]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/vmw_vsock/hyperv_transport.c
Merge tag 'linux-kselftest-fixes-5.14-rc6' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-jammy-kernel.git] / net / vmw_vsock / hyperv_transport.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Hyper-V transport for vsock
4 *
5 * Hyper-V Sockets supplies a byte-stream based communication mechanism
6 * between the host and the VM. This driver implements the necessary
7 * support in the VM by introducing the new vsock transport.
8 *
9 * Copyright (c) 2017, Microsoft Corporation.
10 */
11 #include <linux/module.h>
12 #include <linux/vmalloc.h>
13 #include <linux/hyperv.h>
14 #include <net/sock.h>
15 #include <net/af_vsock.h>
16 #include <asm/hyperv-tlfs.h>
17
18 /* Older (VMBUS version 'VERSION_WIN10' or before) Windows hosts have some
19 * stricter requirements on the hv_sock ring buffer size of six 4K pages.
20 * hyperv-tlfs defines HV_HYP_PAGE_SIZE as 4K. Newer hosts don't have this
21 * limitation; but, keep the defaults the same for compat.
22 */
23 #define RINGBUFFER_HVS_RCV_SIZE (HV_HYP_PAGE_SIZE * 6)
24 #define RINGBUFFER_HVS_SND_SIZE (HV_HYP_PAGE_SIZE * 6)
25 #define RINGBUFFER_HVS_MAX_SIZE (HV_HYP_PAGE_SIZE * 64)
26
27 /* The MTU is 16KB per the host side's design */
28 #define HVS_MTU_SIZE (1024 * 16)
29
30 /* How long to wait for graceful shutdown of a connection */
31 #define HVS_CLOSE_TIMEOUT (8 * HZ)
32
33 struct vmpipe_proto_header {
34 u32 pkt_type;
35 u32 data_size;
36 };
37
38 /* For recv, we use the VMBus in-place packet iterator APIs to directly copy
39 * data from the ringbuffer into the userspace buffer.
40 */
41 struct hvs_recv_buf {
42 /* The header before the payload data */
43 struct vmpipe_proto_header hdr;
44
45 /* The payload */
46 u8 data[HVS_MTU_SIZE];
47 };
48
49 /* We can send up to HVS_MTU_SIZE bytes of payload to the host, but let's use
50 * a smaller size, i.e. HVS_SEND_BUF_SIZE, to maximize concurrency between the
51 * guest and the host processing as one VMBUS packet is the smallest processing
52 * unit.
53 *
54 * Note: the buffer can be eliminated in the future when we add new VMBus
55 * ringbuffer APIs that allow us to directly copy data from userspace buffer
56 * to VMBus ringbuffer.
57 */
58 #define HVS_SEND_BUF_SIZE \
59 (HV_HYP_PAGE_SIZE - sizeof(struct vmpipe_proto_header))
60
61 struct hvs_send_buf {
62 /* The header before the payload data */
63 struct vmpipe_proto_header hdr;
64
65 /* The payload */
66 u8 data[HVS_SEND_BUF_SIZE];
67 };
68
69 #define HVS_HEADER_LEN (sizeof(struct vmpacket_descriptor) + \
70 sizeof(struct vmpipe_proto_header))
71
72 /* See 'prev_indices' in hv_ringbuffer_read(), hv_ringbuffer_write(), and
73 * __hv_pkt_iter_next().
74 */
75 #define VMBUS_PKT_TRAILER_SIZE (sizeof(u64))
76
77 #define HVS_PKT_LEN(payload_len) (HVS_HEADER_LEN + \
78 ALIGN((payload_len), 8) + \
79 VMBUS_PKT_TRAILER_SIZE)
80
81 union hvs_service_id {
82 guid_t srv_id;
83
84 struct {
85 unsigned int svm_port;
86 unsigned char b[sizeof(guid_t) - sizeof(unsigned int)];
87 };
88 };
89
90 /* Per-socket state (accessed via vsk->trans) */
91 struct hvsock {
92 struct vsock_sock *vsk;
93
94 guid_t vm_srv_id;
95 guid_t host_srv_id;
96
97 struct vmbus_channel *chan;
98 struct vmpacket_descriptor *recv_desc;
99
100 /* The length of the payload not delivered to userland yet */
101 u32 recv_data_len;
102 /* The offset of the payload */
103 u32 recv_data_off;
104
105 /* Have we sent the zero-length packet (FIN)? */
106 bool fin_sent;
107 };
108
109 /* In the VM, we support Hyper-V Sockets with AF_VSOCK, and the endpoint is
110 * <cid, port> (see struct sockaddr_vm). Note: cid is not really used here:
111 * when we write apps to connect to the host, we can only use VMADDR_CID_ANY
112 * or VMADDR_CID_HOST (both are equivalent) as the remote cid, and when we
113 * write apps to bind() & listen() in the VM, we can only use VMADDR_CID_ANY
114 * as the local cid.
115 *
116 * On the host, Hyper-V Sockets are supported by Winsock AF_HYPERV:
117 * https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-
118 * guide/make-integration-service, and the endpoint is <VmID, ServiceId> with
119 * the below sockaddr:
120 *
121 * struct SOCKADDR_HV
122 * {
123 * ADDRESS_FAMILY Family;
124 * USHORT Reserved;
125 * GUID VmId;
126 * GUID ServiceId;
127 * };
128 * Note: VmID is not used by Linux VM and actually it isn't transmitted via
129 * VMBus, because here it's obvious the host and the VM can easily identify
130 * each other. Though the VmID is useful on the host, especially in the case
131 * of Windows container, Linux VM doesn't need it at all.
132 *
133 * To make use of the AF_VSOCK infrastructure in Linux VM, we have to limit
134 * the available GUID space of SOCKADDR_HV so that we can create a mapping
135 * between AF_VSOCK port and SOCKADDR_HV Service GUID. The rule of writing
136 * Hyper-V Sockets apps on the host and in Linux VM is:
137 *
138 ****************************************************************************
139 * The only valid Service GUIDs, from the perspectives of both the host and *
140 * Linux VM, that can be connected by the other end, must conform to this *
141 * format: <port>-facb-11e6-bd58-64006a7986d3. *
142 ****************************************************************************
143 *
144 * When we write apps on the host to connect(), the GUID ServiceID is used.
145 * When we write apps in Linux VM to connect(), we only need to specify the
146 * port and the driver will form the GUID and use that to request the host.
147 *
148 */
149
150 /* 00000000-facb-11e6-bd58-64006a7986d3 */
151 static const guid_t srv_id_template =
152 GUID_INIT(0x00000000, 0xfacb, 0x11e6, 0xbd, 0x58,
153 0x64, 0x00, 0x6a, 0x79, 0x86, 0xd3);
154
155 static bool hvs_check_transport(struct vsock_sock *vsk);
156
157 static bool is_valid_srv_id(const guid_t *id)
158 {
159 return !memcmp(&id->b[4], &srv_id_template.b[4], sizeof(guid_t) - 4);
160 }
161
162 static unsigned int get_port_by_srv_id(const guid_t *svr_id)
163 {
164 return *((unsigned int *)svr_id);
165 }
166
167 static void hvs_addr_init(struct sockaddr_vm *addr, const guid_t *svr_id)
168 {
169 unsigned int port = get_port_by_srv_id(svr_id);
170
171 vsock_addr_init(addr, VMADDR_CID_ANY, port);
172 }
173
174 static void hvs_set_channel_pending_send_size(struct vmbus_channel *chan)
175 {
176 set_channel_pending_send_size(chan,
177 HVS_PKT_LEN(HVS_SEND_BUF_SIZE));
178
179 virt_mb();
180 }
181
182 static bool hvs_channel_readable(struct vmbus_channel *chan)
183 {
184 u32 readable = hv_get_bytes_to_read(&chan->inbound);
185
186 /* 0-size payload means FIN */
187 return readable >= HVS_PKT_LEN(0);
188 }
189
190 static int hvs_channel_readable_payload(struct vmbus_channel *chan)
191 {
192 u32 readable = hv_get_bytes_to_read(&chan->inbound);
193
194 if (readable > HVS_PKT_LEN(0)) {
195 /* At least we have 1 byte to read. We don't need to return
196 * the exact readable bytes: see vsock_stream_recvmsg() ->
197 * vsock_stream_has_data().
198 */
199 return 1;
200 }
201
202 if (readable == HVS_PKT_LEN(0)) {
203 /* 0-size payload means FIN */
204 return 0;
205 }
206
207 /* No payload or FIN */
208 return -1;
209 }
210
211 static size_t hvs_channel_writable_bytes(struct vmbus_channel *chan)
212 {
213 u32 writeable = hv_get_bytes_to_write(&chan->outbound);
214 size_t ret;
215
216 /* The ringbuffer mustn't be 100% full, and we should reserve a
217 * zero-length-payload packet for the FIN: see hv_ringbuffer_write()
218 * and hvs_shutdown().
219 */
220 if (writeable <= HVS_PKT_LEN(1) + HVS_PKT_LEN(0))
221 return 0;
222
223 ret = writeable - HVS_PKT_LEN(1) - HVS_PKT_LEN(0);
224
225 return round_down(ret, 8);
226 }
227
228 static int hvs_send_data(struct vmbus_channel *chan,
229 struct hvs_send_buf *send_buf, size_t to_write)
230 {
231 send_buf->hdr.pkt_type = 1;
232 send_buf->hdr.data_size = to_write;
233 return vmbus_sendpacket(chan, &send_buf->hdr,
234 sizeof(send_buf->hdr) + to_write,
235 0, VM_PKT_DATA_INBAND, 0);
236 }
237
238 static void hvs_channel_cb(void *ctx)
239 {
240 struct sock *sk = (struct sock *)ctx;
241 struct vsock_sock *vsk = vsock_sk(sk);
242 struct hvsock *hvs = vsk->trans;
243 struct vmbus_channel *chan = hvs->chan;
244
245 if (hvs_channel_readable(chan))
246 sk->sk_data_ready(sk);
247
248 if (hv_get_bytes_to_write(&chan->outbound) > 0)
249 sk->sk_write_space(sk);
250 }
251
252 static void hvs_do_close_lock_held(struct vsock_sock *vsk,
253 bool cancel_timeout)
254 {
255 struct sock *sk = sk_vsock(vsk);
256
257 sock_set_flag(sk, SOCK_DONE);
258 vsk->peer_shutdown = SHUTDOWN_MASK;
259 if (vsock_stream_has_data(vsk) <= 0)
260 sk->sk_state = TCP_CLOSING;
261 sk->sk_state_change(sk);
262 if (vsk->close_work_scheduled &&
263 (!cancel_timeout || cancel_delayed_work(&vsk->close_work))) {
264 vsk->close_work_scheduled = false;
265 vsock_remove_sock(vsk);
266
267 /* Release the reference taken while scheduling the timeout */
268 sock_put(sk);
269 }
270 }
271
272 static void hvs_close_connection(struct vmbus_channel *chan)
273 {
274 struct sock *sk = get_per_channel_state(chan);
275
276 lock_sock(sk);
277 hvs_do_close_lock_held(vsock_sk(sk), true);
278 release_sock(sk);
279
280 /* Release the refcnt for the channel that's opened in
281 * hvs_open_connection().
282 */
283 sock_put(sk);
284 }
285
286 static void hvs_open_connection(struct vmbus_channel *chan)
287 {
288 guid_t *if_instance, *if_type;
289 unsigned char conn_from_host;
290
291 struct sockaddr_vm addr;
292 struct sock *sk, *new = NULL;
293 struct vsock_sock *vnew = NULL;
294 struct hvsock *hvs = NULL;
295 struct hvsock *hvs_new = NULL;
296 int rcvbuf;
297 int ret;
298 int sndbuf;
299
300 if_type = &chan->offermsg.offer.if_type;
301 if_instance = &chan->offermsg.offer.if_instance;
302 conn_from_host = chan->offermsg.offer.u.pipe.user_def[0];
303 if (!is_valid_srv_id(if_type))
304 return;
305
306 hvs_addr_init(&addr, conn_from_host ? if_type : if_instance);
307 sk = vsock_find_bound_socket(&addr);
308 if (!sk)
309 return;
310
311 lock_sock(sk);
312 if ((conn_from_host && sk->sk_state != TCP_LISTEN) ||
313 (!conn_from_host && sk->sk_state != TCP_SYN_SENT))
314 goto out;
315
316 if (conn_from_host) {
317 if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog)
318 goto out;
319
320 new = vsock_create_connected(sk);
321 if (!new)
322 goto out;
323
324 new->sk_state = TCP_SYN_SENT;
325 vnew = vsock_sk(new);
326
327 hvs_addr_init(&vnew->local_addr, if_type);
328
329 /* Remote peer is always the host */
330 vsock_addr_init(&vnew->remote_addr,
331 VMADDR_CID_HOST, VMADDR_PORT_ANY);
332 vnew->remote_addr.svm_port = get_port_by_srv_id(if_instance);
333 ret = vsock_assign_transport(vnew, vsock_sk(sk));
334 /* Transport assigned (looking at remote_addr) must be the
335 * same where we received the request.
336 */
337 if (ret || !hvs_check_transport(vnew)) {
338 sock_put(new);
339 goto out;
340 }
341 hvs_new = vnew->trans;
342 hvs_new->chan = chan;
343 } else {
344 hvs = vsock_sk(sk)->trans;
345 hvs->chan = chan;
346 }
347
348 set_channel_read_mode(chan, HV_CALL_DIRECT);
349
350 /* Use the socket buffer sizes as hints for the VMBUS ring size. For
351 * server side sockets, 'sk' is the parent socket and thus, this will
352 * allow the child sockets to inherit the size from the parent. Keep
353 * the mins to the default value and align to page size as per VMBUS
354 * requirements.
355 * For the max, the socket core library will limit the socket buffer
356 * size that can be set by the user, but, since currently, the hv_sock
357 * VMBUS ring buffer is physically contiguous allocation, restrict it
358 * further.
359 * Older versions of hv_sock host side code cannot handle bigger VMBUS
360 * ring buffer size. Use the version number to limit the change to newer
361 * versions.
362 */
363 if (vmbus_proto_version < VERSION_WIN10_V5) {
364 sndbuf = RINGBUFFER_HVS_SND_SIZE;
365 rcvbuf = RINGBUFFER_HVS_RCV_SIZE;
366 } else {
367 sndbuf = max_t(int, sk->sk_sndbuf, RINGBUFFER_HVS_SND_SIZE);
368 sndbuf = min_t(int, sndbuf, RINGBUFFER_HVS_MAX_SIZE);
369 sndbuf = ALIGN(sndbuf, HV_HYP_PAGE_SIZE);
370 rcvbuf = max_t(int, sk->sk_rcvbuf, RINGBUFFER_HVS_RCV_SIZE);
371 rcvbuf = min_t(int, rcvbuf, RINGBUFFER_HVS_MAX_SIZE);
372 rcvbuf = ALIGN(rcvbuf, HV_HYP_PAGE_SIZE);
373 }
374
375 ret = vmbus_open(chan, sndbuf, rcvbuf, NULL, 0, hvs_channel_cb,
376 conn_from_host ? new : sk);
377 if (ret != 0) {
378 if (conn_from_host) {
379 hvs_new->chan = NULL;
380 sock_put(new);
381 } else {
382 hvs->chan = NULL;
383 }
384 goto out;
385 }
386
387 set_per_channel_state(chan, conn_from_host ? new : sk);
388
389 /* This reference will be dropped by hvs_close_connection(). */
390 sock_hold(conn_from_host ? new : sk);
391 vmbus_set_chn_rescind_callback(chan, hvs_close_connection);
392
393 /* Set the pending send size to max packet size to always get
394 * notifications from the host when there is enough writable space.
395 * The host is optimized to send notifications only when the pending
396 * size boundary is crossed, and not always.
397 */
398 hvs_set_channel_pending_send_size(chan);
399
400 if (conn_from_host) {
401 new->sk_state = TCP_ESTABLISHED;
402 sk_acceptq_added(sk);
403
404 hvs_new->vm_srv_id = *if_type;
405 hvs_new->host_srv_id = *if_instance;
406
407 vsock_insert_connected(vnew);
408
409 vsock_enqueue_accept(sk, new);
410 } else {
411 sk->sk_state = TCP_ESTABLISHED;
412 sk->sk_socket->state = SS_CONNECTED;
413
414 vsock_insert_connected(vsock_sk(sk));
415 }
416
417 sk->sk_state_change(sk);
418
419 out:
420 /* Release refcnt obtained when we called vsock_find_bound_socket() */
421 sock_put(sk);
422
423 release_sock(sk);
424 }
425
426 static u32 hvs_get_local_cid(void)
427 {
428 return VMADDR_CID_ANY;
429 }
430
431 static int hvs_sock_init(struct vsock_sock *vsk, struct vsock_sock *psk)
432 {
433 struct hvsock *hvs;
434 struct sock *sk = sk_vsock(vsk);
435
436 hvs = kzalloc(sizeof(*hvs), GFP_KERNEL);
437 if (!hvs)
438 return -ENOMEM;
439
440 vsk->trans = hvs;
441 hvs->vsk = vsk;
442 sk->sk_sndbuf = RINGBUFFER_HVS_SND_SIZE;
443 sk->sk_rcvbuf = RINGBUFFER_HVS_RCV_SIZE;
444 return 0;
445 }
446
447 static int hvs_connect(struct vsock_sock *vsk)
448 {
449 union hvs_service_id vm, host;
450 struct hvsock *h = vsk->trans;
451
452 vm.srv_id = srv_id_template;
453 vm.svm_port = vsk->local_addr.svm_port;
454 h->vm_srv_id = vm.srv_id;
455
456 host.srv_id = srv_id_template;
457 host.svm_port = vsk->remote_addr.svm_port;
458 h->host_srv_id = host.srv_id;
459
460 return vmbus_send_tl_connect_request(&h->vm_srv_id, &h->host_srv_id);
461 }
462
463 static void hvs_shutdown_lock_held(struct hvsock *hvs, int mode)
464 {
465 struct vmpipe_proto_header hdr;
466
467 if (hvs->fin_sent || !hvs->chan)
468 return;
469
470 /* It can't fail: see hvs_channel_writable_bytes(). */
471 (void)hvs_send_data(hvs->chan, (struct hvs_send_buf *)&hdr, 0);
472 hvs->fin_sent = true;
473 }
474
475 static int hvs_shutdown(struct vsock_sock *vsk, int mode)
476 {
477 if (!(mode & SEND_SHUTDOWN))
478 return 0;
479
480 hvs_shutdown_lock_held(vsk->trans, mode);
481 return 0;
482 }
483
484 static void hvs_close_timeout(struct work_struct *work)
485 {
486 struct vsock_sock *vsk =
487 container_of(work, struct vsock_sock, close_work.work);
488 struct sock *sk = sk_vsock(vsk);
489
490 sock_hold(sk);
491 lock_sock(sk);
492 if (!sock_flag(sk, SOCK_DONE))
493 hvs_do_close_lock_held(vsk, false);
494
495 vsk->close_work_scheduled = false;
496 release_sock(sk);
497 sock_put(sk);
498 }
499
500 /* Returns true, if it is safe to remove socket; false otherwise */
501 static bool hvs_close_lock_held(struct vsock_sock *vsk)
502 {
503 struct sock *sk = sk_vsock(vsk);
504
505 if (!(sk->sk_state == TCP_ESTABLISHED ||
506 sk->sk_state == TCP_CLOSING))
507 return true;
508
509 if ((sk->sk_shutdown & SHUTDOWN_MASK) != SHUTDOWN_MASK)
510 hvs_shutdown_lock_held(vsk->trans, SHUTDOWN_MASK);
511
512 if (sock_flag(sk, SOCK_DONE))
513 return true;
514
515 /* This reference will be dropped by the delayed close routine */
516 sock_hold(sk);
517 INIT_DELAYED_WORK(&vsk->close_work, hvs_close_timeout);
518 vsk->close_work_scheduled = true;
519 schedule_delayed_work(&vsk->close_work, HVS_CLOSE_TIMEOUT);
520 return false;
521 }
522
523 static void hvs_release(struct vsock_sock *vsk)
524 {
525 bool remove_sock;
526
527 remove_sock = hvs_close_lock_held(vsk);
528 if (remove_sock)
529 vsock_remove_sock(vsk);
530 }
531
532 static void hvs_destruct(struct vsock_sock *vsk)
533 {
534 struct hvsock *hvs = vsk->trans;
535 struct vmbus_channel *chan = hvs->chan;
536
537 if (chan)
538 vmbus_hvsock_device_unregister(chan);
539
540 kfree(hvs);
541 }
542
543 static int hvs_dgram_bind(struct vsock_sock *vsk, struct sockaddr_vm *addr)
544 {
545 return -EOPNOTSUPP;
546 }
547
548 static int hvs_dgram_dequeue(struct vsock_sock *vsk, struct msghdr *msg,
549 size_t len, int flags)
550 {
551 return -EOPNOTSUPP;
552 }
553
554 static int hvs_dgram_enqueue(struct vsock_sock *vsk,
555 struct sockaddr_vm *remote, struct msghdr *msg,
556 size_t dgram_len)
557 {
558 return -EOPNOTSUPP;
559 }
560
561 static bool hvs_dgram_allow(u32 cid, u32 port)
562 {
563 return false;
564 }
565
566 static int hvs_update_recv_data(struct hvsock *hvs)
567 {
568 struct hvs_recv_buf *recv_buf;
569 u32 payload_len;
570
571 recv_buf = (struct hvs_recv_buf *)(hvs->recv_desc + 1);
572 payload_len = recv_buf->hdr.data_size;
573
574 if (payload_len > HVS_MTU_SIZE)
575 return -EIO;
576
577 if (payload_len == 0)
578 hvs->vsk->peer_shutdown |= SEND_SHUTDOWN;
579
580 hvs->recv_data_len = payload_len;
581 hvs->recv_data_off = 0;
582
583 return 0;
584 }
585
586 static ssize_t hvs_stream_dequeue(struct vsock_sock *vsk, struct msghdr *msg,
587 size_t len, int flags)
588 {
589 struct hvsock *hvs = vsk->trans;
590 bool need_refill = !hvs->recv_desc;
591 struct hvs_recv_buf *recv_buf;
592 u32 to_read;
593 int ret;
594
595 if (flags & MSG_PEEK)
596 return -EOPNOTSUPP;
597
598 if (need_refill) {
599 hvs->recv_desc = hv_pkt_iter_first_raw(hvs->chan);
600 ret = hvs_update_recv_data(hvs);
601 if (ret)
602 return ret;
603 }
604
605 recv_buf = (struct hvs_recv_buf *)(hvs->recv_desc + 1);
606 to_read = min_t(u32, len, hvs->recv_data_len);
607 ret = memcpy_to_msg(msg, recv_buf->data + hvs->recv_data_off, to_read);
608 if (ret != 0)
609 return ret;
610
611 hvs->recv_data_len -= to_read;
612 if (hvs->recv_data_len == 0) {
613 hvs->recv_desc = hv_pkt_iter_next_raw(hvs->chan, hvs->recv_desc);
614 if (hvs->recv_desc) {
615 ret = hvs_update_recv_data(hvs);
616 if (ret)
617 return ret;
618 }
619 } else {
620 hvs->recv_data_off += to_read;
621 }
622
623 return to_read;
624 }
625
626 static ssize_t hvs_stream_enqueue(struct vsock_sock *vsk, struct msghdr *msg,
627 size_t len)
628 {
629 struct hvsock *hvs = vsk->trans;
630 struct vmbus_channel *chan = hvs->chan;
631 struct hvs_send_buf *send_buf;
632 ssize_t to_write, max_writable;
633 ssize_t ret = 0;
634 ssize_t bytes_written = 0;
635
636 BUILD_BUG_ON(sizeof(*send_buf) != HV_HYP_PAGE_SIZE);
637
638 send_buf = kmalloc(sizeof(*send_buf), GFP_KERNEL);
639 if (!send_buf)
640 return -ENOMEM;
641
642 /* Reader(s) could be draining data from the channel as we write.
643 * Maximize bandwidth, by iterating until the channel is found to be
644 * full.
645 */
646 while (len) {
647 max_writable = hvs_channel_writable_bytes(chan);
648 if (!max_writable)
649 break;
650 to_write = min_t(ssize_t, len, max_writable);
651 to_write = min_t(ssize_t, to_write, HVS_SEND_BUF_SIZE);
652 /* memcpy_from_msg is safe for loop as it advances the offsets
653 * within the message iterator.
654 */
655 ret = memcpy_from_msg(send_buf->data, msg, to_write);
656 if (ret < 0)
657 goto out;
658
659 ret = hvs_send_data(hvs->chan, send_buf, to_write);
660 if (ret < 0)
661 goto out;
662
663 bytes_written += to_write;
664 len -= to_write;
665 }
666 out:
667 /* If any data has been sent, return that */
668 if (bytes_written)
669 ret = bytes_written;
670 kfree(send_buf);
671 return ret;
672 }
673
674 static s64 hvs_stream_has_data(struct vsock_sock *vsk)
675 {
676 struct hvsock *hvs = vsk->trans;
677 s64 ret;
678
679 if (hvs->recv_data_len > 0)
680 return 1;
681
682 switch (hvs_channel_readable_payload(hvs->chan)) {
683 case 1:
684 ret = 1;
685 break;
686 case 0:
687 vsk->peer_shutdown |= SEND_SHUTDOWN;
688 ret = 0;
689 break;
690 default: /* -1 */
691 ret = 0;
692 break;
693 }
694
695 return ret;
696 }
697
698 static s64 hvs_stream_has_space(struct vsock_sock *vsk)
699 {
700 struct hvsock *hvs = vsk->trans;
701
702 return hvs_channel_writable_bytes(hvs->chan);
703 }
704
705 static u64 hvs_stream_rcvhiwat(struct vsock_sock *vsk)
706 {
707 return HVS_MTU_SIZE + 1;
708 }
709
710 static bool hvs_stream_is_active(struct vsock_sock *vsk)
711 {
712 struct hvsock *hvs = vsk->trans;
713
714 return hvs->chan != NULL;
715 }
716
717 static bool hvs_stream_allow(u32 cid, u32 port)
718 {
719 if (cid == VMADDR_CID_HOST)
720 return true;
721
722 return false;
723 }
724
725 static
726 int hvs_notify_poll_in(struct vsock_sock *vsk, size_t target, bool *readable)
727 {
728 struct hvsock *hvs = vsk->trans;
729
730 *readable = hvs_channel_readable(hvs->chan);
731 return 0;
732 }
733
734 static
735 int hvs_notify_poll_out(struct vsock_sock *vsk, size_t target, bool *writable)
736 {
737 *writable = hvs_stream_has_space(vsk) > 0;
738
739 return 0;
740 }
741
742 static
743 int hvs_notify_recv_init(struct vsock_sock *vsk, size_t target,
744 struct vsock_transport_recv_notify_data *d)
745 {
746 return 0;
747 }
748
749 static
750 int hvs_notify_recv_pre_block(struct vsock_sock *vsk, size_t target,
751 struct vsock_transport_recv_notify_data *d)
752 {
753 return 0;
754 }
755
756 static
757 int hvs_notify_recv_pre_dequeue(struct vsock_sock *vsk, size_t target,
758 struct vsock_transport_recv_notify_data *d)
759 {
760 return 0;
761 }
762
763 static
764 int hvs_notify_recv_post_dequeue(struct vsock_sock *vsk, size_t target,
765 ssize_t copied, bool data_read,
766 struct vsock_transport_recv_notify_data *d)
767 {
768 return 0;
769 }
770
771 static
772 int hvs_notify_send_init(struct vsock_sock *vsk,
773 struct vsock_transport_send_notify_data *d)
774 {
775 return 0;
776 }
777
778 static
779 int hvs_notify_send_pre_block(struct vsock_sock *vsk,
780 struct vsock_transport_send_notify_data *d)
781 {
782 return 0;
783 }
784
785 static
786 int hvs_notify_send_pre_enqueue(struct vsock_sock *vsk,
787 struct vsock_transport_send_notify_data *d)
788 {
789 return 0;
790 }
791
792 static
793 int hvs_notify_send_post_enqueue(struct vsock_sock *vsk, ssize_t written,
794 struct vsock_transport_send_notify_data *d)
795 {
796 return 0;
797 }
798
799 static struct vsock_transport hvs_transport = {
800 .module = THIS_MODULE,
801
802 .get_local_cid = hvs_get_local_cid,
803
804 .init = hvs_sock_init,
805 .destruct = hvs_destruct,
806 .release = hvs_release,
807 .connect = hvs_connect,
808 .shutdown = hvs_shutdown,
809
810 .dgram_bind = hvs_dgram_bind,
811 .dgram_dequeue = hvs_dgram_dequeue,
812 .dgram_enqueue = hvs_dgram_enqueue,
813 .dgram_allow = hvs_dgram_allow,
814
815 .stream_dequeue = hvs_stream_dequeue,
816 .stream_enqueue = hvs_stream_enqueue,
817 .stream_has_data = hvs_stream_has_data,
818 .stream_has_space = hvs_stream_has_space,
819 .stream_rcvhiwat = hvs_stream_rcvhiwat,
820 .stream_is_active = hvs_stream_is_active,
821 .stream_allow = hvs_stream_allow,
822
823 .notify_poll_in = hvs_notify_poll_in,
824 .notify_poll_out = hvs_notify_poll_out,
825 .notify_recv_init = hvs_notify_recv_init,
826 .notify_recv_pre_block = hvs_notify_recv_pre_block,
827 .notify_recv_pre_dequeue = hvs_notify_recv_pre_dequeue,
828 .notify_recv_post_dequeue = hvs_notify_recv_post_dequeue,
829 .notify_send_init = hvs_notify_send_init,
830 .notify_send_pre_block = hvs_notify_send_pre_block,
831 .notify_send_pre_enqueue = hvs_notify_send_pre_enqueue,
832 .notify_send_post_enqueue = hvs_notify_send_post_enqueue,
833
834 };
835
836 static bool hvs_check_transport(struct vsock_sock *vsk)
837 {
838 return vsk->transport == &hvs_transport;
839 }
840
841 static int hvs_probe(struct hv_device *hdev,
842 const struct hv_vmbus_device_id *dev_id)
843 {
844 struct vmbus_channel *chan = hdev->channel;
845
846 hvs_open_connection(chan);
847
848 /* Always return success to suppress the unnecessary error message
849 * in vmbus_probe(): on error the host will rescind the device in
850 * 30 seconds and we can do cleanup at that time in
851 * vmbus_onoffer_rescind().
852 */
853 return 0;
854 }
855
856 static int hvs_remove(struct hv_device *hdev)
857 {
858 struct vmbus_channel *chan = hdev->channel;
859
860 vmbus_close(chan);
861
862 return 0;
863 }
864
865 /* hv_sock connections can not persist across hibernation, and all the hv_sock
866 * channels are forced to be rescinded before hibernation: see
867 * vmbus_bus_suspend(). Here the dummy hvs_suspend() and hvs_resume()
868 * are only needed because hibernation requires that every vmbus device's
869 * driver should have a .suspend and .resume callback: see vmbus_suspend().
870 */
871 static int hvs_suspend(struct hv_device *hv_dev)
872 {
873 /* Dummy */
874 return 0;
875 }
876
877 static int hvs_resume(struct hv_device *dev)
878 {
879 /* Dummy */
880 return 0;
881 }
882
883 /* This isn't really used. See vmbus_match() and vmbus_probe() */
884 static const struct hv_vmbus_device_id id_table[] = {
885 {},
886 };
887
888 static struct hv_driver hvs_drv = {
889 .name = "hv_sock",
890 .hvsock = true,
891 .id_table = id_table,
892 .probe = hvs_probe,
893 .remove = hvs_remove,
894 .suspend = hvs_suspend,
895 .resume = hvs_resume,
896 };
897
898 static int __init hvs_init(void)
899 {
900 int ret;
901
902 if (vmbus_proto_version < VERSION_WIN10)
903 return -ENODEV;
904
905 ret = vmbus_driver_register(&hvs_drv);
906 if (ret != 0)
907 return ret;
908
909 ret = vsock_core_register(&hvs_transport, VSOCK_TRANSPORT_F_G2H);
910 if (ret) {
911 vmbus_driver_unregister(&hvs_drv);
912 return ret;
913 }
914
915 return 0;
916 }
917
918 static void __exit hvs_exit(void)
919 {
920 vsock_core_unregister(&hvs_transport);
921 vmbus_driver_unregister(&hvs_drv);
922 }
923
924 module_init(hvs_init);
925 module_exit(hvs_exit);
926
927 MODULE_DESCRIPTION("Hyper-V Sockets");
928 MODULE_VERSION("1.0.0");
929 MODULE_LICENSE("GPL");
930 MODULE_ALIAS_NETPROTO(PF_VSOCK);