]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/vmw_vsock/af_vsock.c
Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / net / vmw_vsock / af_vsock.c
1 /*
2 * VMware vSockets Driver
3 *
4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation version 2 and no later version.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 */
15
16 /* Implementation notes:
17 *
18 * - There are two kinds of sockets: those created by user action (such as
19 * calling socket(2)) and those created by incoming connection request packets.
20 *
21 * - There are two "global" tables, one for bound sockets (sockets that have
22 * specified an address that they are responsible for) and one for connected
23 * sockets (sockets that have established a connection with another socket).
24 * These tables are "global" in that all sockets on the system are placed
25 * within them. - Note, though, that the bound table contains an extra entry
26 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
27 * that list. The bound table is used solely for lookup of sockets when packets
28 * are received and that's not necessary for SOCK_DGRAM sockets since we create
29 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
30 * sockets out of the bound hash buckets will reduce the chance of collisions
31 * when looking for SOCK_STREAM sockets and prevents us from having to check the
32 * socket type in the hash table lookups.
33 *
34 * - Sockets created by user action will either be "client" sockets that
35 * initiate a connection or "server" sockets that listen for connections; we do
36 * not support simultaneous connects (two "client" sockets connecting).
37 *
38 * - "Server" sockets are referred to as listener sockets throughout this
39 * implementation because they are in the TCP_LISTEN state. When a
40 * connection request is received (the second kind of socket mentioned above),
41 * we create a new socket and refer to it as a pending socket. These pending
42 * sockets are placed on the pending connection list of the listener socket.
43 * When future packets are received for the address the listener socket is
44 * bound to, we check if the source of the packet is from one that has an
45 * existing pending connection. If it does, we process the packet for the
46 * pending socket. When that socket reaches the connected state, it is removed
47 * from the listener socket's pending list and enqueued in the listener
48 * socket's accept queue. Callers of accept(2) will accept connected sockets
49 * from the listener socket's accept queue. If the socket cannot be accepted
50 * for some reason then it is marked rejected. Once the connection is
51 * accepted, it is owned by the user process and the responsibility for cleanup
52 * falls with that user process.
53 *
54 * - It is possible that these pending sockets will never reach the connected
55 * state; in fact, we may never receive another packet after the connection
56 * request. Because of this, we must schedule a cleanup function to run in the
57 * future, after some amount of time passes where a connection should have been
58 * established. This function ensures that the socket is off all lists so it
59 * cannot be retrieved, then drops all references to the socket so it is cleaned
60 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
61 * function will also cleanup rejected sockets, those that reach the connected
62 * state but leave it before they have been accepted.
63 *
64 * - Lock ordering for pending or accept queue sockets is:
65 *
66 * lock_sock(listener);
67 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
68 *
69 * Using explicit nested locking keeps lockdep happy since normally only one
70 * lock of a given class may be taken at a time.
71 *
72 * - Sockets created by user action will be cleaned up when the user process
73 * calls close(2), causing our release implementation to be called. Our release
74 * implementation will perform some cleanup then drop the last reference so our
75 * sk_destruct implementation is invoked. Our sk_destruct implementation will
76 * perform additional cleanup that's common for both types of sockets.
77 *
78 * - A socket's reference count is what ensures that the structure won't be
79 * freed. Each entry in a list (such as the "global" bound and connected tables
80 * and the listener socket's pending list and connected queue) ensures a
81 * reference. When we defer work until process context and pass a socket as our
82 * argument, we must ensure the reference count is increased to ensure the
83 * socket isn't freed before the function is run; the deferred function will
84 * then drop the reference.
85 *
86 * - sk->sk_state uses the TCP state constants because they are widely used by
87 * other address families and exposed to userspace tools like ss(8):
88 *
89 * TCP_CLOSE - unconnected
90 * TCP_SYN_SENT - connecting
91 * TCP_ESTABLISHED - connected
92 * TCP_CLOSING - disconnecting
93 * TCP_LISTEN - listening
94 */
95
96 #include <linux/types.h>
97 #include <linux/bitops.h>
98 #include <linux/cred.h>
99 #include <linux/init.h>
100 #include <linux/io.h>
101 #include <linux/kernel.h>
102 #include <linux/sched/signal.h>
103 #include <linux/kmod.h>
104 #include <linux/list.h>
105 #include <linux/miscdevice.h>
106 #include <linux/module.h>
107 #include <linux/mutex.h>
108 #include <linux/net.h>
109 #include <linux/poll.h>
110 #include <linux/skbuff.h>
111 #include <linux/smp.h>
112 #include <linux/socket.h>
113 #include <linux/stddef.h>
114 #include <linux/unistd.h>
115 #include <linux/wait.h>
116 #include <linux/workqueue.h>
117 #include <net/sock.h>
118 #include <net/af_vsock.h>
119
120 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
121 static void vsock_sk_destruct(struct sock *sk);
122 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
123
124 /* Protocol family. */
125 static struct proto vsock_proto = {
126 .name = "AF_VSOCK",
127 .owner = THIS_MODULE,
128 .obj_size = sizeof(struct vsock_sock),
129 };
130
131 /* The default peer timeout indicates how long we will wait for a peer response
132 * to a control message.
133 */
134 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
135
136 static const struct vsock_transport *transport;
137 static DEFINE_MUTEX(vsock_register_mutex);
138
139 /**** EXPORTS ****/
140
141 /* Get the ID of the local context. This is transport dependent. */
142
143 int vm_sockets_get_local_cid(void)
144 {
145 return transport->get_local_cid();
146 }
147 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
148
149 /**** UTILS ****/
150
151 /* Each bound VSocket is stored in the bind hash table and each connected
152 * VSocket is stored in the connected hash table.
153 *
154 * Unbound sockets are all put on the same list attached to the end of the hash
155 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
156 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
157 * represents the list that addr hashes to).
158 *
159 * Specifically, we initialize the vsock_bind_table array to a size of
160 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
161 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
162 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
163 * mods with VSOCK_HASH_SIZE to ensure this.
164 */
165 #define MAX_PORT_RETRIES 24
166
167 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
168 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
169 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
170
171 /* XXX This can probably be implemented in a better way. */
172 #define VSOCK_CONN_HASH(src, dst) \
173 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
174 #define vsock_connected_sockets(src, dst) \
175 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
176 #define vsock_connected_sockets_vsk(vsk) \
177 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
178
179 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
180 EXPORT_SYMBOL_GPL(vsock_bind_table);
181 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
182 EXPORT_SYMBOL_GPL(vsock_connected_table);
183 DEFINE_SPINLOCK(vsock_table_lock);
184 EXPORT_SYMBOL_GPL(vsock_table_lock);
185
186 /* Autobind this socket to the local address if necessary. */
187 static int vsock_auto_bind(struct vsock_sock *vsk)
188 {
189 struct sock *sk = sk_vsock(vsk);
190 struct sockaddr_vm local_addr;
191
192 if (vsock_addr_bound(&vsk->local_addr))
193 return 0;
194 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
195 return __vsock_bind(sk, &local_addr);
196 }
197
198 static int __init vsock_init_tables(void)
199 {
200 int i;
201
202 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
203 INIT_LIST_HEAD(&vsock_bind_table[i]);
204
205 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
206 INIT_LIST_HEAD(&vsock_connected_table[i]);
207 return 0;
208 }
209
210 static void __vsock_insert_bound(struct list_head *list,
211 struct vsock_sock *vsk)
212 {
213 sock_hold(&vsk->sk);
214 list_add(&vsk->bound_table, list);
215 }
216
217 static void __vsock_insert_connected(struct list_head *list,
218 struct vsock_sock *vsk)
219 {
220 sock_hold(&vsk->sk);
221 list_add(&vsk->connected_table, list);
222 }
223
224 static void __vsock_remove_bound(struct vsock_sock *vsk)
225 {
226 list_del_init(&vsk->bound_table);
227 sock_put(&vsk->sk);
228 }
229
230 static void __vsock_remove_connected(struct vsock_sock *vsk)
231 {
232 list_del_init(&vsk->connected_table);
233 sock_put(&vsk->sk);
234 }
235
236 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
237 {
238 struct vsock_sock *vsk;
239
240 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
241 if (addr->svm_port == vsk->local_addr.svm_port)
242 return sk_vsock(vsk);
243
244 return NULL;
245 }
246
247 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
248 struct sockaddr_vm *dst)
249 {
250 struct vsock_sock *vsk;
251
252 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
253 connected_table) {
254 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
255 dst->svm_port == vsk->local_addr.svm_port) {
256 return sk_vsock(vsk);
257 }
258 }
259
260 return NULL;
261 }
262
263 static void vsock_insert_unbound(struct vsock_sock *vsk)
264 {
265 spin_lock_bh(&vsock_table_lock);
266 __vsock_insert_bound(vsock_unbound_sockets, vsk);
267 spin_unlock_bh(&vsock_table_lock);
268 }
269
270 void vsock_insert_connected(struct vsock_sock *vsk)
271 {
272 struct list_head *list = vsock_connected_sockets(
273 &vsk->remote_addr, &vsk->local_addr);
274
275 spin_lock_bh(&vsock_table_lock);
276 __vsock_insert_connected(list, vsk);
277 spin_unlock_bh(&vsock_table_lock);
278 }
279 EXPORT_SYMBOL_GPL(vsock_insert_connected);
280
281 void vsock_remove_bound(struct vsock_sock *vsk)
282 {
283 spin_lock_bh(&vsock_table_lock);
284 __vsock_remove_bound(vsk);
285 spin_unlock_bh(&vsock_table_lock);
286 }
287 EXPORT_SYMBOL_GPL(vsock_remove_bound);
288
289 void vsock_remove_connected(struct vsock_sock *vsk)
290 {
291 spin_lock_bh(&vsock_table_lock);
292 __vsock_remove_connected(vsk);
293 spin_unlock_bh(&vsock_table_lock);
294 }
295 EXPORT_SYMBOL_GPL(vsock_remove_connected);
296
297 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
298 {
299 struct sock *sk;
300
301 spin_lock_bh(&vsock_table_lock);
302 sk = __vsock_find_bound_socket(addr);
303 if (sk)
304 sock_hold(sk);
305
306 spin_unlock_bh(&vsock_table_lock);
307
308 return sk;
309 }
310 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
311
312 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
313 struct sockaddr_vm *dst)
314 {
315 struct sock *sk;
316
317 spin_lock_bh(&vsock_table_lock);
318 sk = __vsock_find_connected_socket(src, dst);
319 if (sk)
320 sock_hold(sk);
321
322 spin_unlock_bh(&vsock_table_lock);
323
324 return sk;
325 }
326 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
327
328 static bool vsock_in_bound_table(struct vsock_sock *vsk)
329 {
330 bool ret;
331
332 spin_lock_bh(&vsock_table_lock);
333 ret = __vsock_in_bound_table(vsk);
334 spin_unlock_bh(&vsock_table_lock);
335
336 return ret;
337 }
338
339 static bool vsock_in_connected_table(struct vsock_sock *vsk)
340 {
341 bool ret;
342
343 spin_lock_bh(&vsock_table_lock);
344 ret = __vsock_in_connected_table(vsk);
345 spin_unlock_bh(&vsock_table_lock);
346
347 return ret;
348 }
349
350 void vsock_remove_sock(struct vsock_sock *vsk)
351 {
352 if (vsock_in_bound_table(vsk))
353 vsock_remove_bound(vsk);
354
355 if (vsock_in_connected_table(vsk))
356 vsock_remove_connected(vsk);
357 }
358 EXPORT_SYMBOL_GPL(vsock_remove_sock);
359
360 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
361 {
362 int i;
363
364 spin_lock_bh(&vsock_table_lock);
365
366 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
367 struct vsock_sock *vsk;
368 list_for_each_entry(vsk, &vsock_connected_table[i],
369 connected_table)
370 fn(sk_vsock(vsk));
371 }
372
373 spin_unlock_bh(&vsock_table_lock);
374 }
375 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
376
377 void vsock_add_pending(struct sock *listener, struct sock *pending)
378 {
379 struct vsock_sock *vlistener;
380 struct vsock_sock *vpending;
381
382 vlistener = vsock_sk(listener);
383 vpending = vsock_sk(pending);
384
385 sock_hold(pending);
386 sock_hold(listener);
387 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
388 }
389 EXPORT_SYMBOL_GPL(vsock_add_pending);
390
391 void vsock_remove_pending(struct sock *listener, struct sock *pending)
392 {
393 struct vsock_sock *vpending = vsock_sk(pending);
394
395 list_del_init(&vpending->pending_links);
396 sock_put(listener);
397 sock_put(pending);
398 }
399 EXPORT_SYMBOL_GPL(vsock_remove_pending);
400
401 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
402 {
403 struct vsock_sock *vlistener;
404 struct vsock_sock *vconnected;
405
406 vlistener = vsock_sk(listener);
407 vconnected = vsock_sk(connected);
408
409 sock_hold(connected);
410 sock_hold(listener);
411 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
412 }
413 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
414
415 static struct sock *vsock_dequeue_accept(struct sock *listener)
416 {
417 struct vsock_sock *vlistener;
418 struct vsock_sock *vconnected;
419
420 vlistener = vsock_sk(listener);
421
422 if (list_empty(&vlistener->accept_queue))
423 return NULL;
424
425 vconnected = list_entry(vlistener->accept_queue.next,
426 struct vsock_sock, accept_queue);
427
428 list_del_init(&vconnected->accept_queue);
429 sock_put(listener);
430 /* The caller will need a reference on the connected socket so we let
431 * it call sock_put().
432 */
433
434 return sk_vsock(vconnected);
435 }
436
437 static bool vsock_is_accept_queue_empty(struct sock *sk)
438 {
439 struct vsock_sock *vsk = vsock_sk(sk);
440 return list_empty(&vsk->accept_queue);
441 }
442
443 static bool vsock_is_pending(struct sock *sk)
444 {
445 struct vsock_sock *vsk = vsock_sk(sk);
446 return !list_empty(&vsk->pending_links);
447 }
448
449 static int vsock_send_shutdown(struct sock *sk, int mode)
450 {
451 return transport->shutdown(vsock_sk(sk), mode);
452 }
453
454 void vsock_pending_work(struct work_struct *work)
455 {
456 struct sock *sk;
457 struct sock *listener;
458 struct vsock_sock *vsk;
459 bool cleanup;
460
461 vsk = container_of(work, struct vsock_sock, dwork.work);
462 sk = sk_vsock(vsk);
463 listener = vsk->listener;
464 cleanup = true;
465
466 lock_sock(listener);
467 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
468
469 if (vsock_is_pending(sk)) {
470 vsock_remove_pending(listener, sk);
471
472 listener->sk_ack_backlog--;
473 } else if (!vsk->rejected) {
474 /* We are not on the pending list and accept() did not reject
475 * us, so we must have been accepted by our user process. We
476 * just need to drop our references to the sockets and be on
477 * our way.
478 */
479 cleanup = false;
480 goto out;
481 }
482
483 /* We need to remove ourself from the global connected sockets list so
484 * incoming packets can't find this socket, and to reduce the reference
485 * count.
486 */
487 if (vsock_in_connected_table(vsk))
488 vsock_remove_connected(vsk);
489
490 sk->sk_state = TCP_CLOSE;
491
492 out:
493 release_sock(sk);
494 release_sock(listener);
495 if (cleanup)
496 sock_put(sk);
497
498 sock_put(sk);
499 sock_put(listener);
500 }
501 EXPORT_SYMBOL_GPL(vsock_pending_work);
502
503 /**** SOCKET OPERATIONS ****/
504
505 static int __vsock_bind_stream(struct vsock_sock *vsk,
506 struct sockaddr_vm *addr)
507 {
508 static u32 port = LAST_RESERVED_PORT + 1;
509 struct sockaddr_vm new_addr;
510
511 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
512
513 if (addr->svm_port == VMADDR_PORT_ANY) {
514 bool found = false;
515 unsigned int i;
516
517 for (i = 0; i < MAX_PORT_RETRIES; i++) {
518 if (port <= LAST_RESERVED_PORT)
519 port = LAST_RESERVED_PORT + 1;
520
521 new_addr.svm_port = port++;
522
523 if (!__vsock_find_bound_socket(&new_addr)) {
524 found = true;
525 break;
526 }
527 }
528
529 if (!found)
530 return -EADDRNOTAVAIL;
531 } else {
532 /* If port is in reserved range, ensure caller
533 * has necessary privileges.
534 */
535 if (addr->svm_port <= LAST_RESERVED_PORT &&
536 !capable(CAP_NET_BIND_SERVICE)) {
537 return -EACCES;
538 }
539
540 if (__vsock_find_bound_socket(&new_addr))
541 return -EADDRINUSE;
542 }
543
544 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
545
546 /* Remove stream sockets from the unbound list and add them to the hash
547 * table for easy lookup by its address. The unbound list is simply an
548 * extra entry at the end of the hash table, a trick used by AF_UNIX.
549 */
550 __vsock_remove_bound(vsk);
551 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
552
553 return 0;
554 }
555
556 static int __vsock_bind_dgram(struct vsock_sock *vsk,
557 struct sockaddr_vm *addr)
558 {
559 return transport->dgram_bind(vsk, addr);
560 }
561
562 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
563 {
564 struct vsock_sock *vsk = vsock_sk(sk);
565 u32 cid;
566 int retval;
567
568 /* First ensure this socket isn't already bound. */
569 if (vsock_addr_bound(&vsk->local_addr))
570 return -EINVAL;
571
572 /* Now bind to the provided address or select appropriate values if
573 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
574 * like AF_INET prevents binding to a non-local IP address (in most
575 * cases), we only allow binding to the local CID.
576 */
577 cid = transport->get_local_cid();
578 if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
579 return -EADDRNOTAVAIL;
580
581 switch (sk->sk_socket->type) {
582 case SOCK_STREAM:
583 spin_lock_bh(&vsock_table_lock);
584 retval = __vsock_bind_stream(vsk, addr);
585 spin_unlock_bh(&vsock_table_lock);
586 break;
587
588 case SOCK_DGRAM:
589 retval = __vsock_bind_dgram(vsk, addr);
590 break;
591
592 default:
593 retval = -EINVAL;
594 break;
595 }
596
597 return retval;
598 }
599
600 struct sock *__vsock_create(struct net *net,
601 struct socket *sock,
602 struct sock *parent,
603 gfp_t priority,
604 unsigned short type,
605 int kern)
606 {
607 struct sock *sk;
608 struct vsock_sock *psk;
609 struct vsock_sock *vsk;
610
611 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
612 if (!sk)
613 return NULL;
614
615 sock_init_data(sock, sk);
616
617 /* sk->sk_type is normally set in sock_init_data, but only if sock is
618 * non-NULL. We make sure that our sockets always have a type by
619 * setting it here if needed.
620 */
621 if (!sock)
622 sk->sk_type = type;
623
624 vsk = vsock_sk(sk);
625 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
626 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
627
628 sk->sk_destruct = vsock_sk_destruct;
629 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
630 sock_reset_flag(sk, SOCK_DONE);
631
632 INIT_LIST_HEAD(&vsk->bound_table);
633 INIT_LIST_HEAD(&vsk->connected_table);
634 vsk->listener = NULL;
635 INIT_LIST_HEAD(&vsk->pending_links);
636 INIT_LIST_HEAD(&vsk->accept_queue);
637 vsk->rejected = false;
638 vsk->sent_request = false;
639 vsk->ignore_connecting_rst = false;
640 vsk->peer_shutdown = 0;
641
642 psk = parent ? vsock_sk(parent) : NULL;
643 if (parent) {
644 vsk->trusted = psk->trusted;
645 vsk->owner = get_cred(psk->owner);
646 vsk->connect_timeout = psk->connect_timeout;
647 } else {
648 vsk->trusted = capable(CAP_NET_ADMIN);
649 vsk->owner = get_current_cred();
650 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
651 }
652
653 if (transport->init(vsk, psk) < 0) {
654 sk_free(sk);
655 return NULL;
656 }
657
658 if (sock)
659 vsock_insert_unbound(vsk);
660
661 return sk;
662 }
663 EXPORT_SYMBOL_GPL(__vsock_create);
664
665 static void __vsock_release(struct sock *sk)
666 {
667 if (sk) {
668 struct sk_buff *skb;
669 struct sock *pending;
670 struct vsock_sock *vsk;
671
672 vsk = vsock_sk(sk);
673 pending = NULL; /* Compiler warning. */
674
675 transport->release(vsk);
676
677 lock_sock(sk);
678 sock_orphan(sk);
679 sk->sk_shutdown = SHUTDOWN_MASK;
680
681 while ((skb = skb_dequeue(&sk->sk_receive_queue)))
682 kfree_skb(skb);
683
684 /* Clean up any sockets that never were accepted. */
685 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
686 __vsock_release(pending);
687 sock_put(pending);
688 }
689
690 release_sock(sk);
691 sock_put(sk);
692 }
693 }
694
695 static void vsock_sk_destruct(struct sock *sk)
696 {
697 struct vsock_sock *vsk = vsock_sk(sk);
698
699 transport->destruct(vsk);
700
701 /* When clearing these addresses, there's no need to set the family and
702 * possibly register the address family with the kernel.
703 */
704 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
705 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
706
707 put_cred(vsk->owner);
708 }
709
710 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
711 {
712 int err;
713
714 err = sock_queue_rcv_skb(sk, skb);
715 if (err)
716 kfree_skb(skb);
717
718 return err;
719 }
720
721 s64 vsock_stream_has_data(struct vsock_sock *vsk)
722 {
723 return transport->stream_has_data(vsk);
724 }
725 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
726
727 s64 vsock_stream_has_space(struct vsock_sock *vsk)
728 {
729 return transport->stream_has_space(vsk);
730 }
731 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
732
733 static int vsock_release(struct socket *sock)
734 {
735 __vsock_release(sock->sk);
736 sock->sk = NULL;
737 sock->state = SS_FREE;
738
739 return 0;
740 }
741
742 static int
743 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
744 {
745 int err;
746 struct sock *sk;
747 struct sockaddr_vm *vm_addr;
748
749 sk = sock->sk;
750
751 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
752 return -EINVAL;
753
754 lock_sock(sk);
755 err = __vsock_bind(sk, vm_addr);
756 release_sock(sk);
757
758 return err;
759 }
760
761 static int vsock_getname(struct socket *sock,
762 struct sockaddr *addr, int *addr_len, int peer)
763 {
764 int err;
765 struct sock *sk;
766 struct vsock_sock *vsk;
767 struct sockaddr_vm *vm_addr;
768
769 sk = sock->sk;
770 vsk = vsock_sk(sk);
771 err = 0;
772
773 lock_sock(sk);
774
775 if (peer) {
776 if (sock->state != SS_CONNECTED) {
777 err = -ENOTCONN;
778 goto out;
779 }
780 vm_addr = &vsk->remote_addr;
781 } else {
782 vm_addr = &vsk->local_addr;
783 }
784
785 if (!vm_addr) {
786 err = -EINVAL;
787 goto out;
788 }
789
790 /* sys_getsockname() and sys_getpeername() pass us a
791 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
792 * that macro is defined in socket.c instead of .h, so we hardcode its
793 * value here.
794 */
795 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
796 memcpy(addr, vm_addr, sizeof(*vm_addr));
797 *addr_len = sizeof(*vm_addr);
798
799 out:
800 release_sock(sk);
801 return err;
802 }
803
804 static int vsock_shutdown(struct socket *sock, int mode)
805 {
806 int err;
807 struct sock *sk;
808
809 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
810 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
811 * here like the other address families do. Note also that the
812 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
813 * which is what we want.
814 */
815 mode++;
816
817 if ((mode & ~SHUTDOWN_MASK) || !mode)
818 return -EINVAL;
819
820 /* If this is a STREAM socket and it is not connected then bail out
821 * immediately. If it is a DGRAM socket then we must first kick the
822 * socket so that it wakes up from any sleeping calls, for example
823 * recv(), and then afterwards return the error.
824 */
825
826 sk = sock->sk;
827 if (sock->state == SS_UNCONNECTED) {
828 err = -ENOTCONN;
829 if (sk->sk_type == SOCK_STREAM)
830 return err;
831 } else {
832 sock->state = SS_DISCONNECTING;
833 err = 0;
834 }
835
836 /* Receive and send shutdowns are treated alike. */
837 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
838 if (mode) {
839 lock_sock(sk);
840 sk->sk_shutdown |= mode;
841 sk->sk_state_change(sk);
842 release_sock(sk);
843
844 if (sk->sk_type == SOCK_STREAM) {
845 sock_reset_flag(sk, SOCK_DONE);
846 vsock_send_shutdown(sk, mode);
847 }
848 }
849
850 return err;
851 }
852
853 static unsigned int vsock_poll(struct file *file, struct socket *sock,
854 poll_table *wait)
855 {
856 struct sock *sk;
857 unsigned int mask;
858 struct vsock_sock *vsk;
859
860 sk = sock->sk;
861 vsk = vsock_sk(sk);
862
863 poll_wait(file, sk_sleep(sk), wait);
864 mask = 0;
865
866 if (sk->sk_err)
867 /* Signify that there has been an error on this socket. */
868 mask |= POLLERR;
869
870 /* INET sockets treat local write shutdown and peer write shutdown as a
871 * case of POLLHUP set.
872 */
873 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
874 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
875 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
876 mask |= POLLHUP;
877 }
878
879 if (sk->sk_shutdown & RCV_SHUTDOWN ||
880 vsk->peer_shutdown & SEND_SHUTDOWN) {
881 mask |= POLLRDHUP;
882 }
883
884 if (sock->type == SOCK_DGRAM) {
885 /* For datagram sockets we can read if there is something in
886 * the queue and write as long as the socket isn't shutdown for
887 * sending.
888 */
889 if (!skb_queue_empty(&sk->sk_receive_queue) ||
890 (sk->sk_shutdown & RCV_SHUTDOWN)) {
891 mask |= POLLIN | POLLRDNORM;
892 }
893
894 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
895 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
896
897 } else if (sock->type == SOCK_STREAM) {
898 lock_sock(sk);
899
900 /* Listening sockets that have connections in their accept
901 * queue can be read.
902 */
903 if (sk->sk_state == TCP_LISTEN
904 && !vsock_is_accept_queue_empty(sk))
905 mask |= POLLIN | POLLRDNORM;
906
907 /* If there is something in the queue then we can read. */
908 if (transport->stream_is_active(vsk) &&
909 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
910 bool data_ready_now = false;
911 int ret = transport->notify_poll_in(
912 vsk, 1, &data_ready_now);
913 if (ret < 0) {
914 mask |= POLLERR;
915 } else {
916 if (data_ready_now)
917 mask |= POLLIN | POLLRDNORM;
918
919 }
920 }
921
922 /* Sockets whose connections have been closed, reset, or
923 * terminated should also be considered read, and we check the
924 * shutdown flag for that.
925 */
926 if (sk->sk_shutdown & RCV_SHUTDOWN ||
927 vsk->peer_shutdown & SEND_SHUTDOWN) {
928 mask |= POLLIN | POLLRDNORM;
929 }
930
931 /* Connected sockets that can produce data can be written. */
932 if (sk->sk_state == TCP_ESTABLISHED) {
933 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
934 bool space_avail_now = false;
935 int ret = transport->notify_poll_out(
936 vsk, 1, &space_avail_now);
937 if (ret < 0) {
938 mask |= POLLERR;
939 } else {
940 if (space_avail_now)
941 /* Remove POLLWRBAND since INET
942 * sockets are not setting it.
943 */
944 mask |= POLLOUT | POLLWRNORM;
945
946 }
947 }
948 }
949
950 /* Simulate INET socket poll behaviors, which sets
951 * POLLOUT|POLLWRNORM when peer is closed and nothing to read,
952 * but local send is not shutdown.
953 */
954 if (sk->sk_state == TCP_CLOSE) {
955 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
956 mask |= POLLOUT | POLLWRNORM;
957
958 }
959
960 release_sock(sk);
961 }
962
963 return mask;
964 }
965
966 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
967 size_t len)
968 {
969 int err;
970 struct sock *sk;
971 struct vsock_sock *vsk;
972 struct sockaddr_vm *remote_addr;
973
974 if (msg->msg_flags & MSG_OOB)
975 return -EOPNOTSUPP;
976
977 /* For now, MSG_DONTWAIT is always assumed... */
978 err = 0;
979 sk = sock->sk;
980 vsk = vsock_sk(sk);
981
982 lock_sock(sk);
983
984 err = vsock_auto_bind(vsk);
985 if (err)
986 goto out;
987
988
989 /* If the provided message contains an address, use that. Otherwise
990 * fall back on the socket's remote handle (if it has been connected).
991 */
992 if (msg->msg_name &&
993 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
994 &remote_addr) == 0) {
995 /* Ensure this address is of the right type and is a valid
996 * destination.
997 */
998
999 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1000 remote_addr->svm_cid = transport->get_local_cid();
1001
1002 if (!vsock_addr_bound(remote_addr)) {
1003 err = -EINVAL;
1004 goto out;
1005 }
1006 } else if (sock->state == SS_CONNECTED) {
1007 remote_addr = &vsk->remote_addr;
1008
1009 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1010 remote_addr->svm_cid = transport->get_local_cid();
1011
1012 /* XXX Should connect() or this function ensure remote_addr is
1013 * bound?
1014 */
1015 if (!vsock_addr_bound(&vsk->remote_addr)) {
1016 err = -EINVAL;
1017 goto out;
1018 }
1019 } else {
1020 err = -EINVAL;
1021 goto out;
1022 }
1023
1024 if (!transport->dgram_allow(remote_addr->svm_cid,
1025 remote_addr->svm_port)) {
1026 err = -EINVAL;
1027 goto out;
1028 }
1029
1030 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1031
1032 out:
1033 release_sock(sk);
1034 return err;
1035 }
1036
1037 static int vsock_dgram_connect(struct socket *sock,
1038 struct sockaddr *addr, int addr_len, int flags)
1039 {
1040 int err;
1041 struct sock *sk;
1042 struct vsock_sock *vsk;
1043 struct sockaddr_vm *remote_addr;
1044
1045 sk = sock->sk;
1046 vsk = vsock_sk(sk);
1047
1048 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1049 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1050 lock_sock(sk);
1051 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1052 VMADDR_PORT_ANY);
1053 sock->state = SS_UNCONNECTED;
1054 release_sock(sk);
1055 return 0;
1056 } else if (err != 0)
1057 return -EINVAL;
1058
1059 lock_sock(sk);
1060
1061 err = vsock_auto_bind(vsk);
1062 if (err)
1063 goto out;
1064
1065 if (!transport->dgram_allow(remote_addr->svm_cid,
1066 remote_addr->svm_port)) {
1067 err = -EINVAL;
1068 goto out;
1069 }
1070
1071 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1072 sock->state = SS_CONNECTED;
1073
1074 out:
1075 release_sock(sk);
1076 return err;
1077 }
1078
1079 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1080 size_t len, int flags)
1081 {
1082 return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags);
1083 }
1084
1085 static const struct proto_ops vsock_dgram_ops = {
1086 .family = PF_VSOCK,
1087 .owner = THIS_MODULE,
1088 .release = vsock_release,
1089 .bind = vsock_bind,
1090 .connect = vsock_dgram_connect,
1091 .socketpair = sock_no_socketpair,
1092 .accept = sock_no_accept,
1093 .getname = vsock_getname,
1094 .poll = vsock_poll,
1095 .ioctl = sock_no_ioctl,
1096 .listen = sock_no_listen,
1097 .shutdown = vsock_shutdown,
1098 .setsockopt = sock_no_setsockopt,
1099 .getsockopt = sock_no_getsockopt,
1100 .sendmsg = vsock_dgram_sendmsg,
1101 .recvmsg = vsock_dgram_recvmsg,
1102 .mmap = sock_no_mmap,
1103 .sendpage = sock_no_sendpage,
1104 };
1105
1106 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1107 {
1108 if (!transport->cancel_pkt)
1109 return -EOPNOTSUPP;
1110
1111 return transport->cancel_pkt(vsk);
1112 }
1113
1114 static void vsock_connect_timeout(struct work_struct *work)
1115 {
1116 struct sock *sk;
1117 struct vsock_sock *vsk;
1118 int cancel = 0;
1119
1120 vsk = container_of(work, struct vsock_sock, dwork.work);
1121 sk = sk_vsock(vsk);
1122
1123 lock_sock(sk);
1124 if (sk->sk_state == TCP_SYN_SENT &&
1125 (sk->sk_shutdown != SHUTDOWN_MASK)) {
1126 sk->sk_state = TCP_CLOSE;
1127 sk->sk_err = ETIMEDOUT;
1128 sk->sk_error_report(sk);
1129 cancel = 1;
1130 }
1131 release_sock(sk);
1132 if (cancel)
1133 vsock_transport_cancel_pkt(vsk);
1134
1135 sock_put(sk);
1136 }
1137
1138 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1139 int addr_len, int flags)
1140 {
1141 int err;
1142 struct sock *sk;
1143 struct vsock_sock *vsk;
1144 struct sockaddr_vm *remote_addr;
1145 long timeout;
1146 DEFINE_WAIT(wait);
1147
1148 err = 0;
1149 sk = sock->sk;
1150 vsk = vsock_sk(sk);
1151
1152 lock_sock(sk);
1153
1154 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1155 switch (sock->state) {
1156 case SS_CONNECTED:
1157 err = -EISCONN;
1158 goto out;
1159 case SS_DISCONNECTING:
1160 err = -EINVAL;
1161 goto out;
1162 case SS_CONNECTING:
1163 /* This continues on so we can move sock into the SS_CONNECTED
1164 * state once the connection has completed (at which point err
1165 * will be set to zero also). Otherwise, we will either wait
1166 * for the connection or return -EALREADY should this be a
1167 * non-blocking call.
1168 */
1169 err = -EALREADY;
1170 break;
1171 default:
1172 if ((sk->sk_state == TCP_LISTEN) ||
1173 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1174 err = -EINVAL;
1175 goto out;
1176 }
1177
1178 /* The hypervisor and well-known contexts do not have socket
1179 * endpoints.
1180 */
1181 if (!transport->stream_allow(remote_addr->svm_cid,
1182 remote_addr->svm_port)) {
1183 err = -ENETUNREACH;
1184 goto out;
1185 }
1186
1187 /* Set the remote address that we are connecting to. */
1188 memcpy(&vsk->remote_addr, remote_addr,
1189 sizeof(vsk->remote_addr));
1190
1191 err = vsock_auto_bind(vsk);
1192 if (err)
1193 goto out;
1194
1195 sk->sk_state = TCP_SYN_SENT;
1196
1197 err = transport->connect(vsk);
1198 if (err < 0)
1199 goto out;
1200
1201 /* Mark sock as connecting and set the error code to in
1202 * progress in case this is a non-blocking connect.
1203 */
1204 sock->state = SS_CONNECTING;
1205 err = -EINPROGRESS;
1206 }
1207
1208 /* The receive path will handle all communication until we are able to
1209 * enter the connected state. Here we wait for the connection to be
1210 * completed or a notification of an error.
1211 */
1212 timeout = vsk->connect_timeout;
1213 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1214
1215 while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1216 if (flags & O_NONBLOCK) {
1217 /* If we're not going to block, we schedule a timeout
1218 * function to generate a timeout on the connection
1219 * attempt, in case the peer doesn't respond in a
1220 * timely manner. We hold on to the socket until the
1221 * timeout fires.
1222 */
1223 sock_hold(sk);
1224 INIT_DELAYED_WORK(&vsk->dwork,
1225 vsock_connect_timeout);
1226 schedule_delayed_work(&vsk->dwork, timeout);
1227
1228 /* Skip ahead to preserve error code set above. */
1229 goto out_wait;
1230 }
1231
1232 release_sock(sk);
1233 timeout = schedule_timeout(timeout);
1234 lock_sock(sk);
1235
1236 if (signal_pending(current)) {
1237 err = sock_intr_errno(timeout);
1238 sk->sk_state = TCP_CLOSE;
1239 sock->state = SS_UNCONNECTED;
1240 vsock_transport_cancel_pkt(vsk);
1241 goto out_wait;
1242 } else if (timeout == 0) {
1243 err = -ETIMEDOUT;
1244 sk->sk_state = TCP_CLOSE;
1245 sock->state = SS_UNCONNECTED;
1246 vsock_transport_cancel_pkt(vsk);
1247 goto out_wait;
1248 }
1249
1250 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1251 }
1252
1253 if (sk->sk_err) {
1254 err = -sk->sk_err;
1255 sk->sk_state = TCP_CLOSE;
1256 sock->state = SS_UNCONNECTED;
1257 } else {
1258 err = 0;
1259 }
1260
1261 out_wait:
1262 finish_wait(sk_sleep(sk), &wait);
1263 out:
1264 release_sock(sk);
1265 return err;
1266 }
1267
1268 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1269 bool kern)
1270 {
1271 struct sock *listener;
1272 int err;
1273 struct sock *connected;
1274 struct vsock_sock *vconnected;
1275 long timeout;
1276 DEFINE_WAIT(wait);
1277
1278 err = 0;
1279 listener = sock->sk;
1280
1281 lock_sock(listener);
1282
1283 if (sock->type != SOCK_STREAM) {
1284 err = -EOPNOTSUPP;
1285 goto out;
1286 }
1287
1288 if (listener->sk_state != TCP_LISTEN) {
1289 err = -EINVAL;
1290 goto out;
1291 }
1292
1293 /* Wait for children sockets to appear; these are the new sockets
1294 * created upon connection establishment.
1295 */
1296 timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1297 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1298
1299 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1300 listener->sk_err == 0) {
1301 release_sock(listener);
1302 timeout = schedule_timeout(timeout);
1303 finish_wait(sk_sleep(listener), &wait);
1304 lock_sock(listener);
1305
1306 if (signal_pending(current)) {
1307 err = sock_intr_errno(timeout);
1308 goto out;
1309 } else if (timeout == 0) {
1310 err = -EAGAIN;
1311 goto out;
1312 }
1313
1314 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1315 }
1316 finish_wait(sk_sleep(listener), &wait);
1317
1318 if (listener->sk_err)
1319 err = -listener->sk_err;
1320
1321 if (connected) {
1322 listener->sk_ack_backlog--;
1323
1324 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1325 vconnected = vsock_sk(connected);
1326
1327 /* If the listener socket has received an error, then we should
1328 * reject this socket and return. Note that we simply mark the
1329 * socket rejected, drop our reference, and let the cleanup
1330 * function handle the cleanup; the fact that we found it in
1331 * the listener's accept queue guarantees that the cleanup
1332 * function hasn't run yet.
1333 */
1334 if (err) {
1335 vconnected->rejected = true;
1336 } else {
1337 newsock->state = SS_CONNECTED;
1338 sock_graft(connected, newsock);
1339 }
1340
1341 release_sock(connected);
1342 sock_put(connected);
1343 }
1344
1345 out:
1346 release_sock(listener);
1347 return err;
1348 }
1349
1350 static int vsock_listen(struct socket *sock, int backlog)
1351 {
1352 int err;
1353 struct sock *sk;
1354 struct vsock_sock *vsk;
1355
1356 sk = sock->sk;
1357
1358 lock_sock(sk);
1359
1360 if (sock->type != SOCK_STREAM) {
1361 err = -EOPNOTSUPP;
1362 goto out;
1363 }
1364
1365 if (sock->state != SS_UNCONNECTED) {
1366 err = -EINVAL;
1367 goto out;
1368 }
1369
1370 vsk = vsock_sk(sk);
1371
1372 if (!vsock_addr_bound(&vsk->local_addr)) {
1373 err = -EINVAL;
1374 goto out;
1375 }
1376
1377 sk->sk_max_ack_backlog = backlog;
1378 sk->sk_state = TCP_LISTEN;
1379
1380 err = 0;
1381
1382 out:
1383 release_sock(sk);
1384 return err;
1385 }
1386
1387 static int vsock_stream_setsockopt(struct socket *sock,
1388 int level,
1389 int optname,
1390 char __user *optval,
1391 unsigned int optlen)
1392 {
1393 int err;
1394 struct sock *sk;
1395 struct vsock_sock *vsk;
1396 u64 val;
1397
1398 if (level != AF_VSOCK)
1399 return -ENOPROTOOPT;
1400
1401 #define COPY_IN(_v) \
1402 do { \
1403 if (optlen < sizeof(_v)) { \
1404 err = -EINVAL; \
1405 goto exit; \
1406 } \
1407 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \
1408 err = -EFAULT; \
1409 goto exit; \
1410 } \
1411 } while (0)
1412
1413 err = 0;
1414 sk = sock->sk;
1415 vsk = vsock_sk(sk);
1416
1417 lock_sock(sk);
1418
1419 switch (optname) {
1420 case SO_VM_SOCKETS_BUFFER_SIZE:
1421 COPY_IN(val);
1422 transport->set_buffer_size(vsk, val);
1423 break;
1424
1425 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1426 COPY_IN(val);
1427 transport->set_max_buffer_size(vsk, val);
1428 break;
1429
1430 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1431 COPY_IN(val);
1432 transport->set_min_buffer_size(vsk, val);
1433 break;
1434
1435 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1436 struct timeval tv;
1437 COPY_IN(tv);
1438 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1439 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1440 vsk->connect_timeout = tv.tv_sec * HZ +
1441 DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1442 if (vsk->connect_timeout == 0)
1443 vsk->connect_timeout =
1444 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1445
1446 } else {
1447 err = -ERANGE;
1448 }
1449 break;
1450 }
1451
1452 default:
1453 err = -ENOPROTOOPT;
1454 break;
1455 }
1456
1457 #undef COPY_IN
1458
1459 exit:
1460 release_sock(sk);
1461 return err;
1462 }
1463
1464 static int vsock_stream_getsockopt(struct socket *sock,
1465 int level, int optname,
1466 char __user *optval,
1467 int __user *optlen)
1468 {
1469 int err;
1470 int len;
1471 struct sock *sk;
1472 struct vsock_sock *vsk;
1473 u64 val;
1474
1475 if (level != AF_VSOCK)
1476 return -ENOPROTOOPT;
1477
1478 err = get_user(len, optlen);
1479 if (err != 0)
1480 return err;
1481
1482 #define COPY_OUT(_v) \
1483 do { \
1484 if (len < sizeof(_v)) \
1485 return -EINVAL; \
1486 \
1487 len = sizeof(_v); \
1488 if (copy_to_user(optval, &_v, len) != 0) \
1489 return -EFAULT; \
1490 \
1491 } while (0)
1492
1493 err = 0;
1494 sk = sock->sk;
1495 vsk = vsock_sk(sk);
1496
1497 switch (optname) {
1498 case SO_VM_SOCKETS_BUFFER_SIZE:
1499 val = transport->get_buffer_size(vsk);
1500 COPY_OUT(val);
1501 break;
1502
1503 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1504 val = transport->get_max_buffer_size(vsk);
1505 COPY_OUT(val);
1506 break;
1507
1508 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1509 val = transport->get_min_buffer_size(vsk);
1510 COPY_OUT(val);
1511 break;
1512
1513 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1514 struct timeval tv;
1515 tv.tv_sec = vsk->connect_timeout / HZ;
1516 tv.tv_usec =
1517 (vsk->connect_timeout -
1518 tv.tv_sec * HZ) * (1000000 / HZ);
1519 COPY_OUT(tv);
1520 break;
1521 }
1522 default:
1523 return -ENOPROTOOPT;
1524 }
1525
1526 err = put_user(len, optlen);
1527 if (err != 0)
1528 return -EFAULT;
1529
1530 #undef COPY_OUT
1531
1532 return 0;
1533 }
1534
1535 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1536 size_t len)
1537 {
1538 struct sock *sk;
1539 struct vsock_sock *vsk;
1540 ssize_t total_written;
1541 long timeout;
1542 int err;
1543 struct vsock_transport_send_notify_data send_data;
1544 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1545
1546 sk = sock->sk;
1547 vsk = vsock_sk(sk);
1548 total_written = 0;
1549 err = 0;
1550
1551 if (msg->msg_flags & MSG_OOB)
1552 return -EOPNOTSUPP;
1553
1554 lock_sock(sk);
1555
1556 /* Callers should not provide a destination with stream sockets. */
1557 if (msg->msg_namelen) {
1558 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1559 goto out;
1560 }
1561
1562 /* Send data only if both sides are not shutdown in the direction. */
1563 if (sk->sk_shutdown & SEND_SHUTDOWN ||
1564 vsk->peer_shutdown & RCV_SHUTDOWN) {
1565 err = -EPIPE;
1566 goto out;
1567 }
1568
1569 if (sk->sk_state != TCP_ESTABLISHED ||
1570 !vsock_addr_bound(&vsk->local_addr)) {
1571 err = -ENOTCONN;
1572 goto out;
1573 }
1574
1575 if (!vsock_addr_bound(&vsk->remote_addr)) {
1576 err = -EDESTADDRREQ;
1577 goto out;
1578 }
1579
1580 /* Wait for room in the produce queue to enqueue our user's data. */
1581 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1582
1583 err = transport->notify_send_init(vsk, &send_data);
1584 if (err < 0)
1585 goto out;
1586
1587 while (total_written < len) {
1588 ssize_t written;
1589
1590 add_wait_queue(sk_sleep(sk), &wait);
1591 while (vsock_stream_has_space(vsk) == 0 &&
1592 sk->sk_err == 0 &&
1593 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1594 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1595
1596 /* Don't wait for non-blocking sockets. */
1597 if (timeout == 0) {
1598 err = -EAGAIN;
1599 remove_wait_queue(sk_sleep(sk), &wait);
1600 goto out_err;
1601 }
1602
1603 err = transport->notify_send_pre_block(vsk, &send_data);
1604 if (err < 0) {
1605 remove_wait_queue(sk_sleep(sk), &wait);
1606 goto out_err;
1607 }
1608
1609 release_sock(sk);
1610 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1611 lock_sock(sk);
1612 if (signal_pending(current)) {
1613 err = sock_intr_errno(timeout);
1614 remove_wait_queue(sk_sleep(sk), &wait);
1615 goto out_err;
1616 } else if (timeout == 0) {
1617 err = -EAGAIN;
1618 remove_wait_queue(sk_sleep(sk), &wait);
1619 goto out_err;
1620 }
1621 }
1622 remove_wait_queue(sk_sleep(sk), &wait);
1623
1624 /* These checks occur both as part of and after the loop
1625 * conditional since we need to check before and after
1626 * sleeping.
1627 */
1628 if (sk->sk_err) {
1629 err = -sk->sk_err;
1630 goto out_err;
1631 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1632 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1633 err = -EPIPE;
1634 goto out_err;
1635 }
1636
1637 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1638 if (err < 0)
1639 goto out_err;
1640
1641 /* Note that enqueue will only write as many bytes as are free
1642 * in the produce queue, so we don't need to ensure len is
1643 * smaller than the queue size. It is the caller's
1644 * responsibility to check how many bytes we were able to send.
1645 */
1646
1647 written = transport->stream_enqueue(
1648 vsk, msg,
1649 len - total_written);
1650 if (written < 0) {
1651 err = -ENOMEM;
1652 goto out_err;
1653 }
1654
1655 total_written += written;
1656
1657 err = transport->notify_send_post_enqueue(
1658 vsk, written, &send_data);
1659 if (err < 0)
1660 goto out_err;
1661
1662 }
1663
1664 out_err:
1665 if (total_written > 0)
1666 err = total_written;
1667 out:
1668 release_sock(sk);
1669 return err;
1670 }
1671
1672
1673 static int
1674 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1675 int flags)
1676 {
1677 struct sock *sk;
1678 struct vsock_sock *vsk;
1679 int err;
1680 size_t target;
1681 ssize_t copied;
1682 long timeout;
1683 struct vsock_transport_recv_notify_data recv_data;
1684
1685 DEFINE_WAIT(wait);
1686
1687 sk = sock->sk;
1688 vsk = vsock_sk(sk);
1689 err = 0;
1690
1691 lock_sock(sk);
1692
1693 if (sk->sk_state != TCP_ESTABLISHED) {
1694 /* Recvmsg is supposed to return 0 if a peer performs an
1695 * orderly shutdown. Differentiate between that case and when a
1696 * peer has not connected or a local shutdown occured with the
1697 * SOCK_DONE flag.
1698 */
1699 if (sock_flag(sk, SOCK_DONE))
1700 err = 0;
1701 else
1702 err = -ENOTCONN;
1703
1704 goto out;
1705 }
1706
1707 if (flags & MSG_OOB) {
1708 err = -EOPNOTSUPP;
1709 goto out;
1710 }
1711
1712 /* We don't check peer_shutdown flag here since peer may actually shut
1713 * down, but there can be data in the queue that a local socket can
1714 * receive.
1715 */
1716 if (sk->sk_shutdown & RCV_SHUTDOWN) {
1717 err = 0;
1718 goto out;
1719 }
1720
1721 /* It is valid on Linux to pass in a zero-length receive buffer. This
1722 * is not an error. We may as well bail out now.
1723 */
1724 if (!len) {
1725 err = 0;
1726 goto out;
1727 }
1728
1729 /* We must not copy less than target bytes into the user's buffer
1730 * before returning successfully, so we wait for the consume queue to
1731 * have that much data to consume before dequeueing. Note that this
1732 * makes it impossible to handle cases where target is greater than the
1733 * queue size.
1734 */
1735 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1736 if (target >= transport->stream_rcvhiwat(vsk)) {
1737 err = -ENOMEM;
1738 goto out;
1739 }
1740 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1741 copied = 0;
1742
1743 err = transport->notify_recv_init(vsk, target, &recv_data);
1744 if (err < 0)
1745 goto out;
1746
1747
1748 while (1) {
1749 s64 ready;
1750
1751 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1752 ready = vsock_stream_has_data(vsk);
1753
1754 if (ready == 0) {
1755 if (sk->sk_err != 0 ||
1756 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1757 (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1758 finish_wait(sk_sleep(sk), &wait);
1759 break;
1760 }
1761 /* Don't wait for non-blocking sockets. */
1762 if (timeout == 0) {
1763 err = -EAGAIN;
1764 finish_wait(sk_sleep(sk), &wait);
1765 break;
1766 }
1767
1768 err = transport->notify_recv_pre_block(
1769 vsk, target, &recv_data);
1770 if (err < 0) {
1771 finish_wait(sk_sleep(sk), &wait);
1772 break;
1773 }
1774 release_sock(sk);
1775 timeout = schedule_timeout(timeout);
1776 lock_sock(sk);
1777
1778 if (signal_pending(current)) {
1779 err = sock_intr_errno(timeout);
1780 finish_wait(sk_sleep(sk), &wait);
1781 break;
1782 } else if (timeout == 0) {
1783 err = -EAGAIN;
1784 finish_wait(sk_sleep(sk), &wait);
1785 break;
1786 }
1787 } else {
1788 ssize_t read;
1789
1790 finish_wait(sk_sleep(sk), &wait);
1791
1792 if (ready < 0) {
1793 /* Invalid queue pair content. XXX This should
1794 * be changed to a connection reset in a later
1795 * change.
1796 */
1797
1798 err = -ENOMEM;
1799 goto out;
1800 }
1801
1802 err = transport->notify_recv_pre_dequeue(
1803 vsk, target, &recv_data);
1804 if (err < 0)
1805 break;
1806
1807 read = transport->stream_dequeue(
1808 vsk, msg,
1809 len - copied, flags);
1810 if (read < 0) {
1811 err = -ENOMEM;
1812 break;
1813 }
1814
1815 copied += read;
1816
1817 err = transport->notify_recv_post_dequeue(
1818 vsk, target, read,
1819 !(flags & MSG_PEEK), &recv_data);
1820 if (err < 0)
1821 goto out;
1822
1823 if (read >= target || flags & MSG_PEEK)
1824 break;
1825
1826 target -= read;
1827 }
1828 }
1829
1830 if (sk->sk_err)
1831 err = -sk->sk_err;
1832 else if (sk->sk_shutdown & RCV_SHUTDOWN)
1833 err = 0;
1834
1835 if (copied > 0)
1836 err = copied;
1837
1838 out:
1839 release_sock(sk);
1840 return err;
1841 }
1842
1843 static const struct proto_ops vsock_stream_ops = {
1844 .family = PF_VSOCK,
1845 .owner = THIS_MODULE,
1846 .release = vsock_release,
1847 .bind = vsock_bind,
1848 .connect = vsock_stream_connect,
1849 .socketpair = sock_no_socketpair,
1850 .accept = vsock_accept,
1851 .getname = vsock_getname,
1852 .poll = vsock_poll,
1853 .ioctl = sock_no_ioctl,
1854 .listen = vsock_listen,
1855 .shutdown = vsock_shutdown,
1856 .setsockopt = vsock_stream_setsockopt,
1857 .getsockopt = vsock_stream_getsockopt,
1858 .sendmsg = vsock_stream_sendmsg,
1859 .recvmsg = vsock_stream_recvmsg,
1860 .mmap = sock_no_mmap,
1861 .sendpage = sock_no_sendpage,
1862 };
1863
1864 static int vsock_create(struct net *net, struct socket *sock,
1865 int protocol, int kern)
1866 {
1867 if (!sock)
1868 return -EINVAL;
1869
1870 if (protocol && protocol != PF_VSOCK)
1871 return -EPROTONOSUPPORT;
1872
1873 switch (sock->type) {
1874 case SOCK_DGRAM:
1875 sock->ops = &vsock_dgram_ops;
1876 break;
1877 case SOCK_STREAM:
1878 sock->ops = &vsock_stream_ops;
1879 break;
1880 default:
1881 return -ESOCKTNOSUPPORT;
1882 }
1883
1884 sock->state = SS_UNCONNECTED;
1885
1886 return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM;
1887 }
1888
1889 static const struct net_proto_family vsock_family_ops = {
1890 .family = AF_VSOCK,
1891 .create = vsock_create,
1892 .owner = THIS_MODULE,
1893 };
1894
1895 static long vsock_dev_do_ioctl(struct file *filp,
1896 unsigned int cmd, void __user *ptr)
1897 {
1898 u32 __user *p = ptr;
1899 int retval = 0;
1900
1901 switch (cmd) {
1902 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1903 if (put_user(transport->get_local_cid(), p) != 0)
1904 retval = -EFAULT;
1905 break;
1906
1907 default:
1908 pr_err("Unknown ioctl %d\n", cmd);
1909 retval = -EINVAL;
1910 }
1911
1912 return retval;
1913 }
1914
1915 static long vsock_dev_ioctl(struct file *filp,
1916 unsigned int cmd, unsigned long arg)
1917 {
1918 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1919 }
1920
1921 #ifdef CONFIG_COMPAT
1922 static long vsock_dev_compat_ioctl(struct file *filp,
1923 unsigned int cmd, unsigned long arg)
1924 {
1925 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1926 }
1927 #endif
1928
1929 static const struct file_operations vsock_device_ops = {
1930 .owner = THIS_MODULE,
1931 .unlocked_ioctl = vsock_dev_ioctl,
1932 #ifdef CONFIG_COMPAT
1933 .compat_ioctl = vsock_dev_compat_ioctl,
1934 #endif
1935 .open = nonseekable_open,
1936 };
1937
1938 static struct miscdevice vsock_device = {
1939 .name = "vsock",
1940 .fops = &vsock_device_ops,
1941 };
1942
1943 int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
1944 {
1945 int err = mutex_lock_interruptible(&vsock_register_mutex);
1946
1947 if (err)
1948 return err;
1949
1950 if (transport) {
1951 err = -EBUSY;
1952 goto err_busy;
1953 }
1954
1955 /* Transport must be the owner of the protocol so that it can't
1956 * unload while there are open sockets.
1957 */
1958 vsock_proto.owner = owner;
1959 transport = t;
1960
1961 vsock_device.minor = MISC_DYNAMIC_MINOR;
1962 err = misc_register(&vsock_device);
1963 if (err) {
1964 pr_err("Failed to register misc device\n");
1965 goto err_reset_transport;
1966 }
1967
1968 err = proto_register(&vsock_proto, 1); /* we want our slab */
1969 if (err) {
1970 pr_err("Cannot register vsock protocol\n");
1971 goto err_deregister_misc;
1972 }
1973
1974 err = sock_register(&vsock_family_ops);
1975 if (err) {
1976 pr_err("could not register af_vsock (%d) address family: %d\n",
1977 AF_VSOCK, err);
1978 goto err_unregister_proto;
1979 }
1980
1981 mutex_unlock(&vsock_register_mutex);
1982 return 0;
1983
1984 err_unregister_proto:
1985 proto_unregister(&vsock_proto);
1986 err_deregister_misc:
1987 misc_deregister(&vsock_device);
1988 err_reset_transport:
1989 transport = NULL;
1990 err_busy:
1991 mutex_unlock(&vsock_register_mutex);
1992 return err;
1993 }
1994 EXPORT_SYMBOL_GPL(__vsock_core_init);
1995
1996 void vsock_core_exit(void)
1997 {
1998 mutex_lock(&vsock_register_mutex);
1999
2000 misc_deregister(&vsock_device);
2001 sock_unregister(AF_VSOCK);
2002 proto_unregister(&vsock_proto);
2003
2004 /* We do not want the assignment below re-ordered. */
2005 mb();
2006 transport = NULL;
2007
2008 mutex_unlock(&vsock_register_mutex);
2009 }
2010 EXPORT_SYMBOL_GPL(vsock_core_exit);
2011
2012 const struct vsock_transport *vsock_core_get_transport(void)
2013 {
2014 /* vsock_register_mutex not taken since only the transport uses this
2015 * function and only while registered.
2016 */
2017 return transport;
2018 }
2019 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2020
2021 module_init(vsock_init_tables);
2022
2023 MODULE_AUTHOR("VMware, Inc.");
2024 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2025 MODULE_VERSION("1.0.2.0-k");
2026 MODULE_LICENSE("GPL v2");