]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/vmw_vsock/vmci_transport.c
tipc: Unclone message at secondary destination lookup
[mirror_ubuntu-bionic-kernel.git] / net / vmw_vsock / vmci_transport.c
1 /*
2 * VMware vSockets Driver
3 *
4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation version 2 and no later version.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 */
15
16 #include <linux/types.h>
17 #include <linux/bitops.h>
18 #include <linux/cred.h>
19 #include <linux/init.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/kmod.h>
23 #include <linux/list.h>
24 #include <linux/miscdevice.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/net.h>
28 #include <linux/poll.h>
29 #include <linux/skbuff.h>
30 #include <linux/smp.h>
31 #include <linux/socket.h>
32 #include <linux/stddef.h>
33 #include <linux/unistd.h>
34 #include <linux/wait.h>
35 #include <linux/workqueue.h>
36 #include <net/sock.h>
37 #include <net/af_vsock.h>
38
39 #include "vmci_transport_notify.h"
40
41 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
42 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
43 static void vmci_transport_peer_detach_cb(u32 sub_id,
44 const struct vmci_event_data *ed,
45 void *client_data);
46 static void vmci_transport_recv_pkt_work(struct work_struct *work);
47 static void vmci_transport_cleanup(struct work_struct *work);
48 static int vmci_transport_recv_listen(struct sock *sk,
49 struct vmci_transport_packet *pkt);
50 static int vmci_transport_recv_connecting_server(
51 struct sock *sk,
52 struct sock *pending,
53 struct vmci_transport_packet *pkt);
54 static int vmci_transport_recv_connecting_client(
55 struct sock *sk,
56 struct vmci_transport_packet *pkt);
57 static int vmci_transport_recv_connecting_client_negotiate(
58 struct sock *sk,
59 struct vmci_transport_packet *pkt);
60 static int vmci_transport_recv_connecting_client_invalid(
61 struct sock *sk,
62 struct vmci_transport_packet *pkt);
63 static int vmci_transport_recv_connected(struct sock *sk,
64 struct vmci_transport_packet *pkt);
65 static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
66 static u16 vmci_transport_new_proto_supported_versions(void);
67 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
68 bool old_pkt_proto);
69
70 struct vmci_transport_recv_pkt_info {
71 struct work_struct work;
72 struct sock *sk;
73 struct vmci_transport_packet pkt;
74 };
75
76 static LIST_HEAD(vmci_transport_cleanup_list);
77 static DEFINE_SPINLOCK(vmci_transport_cleanup_lock);
78 static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup);
79
80 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
81 VMCI_INVALID_ID };
82 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
83
84 static int PROTOCOL_OVERRIDE = -1;
85
86 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN 128
87 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE 262144
88 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX 262144
89
90 /* The default peer timeout indicates how long we will wait for a peer response
91 * to a control message.
92 */
93 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
94
95 /* Helper function to convert from a VMCI error code to a VSock error code. */
96
97 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
98 {
99 switch (vmci_error) {
100 case VMCI_ERROR_NO_MEM:
101 return -ENOMEM;
102 case VMCI_ERROR_DUPLICATE_ENTRY:
103 case VMCI_ERROR_ALREADY_EXISTS:
104 return -EADDRINUSE;
105 case VMCI_ERROR_NO_ACCESS:
106 return -EPERM;
107 case VMCI_ERROR_NO_RESOURCES:
108 return -ENOBUFS;
109 case VMCI_ERROR_INVALID_RESOURCE:
110 return -EHOSTUNREACH;
111 case VMCI_ERROR_INVALID_ARGS:
112 default:
113 break;
114 }
115 return -EINVAL;
116 }
117
118 static u32 vmci_transport_peer_rid(u32 peer_cid)
119 {
120 if (VMADDR_CID_HYPERVISOR == peer_cid)
121 return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
122
123 return VMCI_TRANSPORT_PACKET_RID;
124 }
125
126 static inline void
127 vmci_transport_packet_init(struct vmci_transport_packet *pkt,
128 struct sockaddr_vm *src,
129 struct sockaddr_vm *dst,
130 u8 type,
131 u64 size,
132 u64 mode,
133 struct vmci_transport_waiting_info *wait,
134 u16 proto,
135 struct vmci_handle handle)
136 {
137 /* We register the stream control handler as an any cid handle so we
138 * must always send from a source address of VMADDR_CID_ANY
139 */
140 pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
141 VMCI_TRANSPORT_PACKET_RID);
142 pkt->dg.dst = vmci_make_handle(dst->svm_cid,
143 vmci_transport_peer_rid(dst->svm_cid));
144 pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
145 pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
146 pkt->type = type;
147 pkt->src_port = src->svm_port;
148 pkt->dst_port = dst->svm_port;
149 memset(&pkt->proto, 0, sizeof(pkt->proto));
150 memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
151
152 switch (pkt->type) {
153 case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
154 pkt->u.size = 0;
155 break;
156
157 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
158 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
159 pkt->u.size = size;
160 break;
161
162 case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
163 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
164 pkt->u.handle = handle;
165 break;
166
167 case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
168 case VMCI_TRANSPORT_PACKET_TYPE_READ:
169 case VMCI_TRANSPORT_PACKET_TYPE_RST:
170 pkt->u.size = 0;
171 break;
172
173 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
174 pkt->u.mode = mode;
175 break;
176
177 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
178 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
179 memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
180 break;
181
182 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
183 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
184 pkt->u.size = size;
185 pkt->proto = proto;
186 break;
187 }
188 }
189
190 static inline void
191 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
192 struct sockaddr_vm *local,
193 struct sockaddr_vm *remote)
194 {
195 vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
196 vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
197 }
198
199 static int
200 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
201 struct sockaddr_vm *src,
202 struct sockaddr_vm *dst,
203 enum vmci_transport_packet_type type,
204 u64 size,
205 u64 mode,
206 struct vmci_transport_waiting_info *wait,
207 u16 proto,
208 struct vmci_handle handle,
209 bool convert_error)
210 {
211 int err;
212
213 vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
214 proto, handle);
215 err = vmci_datagram_send(&pkt->dg);
216 if (convert_error && (err < 0))
217 return vmci_transport_error_to_vsock_error(err);
218
219 return err;
220 }
221
222 static int
223 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
224 enum vmci_transport_packet_type type,
225 u64 size,
226 u64 mode,
227 struct vmci_transport_waiting_info *wait,
228 struct vmci_handle handle)
229 {
230 struct vmci_transport_packet reply;
231 struct sockaddr_vm src, dst;
232
233 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
234 return 0;
235 } else {
236 vmci_transport_packet_get_addresses(pkt, &src, &dst);
237 return __vmci_transport_send_control_pkt(&reply, &src, &dst,
238 type,
239 size, mode, wait,
240 VSOCK_PROTO_INVALID,
241 handle, true);
242 }
243 }
244
245 static int
246 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
247 struct sockaddr_vm *dst,
248 enum vmci_transport_packet_type type,
249 u64 size,
250 u64 mode,
251 struct vmci_transport_waiting_info *wait,
252 struct vmci_handle handle)
253 {
254 /* Note that it is safe to use a single packet across all CPUs since
255 * two tasklets of the same type are guaranteed to not ever run
256 * simultaneously. If that ever changes, or VMCI stops using tasklets,
257 * we can use per-cpu packets.
258 */
259 static struct vmci_transport_packet pkt;
260
261 return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
262 size, mode, wait,
263 VSOCK_PROTO_INVALID, handle,
264 false);
265 }
266
267 static int
268 vmci_transport_send_control_pkt(struct sock *sk,
269 enum vmci_transport_packet_type type,
270 u64 size,
271 u64 mode,
272 struct vmci_transport_waiting_info *wait,
273 u16 proto,
274 struct vmci_handle handle)
275 {
276 struct vmci_transport_packet *pkt;
277 struct vsock_sock *vsk;
278 int err;
279
280 vsk = vsock_sk(sk);
281
282 if (!vsock_addr_bound(&vsk->local_addr))
283 return -EINVAL;
284
285 if (!vsock_addr_bound(&vsk->remote_addr))
286 return -EINVAL;
287
288 pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
289 if (!pkt)
290 return -ENOMEM;
291
292 err = __vmci_transport_send_control_pkt(pkt, &vsk->local_addr,
293 &vsk->remote_addr, type, size,
294 mode, wait, proto, handle,
295 true);
296 kfree(pkt);
297
298 return err;
299 }
300
301 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
302 struct sockaddr_vm *src,
303 struct vmci_transport_packet *pkt)
304 {
305 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
306 return 0;
307 return vmci_transport_send_control_pkt_bh(
308 dst, src,
309 VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
310 0, NULL, VMCI_INVALID_HANDLE);
311 }
312
313 static int vmci_transport_send_reset(struct sock *sk,
314 struct vmci_transport_packet *pkt)
315 {
316 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
317 return 0;
318 return vmci_transport_send_control_pkt(sk,
319 VMCI_TRANSPORT_PACKET_TYPE_RST,
320 0, 0, NULL, VSOCK_PROTO_INVALID,
321 VMCI_INVALID_HANDLE);
322 }
323
324 static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
325 {
326 return vmci_transport_send_control_pkt(
327 sk,
328 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
329 size, 0, NULL,
330 VSOCK_PROTO_INVALID,
331 VMCI_INVALID_HANDLE);
332 }
333
334 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
335 u16 version)
336 {
337 return vmci_transport_send_control_pkt(
338 sk,
339 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
340 size, 0, NULL, version,
341 VMCI_INVALID_HANDLE);
342 }
343
344 static int vmci_transport_send_qp_offer(struct sock *sk,
345 struct vmci_handle handle)
346 {
347 return vmci_transport_send_control_pkt(
348 sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
349 0, NULL,
350 VSOCK_PROTO_INVALID, handle);
351 }
352
353 static int vmci_transport_send_attach(struct sock *sk,
354 struct vmci_handle handle)
355 {
356 return vmci_transport_send_control_pkt(
357 sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
358 0, 0, NULL, VSOCK_PROTO_INVALID,
359 handle);
360 }
361
362 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
363 {
364 return vmci_transport_reply_control_pkt_fast(
365 pkt,
366 VMCI_TRANSPORT_PACKET_TYPE_RST,
367 0, 0, NULL,
368 VMCI_INVALID_HANDLE);
369 }
370
371 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
372 struct sockaddr_vm *src)
373 {
374 return vmci_transport_send_control_pkt_bh(
375 dst, src,
376 VMCI_TRANSPORT_PACKET_TYPE_INVALID,
377 0, 0, NULL, VMCI_INVALID_HANDLE);
378 }
379
380 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
381 struct sockaddr_vm *src)
382 {
383 return vmci_transport_send_control_pkt_bh(
384 dst, src,
385 VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
386 0, NULL, VMCI_INVALID_HANDLE);
387 }
388
389 int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
390 struct sockaddr_vm *src)
391 {
392 return vmci_transport_send_control_pkt_bh(
393 dst, src,
394 VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
395 0, NULL, VMCI_INVALID_HANDLE);
396 }
397
398 int vmci_transport_send_wrote(struct sock *sk)
399 {
400 return vmci_transport_send_control_pkt(
401 sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
402 0, NULL, VSOCK_PROTO_INVALID,
403 VMCI_INVALID_HANDLE);
404 }
405
406 int vmci_transport_send_read(struct sock *sk)
407 {
408 return vmci_transport_send_control_pkt(
409 sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
410 0, NULL, VSOCK_PROTO_INVALID,
411 VMCI_INVALID_HANDLE);
412 }
413
414 int vmci_transport_send_waiting_write(struct sock *sk,
415 struct vmci_transport_waiting_info *wait)
416 {
417 return vmci_transport_send_control_pkt(
418 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
419 0, 0, wait, VSOCK_PROTO_INVALID,
420 VMCI_INVALID_HANDLE);
421 }
422
423 int vmci_transport_send_waiting_read(struct sock *sk,
424 struct vmci_transport_waiting_info *wait)
425 {
426 return vmci_transport_send_control_pkt(
427 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
428 0, 0, wait, VSOCK_PROTO_INVALID,
429 VMCI_INVALID_HANDLE);
430 }
431
432 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
433 {
434 return vmci_transport_send_control_pkt(
435 &vsk->sk,
436 VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
437 0, mode, NULL,
438 VSOCK_PROTO_INVALID,
439 VMCI_INVALID_HANDLE);
440 }
441
442 static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
443 {
444 return vmci_transport_send_control_pkt(sk,
445 VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
446 size, 0, NULL,
447 VSOCK_PROTO_INVALID,
448 VMCI_INVALID_HANDLE);
449 }
450
451 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
452 u16 version)
453 {
454 return vmci_transport_send_control_pkt(
455 sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
456 size, 0, NULL, version,
457 VMCI_INVALID_HANDLE);
458 }
459
460 static struct sock *vmci_transport_get_pending(
461 struct sock *listener,
462 struct vmci_transport_packet *pkt)
463 {
464 struct vsock_sock *vlistener;
465 struct vsock_sock *vpending;
466 struct sock *pending;
467 struct sockaddr_vm src;
468
469 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
470
471 vlistener = vsock_sk(listener);
472
473 list_for_each_entry(vpending, &vlistener->pending_links,
474 pending_links) {
475 if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
476 pkt->dst_port == vpending->local_addr.svm_port) {
477 pending = sk_vsock(vpending);
478 sock_hold(pending);
479 goto found;
480 }
481 }
482
483 pending = NULL;
484 found:
485 return pending;
486
487 }
488
489 static void vmci_transport_release_pending(struct sock *pending)
490 {
491 sock_put(pending);
492 }
493
494 /* We allow two kinds of sockets to communicate with a restricted VM: 1)
495 * trusted sockets 2) sockets from applications running as the same user as the
496 * VM (this is only true for the host side and only when using hosted products)
497 */
498
499 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
500 {
501 return vsock->trusted ||
502 vmci_is_context_owner(peer_cid, vsock->owner->uid);
503 }
504
505 /* We allow sending datagrams to and receiving datagrams from a restricted VM
506 * only if it is trusted as described in vmci_transport_is_trusted.
507 */
508
509 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
510 {
511 if (VMADDR_CID_HYPERVISOR == peer_cid)
512 return true;
513
514 if (vsock->cached_peer != peer_cid) {
515 vsock->cached_peer = peer_cid;
516 if (!vmci_transport_is_trusted(vsock, peer_cid) &&
517 (vmci_context_get_priv_flags(peer_cid) &
518 VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
519 vsock->cached_peer_allow_dgram = false;
520 } else {
521 vsock->cached_peer_allow_dgram = true;
522 }
523 }
524
525 return vsock->cached_peer_allow_dgram;
526 }
527
528 static int
529 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
530 struct vmci_handle *handle,
531 u64 produce_size,
532 u64 consume_size,
533 u32 peer, u32 flags, bool trusted)
534 {
535 int err = 0;
536
537 if (trusted) {
538 /* Try to allocate our queue pair as trusted. This will only
539 * work if vsock is running in the host.
540 */
541
542 err = vmci_qpair_alloc(qpair, handle, produce_size,
543 consume_size,
544 peer, flags,
545 VMCI_PRIVILEGE_FLAG_TRUSTED);
546 if (err != VMCI_ERROR_NO_ACCESS)
547 goto out;
548
549 }
550
551 err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
552 peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
553 out:
554 if (err < 0) {
555 pr_err("Could not attach to queue pair with %d\n",
556 err);
557 err = vmci_transport_error_to_vsock_error(err);
558 }
559
560 return err;
561 }
562
563 static int
564 vmci_transport_datagram_create_hnd(u32 resource_id,
565 u32 flags,
566 vmci_datagram_recv_cb recv_cb,
567 void *client_data,
568 struct vmci_handle *out_handle)
569 {
570 int err = 0;
571
572 /* Try to allocate our datagram handler as trusted. This will only work
573 * if vsock is running in the host.
574 */
575
576 err = vmci_datagram_create_handle_priv(resource_id, flags,
577 VMCI_PRIVILEGE_FLAG_TRUSTED,
578 recv_cb,
579 client_data, out_handle);
580
581 if (err == VMCI_ERROR_NO_ACCESS)
582 err = vmci_datagram_create_handle(resource_id, flags,
583 recv_cb, client_data,
584 out_handle);
585
586 return err;
587 }
588
589 /* This is invoked as part of a tasklet that's scheduled when the VMCI
590 * interrupt fires. This is run in bottom-half context and if it ever needs to
591 * sleep it should defer that work to a work queue.
592 */
593
594 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
595 {
596 struct sock *sk;
597 size_t size;
598 struct sk_buff *skb;
599 struct vsock_sock *vsk;
600
601 sk = (struct sock *)data;
602
603 /* This handler is privileged when this module is running on the host.
604 * We will get datagrams from all endpoints (even VMs that are in a
605 * restricted context). If we get one from a restricted context then
606 * the destination socket must be trusted.
607 *
608 * NOTE: We access the socket struct without holding the lock here.
609 * This is ok because the field we are interested is never modified
610 * outside of the create and destruct socket functions.
611 */
612 vsk = vsock_sk(sk);
613 if (!vmci_transport_allow_dgram(vsk, dg->src.context))
614 return VMCI_ERROR_NO_ACCESS;
615
616 size = VMCI_DG_SIZE(dg);
617
618 /* Attach the packet to the socket's receive queue as an sk_buff. */
619 skb = alloc_skb(size, GFP_ATOMIC);
620 if (!skb)
621 return VMCI_ERROR_NO_MEM;
622
623 /* sk_receive_skb() will do a sock_put(), so hold here. */
624 sock_hold(sk);
625 skb_put(skb, size);
626 memcpy(skb->data, dg, size);
627 sk_receive_skb(sk, skb, 0);
628
629 return VMCI_SUCCESS;
630 }
631
632 static bool vmci_transport_stream_allow(u32 cid, u32 port)
633 {
634 static const u32 non_socket_contexts[] = {
635 VMADDR_CID_RESERVED,
636 };
637 int i;
638
639 BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
640
641 for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
642 if (cid == non_socket_contexts[i])
643 return false;
644 }
645
646 return true;
647 }
648
649 /* This is invoked as part of a tasklet that's scheduled when the VMCI
650 * interrupt fires. This is run in bottom-half context but it defers most of
651 * its work to the packet handling work queue.
652 */
653
654 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
655 {
656 struct sock *sk;
657 struct sockaddr_vm dst;
658 struct sockaddr_vm src;
659 struct vmci_transport_packet *pkt;
660 struct vsock_sock *vsk;
661 bool bh_process_pkt;
662 int err;
663
664 sk = NULL;
665 err = VMCI_SUCCESS;
666 bh_process_pkt = false;
667
668 /* Ignore incoming packets from contexts without sockets, or resources
669 * that aren't vsock implementations.
670 */
671
672 if (!vmci_transport_stream_allow(dg->src.context, -1)
673 || vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
674 return VMCI_ERROR_NO_ACCESS;
675
676 if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
677 /* Drop datagrams that do not contain full VSock packets. */
678 return VMCI_ERROR_INVALID_ARGS;
679
680 pkt = (struct vmci_transport_packet *)dg;
681
682 /* Find the socket that should handle this packet. First we look for a
683 * connected socket and if there is none we look for a socket bound to
684 * the destintation address.
685 */
686 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
687 vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
688
689 sk = vsock_find_connected_socket(&src, &dst);
690 if (!sk) {
691 sk = vsock_find_bound_socket(&dst);
692 if (!sk) {
693 /* We could not find a socket for this specified
694 * address. If this packet is a RST, we just drop it.
695 * If it is another packet, we send a RST. Note that
696 * we do not send a RST reply to RSTs so that we do not
697 * continually send RSTs between two endpoints.
698 *
699 * Note that since this is a reply, dst is src and src
700 * is dst.
701 */
702 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
703 pr_err("unable to send reset\n");
704
705 err = VMCI_ERROR_NOT_FOUND;
706 goto out;
707 }
708 }
709
710 /* If the received packet type is beyond all types known to this
711 * implementation, reply with an invalid message. Hopefully this will
712 * help when implementing backwards compatibility in the future.
713 */
714 if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
715 vmci_transport_send_invalid_bh(&dst, &src);
716 err = VMCI_ERROR_INVALID_ARGS;
717 goto out;
718 }
719
720 /* This handler is privileged when this module is running on the host.
721 * We will get datagram connect requests from all endpoints (even VMs
722 * that are in a restricted context). If we get one from a restricted
723 * context then the destination socket must be trusted.
724 *
725 * NOTE: We access the socket struct without holding the lock here.
726 * This is ok because the field we are interested is never modified
727 * outside of the create and destruct socket functions.
728 */
729 vsk = vsock_sk(sk);
730 if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
731 err = VMCI_ERROR_NO_ACCESS;
732 goto out;
733 }
734
735 /* We do most everything in a work queue, but let's fast path the
736 * notification of reads and writes to help data transfer performance.
737 * We can only do this if there is no process context code executing
738 * for this socket since that may change the state.
739 */
740 bh_lock_sock(sk);
741
742 if (!sock_owned_by_user(sk)) {
743 /* The local context ID may be out of date, update it. */
744 vsk->local_addr.svm_cid = dst.svm_cid;
745
746 if (sk->sk_state == SS_CONNECTED)
747 vmci_trans(vsk)->notify_ops->handle_notify_pkt(
748 sk, pkt, true, &dst, &src,
749 &bh_process_pkt);
750 }
751
752 bh_unlock_sock(sk);
753
754 if (!bh_process_pkt) {
755 struct vmci_transport_recv_pkt_info *recv_pkt_info;
756
757 recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
758 if (!recv_pkt_info) {
759 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
760 pr_err("unable to send reset\n");
761
762 err = VMCI_ERROR_NO_MEM;
763 goto out;
764 }
765
766 recv_pkt_info->sk = sk;
767 memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
768 INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
769
770 schedule_work(&recv_pkt_info->work);
771 /* Clear sk so that the reference count incremented by one of
772 * the Find functions above is not decremented below. We need
773 * that reference count for the packet handler we've scheduled
774 * to run.
775 */
776 sk = NULL;
777 }
778
779 out:
780 if (sk)
781 sock_put(sk);
782
783 return err;
784 }
785
786 static void vmci_transport_handle_detach(struct sock *sk)
787 {
788 struct vsock_sock *vsk;
789
790 vsk = vsock_sk(sk);
791 if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
792 sock_set_flag(sk, SOCK_DONE);
793
794 /* On a detach the peer will not be sending or receiving
795 * anymore.
796 */
797 vsk->peer_shutdown = SHUTDOWN_MASK;
798
799 /* We should not be sending anymore since the peer won't be
800 * there to receive, but we can still receive if there is data
801 * left in our consume queue.
802 */
803 if (vsock_stream_has_data(vsk) <= 0) {
804 if (sk->sk_state == SS_CONNECTING) {
805 /* The peer may detach from a queue pair while
806 * we are still in the connecting state, i.e.,
807 * if the peer VM is killed after attaching to
808 * a queue pair, but before we complete the
809 * handshake. In that case, we treat the detach
810 * event like a reset.
811 */
812
813 sk->sk_state = SS_UNCONNECTED;
814 sk->sk_err = ECONNRESET;
815 sk->sk_error_report(sk);
816 return;
817 }
818 sk->sk_state = SS_UNCONNECTED;
819 }
820 sk->sk_state_change(sk);
821 }
822 }
823
824 static void vmci_transport_peer_detach_cb(u32 sub_id,
825 const struct vmci_event_data *e_data,
826 void *client_data)
827 {
828 struct vmci_transport *trans = client_data;
829 const struct vmci_event_payload_qp *e_payload;
830
831 e_payload = vmci_event_data_const_payload(e_data);
832
833 /* XXX This is lame, we should provide a way to lookup sockets by
834 * qp_handle.
835 */
836 if (vmci_handle_is_invalid(e_payload->handle) ||
837 !vmci_handle_is_equal(trans->qp_handle, e_payload->handle))
838 return;
839
840 /* We don't ask for delayed CBs when we subscribe to this event (we
841 * pass 0 as flags to vmci_event_subscribe()). VMCI makes no
842 * guarantees in that case about what context we might be running in,
843 * so it could be BH or process, blockable or non-blockable. So we
844 * need to account for all possible contexts here.
845 */
846 spin_lock_bh(&trans->lock);
847 if (!trans->sk)
848 goto out;
849
850 /* Apart from here, trans->lock is only grabbed as part of sk destruct,
851 * where trans->sk isn't locked.
852 */
853 bh_lock_sock(trans->sk);
854
855 vmci_transport_handle_detach(trans->sk);
856
857 bh_unlock_sock(trans->sk);
858 out:
859 spin_unlock_bh(&trans->lock);
860 }
861
862 static void vmci_transport_qp_resumed_cb(u32 sub_id,
863 const struct vmci_event_data *e_data,
864 void *client_data)
865 {
866 vsock_for_each_connected_socket(vmci_transport_handle_detach);
867 }
868
869 static void vmci_transport_recv_pkt_work(struct work_struct *work)
870 {
871 struct vmci_transport_recv_pkt_info *recv_pkt_info;
872 struct vmci_transport_packet *pkt;
873 struct sock *sk;
874
875 recv_pkt_info =
876 container_of(work, struct vmci_transport_recv_pkt_info, work);
877 sk = recv_pkt_info->sk;
878 pkt = &recv_pkt_info->pkt;
879
880 lock_sock(sk);
881
882 /* The local context ID may be out of date. */
883 vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context;
884
885 switch (sk->sk_state) {
886 case VSOCK_SS_LISTEN:
887 vmci_transport_recv_listen(sk, pkt);
888 break;
889 case SS_CONNECTING:
890 /* Processing of pending connections for servers goes through
891 * the listening socket, so see vmci_transport_recv_listen()
892 * for that path.
893 */
894 vmci_transport_recv_connecting_client(sk, pkt);
895 break;
896 case SS_CONNECTED:
897 vmci_transport_recv_connected(sk, pkt);
898 break;
899 default:
900 /* Because this function does not run in the same context as
901 * vmci_transport_recv_stream_cb it is possible that the
902 * socket has closed. We need to let the other side know or it
903 * could be sitting in a connect and hang forever. Send a
904 * reset to prevent that.
905 */
906 vmci_transport_send_reset(sk, pkt);
907 break;
908 }
909
910 release_sock(sk);
911 kfree(recv_pkt_info);
912 /* Release reference obtained in the stream callback when we fetched
913 * this socket out of the bound or connected list.
914 */
915 sock_put(sk);
916 }
917
918 static int vmci_transport_recv_listen(struct sock *sk,
919 struct vmci_transport_packet *pkt)
920 {
921 struct sock *pending;
922 struct vsock_sock *vpending;
923 int err;
924 u64 qp_size;
925 bool old_request = false;
926 bool old_pkt_proto = false;
927
928 err = 0;
929
930 /* Because we are in the listen state, we could be receiving a packet
931 * for ourself or any previous connection requests that we received.
932 * If it's the latter, we try to find a socket in our list of pending
933 * connections and, if we do, call the appropriate handler for the
934 * state that that socket is in. Otherwise we try to service the
935 * connection request.
936 */
937 pending = vmci_transport_get_pending(sk, pkt);
938 if (pending) {
939 lock_sock(pending);
940
941 /* The local context ID may be out of date. */
942 vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context;
943
944 switch (pending->sk_state) {
945 case SS_CONNECTING:
946 err = vmci_transport_recv_connecting_server(sk,
947 pending,
948 pkt);
949 break;
950 default:
951 vmci_transport_send_reset(pending, pkt);
952 err = -EINVAL;
953 }
954
955 if (err < 0)
956 vsock_remove_pending(sk, pending);
957
958 release_sock(pending);
959 vmci_transport_release_pending(pending);
960
961 return err;
962 }
963
964 /* The listen state only accepts connection requests. Reply with a
965 * reset unless we received a reset.
966 */
967
968 if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
969 pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
970 vmci_transport_reply_reset(pkt);
971 return -EINVAL;
972 }
973
974 if (pkt->u.size == 0) {
975 vmci_transport_reply_reset(pkt);
976 return -EINVAL;
977 }
978
979 /* If this socket can't accommodate this connection request, we send a
980 * reset. Otherwise we create and initialize a child socket and reply
981 * with a connection negotiation.
982 */
983 if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
984 vmci_transport_reply_reset(pkt);
985 return -ECONNREFUSED;
986 }
987
988 pending = __vsock_create(sock_net(sk), NULL, sk, GFP_KERNEL,
989 sk->sk_type, 0);
990 if (!pending) {
991 vmci_transport_send_reset(sk, pkt);
992 return -ENOMEM;
993 }
994
995 vpending = vsock_sk(pending);
996
997 vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
998 pkt->dst_port);
999 vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
1000 pkt->src_port);
1001
1002 /* If the proposed size fits within our min/max, accept it. Otherwise
1003 * propose our own size.
1004 */
1005 if (pkt->u.size >= vmci_trans(vpending)->queue_pair_min_size &&
1006 pkt->u.size <= vmci_trans(vpending)->queue_pair_max_size) {
1007 qp_size = pkt->u.size;
1008 } else {
1009 qp_size = vmci_trans(vpending)->queue_pair_size;
1010 }
1011
1012 /* Figure out if we are using old or new requests based on the
1013 * overrides pkt types sent by our peer.
1014 */
1015 if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1016 old_request = old_pkt_proto;
1017 } else {
1018 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
1019 old_request = true;
1020 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
1021 old_request = false;
1022
1023 }
1024
1025 if (old_request) {
1026 /* Handle a REQUEST (or override) */
1027 u16 version = VSOCK_PROTO_INVALID;
1028 if (vmci_transport_proto_to_notify_struct(
1029 pending, &version, true))
1030 err = vmci_transport_send_negotiate(pending, qp_size);
1031 else
1032 err = -EINVAL;
1033
1034 } else {
1035 /* Handle a REQUEST2 (or override) */
1036 int proto_int = pkt->proto;
1037 int pos;
1038 u16 active_proto_version = 0;
1039
1040 /* The list of possible protocols is the intersection of all
1041 * protocols the client supports ... plus all the protocols we
1042 * support.
1043 */
1044 proto_int &= vmci_transport_new_proto_supported_versions();
1045
1046 /* We choose the highest possible protocol version and use that
1047 * one.
1048 */
1049 pos = fls(proto_int);
1050 if (pos) {
1051 active_proto_version = (1 << (pos - 1));
1052 if (vmci_transport_proto_to_notify_struct(
1053 pending, &active_proto_version, false))
1054 err = vmci_transport_send_negotiate2(pending,
1055 qp_size,
1056 active_proto_version);
1057 else
1058 err = -EINVAL;
1059
1060 } else {
1061 err = -EINVAL;
1062 }
1063 }
1064
1065 if (err < 0) {
1066 vmci_transport_send_reset(sk, pkt);
1067 sock_put(pending);
1068 err = vmci_transport_error_to_vsock_error(err);
1069 goto out;
1070 }
1071
1072 vsock_add_pending(sk, pending);
1073 sk->sk_ack_backlog++;
1074
1075 pending->sk_state = SS_CONNECTING;
1076 vmci_trans(vpending)->produce_size =
1077 vmci_trans(vpending)->consume_size = qp_size;
1078 vmci_trans(vpending)->queue_pair_size = qp_size;
1079
1080 vmci_trans(vpending)->notify_ops->process_request(pending);
1081
1082 /* We might never receive another message for this socket and it's not
1083 * connected to any process, so we have to ensure it gets cleaned up
1084 * ourself. Our delayed work function will take care of that. Note
1085 * that we do not ever cancel this function since we have few
1086 * guarantees about its state when calling cancel_delayed_work().
1087 * Instead we hold a reference on the socket for that function and make
1088 * it capable of handling cases where it needs to do nothing but
1089 * release that reference.
1090 */
1091 vpending->listener = sk;
1092 sock_hold(sk);
1093 sock_hold(pending);
1094 INIT_DELAYED_WORK(&vpending->dwork, vsock_pending_work);
1095 schedule_delayed_work(&vpending->dwork, HZ);
1096
1097 out:
1098 return err;
1099 }
1100
1101 static int
1102 vmci_transport_recv_connecting_server(struct sock *listener,
1103 struct sock *pending,
1104 struct vmci_transport_packet *pkt)
1105 {
1106 struct vsock_sock *vpending;
1107 struct vmci_handle handle;
1108 struct vmci_qp *qpair;
1109 bool is_local;
1110 u32 flags;
1111 u32 detach_sub_id;
1112 int err;
1113 int skerr;
1114
1115 vpending = vsock_sk(pending);
1116 detach_sub_id = VMCI_INVALID_ID;
1117
1118 switch (pkt->type) {
1119 case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
1120 if (vmci_handle_is_invalid(pkt->u.handle)) {
1121 vmci_transport_send_reset(pending, pkt);
1122 skerr = EPROTO;
1123 err = -EINVAL;
1124 goto destroy;
1125 }
1126 break;
1127 default:
1128 /* Close and cleanup the connection. */
1129 vmci_transport_send_reset(pending, pkt);
1130 skerr = EPROTO;
1131 err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
1132 goto destroy;
1133 }
1134
1135 /* In order to complete the connection we need to attach to the offered
1136 * queue pair and send an attach notification. We also subscribe to the
1137 * detach event so we know when our peer goes away, and we do that
1138 * before attaching so we don't miss an event. If all this succeeds,
1139 * we update our state and wakeup anything waiting in accept() for a
1140 * connection.
1141 */
1142
1143 /* We don't care about attach since we ensure the other side has
1144 * attached by specifying the ATTACH_ONLY flag below.
1145 */
1146 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1147 vmci_transport_peer_detach_cb,
1148 vmci_trans(vpending), &detach_sub_id);
1149 if (err < VMCI_SUCCESS) {
1150 vmci_transport_send_reset(pending, pkt);
1151 err = vmci_transport_error_to_vsock_error(err);
1152 skerr = -err;
1153 goto destroy;
1154 }
1155
1156 vmci_trans(vpending)->detach_sub_id = detach_sub_id;
1157
1158 /* Now attach to the queue pair the client created. */
1159 handle = pkt->u.handle;
1160
1161 /* vpending->local_addr always has a context id so we do not need to
1162 * worry about VMADDR_CID_ANY in this case.
1163 */
1164 is_local =
1165 vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
1166 flags = VMCI_QPFLAG_ATTACH_ONLY;
1167 flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
1168
1169 err = vmci_transport_queue_pair_alloc(
1170 &qpair,
1171 &handle,
1172 vmci_trans(vpending)->produce_size,
1173 vmci_trans(vpending)->consume_size,
1174 pkt->dg.src.context,
1175 flags,
1176 vmci_transport_is_trusted(
1177 vpending,
1178 vpending->remote_addr.svm_cid));
1179 if (err < 0) {
1180 vmci_transport_send_reset(pending, pkt);
1181 skerr = -err;
1182 goto destroy;
1183 }
1184
1185 vmci_trans(vpending)->qp_handle = handle;
1186 vmci_trans(vpending)->qpair = qpair;
1187
1188 /* When we send the attach message, we must be ready to handle incoming
1189 * control messages on the newly connected socket. So we move the
1190 * pending socket to the connected state before sending the attach
1191 * message. Otherwise, an incoming packet triggered by the attach being
1192 * received by the peer may be processed concurrently with what happens
1193 * below after sending the attach message, and that incoming packet
1194 * will find the listening socket instead of the (currently) pending
1195 * socket. Note that enqueueing the socket increments the reference
1196 * count, so even if a reset comes before the connection is accepted,
1197 * the socket will be valid until it is removed from the queue.
1198 *
1199 * If we fail sending the attach below, we remove the socket from the
1200 * connected list and move the socket to SS_UNCONNECTED before
1201 * releasing the lock, so a pending slow path processing of an incoming
1202 * packet will not see the socket in the connected state in that case.
1203 */
1204 pending->sk_state = SS_CONNECTED;
1205
1206 vsock_insert_connected(vpending);
1207
1208 /* Notify our peer of our attach. */
1209 err = vmci_transport_send_attach(pending, handle);
1210 if (err < 0) {
1211 vsock_remove_connected(vpending);
1212 pr_err("Could not send attach\n");
1213 vmci_transport_send_reset(pending, pkt);
1214 err = vmci_transport_error_to_vsock_error(err);
1215 skerr = -err;
1216 goto destroy;
1217 }
1218
1219 /* We have a connection. Move the now connected socket from the
1220 * listener's pending list to the accept queue so callers of accept()
1221 * can find it.
1222 */
1223 vsock_remove_pending(listener, pending);
1224 vsock_enqueue_accept(listener, pending);
1225
1226 /* Callers of accept() will be be waiting on the listening socket, not
1227 * the pending socket.
1228 */
1229 listener->sk_data_ready(listener);
1230
1231 return 0;
1232
1233 destroy:
1234 pending->sk_err = skerr;
1235 pending->sk_state = SS_UNCONNECTED;
1236 /* As long as we drop our reference, all necessary cleanup will handle
1237 * when the cleanup function drops its reference and our destruct
1238 * implementation is called. Note that since the listen handler will
1239 * remove pending from the pending list upon our failure, the cleanup
1240 * function won't drop the additional reference, which is why we do it
1241 * here.
1242 */
1243 sock_put(pending);
1244
1245 return err;
1246 }
1247
1248 static int
1249 vmci_transport_recv_connecting_client(struct sock *sk,
1250 struct vmci_transport_packet *pkt)
1251 {
1252 struct vsock_sock *vsk;
1253 int err;
1254 int skerr;
1255
1256 vsk = vsock_sk(sk);
1257
1258 switch (pkt->type) {
1259 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
1260 if (vmci_handle_is_invalid(pkt->u.handle) ||
1261 !vmci_handle_is_equal(pkt->u.handle,
1262 vmci_trans(vsk)->qp_handle)) {
1263 skerr = EPROTO;
1264 err = -EINVAL;
1265 goto destroy;
1266 }
1267
1268 /* Signify the socket is connected and wakeup the waiter in
1269 * connect(). Also place the socket in the connected table for
1270 * accounting (it can already be found since it's in the bound
1271 * table).
1272 */
1273 sk->sk_state = SS_CONNECTED;
1274 sk->sk_socket->state = SS_CONNECTED;
1275 vsock_insert_connected(vsk);
1276 sk->sk_state_change(sk);
1277
1278 break;
1279 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
1280 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
1281 if (pkt->u.size == 0
1282 || pkt->dg.src.context != vsk->remote_addr.svm_cid
1283 || pkt->src_port != vsk->remote_addr.svm_port
1284 || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
1285 || vmci_trans(vsk)->qpair
1286 || vmci_trans(vsk)->produce_size != 0
1287 || vmci_trans(vsk)->consume_size != 0
1288 || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1289 skerr = EPROTO;
1290 err = -EINVAL;
1291
1292 goto destroy;
1293 }
1294
1295 err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
1296 if (err) {
1297 skerr = -err;
1298 goto destroy;
1299 }
1300
1301 break;
1302 case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
1303 err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
1304 if (err) {
1305 skerr = -err;
1306 goto destroy;
1307 }
1308
1309 break;
1310 case VMCI_TRANSPORT_PACKET_TYPE_RST:
1311 /* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
1312 * continue processing here after they sent an INVALID packet.
1313 * This meant that we got a RST after the INVALID. We ignore a
1314 * RST after an INVALID. The common code doesn't send the RST
1315 * ... so we can hang if an old version of the common code
1316 * fails between getting a REQUEST and sending an OFFER back.
1317 * Not much we can do about it... except hope that it doesn't
1318 * happen.
1319 */
1320 if (vsk->ignore_connecting_rst) {
1321 vsk->ignore_connecting_rst = false;
1322 } else {
1323 skerr = ECONNRESET;
1324 err = 0;
1325 goto destroy;
1326 }
1327
1328 break;
1329 default:
1330 /* Close and cleanup the connection. */
1331 skerr = EPROTO;
1332 err = -EINVAL;
1333 goto destroy;
1334 }
1335
1336 return 0;
1337
1338 destroy:
1339 vmci_transport_send_reset(sk, pkt);
1340
1341 sk->sk_state = SS_UNCONNECTED;
1342 sk->sk_err = skerr;
1343 sk->sk_error_report(sk);
1344 return err;
1345 }
1346
1347 static int vmci_transport_recv_connecting_client_negotiate(
1348 struct sock *sk,
1349 struct vmci_transport_packet *pkt)
1350 {
1351 int err;
1352 struct vsock_sock *vsk;
1353 struct vmci_handle handle;
1354 struct vmci_qp *qpair;
1355 u32 detach_sub_id;
1356 bool is_local;
1357 u32 flags;
1358 bool old_proto = true;
1359 bool old_pkt_proto;
1360 u16 version;
1361
1362 vsk = vsock_sk(sk);
1363 handle = VMCI_INVALID_HANDLE;
1364 detach_sub_id = VMCI_INVALID_ID;
1365
1366 /* If we have gotten here then we should be past the point where old
1367 * linux vsock could have sent the bogus rst.
1368 */
1369 vsk->sent_request = false;
1370 vsk->ignore_connecting_rst = false;
1371
1372 /* Verify that we're OK with the proposed queue pair size */
1373 if (pkt->u.size < vmci_trans(vsk)->queue_pair_min_size ||
1374 pkt->u.size > vmci_trans(vsk)->queue_pair_max_size) {
1375 err = -EINVAL;
1376 goto destroy;
1377 }
1378
1379 /* At this point we know the CID the peer is using to talk to us. */
1380
1381 if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
1382 vsk->local_addr.svm_cid = pkt->dg.dst.context;
1383
1384 /* Setup the notify ops to be the highest supported version that both
1385 * the server and the client support.
1386 */
1387
1388 if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1389 old_proto = old_pkt_proto;
1390 } else {
1391 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
1392 old_proto = true;
1393 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
1394 old_proto = false;
1395
1396 }
1397
1398 if (old_proto)
1399 version = VSOCK_PROTO_INVALID;
1400 else
1401 version = pkt->proto;
1402
1403 if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
1404 err = -EINVAL;
1405 goto destroy;
1406 }
1407
1408 /* Subscribe to detach events first.
1409 *
1410 * XXX We attach once for each queue pair created for now so it is easy
1411 * to find the socket (it's provided), but later we should only
1412 * subscribe once and add a way to lookup sockets by queue pair handle.
1413 */
1414 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1415 vmci_transport_peer_detach_cb,
1416 vmci_trans(vsk), &detach_sub_id);
1417 if (err < VMCI_SUCCESS) {
1418 err = vmci_transport_error_to_vsock_error(err);
1419 goto destroy;
1420 }
1421
1422 /* Make VMCI select the handle for us. */
1423 handle = VMCI_INVALID_HANDLE;
1424 is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
1425 flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
1426
1427 err = vmci_transport_queue_pair_alloc(&qpair,
1428 &handle,
1429 pkt->u.size,
1430 pkt->u.size,
1431 vsk->remote_addr.svm_cid,
1432 flags,
1433 vmci_transport_is_trusted(
1434 vsk,
1435 vsk->
1436 remote_addr.svm_cid));
1437 if (err < 0)
1438 goto destroy;
1439
1440 err = vmci_transport_send_qp_offer(sk, handle);
1441 if (err < 0) {
1442 err = vmci_transport_error_to_vsock_error(err);
1443 goto destroy;
1444 }
1445
1446 vmci_trans(vsk)->qp_handle = handle;
1447 vmci_trans(vsk)->qpair = qpair;
1448
1449 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
1450 pkt->u.size;
1451
1452 vmci_trans(vsk)->detach_sub_id = detach_sub_id;
1453
1454 vmci_trans(vsk)->notify_ops->process_negotiate(sk);
1455
1456 return 0;
1457
1458 destroy:
1459 if (detach_sub_id != VMCI_INVALID_ID)
1460 vmci_event_unsubscribe(detach_sub_id);
1461
1462 if (!vmci_handle_is_invalid(handle))
1463 vmci_qpair_detach(&qpair);
1464
1465 return err;
1466 }
1467
1468 static int
1469 vmci_transport_recv_connecting_client_invalid(struct sock *sk,
1470 struct vmci_transport_packet *pkt)
1471 {
1472 int err = 0;
1473 struct vsock_sock *vsk = vsock_sk(sk);
1474
1475 if (vsk->sent_request) {
1476 vsk->sent_request = false;
1477 vsk->ignore_connecting_rst = true;
1478
1479 err = vmci_transport_send_conn_request(
1480 sk, vmci_trans(vsk)->queue_pair_size);
1481 if (err < 0)
1482 err = vmci_transport_error_to_vsock_error(err);
1483 else
1484 err = 0;
1485
1486 }
1487
1488 return err;
1489 }
1490
1491 static int vmci_transport_recv_connected(struct sock *sk,
1492 struct vmci_transport_packet *pkt)
1493 {
1494 struct vsock_sock *vsk;
1495 bool pkt_processed = false;
1496
1497 /* In cases where we are closing the connection, it's sufficient to
1498 * mark the state change (and maybe error) and wake up any waiting
1499 * threads. Since this is a connected socket, it's owned by a user
1500 * process and will be cleaned up when the failure is passed back on
1501 * the current or next system call. Our system call implementations
1502 * must therefore check for error and state changes on entry and when
1503 * being awoken.
1504 */
1505 switch (pkt->type) {
1506 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
1507 if (pkt->u.mode) {
1508 vsk = vsock_sk(sk);
1509
1510 vsk->peer_shutdown |= pkt->u.mode;
1511 sk->sk_state_change(sk);
1512 }
1513 break;
1514
1515 case VMCI_TRANSPORT_PACKET_TYPE_RST:
1516 vsk = vsock_sk(sk);
1517 /* It is possible that we sent our peer a message (e.g a
1518 * WAITING_READ) right before we got notified that the peer had
1519 * detached. If that happens then we can get a RST pkt back
1520 * from our peer even though there is data available for us to
1521 * read. In that case, don't shutdown the socket completely but
1522 * instead allow the local client to finish reading data off
1523 * the queuepair. Always treat a RST pkt in connected mode like
1524 * a clean shutdown.
1525 */
1526 sock_set_flag(sk, SOCK_DONE);
1527 vsk->peer_shutdown = SHUTDOWN_MASK;
1528 if (vsock_stream_has_data(vsk) <= 0)
1529 sk->sk_state = SS_DISCONNECTING;
1530
1531 sk->sk_state_change(sk);
1532 break;
1533
1534 default:
1535 vsk = vsock_sk(sk);
1536 vmci_trans(vsk)->notify_ops->handle_notify_pkt(
1537 sk, pkt, false, NULL, NULL,
1538 &pkt_processed);
1539 if (!pkt_processed)
1540 return -EINVAL;
1541
1542 break;
1543 }
1544
1545 return 0;
1546 }
1547
1548 static int vmci_transport_socket_init(struct vsock_sock *vsk,
1549 struct vsock_sock *psk)
1550 {
1551 vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
1552 if (!vsk->trans)
1553 return -ENOMEM;
1554
1555 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1556 vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1557 vmci_trans(vsk)->qpair = NULL;
1558 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
1559 vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
1560 vmci_trans(vsk)->notify_ops = NULL;
1561 INIT_LIST_HEAD(&vmci_trans(vsk)->elem);
1562 vmci_trans(vsk)->sk = &vsk->sk;
1563 spin_lock_init(&vmci_trans(vsk)->lock);
1564 if (psk) {
1565 vmci_trans(vsk)->queue_pair_size =
1566 vmci_trans(psk)->queue_pair_size;
1567 vmci_trans(vsk)->queue_pair_min_size =
1568 vmci_trans(psk)->queue_pair_min_size;
1569 vmci_trans(vsk)->queue_pair_max_size =
1570 vmci_trans(psk)->queue_pair_max_size;
1571 } else {
1572 vmci_trans(vsk)->queue_pair_size =
1573 VMCI_TRANSPORT_DEFAULT_QP_SIZE;
1574 vmci_trans(vsk)->queue_pair_min_size =
1575 VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN;
1576 vmci_trans(vsk)->queue_pair_max_size =
1577 VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX;
1578 }
1579
1580 return 0;
1581 }
1582
1583 static void vmci_transport_free_resources(struct list_head *transport_list)
1584 {
1585 while (!list_empty(transport_list)) {
1586 struct vmci_transport *transport =
1587 list_first_entry(transport_list, struct vmci_transport,
1588 elem);
1589 list_del(&transport->elem);
1590
1591 if (transport->detach_sub_id != VMCI_INVALID_ID) {
1592 vmci_event_unsubscribe(transport->detach_sub_id);
1593 transport->detach_sub_id = VMCI_INVALID_ID;
1594 }
1595
1596 if (!vmci_handle_is_invalid(transport->qp_handle)) {
1597 vmci_qpair_detach(&transport->qpair);
1598 transport->qp_handle = VMCI_INVALID_HANDLE;
1599 transport->produce_size = 0;
1600 transport->consume_size = 0;
1601 }
1602
1603 kfree(transport);
1604 }
1605 }
1606
1607 static void vmci_transport_cleanup(struct work_struct *work)
1608 {
1609 LIST_HEAD(pending);
1610
1611 spin_lock_bh(&vmci_transport_cleanup_lock);
1612 list_replace_init(&vmci_transport_cleanup_list, &pending);
1613 spin_unlock_bh(&vmci_transport_cleanup_lock);
1614 vmci_transport_free_resources(&pending);
1615 }
1616
1617 static void vmci_transport_destruct(struct vsock_sock *vsk)
1618 {
1619 /* Ensure that the detach callback doesn't use the sk/vsk
1620 * we are about to destruct.
1621 */
1622 spin_lock_bh(&vmci_trans(vsk)->lock);
1623 vmci_trans(vsk)->sk = NULL;
1624 spin_unlock_bh(&vmci_trans(vsk)->lock);
1625
1626 if (vmci_trans(vsk)->notify_ops)
1627 vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
1628
1629 spin_lock_bh(&vmci_transport_cleanup_lock);
1630 list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list);
1631 spin_unlock_bh(&vmci_transport_cleanup_lock);
1632 schedule_work(&vmci_transport_cleanup_work);
1633
1634 vsk->trans = NULL;
1635 }
1636
1637 static void vmci_transport_release(struct vsock_sock *vsk)
1638 {
1639 vsock_remove_sock(vsk);
1640
1641 if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
1642 vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
1643 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1644 }
1645 }
1646
1647 static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
1648 struct sockaddr_vm *addr)
1649 {
1650 u32 port;
1651 u32 flags;
1652 int err;
1653
1654 /* VMCI will select a resource ID for us if we provide
1655 * VMCI_INVALID_ID.
1656 */
1657 port = addr->svm_port == VMADDR_PORT_ANY ?
1658 VMCI_INVALID_ID : addr->svm_port;
1659
1660 if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
1661 return -EACCES;
1662
1663 flags = addr->svm_cid == VMADDR_CID_ANY ?
1664 VMCI_FLAG_ANYCID_DG_HND : 0;
1665
1666 err = vmci_transport_datagram_create_hnd(port, flags,
1667 vmci_transport_recv_dgram_cb,
1668 &vsk->sk,
1669 &vmci_trans(vsk)->dg_handle);
1670 if (err < VMCI_SUCCESS)
1671 return vmci_transport_error_to_vsock_error(err);
1672 vsock_addr_init(&vsk->local_addr, addr->svm_cid,
1673 vmci_trans(vsk)->dg_handle.resource);
1674
1675 return 0;
1676 }
1677
1678 static int vmci_transport_dgram_enqueue(
1679 struct vsock_sock *vsk,
1680 struct sockaddr_vm *remote_addr,
1681 struct msghdr *msg,
1682 size_t len)
1683 {
1684 int err;
1685 struct vmci_datagram *dg;
1686
1687 if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
1688 return -EMSGSIZE;
1689
1690 if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
1691 return -EPERM;
1692
1693 /* Allocate a buffer for the user's message and our packet header. */
1694 dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
1695 if (!dg)
1696 return -ENOMEM;
1697
1698 memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len);
1699
1700 dg->dst = vmci_make_handle(remote_addr->svm_cid,
1701 remote_addr->svm_port);
1702 dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
1703 vsk->local_addr.svm_port);
1704 dg->payload_size = len;
1705
1706 err = vmci_datagram_send(dg);
1707 kfree(dg);
1708 if (err < 0)
1709 return vmci_transport_error_to_vsock_error(err);
1710
1711 return err - sizeof(*dg);
1712 }
1713
1714 static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk,
1715 struct msghdr *msg, size_t len,
1716 int flags)
1717 {
1718 int err;
1719 int noblock;
1720 struct vmci_datagram *dg;
1721 size_t payload_len;
1722 struct sk_buff *skb;
1723
1724 noblock = flags & MSG_DONTWAIT;
1725
1726 if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
1727 return -EOPNOTSUPP;
1728
1729 /* Retrieve the head sk_buff from the socket's receive queue. */
1730 err = 0;
1731 skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err);
1732 if (!skb)
1733 return err;
1734
1735 dg = (struct vmci_datagram *)skb->data;
1736 if (!dg)
1737 /* err is 0, meaning we read zero bytes. */
1738 goto out;
1739
1740 payload_len = dg->payload_size;
1741 /* Ensure the sk_buff matches the payload size claimed in the packet. */
1742 if (payload_len != skb->len - sizeof(*dg)) {
1743 err = -EINVAL;
1744 goto out;
1745 }
1746
1747 if (payload_len > len) {
1748 payload_len = len;
1749 msg->msg_flags |= MSG_TRUNC;
1750 }
1751
1752 /* Place the datagram payload in the user's iovec. */
1753 err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len);
1754 if (err)
1755 goto out;
1756
1757 if (msg->msg_name) {
1758 /* Provide the address of the sender. */
1759 DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name);
1760 vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
1761 msg->msg_namelen = sizeof(*vm_addr);
1762 }
1763 err = payload_len;
1764
1765 out:
1766 skb_free_datagram(&vsk->sk, skb);
1767 return err;
1768 }
1769
1770 static bool vmci_transport_dgram_allow(u32 cid, u32 port)
1771 {
1772 if (cid == VMADDR_CID_HYPERVISOR) {
1773 /* Registrations of PBRPC Servers do not modify VMX/Hypervisor
1774 * state and are allowed.
1775 */
1776 return port == VMCI_UNITY_PBRPC_REGISTER;
1777 }
1778
1779 return true;
1780 }
1781
1782 static int vmci_transport_connect(struct vsock_sock *vsk)
1783 {
1784 int err;
1785 bool old_pkt_proto = false;
1786 struct sock *sk = &vsk->sk;
1787
1788 if (vmci_transport_old_proto_override(&old_pkt_proto) &&
1789 old_pkt_proto) {
1790 err = vmci_transport_send_conn_request(
1791 sk, vmci_trans(vsk)->queue_pair_size);
1792 if (err < 0) {
1793 sk->sk_state = SS_UNCONNECTED;
1794 return err;
1795 }
1796 } else {
1797 int supported_proto_versions =
1798 vmci_transport_new_proto_supported_versions();
1799 err = vmci_transport_send_conn_request2(
1800 sk, vmci_trans(vsk)->queue_pair_size,
1801 supported_proto_versions);
1802 if (err < 0) {
1803 sk->sk_state = SS_UNCONNECTED;
1804 return err;
1805 }
1806
1807 vsk->sent_request = true;
1808 }
1809
1810 return err;
1811 }
1812
1813 static ssize_t vmci_transport_stream_dequeue(
1814 struct vsock_sock *vsk,
1815 struct msghdr *msg,
1816 size_t len,
1817 int flags)
1818 {
1819 if (flags & MSG_PEEK)
1820 return vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0);
1821 else
1822 return vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0);
1823 }
1824
1825 static ssize_t vmci_transport_stream_enqueue(
1826 struct vsock_sock *vsk,
1827 struct msghdr *msg,
1828 size_t len)
1829 {
1830 return vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0);
1831 }
1832
1833 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
1834 {
1835 return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
1836 }
1837
1838 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
1839 {
1840 return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
1841 }
1842
1843 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
1844 {
1845 return vmci_trans(vsk)->consume_size;
1846 }
1847
1848 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
1849 {
1850 return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
1851 }
1852
1853 static u64 vmci_transport_get_buffer_size(struct vsock_sock *vsk)
1854 {
1855 return vmci_trans(vsk)->queue_pair_size;
1856 }
1857
1858 static u64 vmci_transport_get_min_buffer_size(struct vsock_sock *vsk)
1859 {
1860 return vmci_trans(vsk)->queue_pair_min_size;
1861 }
1862
1863 static u64 vmci_transport_get_max_buffer_size(struct vsock_sock *vsk)
1864 {
1865 return vmci_trans(vsk)->queue_pair_max_size;
1866 }
1867
1868 static void vmci_transport_set_buffer_size(struct vsock_sock *vsk, u64 val)
1869 {
1870 if (val < vmci_trans(vsk)->queue_pair_min_size)
1871 vmci_trans(vsk)->queue_pair_min_size = val;
1872 if (val > vmci_trans(vsk)->queue_pair_max_size)
1873 vmci_trans(vsk)->queue_pair_max_size = val;
1874 vmci_trans(vsk)->queue_pair_size = val;
1875 }
1876
1877 static void vmci_transport_set_min_buffer_size(struct vsock_sock *vsk,
1878 u64 val)
1879 {
1880 if (val > vmci_trans(vsk)->queue_pair_size)
1881 vmci_trans(vsk)->queue_pair_size = val;
1882 vmci_trans(vsk)->queue_pair_min_size = val;
1883 }
1884
1885 static void vmci_transport_set_max_buffer_size(struct vsock_sock *vsk,
1886 u64 val)
1887 {
1888 if (val < vmci_trans(vsk)->queue_pair_size)
1889 vmci_trans(vsk)->queue_pair_size = val;
1890 vmci_trans(vsk)->queue_pair_max_size = val;
1891 }
1892
1893 static int vmci_transport_notify_poll_in(
1894 struct vsock_sock *vsk,
1895 size_t target,
1896 bool *data_ready_now)
1897 {
1898 return vmci_trans(vsk)->notify_ops->poll_in(
1899 &vsk->sk, target, data_ready_now);
1900 }
1901
1902 static int vmci_transport_notify_poll_out(
1903 struct vsock_sock *vsk,
1904 size_t target,
1905 bool *space_available_now)
1906 {
1907 return vmci_trans(vsk)->notify_ops->poll_out(
1908 &vsk->sk, target, space_available_now);
1909 }
1910
1911 static int vmci_transport_notify_recv_init(
1912 struct vsock_sock *vsk,
1913 size_t target,
1914 struct vsock_transport_recv_notify_data *data)
1915 {
1916 return vmci_trans(vsk)->notify_ops->recv_init(
1917 &vsk->sk, target,
1918 (struct vmci_transport_recv_notify_data *)data);
1919 }
1920
1921 static int vmci_transport_notify_recv_pre_block(
1922 struct vsock_sock *vsk,
1923 size_t target,
1924 struct vsock_transport_recv_notify_data *data)
1925 {
1926 return vmci_trans(vsk)->notify_ops->recv_pre_block(
1927 &vsk->sk, target,
1928 (struct vmci_transport_recv_notify_data *)data);
1929 }
1930
1931 static int vmci_transport_notify_recv_pre_dequeue(
1932 struct vsock_sock *vsk,
1933 size_t target,
1934 struct vsock_transport_recv_notify_data *data)
1935 {
1936 return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
1937 &vsk->sk, target,
1938 (struct vmci_transport_recv_notify_data *)data);
1939 }
1940
1941 static int vmci_transport_notify_recv_post_dequeue(
1942 struct vsock_sock *vsk,
1943 size_t target,
1944 ssize_t copied,
1945 bool data_read,
1946 struct vsock_transport_recv_notify_data *data)
1947 {
1948 return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
1949 &vsk->sk, target, copied, data_read,
1950 (struct vmci_transport_recv_notify_data *)data);
1951 }
1952
1953 static int vmci_transport_notify_send_init(
1954 struct vsock_sock *vsk,
1955 struct vsock_transport_send_notify_data *data)
1956 {
1957 return vmci_trans(vsk)->notify_ops->send_init(
1958 &vsk->sk,
1959 (struct vmci_transport_send_notify_data *)data);
1960 }
1961
1962 static int vmci_transport_notify_send_pre_block(
1963 struct vsock_sock *vsk,
1964 struct vsock_transport_send_notify_data *data)
1965 {
1966 return vmci_trans(vsk)->notify_ops->send_pre_block(
1967 &vsk->sk,
1968 (struct vmci_transport_send_notify_data *)data);
1969 }
1970
1971 static int vmci_transport_notify_send_pre_enqueue(
1972 struct vsock_sock *vsk,
1973 struct vsock_transport_send_notify_data *data)
1974 {
1975 return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
1976 &vsk->sk,
1977 (struct vmci_transport_send_notify_data *)data);
1978 }
1979
1980 static int vmci_transport_notify_send_post_enqueue(
1981 struct vsock_sock *vsk,
1982 ssize_t written,
1983 struct vsock_transport_send_notify_data *data)
1984 {
1985 return vmci_trans(vsk)->notify_ops->send_post_enqueue(
1986 &vsk->sk, written,
1987 (struct vmci_transport_send_notify_data *)data);
1988 }
1989
1990 static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
1991 {
1992 if (PROTOCOL_OVERRIDE != -1) {
1993 if (PROTOCOL_OVERRIDE == 0)
1994 *old_pkt_proto = true;
1995 else
1996 *old_pkt_proto = false;
1997
1998 pr_info("Proto override in use\n");
1999 return true;
2000 }
2001
2002 return false;
2003 }
2004
2005 static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
2006 u16 *proto,
2007 bool old_pkt_proto)
2008 {
2009 struct vsock_sock *vsk = vsock_sk(sk);
2010
2011 if (old_pkt_proto) {
2012 if (*proto != VSOCK_PROTO_INVALID) {
2013 pr_err("Can't set both an old and new protocol\n");
2014 return false;
2015 }
2016 vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
2017 goto exit;
2018 }
2019
2020 switch (*proto) {
2021 case VSOCK_PROTO_PKT_ON_NOTIFY:
2022 vmci_trans(vsk)->notify_ops =
2023 &vmci_transport_notify_pkt_q_state_ops;
2024 break;
2025 default:
2026 pr_err("Unknown notify protocol version\n");
2027 return false;
2028 }
2029
2030 exit:
2031 vmci_trans(vsk)->notify_ops->socket_init(sk);
2032 return true;
2033 }
2034
2035 static u16 vmci_transport_new_proto_supported_versions(void)
2036 {
2037 if (PROTOCOL_OVERRIDE != -1)
2038 return PROTOCOL_OVERRIDE;
2039
2040 return VSOCK_PROTO_ALL_SUPPORTED;
2041 }
2042
2043 static u32 vmci_transport_get_local_cid(void)
2044 {
2045 return vmci_get_context_id();
2046 }
2047
2048 static const struct vsock_transport vmci_transport = {
2049 .init = vmci_transport_socket_init,
2050 .destruct = vmci_transport_destruct,
2051 .release = vmci_transport_release,
2052 .connect = vmci_transport_connect,
2053 .dgram_bind = vmci_transport_dgram_bind,
2054 .dgram_dequeue = vmci_transport_dgram_dequeue,
2055 .dgram_enqueue = vmci_transport_dgram_enqueue,
2056 .dgram_allow = vmci_transport_dgram_allow,
2057 .stream_dequeue = vmci_transport_stream_dequeue,
2058 .stream_enqueue = vmci_transport_stream_enqueue,
2059 .stream_has_data = vmci_transport_stream_has_data,
2060 .stream_has_space = vmci_transport_stream_has_space,
2061 .stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
2062 .stream_is_active = vmci_transport_stream_is_active,
2063 .stream_allow = vmci_transport_stream_allow,
2064 .notify_poll_in = vmci_transport_notify_poll_in,
2065 .notify_poll_out = vmci_transport_notify_poll_out,
2066 .notify_recv_init = vmci_transport_notify_recv_init,
2067 .notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
2068 .notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
2069 .notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
2070 .notify_send_init = vmci_transport_notify_send_init,
2071 .notify_send_pre_block = vmci_transport_notify_send_pre_block,
2072 .notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
2073 .notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
2074 .shutdown = vmci_transport_shutdown,
2075 .set_buffer_size = vmci_transport_set_buffer_size,
2076 .set_min_buffer_size = vmci_transport_set_min_buffer_size,
2077 .set_max_buffer_size = vmci_transport_set_max_buffer_size,
2078 .get_buffer_size = vmci_transport_get_buffer_size,
2079 .get_min_buffer_size = vmci_transport_get_min_buffer_size,
2080 .get_max_buffer_size = vmci_transport_get_max_buffer_size,
2081 .get_local_cid = vmci_transport_get_local_cid,
2082 };
2083
2084 static int __init vmci_transport_init(void)
2085 {
2086 int err;
2087
2088 /* Create the datagram handle that we will use to send and receive all
2089 * VSocket control messages for this context.
2090 */
2091 err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
2092 VMCI_FLAG_ANYCID_DG_HND,
2093 vmci_transport_recv_stream_cb,
2094 NULL,
2095 &vmci_transport_stream_handle);
2096 if (err < VMCI_SUCCESS) {
2097 pr_err("Unable to create datagram handle. (%d)\n", err);
2098 return vmci_transport_error_to_vsock_error(err);
2099 }
2100
2101 err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
2102 vmci_transport_qp_resumed_cb,
2103 NULL, &vmci_transport_qp_resumed_sub_id);
2104 if (err < VMCI_SUCCESS) {
2105 pr_err("Unable to subscribe to resumed event. (%d)\n", err);
2106 err = vmci_transport_error_to_vsock_error(err);
2107 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2108 goto err_destroy_stream_handle;
2109 }
2110
2111 err = vsock_core_init(&vmci_transport);
2112 if (err < 0)
2113 goto err_unsubscribe;
2114
2115 return 0;
2116
2117 err_unsubscribe:
2118 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2119 err_destroy_stream_handle:
2120 vmci_datagram_destroy_handle(vmci_transport_stream_handle);
2121 return err;
2122 }
2123 module_init(vmci_transport_init);
2124
2125 static void __exit vmci_transport_exit(void)
2126 {
2127 cancel_work_sync(&vmci_transport_cleanup_work);
2128 vmci_transport_free_resources(&vmci_transport_cleanup_list);
2129
2130 if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
2131 if (vmci_datagram_destroy_handle(
2132 vmci_transport_stream_handle) != VMCI_SUCCESS)
2133 pr_err("Couldn't destroy datagram handle\n");
2134 vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
2135 }
2136
2137 if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
2138 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2139 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2140 }
2141
2142 vsock_core_exit();
2143 }
2144 module_exit(vmci_transport_exit);
2145
2146 MODULE_AUTHOR("VMware, Inc.");
2147 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
2148 MODULE_VERSION("1.0.4.0-k");
2149 MODULE_LICENSE("GPL v2");
2150 MODULE_ALIAS("vmware_vsock");
2151 MODULE_ALIAS_NETPROTO(PF_VSOCK);