_flag(sk, SOCK_DONE))
1688 err = 0;
1689 else
1690 err = -ENOTCONN;
1691
1692 goto out;
1693 }
1694
1695 if (flags & MSG_OOB) {
1696 err = -EOPNOTSUPP;
1697 goto out;
1698 }
1699
1700 /* We don't check peer_shutdown flag here since peer may actually shut
1701 * down, but there can be data in the queue that a local socket can
1702 * receive.
1703 */
1704 if (sk->sk_shutdown & RCV_SHUTDOWN) {
1705 err = 0;
1706 goto out;
1707 }
1708
1709 /* It is valid on Linux to pass in a zero-length receive buffer. This
1710 * is not an error. We may as well bail out now.
1711 */
1712 if (!len) {
1713 err = 0;
1714 goto out;
1715 }
1716
1717 /* We must not copy less than target bytes into the user's buffer
1718 * before returning successfully, so we wait for the consume queue to
1719 * have that much data to consume before dequeueing. Note that this
1720 * makes it impossible to handle cases where target is greater than the
1721 * queue size.
1722 */
1723 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1724 if (target >= transport->stream_rcvhiwat(vsk)) {
1725 err = -ENOMEM;
1726 goto out;
1727 }
1728 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1729 copied = 0;
1730
1731 err = transport->notify_recv_init(vsk, target, &recv_data);
1732 if (err < 0)
1733 goto out;
1734
1735
1736 while (1) {
1737 s64 ready;
1738
1739 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1740 ready = vsock_stream_has_data(vsk);
1741
1742 if (ready == 0) {
1743 if (sk->sk_err != 0 ||
1744 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1745 (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1746 finish_wait(sk_sleep(sk), &wait);
1747 break;
1748 }
1749 /* Don't wait for non-blocking sockets. */
1750 if (timeout == 0) {
1751 err = -EAGAIN;
1752 finish_wait(sk_sleep(sk), &wait);
1753 break;
1754 }
1755
1756 err = transport->notify_recv_pre_block(
1757 vsk, target, &recv_data);
1758 if (err < 0) {
1759 finish_wait(sk_sleep(sk), &wait);
1760 break;
1761 }
1762 release_sock(sk);
1763 timeout = schedule_timeout(timeout);
1764 lock_sock(sk);
1765
1766 if (signal_pending(current)) {
1767 err = sock_intr_errno(timeout);
1768 finish_wait(sk_sleep(sk), &wait);
1769 break;
1770 } else if (timeout == 0) {
1771 err = -EAGAIN;
1772 finish_wait(sk_sleep(sk), &wait);
1773 break;
1774 }
1775 } else {
1776 ssize_t read;
1777
1778 finish_wait(sk_sleep(sk), &wait);
1779
1780 if (ready < 0) {
1781 /* Invalid queue pair content. XXX This should
1782 * be changed to a connection reset in a later
1783 * change.
1784 */
1785
1786 err = -ENOMEM;
1787 goto out;
1788 }
1789
1790 err = transport->notify_recv_pre_dequeue(
1791 vsk, target, &recv_data);
1792 if (err < 0)
1793 break;
1794
1795 read = transport->stream_dequeue(
1796 vsk, msg,
1797 len - copied, flags);
1798 if (read < 0) {
1799 err = -ENOMEM;
1800 break;
1801 }
1802
1803 copied += read;
1804
1805 err = transport->notify_recv_post_dequeue(
1806 vsk, target, read,
1807 !(flags & MSG_PEEK), &recv_data);
1808 if (err < 0)
1809 goto out;
1810
1811 if (read >= target || flags & MSG_PEEK)
1812 break;
1813
1814 target -= read;
1815 }
1816 }
1817
1818 if (sk->sk_err)
1819 err = -sk->sk_err;
1820 else if (sk->sk_shutdown & RCV_SHUTDOWN)
1821 err = 0;
1822
1823 if (copied > 0)
1824 err = copied;
1825
1826 out:
1827 release_sock(sk);
1828 return err;
1829 }
1830
1831 static const struct proto_ops vsock_stream_ops = {
1832 .family = PF_VSOCK,
1833 .owner = THIS_MODULE,
1834 .release = vsock_release,
1835 .bind = vsock_bind,
1836 .connect = vsock_stream_connect,
1837 .socketpair = sock_no_socketpair,
1838 .accept = vsock_accept,
1839 .getname = vsock_getname,
1840 .poll = vsock_poll,
1841 .ioctl = sock_no_ioctl,
1842 .listen = vsock_listen,
1843 .shutdown = vsock_shutdown,
1844 .setsockopt = vsock_stream_setsockopt,
1845 .getsockopt = vsock_stream_getsockopt,
1846 .sendmsg = vsock_stream_sendmsg,
1847 .recvmsg = vsock_stream_recvmsg,
1848 .mmap = sock_no_mmap,
1849 .sendpage = sock_no_sendpage,
1850 };
1851
1852 static int vsock_create(struct net *net, struct socket *sock,
1853 int protocol, int kern)
1854 {
1855 if (!sock)
1856 return -EINVAL;
1857
1858 if (protocol && protocol != PF_VSOCK)
1859 return -EPROTONOSUPPORT;
1860
1861 switch (sock->type) {
1862 case SOCK_DGRAM:
1863 sock->ops = &vsock_dgram_ops;
1864 break;
1865 case SOCK_STREAM:
1866 sock->ops = &vsock_stream_ops;
1867 break;
1868 default:
1869 return -ESOCKTNOSUPPORT;
1870 }
1871
1872 sock->state = SS_UNCONNECTED;
1873
1874 return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM;
1875 }
1876
1877 static const struct net_proto_family vsock_family_ops = {
1878 .family = AF_VSOCK,
1879 .create = vsock_create,
1880 .owner = THIS_MODULE,
1881 };
1882
1883 static long vsock_dev_do_ioctl(struct file *filp,
1884 unsigned int cmd, void __user *ptr)
1885 {
1886 u32 __user *p = ptr;
1887 int retval = 0;
1888
1889 switch (cmd) {
1890 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1891 if (put_user(transport->get_local_cid(), p) != 0)
1892 retval = -EFAULT;
1893 break;
1894
1895 default:
1896 pr_err("Unknown ioctl %d\n", cmd);
1897 retval = -EINVAL;
1898 }
1899
1900 return retval;
1901 }
1902
1903 static long vsock_dev_ioctl(struct file *filp,
1904 unsigned int cmd, unsigned long arg)
1905 {
1906 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1907 }
1908
1909 #ifdef CONFIG_COMPAT
1910 static long vsock_dev_compat_ioctl(struct file *filp,
1911 unsigned int cmd, unsigned long arg)
1912 {
1913 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1914 }
1915 #endif
1916
1917 static const struct file_operations vsock_device_ops = {
1918 .owner = THIS_MODULE,
1919 .unlocked_ioctl = vsock_dev_ioctl,
1920 #ifdef CONFIG_COMPAT
1921 .compat_ioctl = vsock_dev_compat_ioctl,
1922 #endif
1923 .open = nonseekable_open,
1924 };
1925
1926 static struct miscdevice vsock_device = {
1927 .name = "vsock",
1928 .fops = &vsock_device_ops,
1929 };
1930
1931 int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
1932 {
1933 int err = mutex_lock_interruptible(&vsock_register_mutex);
1934
1935 if (err)
1936 return err;
1937
1938 if (transport) {
1939 err = -EBUSY;
1940 goto err_busy;
1941 }
1942
1943 /* Transport must be the owner of the protocol so that it can't
1944 * unload while there are open sockets.
1945 */
1946 vsock_proto.owner = owner;
1947 transport = t;
1948
1949 vsock_init_tables();
1950
1951 vsock_device.minor = MISC_DYNAMIC_MINOR;
1952 err = misc_register(&vsock_device);
1953 if (err) {
1954 pr_err("Failed to register misc device\n");
1955 goto err_reset_transport;
1956 }
1957
1958 err = proto_register(&vsock_proto, 1); /* we want our slab */
1959 if (err) {
1960 pr_err("Cannot register vsock protocol\n");
1961 goto err_deregister_misc;
1962 }
1963
1964 err = sock_register(&vsock_family_ops);
1965 if (err) {
1966 pr_err("could not register af_vsock (%d) address family: %d\n",
1967 AF_VSOCK, err);
1968 goto err_unregister_proto;
1969 }
1970
1971 mutex_unlock(&vsock_register_mutex);
1972 return 0;
1973
1974 err_unregister_proto:
1975 proto_unregister(&vsock_proto);
1976 err_deregister_misc:
1977 misc_deregister(&vsock_device);
1978 err_reset_transport:
1979 transport = NULL;
1980 err_busy:
1981 mutex_unlock(&vsock_register_mutex);
1982 return err;
1983 }
1984 EXPORT_SYMBOL_GPL(__vsock_core_init);
1985
1986 void vsock_core_exit(void)
1987 {
1988 mutex_lock(&vsock_register_mutex);
1989
1990 misc_deregister(&vsock_device);
1991 sock_unregister(AF_VSOCK);
1992 proto_unregister(&vsock_proto);
1993
1994 /* We do not want the assignment below re-ordered. */
1995 mb();
1996 transport = NULL;
1997
1998 mutex_unlock(&vsock_register_mutex);
1999 }
2000 EXPORT_SYMBOL_GPL(vsock_core_exit);
2001
2002 const struct vsock_transport *vsock_core_get_transport(void)
2003 {
2004 /* vsock_register_mutex not taken since only the transport uses this
2005 * function and only while registered.
2006 */
2007 return transport;
2008 }
2009 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2010
2011 MODULE_AUTHOR("VMware, Inc.");
2012 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2013 MODULE_VERSION("1.0.2.0-k");
2014 MODULE_LICENSE("GPL v2");