]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - net/vmw_vsock/vmci_transport.c
ALSA: usb-audio: Quirk for BOSS GT-001
[mirror_ubuntu-hirsute-kernel.git] / net / vmw_vsock / vmci_transport.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VMware vSockets Driver
4 *
5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 */
7
8 #include <linux/types.h>
9 #include <linux/bitops.h>
10 #include <linux/cred.h>
11 #include <linux/init.h>
12 #include <linux/io.h>
13 #include <linux/kernel.h>
14 #include <linux/kmod.h>
15 #include <linux/list.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/net.h>
19 #include <linux/poll.h>
20 #include <linux/skbuff.h>
21 #include <linux/smp.h>
22 #include <linux/socket.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/wait.h>
26 #include <linux/workqueue.h>
27 #include <net/sock.h>
28 #include <net/af_vsock.h>
29
30 #include "vmci_transport_notify.h"
31
32 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
33 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
34 static void vmci_transport_peer_detach_cb(u32 sub_id,
35 const struct vmci_event_data *ed,
36 void *client_data);
37 static void vmci_transport_recv_pkt_work(struct work_struct *work);
38 static void vmci_transport_cleanup(struct work_struct *work);
39 static int vmci_transport_recv_listen(struct sock *sk,
40 struct vmci_transport_packet *pkt);
41 static int vmci_transport_recv_connecting_server(
42 struct sock *sk,
43 struct sock *pending,
44 struct vmci_transport_packet *pkt);
45 static int vmci_transport_recv_connecting_client(
46 struct sock *sk,
47 struct vmci_transport_packet *pkt);
48 static int vmci_transport_recv_connecting_client_negotiate(
49 struct sock *sk,
50 struct vmci_transport_packet *pkt);
51 static int vmci_transport_recv_connecting_client_invalid(
52 struct sock *sk,
53 struct vmci_transport_packet *pkt);
54 static int vmci_transport_recv_connected(struct sock *sk,
55 struct vmci_transport_packet *pkt);
56 static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
57 static u16 vmci_transport_new_proto_supported_versions(void);
58 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
59 bool old_pkt_proto);
60 static bool vmci_check_transport(struct vsock_sock *vsk);
61
62 struct vmci_transport_recv_pkt_info {
63 struct work_struct work;
64 struct sock *sk;
65 struct vmci_transport_packet pkt;
66 };
67
68 static LIST_HEAD(vmci_transport_cleanup_list);
69 static DEFINE_SPINLOCK(vmci_transport_cleanup_lock);
70 static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup);
71
72 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
73 VMCI_INVALID_ID };
74 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
75
76 static int PROTOCOL_OVERRIDE = -1;
77
78 /* Helper function to convert from a VMCI error code to a VSock error code. */
79
80 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
81 {
82 switch (vmci_error) {
83 case VMCI_ERROR_NO_MEM:
84 return -ENOMEM;
85 case VMCI_ERROR_DUPLICATE_ENTRY:
86 case VMCI_ERROR_ALREADY_EXISTS:
87 return -EADDRINUSE;
88 case VMCI_ERROR_NO_ACCESS:
89 return -EPERM;
90 case VMCI_ERROR_NO_RESOURCES:
91 return -ENOBUFS;
92 case VMCI_ERROR_INVALID_RESOURCE:
93 return -EHOSTUNREACH;
94 case VMCI_ERROR_INVALID_ARGS:
95 default:
96 break;
97 }
98 return -EINVAL;
99 }
100
101 static u32 vmci_transport_peer_rid(u32 peer_cid)
102 {
103 if (VMADDR_CID_HYPERVISOR == peer_cid)
104 return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
105
106 return VMCI_TRANSPORT_PACKET_RID;
107 }
108
109 static inline void
110 vmci_transport_packet_init(struct vmci_transport_packet *pkt,
111 struct sockaddr_vm *src,
112 struct sockaddr_vm *dst,
113 u8 type,
114 u64 size,
115 u64 mode,
116 struct vmci_transport_waiting_info *wait,
117 u16 proto,
118 struct vmci_handle handle)
119 {
120 /* We register the stream control handler as an any cid handle so we
121 * must always send from a source address of VMADDR_CID_ANY
122 */
123 pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
124 VMCI_TRANSPORT_PACKET_RID);
125 pkt->dg.dst = vmci_make_handle(dst->svm_cid,
126 vmci_transport_peer_rid(dst->svm_cid));
127 pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
128 pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
129 pkt->type = type;
130 pkt->src_port = src->svm_port;
131 pkt->dst_port = dst->svm_port;
132 memset(&pkt->proto, 0, sizeof(pkt->proto));
133 memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
134
135 switch (pkt->type) {
136 case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
137 pkt->u.size = 0;
138 break;
139
140 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
141 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
142 pkt->u.size = size;
143 break;
144
145 case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
146 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
147 pkt->u.handle = handle;
148 break;
149
150 case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
151 case VMCI_TRANSPORT_PACKET_TYPE_READ:
152 case VMCI_TRANSPORT_PACKET_TYPE_RST:
153 pkt->u.size = 0;
154 break;
155
156 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
157 pkt->u.mode = mode;
158 break;
159
160 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
161 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
162 memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
163 break;
164
165 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
166 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
167 pkt->u.size = size;
168 pkt->proto = proto;
169 break;
170 }
171 }
172
173 static inline void
174 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
175 struct sockaddr_vm *local,
176 struct sockaddr_vm *remote)
177 {
178 vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
179 vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
180 }
181
182 static int
183 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
184 struct sockaddr_vm *src,
185 struct sockaddr_vm *dst,
186 enum vmci_transport_packet_type type,
187 u64 size,
188 u64 mode,
189 struct vmci_transport_waiting_info *wait,
190 u16 proto,
191 struct vmci_handle handle,
192 bool convert_error)
193 {
194 int err;
195
196 vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
197 proto, handle);
198 err = vmci_datagram_send(&pkt->dg);
199 if (convert_error && (err < 0))
200 return vmci_transport_error_to_vsock_error(err);
201
202 return err;
203 }
204
205 static int
206 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
207 enum vmci_transport_packet_type type,
208 u64 size,
209 u64 mode,
210 struct vmci_transport_waiting_info *wait,
211 struct vmci_handle handle)
212 {
213 struct vmci_transport_packet reply;
214 struct sockaddr_vm src, dst;
215
216 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
217 return 0;
218 } else {
219 vmci_transport_packet_get_addresses(pkt, &src, &dst);
220 return __vmci_transport_send_control_pkt(&reply, &src, &dst,
221 type,
222 size, mode, wait,
223 VSOCK_PROTO_INVALID,
224 handle, true);
225 }
226 }
227
228 static int
229 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
230 struct sockaddr_vm *dst,
231 enum vmci_transport_packet_type type,
232 u64 size,
233 u64 mode,
234 struct vmci_transport_waiting_info *wait,
235 struct vmci_handle handle)
236 {
237 /* Note that it is safe to use a single packet across all CPUs since
238 * two tasklets of the same type are guaranteed to not ever run
239 * simultaneously. If that ever changes, or VMCI stops using tasklets,
240 * we can use per-cpu packets.
241 */
242 static struct vmci_transport_packet pkt;
243
244 return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
245 size, mode, wait,
246 VSOCK_PROTO_INVALID, handle,
247 false);
248 }
249
250 static int
251 vmci_transport_alloc_send_control_pkt(struct sockaddr_vm *src,
252 struct sockaddr_vm *dst,
253 enum vmci_transport_packet_type type,
254 u64 size,
255 u64 mode,
256 struct vmci_transport_waiting_info *wait,
257 u16 proto,
258 struct vmci_handle handle)
259 {
260 struct vmci_transport_packet *pkt;
261 int err;
262
263 pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
264 if (!pkt)
265 return -ENOMEM;
266
267 err = __vmci_transport_send_control_pkt(pkt, src, dst, type, size,
268 mode, wait, proto, handle,
269 true);
270 kfree(pkt);
271
272 return err;
273 }
274
275 static int
276 vmci_transport_send_control_pkt(struct sock *sk,
277 enum vmci_transport_packet_type type,
278 u64 size,
279 u64 mode,
280 struct vmci_transport_waiting_info *wait,
281 u16 proto,
282 struct vmci_handle handle)
283 {
284 struct vsock_sock *vsk;
285
286 vsk = vsock_sk(sk);
287
288 if (!vsock_addr_bound(&vsk->local_addr))
289 return -EINVAL;
290
291 if (!vsock_addr_bound(&vsk->remote_addr))
292 return -EINVAL;
293
294 return vmci_transport_alloc_send_control_pkt(&vsk->local_addr,
295 &vsk->remote_addr,
296 type, size, mode,
297 wait, proto, handle);
298 }
299
300 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
301 struct sockaddr_vm *src,
302 struct vmci_transport_packet *pkt)
303 {
304 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
305 return 0;
306 return vmci_transport_send_control_pkt_bh(
307 dst, src,
308 VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
309 0, NULL, VMCI_INVALID_HANDLE);
310 }
311
312 static int vmci_transport_send_reset(struct sock *sk,
313 struct vmci_transport_packet *pkt)
314 {
315 struct sockaddr_vm *dst_ptr;
316 struct sockaddr_vm dst;
317 struct vsock_sock *vsk;
318
319 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
320 return 0;
321
322 vsk = vsock_sk(sk);
323
324 if (!vsock_addr_bound(&vsk->local_addr))
325 return -EINVAL;
326
327 if (vsock_addr_bound(&vsk->remote_addr)) {
328 dst_ptr = &vsk->remote_addr;
329 } else {
330 vsock_addr_init(&dst, pkt->dg.src.context,
331 pkt->src_port);
332 dst_ptr = &dst;
333 }
334 return vmci_transport_alloc_send_control_pkt(&vsk->local_addr, dst_ptr,
335 VMCI_TRANSPORT_PACKET_TYPE_RST,
336 0, 0, NULL, VSOCK_PROTO_INVALID,
337 VMCI_INVALID_HANDLE);
338 }
339
340 static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
341 {
342 return vmci_transport_send_control_pkt(
343 sk,
344 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
345 size, 0, NULL,
346 VSOCK_PROTO_INVALID,
347 VMCI_INVALID_HANDLE);
348 }
349
350 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
351 u16 version)
352 {
353 return vmci_transport_send_control_pkt(
354 sk,
355 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
356 size, 0, NULL, version,
357 VMCI_INVALID_HANDLE);
358 }
359
360 static int vmci_transport_send_qp_offer(struct sock *sk,
361 struct vmci_handle handle)
362 {
363 return vmci_transport_send_control_pkt(
364 sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
365 0, NULL,
366 VSOCK_PROTO_INVALID, handle);
367 }
368
369 static int vmci_transport_send_attach(struct sock *sk,
370 struct vmci_handle handle)
371 {
372 return vmci_transport_send_control_pkt(
373 sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
374 0, 0, NULL, VSOCK_PROTO_INVALID,
375 handle);
376 }
377
378 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
379 {
380 return vmci_transport_reply_control_pkt_fast(
381 pkt,
382 VMCI_TRANSPORT_PACKET_TYPE_RST,
383 0, 0, NULL,
384 VMCI_INVALID_HANDLE);
385 }
386
387 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
388 struct sockaddr_vm *src)
389 {
390 return vmci_transport_send_control_pkt_bh(
391 dst, src,
392 VMCI_TRANSPORT_PACKET_TYPE_INVALID,
393 0, 0, NULL, VMCI_INVALID_HANDLE);
394 }
395
396 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
397 struct sockaddr_vm *src)
398 {
399 return vmci_transport_send_control_pkt_bh(
400 dst, src,
401 VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
402 0, NULL, VMCI_INVALID_HANDLE);
403 }
404
405 int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
406 struct sockaddr_vm *src)
407 {
408 return vmci_transport_send_control_pkt_bh(
409 dst, src,
410 VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
411 0, NULL, VMCI_INVALID_HANDLE);
412 }
413
414 int vmci_transport_send_wrote(struct sock *sk)
415 {
416 return vmci_transport_send_control_pkt(
417 sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
418 0, NULL, VSOCK_PROTO_INVALID,
419 VMCI_INVALID_HANDLE);
420 }
421
422 int vmci_transport_send_read(struct sock *sk)
423 {
424 return vmci_transport_send_control_pkt(
425 sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
426 0, NULL, VSOCK_PROTO_INVALID,
427 VMCI_INVALID_HANDLE);
428 }
429
430 int vmci_transport_send_waiting_write(struct sock *sk,
431 struct vmci_transport_waiting_info *wait)
432 {
433 return vmci_transport_send_control_pkt(
434 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
435 0, 0, wait, VSOCK_PROTO_INVALID,
436 VMCI_INVALID_HANDLE);
437 }
438
439 int vmci_transport_send_waiting_read(struct sock *sk,
440 struct vmci_transport_waiting_info *wait)
441 {
442 return vmci_transport_send_control_pkt(
443 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
444 0, 0, wait, VSOCK_PROTO_INVALID,
445 VMCI_INVALID_HANDLE);
446 }
447
448 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
449 {
450 return vmci_transport_send_control_pkt(
451 &vsk->sk,
452 VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
453 0, mode, NULL,
454 VSOCK_PROTO_INVALID,
455 VMCI_INVALID_HANDLE);
456 }
457
458 static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
459 {
460 return vmci_transport_send_control_pkt(sk,
461 VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
462 size, 0, NULL,
463 VSOCK_PROTO_INVALID,
464 VMCI_INVALID_HANDLE);
465 }
466
467 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
468 u16 version)
469 {
470 return vmci_transport_send_control_pkt(
471 sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
472 size, 0, NULL, version,
473 VMCI_INVALID_HANDLE);
474 }
475
476 static struct sock *vmci_transport_get_pending(
477 struct sock *listener,
478 struct vmci_transport_packet *pkt)
479 {
480 struct vsock_sock *vlistener;
481 struct vsock_sock *vpending;
482 struct sock *pending;
483 struct sockaddr_vm src;
484
485 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
486
487 vlistener = vsock_sk(listener);
488
489 list_for_each_entry(vpending, &vlistener->pending_links,
490 pending_links) {
491 if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
492 pkt->dst_port == vpending->local_addr.svm_port) {
493 pending = sk_vsock(vpending);
494 sock_hold(pending);
495 goto found;
496 }
497 }
498
499 pending = NULL;
500 found:
501 return pending;
502
503 }
504
505 static void vmci_transport_release_pending(struct sock *pending)
506 {
507 sock_put(pending);
508 }
509
510 /* We allow two kinds of sockets to communicate with a restricted VM: 1)
511 * trusted sockets 2) sockets from applications running as the same user as the
512 * VM (this is only true for the host side and only when using hosted products)
513 */
514
515 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
516 {
517 return vsock->trusted ||
518 vmci_is_context_owner(peer_cid, vsock->owner->uid);
519 }
520
521 /* We allow sending datagrams to and receiving datagrams from a restricted VM
522 * only if it is trusted as described in vmci_transport_is_trusted.
523 */
524
525 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
526 {
527 if (VMADDR_CID_HYPERVISOR == peer_cid)
528 return true;
529
530 if (vsock->cached_peer != peer_cid) {
531 vsock->cached_peer = peer_cid;
532 if (!vmci_transport_is_trusted(vsock, peer_cid) &&
533 (vmci_context_get_priv_flags(peer_cid) &
534 VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
535 vsock->cached_peer_allow_dgram = false;
536 } else {
537 vsock->cached_peer_allow_dgram = true;
538 }
539 }
540
541 return vsock->cached_peer_allow_dgram;
542 }
543
544 static int
545 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
546 struct vmci_handle *handle,
547 u64 produce_size,
548 u64 consume_size,
549 u32 peer, u32 flags, bool trusted)
550 {
551 int err = 0;
552
553 if (trusted) {
554 /* Try to allocate our queue pair as trusted. This will only
555 * work if vsock is running in the host.
556 */
557
558 err = vmci_qpair_alloc(qpair, handle, produce_size,
559 consume_size,
560 peer, flags,
561 VMCI_PRIVILEGE_FLAG_TRUSTED);
562 if (err != VMCI_ERROR_NO_ACCESS)
563 goto out;
564
565 }
566
567 err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
568 peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
569 out:
570 if (err < 0) {
571 pr_err("Could not attach to queue pair with %d\n",
572 err);
573 err = vmci_transport_error_to_vsock_error(err);
574 }
575
576 return err;
577 }
578
579 static int
580 vmci_transport_datagram_create_hnd(u32 resource_id,
581 u32 flags,
582 vmci_datagram_recv_cb recv_cb,
583 void *client_data,
584 struct vmci_handle *out_handle)
585 {
586 int err = 0;
587
588 /* Try to allocate our datagram handler as trusted. This will only work
589 * if vsock is running in the host.
590 */
591
592 err = vmci_datagram_create_handle_priv(resource_id, flags,
593 VMCI_PRIVILEGE_FLAG_TRUSTED,
594 recv_cb,
595 client_data, out_handle);
596
597 if (err == VMCI_ERROR_NO_ACCESS)
598 err = vmci_datagram_create_handle(resource_id, flags,
599 recv_cb, client_data,
600 out_handle);
601
602 return err;
603 }
604
605 /* This is invoked as part of a tasklet that's scheduled when the VMCI
606 * interrupt fires. This is run in bottom-half context and if it ever needs to
607 * sleep it should defer that work to a work queue.
608 */
609
610 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
611 {
612 struct sock *sk;
613 size_t size;
614 struct sk_buff *skb;
615 struct vsock_sock *vsk;
616
617 sk = (struct sock *)data;
618
619 /* This handler is privileged when this module is running on the host.
620 * We will get datagrams from all endpoints (even VMs that are in a
621 * restricted context). If we get one from a restricted context then
622 * the destination socket must be trusted.
623 *
624 * NOTE: We access the socket struct without holding the lock here.
625 * This is ok because the field we are interested is never modified
626 * outside of the create and destruct socket functions.
627 */
628 vsk = vsock_sk(sk);
629 if (!vmci_transport_allow_dgram(vsk, dg->src.context))
630 return VMCI_ERROR_NO_ACCESS;
631
632 size = VMCI_DG_SIZE(dg);
633
634 /* Attach the packet to the socket's receive queue as an sk_buff. */
635 skb = alloc_skb(size, GFP_ATOMIC);
636 if (!skb)
637 return VMCI_ERROR_NO_MEM;
638
639 /* sk_receive_skb() will do a sock_put(), so hold here. */
640 sock_hold(sk);
641 skb_put(skb, size);
642 memcpy(skb->data, dg, size);
643 sk_receive_skb(sk, skb, 0);
644
645 return VMCI_SUCCESS;
646 }
647
648 static bool vmci_transport_stream_allow(u32 cid, u32 port)
649 {
650 static const u32 non_socket_contexts[] = {
651 VMADDR_CID_LOCAL,
652 };
653 int i;
654
655 BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
656
657 for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
658 if (cid == non_socket_contexts[i])
659 return false;
660 }
661
662 return true;
663 }
664
665 /* This is invoked as part of a tasklet that's scheduled when the VMCI
666 * interrupt fires. This is run in bottom-half context but it defers most of
667 * its work to the packet handling work queue.
668 */
669
670 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
671 {
672 struct sock *sk;
673 struct sockaddr_vm dst;
674 struct sockaddr_vm src;
675 struct vmci_transport_packet *pkt;
676 struct vsock_sock *vsk;
677 bool bh_process_pkt;
678 int err;
679
680 sk = NULL;
681 err = VMCI_SUCCESS;
682 bh_process_pkt = false;
683
684 /* Ignore incoming packets from contexts without sockets, or resources
685 * that aren't vsock implementations.
686 */
687
688 if (!vmci_transport_stream_allow(dg->src.context, -1)
689 || vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
690 return VMCI_ERROR_NO_ACCESS;
691
692 if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
693 /* Drop datagrams that do not contain full VSock packets. */
694 return VMCI_ERROR_INVALID_ARGS;
695
696 pkt = (struct vmci_transport_packet *)dg;
697
698 /* Find the socket that should handle this packet. First we look for a
699 * connected socket and if there is none we look for a socket bound to
700 * the destintation address.
701 */
702 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
703 vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
704
705 sk = vsock_find_connected_socket(&src, &dst);
706 if (!sk) {
707 sk = vsock_find_bound_socket(&dst);
708 if (!sk) {
709 /* We could not find a socket for this specified
710 * address. If this packet is a RST, we just drop it.
711 * If it is another packet, we send a RST. Note that
712 * we do not send a RST reply to RSTs so that we do not
713 * continually send RSTs between two endpoints.
714 *
715 * Note that since this is a reply, dst is src and src
716 * is dst.
717 */
718 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
719 pr_err("unable to send reset\n");
720
721 err = VMCI_ERROR_NOT_FOUND;
722 goto out;
723 }
724 }
725
726 /* If the received packet type is beyond all types known to this
727 * implementation, reply with an invalid message. Hopefully this will
728 * help when implementing backwards compatibility in the future.
729 */
730 if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
731 vmci_transport_send_invalid_bh(&dst, &src);
732 err = VMCI_ERROR_INVALID_ARGS;
733 goto out;
734 }
735
736 /* This handler is privileged when this module is running on the host.
737 * We will get datagram connect requests from all endpoints (even VMs
738 * that are in a restricted context). If we get one from a restricted
739 * context then the destination socket must be trusted.
740 *
741 * NOTE: We access the socket struct without holding the lock here.
742 * This is ok because the field we are interested is never modified
743 * outside of the create and destruct socket functions.
744 */
745 vsk = vsock_sk(sk);
746 if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
747 err = VMCI_ERROR_NO_ACCESS;
748 goto out;
749 }
750
751 /* We do most everything in a work queue, but let's fast path the
752 * notification of reads and writes to help data transfer performance.
753 * We can only do this if there is no process context code executing
754 * for this socket since that may change the state.
755 */
756 bh_lock_sock(sk);
757
758 if (!sock_owned_by_user(sk)) {
759 /* The local context ID may be out of date, update it. */
760 vsk->local_addr.svm_cid = dst.svm_cid;
761
762 if (sk->sk_state == TCP_ESTABLISHED)
763 vmci_trans(vsk)->notify_ops->handle_notify_pkt(
764 sk, pkt, true, &dst, &src,
765 &bh_process_pkt);
766 }
767
768 bh_unlock_sock(sk);
769
770 if (!bh_process_pkt) {
771 struct vmci_transport_recv_pkt_info *recv_pkt_info;
772
773 recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
774 if (!recv_pkt_info) {
775 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
776 pr_err("unable to send reset\n");
777
778 err = VMCI_ERROR_NO_MEM;
779 goto out;
780 }
781
782 recv_pkt_info->sk = sk;
783 memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
784 INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
785
786 schedule_work(&recv_pkt_info->work);
787 /* Clear sk so that the reference count incremented by one of
788 * the Find functions above is not decremented below. We need
789 * that reference count for the packet handler we've scheduled
790 * to run.
791 */
792 sk = NULL;
793 }
794
795 out:
796 if (sk)
797 sock_put(sk);
798
799 return err;
800 }
801
802 static void vmci_transport_handle_detach(struct sock *sk)
803 {
804 struct vsock_sock *vsk;
805
806 vsk = vsock_sk(sk);
807 if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
808 sock_set_flag(sk, SOCK_DONE);
809
810 /* On a detach the peer will not be sending or receiving
811 * anymore.
812 */
813 vsk->peer_shutdown = SHUTDOWN_MASK;
814
815 /* We should not be sending anymore since the peer won't be
816 * there to receive, but we can still receive if there is data
817 * left in our consume queue. If the local endpoint is a host,
818 * we can't call vsock_stream_has_data, since that may block,
819 * but a host endpoint can't read data once the VM has
820 * detached, so there is no available data in that case.
821 */
822 if (vsk->local_addr.svm_cid == VMADDR_CID_HOST ||
823 vsock_stream_has_data(vsk) <= 0) {
824 if (sk->sk_state == TCP_SYN_SENT) {
825 /* The peer may detach from a queue pair while
826 * we are still in the connecting state, i.e.,
827 * if the peer VM is killed after attaching to
828 * a queue pair, but before we complete the
829 * handshake. In that case, we treat the detach
830 * event like a reset.
831 */
832
833 sk->sk_state = TCP_CLOSE;
834 sk->sk_err = ECONNRESET;
835 sk->sk_error_report(sk);
836 return;
837 }
838 sk->sk_state = TCP_CLOSE;
839 }
840 sk->sk_state_change(sk);
841 }
842 }
843
844 static void vmci_transport_peer_detach_cb(u32 sub_id,
845 const struct vmci_event_data *e_data,
846 void *client_data)
847 {
848 struct vmci_transport *trans = client_data;
849 const struct vmci_event_payload_qp *e_payload;
850
851 e_payload = vmci_event_data_const_payload(e_data);
852
853 /* XXX This is lame, we should provide a way to lookup sockets by
854 * qp_handle.
855 */
856 if (vmci_handle_is_invalid(e_payload->handle) ||
857 !vmci_handle_is_equal(trans->qp_handle, e_payload->handle))
858 return;
859
860 /* We don't ask for delayed CBs when we subscribe to this event (we
861 * pass 0 as flags to vmci_event_subscribe()). VMCI makes no
862 * guarantees in that case about what context we might be running in,
863 * so it could be BH or process, blockable or non-blockable. So we
864 * need to account for all possible contexts here.
865 */
866 spin_lock_bh(&trans->lock);
867 if (!trans->sk)
868 goto out;
869
870 /* Apart from here, trans->lock is only grabbed as part of sk destruct,
871 * where trans->sk isn't locked.
872 */
873 bh_lock_sock(trans->sk);
874
875 vmci_transport_handle_detach(trans->sk);
876
877 bh_unlock_sock(trans->sk);
878 out:
879 spin_unlock_bh(&trans->lock);
880 }
881
882 static void vmci_transport_qp_resumed_cb(u32 sub_id,
883 const struct vmci_event_data *e_data,
884 void *client_data)
885 {
886 vsock_for_each_connected_socket(vmci_transport_handle_detach);
887 }
888
889 static void vmci_transport_recv_pkt_work(struct work_struct *work)
890 {
891 struct vmci_transport_recv_pkt_info *recv_pkt_info;
892 struct vmci_transport_packet *pkt;
893 struct sock *sk;
894
895 recv_pkt_info =
896 container_of(work, struct vmci_transport_recv_pkt_info, work);
897 sk = recv_pkt_info->sk;
898 pkt = &recv_pkt_info->pkt;
899
900 lock_sock(sk);
901
902 /* The local context ID may be out of date. */
903 vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context;
904
905 switch (sk->sk_state) {
906 case TCP_LISTEN:
907 vmci_transport_recv_listen(sk, pkt);
908 break;
909 case TCP_SYN_SENT:
910 /* Processing of pending connections for servers goes through
911 * the listening socket, so see vmci_transport_recv_listen()
912 * for that path.
913 */
914 vmci_transport_recv_connecting_client(sk, pkt);
915 break;
916 case TCP_ESTABLISHED:
917 vmci_transport_recv_connected(sk, pkt);
918 break;
919 default:
920 /* Because this function does not run in the same context as
921 * vmci_transport_recv_stream_cb it is possible that the
922 * socket has closed. We need to let the other side know or it
923 * could be sitting in a connect and hang forever. Send a
924 * reset to prevent that.
925 */
926 vmci_transport_send_reset(sk, pkt);
927 break;
928 }
929
930 release_sock(sk);
931 kfree(recv_pkt_info);
932 /* Release reference obtained in the stream callback when we fetched
933 * this socket out of the bound or connected list.
934 */
935 sock_put(sk);
936 }
937
938 static int vmci_transport_recv_listen(struct sock *sk,
939 struct vmci_transport_packet *pkt)
940 {
941 struct sock *pending;
942 struct vsock_sock *vpending;
943 int err;
944 u64 qp_size;
945 bool old_request = false;
946 bool old_pkt_proto = false;
947
948 err = 0;
949
950 /* Because we are in the listen state, we could be receiving a packet
951 * for ourself or any previous connection requests that we received.
952 * If it's the latter, we try to find a socket in our list of pending
953 * connections and, if we do, call the appropriate handler for the
954 * state that that socket is in. Otherwise we try to service the
955 * connection request.
956 */
957 pending = vmci_transport_get_pending(sk, pkt);
958 if (pending) {
959 lock_sock(pending);
960
961 /* The local context ID may be out of date. */
962 vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context;
963
964 switch (pending->sk_state) {
965 case TCP_SYN_SENT:
966 err = vmci_transport_recv_connecting_server(sk,
967 pending,
968 pkt);
969 break;
970 default:
971 vmci_transport_send_reset(pending, pkt);
972 err = -EINVAL;
973 }
974
975 if (err < 0)
976 vsock_remove_pending(sk, pending);
977
978 release_sock(pending);
979 vmci_transport_release_pending(pending);
980
981 return err;
982 }
983
984 /* The listen state only accepts connection requests. Reply with a
985 * reset unless we received a reset.
986 */
987
988 if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
989 pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
990 vmci_transport_reply_reset(pkt);
991 return -EINVAL;
992 }
993
994 if (pkt->u.size == 0) {
995 vmci_transport_reply_reset(pkt);
996 return -EINVAL;
997 }
998
999 /* If this socket can't accommodate this connection request, we send a
1000 * reset. Otherwise we create and initialize a child socket and reply
1001 * with a connection negotiation.
1002 */
1003 if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
1004 vmci_transport_reply_reset(pkt);
1005 return -ECONNREFUSED;
1006 }
1007
1008 pending = vsock_create_connected(sk);
1009 if (!pending) {
1010 vmci_transport_send_reset(sk, pkt);
1011 return -ENOMEM;
1012 }
1013
1014 vpending = vsock_sk(pending);
1015
1016 vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
1017 pkt->dst_port);
1018 vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
1019 pkt->src_port);
1020
1021 err = vsock_assign_transport(vpending, vsock_sk(sk));
1022 /* Transport assigned (looking at remote_addr) must be the same
1023 * where we received the request.
1024 */
1025 if (err || !vmci_check_transport(vpending)) {
1026 vmci_transport_send_reset(sk, pkt);
1027 sock_put(pending);
1028 return err;
1029 }
1030
1031 /* If the proposed size fits within our min/max, accept it. Otherwise
1032 * propose our own size.
1033 */
1034 if (pkt->u.size >= vpending->buffer_min_size &&
1035 pkt->u.size <= vpending->buffer_max_size) {
1036 qp_size = pkt->u.size;
1037 } else {
1038 qp_size = vpending->buffer_size;
1039 }
1040
1041 /* Figure out if we are using old or new requests based on the
1042 * overrides pkt types sent by our peer.
1043 */
1044 if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1045 old_request = old_pkt_proto;
1046 } else {
1047 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
1048 old_request = true;
1049 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
1050 old_request = false;
1051
1052 }
1053
1054 if (old_request) {
1055 /* Handle a REQUEST (or override) */
1056 u16 version = VSOCK_PROTO_INVALID;
1057 if (vmci_transport_proto_to_notify_struct(
1058 pending, &version, true))
1059 err = vmci_transport_send_negotiate(pending, qp_size);
1060 else
1061 err = -EINVAL;
1062
1063 } else {
1064 /* Handle a REQUEST2 (or override) */
1065 int proto_int = pkt->proto;
1066 int pos;
1067 u16 active_proto_version = 0;
1068
1069 /* The list of possible protocols is the intersection of all
1070 * protocols the client supports ... plus all the protocols we
1071 * support.
1072 */
1073 proto_int &= vmci_transport_new_proto_supported_versions();
1074
1075 /* We choose the highest possible protocol version and use that
1076 * one.
1077 */
1078 pos = fls(proto_int);
1079 if (pos) {
1080 active_proto_version = (1 << (pos - 1));
1081 if (vmci_transport_proto_to_notify_struct(
1082 pending, &active_proto_version, false))
1083 err = vmci_transport_send_negotiate2(pending,
1084 qp_size,
1085 active_proto_version);
1086 else
1087 err = -EINVAL;
1088
1089 } else {
1090 err = -EINVAL;
1091 }
1092 }
1093
1094 if (err < 0) {
1095 vmci_transport_send_reset(sk, pkt);
1096 sock_put(pending);
1097 err = vmci_transport_error_to_vsock_error(err);
1098 goto out;
1099 }
1100
1101 vsock_add_pending(sk, pending);
1102 sk_acceptq_added(sk);
1103
1104 pending->sk_state = TCP_SYN_SENT;
1105 vmci_trans(vpending)->produce_size =
1106 vmci_trans(vpending)->consume_size = qp_size;
1107 vpending->buffer_size = qp_size;
1108
1109 vmci_trans(vpending)->notify_ops->process_request(pending);
1110
1111 /* We might never receive another message for this socket and it's not
1112 * connected to any process, so we have to ensure it gets cleaned up
1113 * ourself. Our delayed work function will take care of that. Note
1114 * that we do not ever cancel this function since we have few
1115 * guarantees about its state when calling cancel_delayed_work().
1116 * Instead we hold a reference on the socket for that function and make
1117 * it capable of handling cases where it needs to do nothing but
1118 * release that reference.
1119 */
1120 vpending->listener = sk;
1121 sock_hold(sk);
1122 sock_hold(pending);
1123 schedule_delayed_work(&vpending->pending_work, HZ);
1124
1125 out:
1126 return err;
1127 }
1128
1129 static int
1130 vmci_transport_recv_connecting_server(struct sock *listener,
1131 struct sock *pending,
1132 struct vmci_transport_packet *pkt)
1133 {
1134 struct vsock_sock *vpending;
1135 struct vmci_handle handle;
1136 struct vmci_qp *qpair;
1137 bool is_local;
1138 u32 flags;
1139 u32 detach_sub_id;
1140 int err;
1141 int skerr;
1142
1143 vpending = vsock_sk(pending);
1144 detach_sub_id = VMCI_INVALID_ID;
1145
1146 switch (pkt->type) {
1147 case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
1148 if (vmci_handle_is_invalid(pkt->u.handle)) {
1149 vmci_transport_send_reset(pending, pkt);
1150 skerr = EPROTO;
1151 err = -EINVAL;
1152 goto destroy;
1153 }
1154 break;
1155 default:
1156 /* Close and cleanup the connection. */
1157 vmci_transport_send_reset(pending, pkt);
1158 skerr = EPROTO;
1159 err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
1160 goto destroy;
1161 }
1162
1163 /* In order to complete the connection we need to attach to the offered
1164 * queue pair and send an attach notification. We also subscribe to the
1165 * detach event so we know when our peer goes away, and we do that
1166 * before attaching so we don't miss an event. If all this succeeds,
1167 * we update our state and wakeup anything waiting in accept() for a
1168 * connection.
1169 */
1170
1171 /* We don't care about attach since we ensure the other side has
1172 * attached by specifying the ATTACH_ONLY flag below.
1173 */
1174 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1175 vmci_transport_peer_detach_cb,
1176 vmci_trans(vpending), &detach_sub_id);
1177 if (err < VMCI_SUCCESS) {
1178 vmci_transport_send_reset(pending, pkt);
1179 err = vmci_transport_error_to_vsock_error(err);
1180 skerr = -err;
1181 goto destroy;
1182 }
1183
1184 vmci_trans(vpending)->detach_sub_id = detach_sub_id;
1185
1186 /* Now attach to the queue pair the client created. */
1187 handle = pkt->u.handle;
1188
1189 /* vpending->local_addr always has a context id so we do not need to
1190 * worry about VMADDR_CID_ANY in this case.
1191 */
1192 is_local =
1193 vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
1194 flags = VMCI_QPFLAG_ATTACH_ONLY;
1195 flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
1196
1197 err = vmci_transport_queue_pair_alloc(
1198 &qpair,
1199 &handle,
1200 vmci_trans(vpending)->produce_size,
1201 vmci_trans(vpending)->consume_size,
1202 pkt->dg.src.context,
1203 flags,
1204 vmci_transport_is_trusted(
1205 vpending,
1206 vpending->remote_addr.svm_cid));
1207 if (err < 0) {
1208 vmci_transport_send_reset(pending, pkt);
1209 skerr = -err;
1210 goto destroy;
1211 }
1212
1213 vmci_trans(vpending)->qp_handle = handle;
1214 vmci_trans(vpending)->qpair = qpair;
1215
1216 /* When we send the attach message, we must be ready to handle incoming
1217 * control messages on the newly connected socket. So we move the
1218 * pending socket to the connected state before sending the attach
1219 * message. Otherwise, an incoming packet triggered by the attach being
1220 * received by the peer may be processed concurrently with what happens
1221 * below after sending the attach message, and that incoming packet
1222 * will find the listening socket instead of the (currently) pending
1223 * socket. Note that enqueueing the socket increments the reference
1224 * count, so even if a reset comes before the connection is accepted,
1225 * the socket will be valid until it is removed from the queue.
1226 *
1227 * If we fail sending the attach below, we remove the socket from the
1228 * connected list and move the socket to TCP_CLOSE before
1229 * releasing the lock, so a pending slow path processing of an incoming
1230 * packet will not see the socket in the connected state in that case.
1231 */
1232 pending->sk_state = TCP_ESTABLISHED;
1233
1234 vsock_insert_connected(vpending);
1235
1236 /* Notify our peer of our attach. */
1237 err = vmci_transport_send_attach(pending, handle);
1238 if (err < 0) {
1239 vsock_remove_connected(vpending);
1240 pr_err("Could not send attach\n");
1241 vmci_transport_send_reset(pending, pkt);
1242 err = vmci_transport_error_to_vsock_error(err);
1243 skerr = -err;
1244 goto destroy;
1245 }
1246
1247 /* We have a connection. Move the now connected socket from the
1248 * listener's pending list to the accept queue so callers of accept()
1249 * can find it.
1250 */
1251 vsock_remove_pending(listener, pending);
1252 vsock_enqueue_accept(listener, pending);
1253
1254 /* Callers of accept() will be be waiting on the listening socket, not
1255 * the pending socket.
1256 */
1257 listener->sk_data_ready(listener);
1258
1259 return 0;
1260
1261 destroy:
1262 pending->sk_err = skerr;
1263 pending->sk_state = TCP_CLOSE;
1264 /* As long as we drop our reference, all necessary cleanup will handle
1265 * when the cleanup function drops its reference and our destruct
1266 * implementation is called. Note that since the listen handler will
1267 * remove pending from the pending list upon our failure, the cleanup
1268 * function won't drop the additional reference, which is why we do it
1269 * here.
1270 */
1271 sock_put(pending);
1272
1273 return err;
1274 }
1275
1276 static int
1277 vmci_transport_recv_connecting_client(struct sock *sk,
1278 struct vmci_transport_packet *pkt)
1279 {
1280 struct vsock_sock *vsk;
1281 int err;
1282 int skerr;
1283
1284 vsk = vsock_sk(sk);
1285
1286 switch (pkt->type) {
1287 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
1288 if (vmci_handle_is_invalid(pkt->u.handle) ||
1289 !vmci_handle_is_equal(pkt->u.handle,
1290 vmci_trans(vsk)->qp_handle)) {
1291 skerr = EPROTO;
1292 err = -EINVAL;
1293 goto destroy;
1294 }
1295
1296 /* Signify the socket is connected and wakeup the waiter in
1297 * connect(). Also place the socket in the connected table for
1298 * accounting (it can already be found since it's in the bound
1299 * table).
1300 */
1301 sk->sk_state = TCP_ESTABLISHED;
1302 sk->sk_socket->state = SS_CONNECTED;
1303 vsock_insert_connected(vsk);
1304 sk->sk_state_change(sk);
1305
1306 break;
1307 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
1308 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
1309 if (pkt->u.size == 0
1310 || pkt->dg.src.context != vsk->remote_addr.svm_cid
1311 || pkt->src_port != vsk->remote_addr.svm_port
1312 || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
1313 || vmci_trans(vsk)->qpair
1314 || vmci_trans(vsk)->produce_size != 0
1315 || vmci_trans(vsk)->consume_size != 0
1316 || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1317 skerr = EPROTO;
1318 err = -EINVAL;
1319
1320 goto destroy;
1321 }
1322
1323 err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
1324 if (err) {
1325 skerr = -err;
1326 goto destroy;
1327 }
1328
1329 break;
1330 case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
1331 err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
1332 if (err) {
1333 skerr = -err;
1334 goto destroy;
1335 }
1336
1337 break;
1338 case VMCI_TRANSPORT_PACKET_TYPE_RST:
1339 /* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
1340 * continue processing here after they sent an INVALID packet.
1341 * This meant that we got a RST after the INVALID. We ignore a
1342 * RST after an INVALID. The common code doesn't send the RST
1343 * ... so we can hang if an old version of the common code
1344 * fails between getting a REQUEST and sending an OFFER back.
1345 * Not much we can do about it... except hope that it doesn't
1346 * happen.
1347 */
1348 if (vsk->ignore_connecting_rst) {
1349 vsk->ignore_connecting_rst = false;
1350 } else {
1351 skerr = ECONNRESET;
1352 err = 0;
1353 goto destroy;
1354 }
1355
1356 break;
1357 default:
1358 /* Close and cleanup the connection. */
1359 skerr = EPROTO;
1360 err = -EINVAL;
1361 goto destroy;
1362 }
1363
1364 return 0;
1365
1366 destroy:
1367 vmci_transport_send_reset(sk, pkt);
1368
1369 sk->sk_state = TCP_CLOSE;
1370 sk->sk_err = skerr;
1371 sk->sk_error_report(sk);
1372 return err;
1373 }
1374
1375 static int vmci_transport_recv_connecting_client_negotiate(
1376 struct sock *sk,
1377 struct vmci_transport_packet *pkt)
1378 {
1379 int err;
1380 struct vsock_sock *vsk;
1381 struct vmci_handle handle;
1382 struct vmci_qp *qpair;
1383 u32 detach_sub_id;
1384 bool is_local;
1385 u32 flags;
1386 bool old_proto = true;
1387 bool old_pkt_proto;
1388 u16 version;
1389
1390 vsk = vsock_sk(sk);
1391 handle = VMCI_INVALID_HANDLE;
1392 detach_sub_id = VMCI_INVALID_ID;
1393
1394 /* If we have gotten here then we should be past the point where old
1395 * linux vsock could have sent the bogus rst.
1396 */
1397 vsk->sent_request = false;
1398 vsk->ignore_connecting_rst = false;
1399
1400 /* Verify that we're OK with the proposed queue pair size */
1401 if (pkt->u.size < vsk->buffer_min_size ||
1402 pkt->u.size > vsk->buffer_max_size) {
1403 err = -EINVAL;
1404 goto destroy;
1405 }
1406
1407 /* At this point we know the CID the peer is using to talk to us. */
1408
1409 if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
1410 vsk->local_addr.svm_cid = pkt->dg.dst.context;
1411
1412 /* Setup the notify ops to be the highest supported version that both
1413 * the server and the client support.
1414 */
1415
1416 if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1417 old_proto = old_pkt_proto;
1418 } else {
1419 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
1420 old_proto = true;
1421 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
1422 old_proto = false;
1423
1424 }
1425
1426 if (old_proto)
1427 version = VSOCK_PROTO_INVALID;
1428 else
1429 version = pkt->proto;
1430
1431 if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
1432 err = -EINVAL;
1433 goto destroy;
1434 }
1435
1436 /* Subscribe to detach events first.
1437 *
1438 * XXX We attach once for each queue pair created for now so it is easy
1439 * to find the socket (it's provided), but later we should only
1440 * subscribe once and add a way to lookup sockets by queue pair handle.
1441 */
1442 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1443 vmci_transport_peer_detach_cb,
1444 vmci_trans(vsk), &detach_sub_id);
1445 if (err < VMCI_SUCCESS) {
1446 err = vmci_transport_error_to_vsock_error(err);
1447 goto destroy;
1448 }
1449
1450 /* Make VMCI select the handle for us. */
1451 handle = VMCI_INVALID_HANDLE;
1452 is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
1453 flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
1454
1455 err = vmci_transport_queue_pair_alloc(&qpair,
1456 &handle,
1457 pkt->u.size,
1458 pkt->u.size,
1459 vsk->remote_addr.svm_cid,
1460 flags,
1461 vmci_transport_is_trusted(
1462 vsk,
1463 vsk->
1464 remote_addr.svm_cid));
1465 if (err < 0)
1466 goto destroy;
1467
1468 err = vmci_transport_send_qp_offer(sk, handle);
1469 if (err < 0) {
1470 err = vmci_transport_error_to_vsock_error(err);
1471 goto destroy;
1472 }
1473
1474 vmci_trans(vsk)->qp_handle = handle;
1475 vmci_trans(vsk)->qpair = qpair;
1476
1477 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
1478 pkt->u.size;
1479
1480 vmci_trans(vsk)->detach_sub_id = detach_sub_id;
1481
1482 vmci_trans(vsk)->notify_ops->process_negotiate(sk);
1483
1484 return 0;
1485
1486 destroy:
1487 if (detach_sub_id != VMCI_INVALID_ID)
1488 vmci_event_unsubscribe(detach_sub_id);
1489
1490 if (!vmci_handle_is_invalid(handle))
1491 vmci_qpair_detach(&qpair);
1492
1493 return err;
1494 }
1495
1496 static int
1497 vmci_transport_recv_connecting_client_invalid(struct sock *sk,
1498 struct vmci_transport_packet *pkt)
1499 {
1500 int err = 0;
1501 struct vsock_sock *vsk = vsock_sk(sk);
1502
1503 if (vsk->sent_request) {
1504 vsk->sent_request = false;
1505 vsk->ignore_connecting_rst = true;
1506
1507 err = vmci_transport_send_conn_request(sk, vsk->buffer_size);
1508 if (err < 0)
1509 err = vmci_transport_error_to_vsock_error(err);
1510 else
1511 err = 0;
1512
1513 }
1514
1515 return err;
1516 }
1517
1518 static int vmci_transport_recv_connected(struct sock *sk,
1519 struct vmci_transport_packet *pkt)
1520 {
1521 struct vsock_sock *vsk;
1522 bool pkt_processed = false;
1523
1524 /* In cases where we are closing the connection, it's sufficient to
1525 * mark the state change (and maybe error) and wake up any waiting
1526 * threads. Since this is a connected socket, it's owned by a user
1527 * process and will be cleaned up when the failure is passed back on
1528 * the current or next system call. Our system call implementations
1529 * must therefore check for error and state changes on entry and when
1530 * being awoken.
1531 */
1532 switch (pkt->type) {
1533 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
1534 if (pkt->u.mode) {
1535 vsk = vsock_sk(sk);
1536
1537 vsk->peer_shutdown |= pkt->u.mode;
1538 sk->sk_state_change(sk);
1539 }
1540 break;
1541
1542 case VMCI_TRANSPORT_PACKET_TYPE_RST:
1543 vsk = vsock_sk(sk);
1544 /* It is possible that we sent our peer a message (e.g a
1545 * WAITING_READ) right before we got notified that the peer had
1546 * detached. If that happens then we can get a RST pkt back
1547 * from our peer even though there is data available for us to
1548 * read. In that case, don't shutdown the socket completely but
1549 * instead allow the local client to finish reading data off
1550 * the queuepair. Always treat a RST pkt in connected mode like
1551 * a clean shutdown.
1552 */
1553 sock_set_flag(sk, SOCK_DONE);
1554 vsk->peer_shutdown = SHUTDOWN_MASK;
1555 if (vsock_stream_has_data(vsk) <= 0)
1556 sk->sk_state = TCP_CLOSING;
1557
1558 sk->sk_state_change(sk);
1559 break;
1560
1561 default:
1562 vsk = vsock_sk(sk);
1563 vmci_trans(vsk)->notify_ops->handle_notify_pkt(
1564 sk, pkt, false, NULL, NULL,
1565 &pkt_processed);
1566 if (!pkt_processed)
1567 return -EINVAL;
1568
1569 break;
1570 }
1571
1572 return 0;
1573 }
1574
1575 static int vmci_transport_socket_init(struct vsock_sock *vsk,
1576 struct vsock_sock *psk)
1577 {
1578 vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
1579 if (!vsk->trans)
1580 return -ENOMEM;
1581
1582 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1583 vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1584 vmci_trans(vsk)->qpair = NULL;
1585 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
1586 vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
1587 vmci_trans(vsk)->notify_ops = NULL;
1588 INIT_LIST_HEAD(&vmci_trans(vsk)->elem);
1589 vmci_trans(vsk)->sk = &vsk->sk;
1590 spin_lock_init(&vmci_trans(vsk)->lock);
1591
1592 return 0;
1593 }
1594
1595 static void vmci_transport_free_resources(struct list_head *transport_list)
1596 {
1597 while (!list_empty(transport_list)) {
1598 struct vmci_transport *transport =
1599 list_first_entry(transport_list, struct vmci_transport,
1600 elem);
1601 list_del(&transport->elem);
1602
1603 if (transport->detach_sub_id != VMCI_INVALID_ID) {
1604 vmci_event_unsubscribe(transport->detach_sub_id);
1605 transport->detach_sub_id = VMCI_INVALID_ID;
1606 }
1607
1608 if (!vmci_handle_is_invalid(transport->qp_handle)) {
1609 vmci_qpair_detach(&transport->qpair);
1610 transport->qp_handle = VMCI_INVALID_HANDLE;
1611 transport->produce_size = 0;
1612 transport->consume_size = 0;
1613 }
1614
1615 kfree(transport);
1616 }
1617 }
1618
1619 static void vmci_transport_cleanup(struct work_struct *work)
1620 {
1621 LIST_HEAD(pending);
1622
1623 spin_lock_bh(&vmci_transport_cleanup_lock);
1624 list_replace_init(&vmci_transport_cleanup_list, &pending);
1625 spin_unlock_bh(&vmci_transport_cleanup_lock);
1626 vmci_transport_free_resources(&pending);
1627 }
1628
1629 static void vmci_transport_destruct(struct vsock_sock *vsk)
1630 {
1631 /* transport can be NULL if we hit a failure at init() time */
1632 if (!vmci_trans(vsk))
1633 return;
1634
1635 /* Ensure that the detach callback doesn't use the sk/vsk
1636 * we are about to destruct.
1637 */
1638 spin_lock_bh(&vmci_trans(vsk)->lock);
1639 vmci_trans(vsk)->sk = NULL;
1640 spin_unlock_bh(&vmci_trans(vsk)->lock);
1641
1642 if (vmci_trans(vsk)->notify_ops)
1643 vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
1644
1645 spin_lock_bh(&vmci_transport_cleanup_lock);
1646 list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list);
1647 spin_unlock_bh(&vmci_transport_cleanup_lock);
1648 schedule_work(&vmci_transport_cleanup_work);
1649
1650 vsk->trans = NULL;
1651 }
1652
1653 static void vmci_transport_release(struct vsock_sock *vsk)
1654 {
1655 vsock_remove_sock(vsk);
1656
1657 if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
1658 vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
1659 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1660 }
1661 }
1662
1663 static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
1664 struct sockaddr_vm *addr)
1665 {
1666 u32 port;
1667 u32 flags;
1668 int err;
1669
1670 /* VMCI will select a resource ID for us if we provide
1671 * VMCI_INVALID_ID.
1672 */
1673 port = addr->svm_port == VMADDR_PORT_ANY ?
1674 VMCI_INVALID_ID : addr->svm_port;
1675
1676 if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
1677 return -EACCES;
1678
1679 flags = addr->svm_cid == VMADDR_CID_ANY ?
1680 VMCI_FLAG_ANYCID_DG_HND : 0;
1681
1682 err = vmci_transport_datagram_create_hnd(port, flags,
1683 vmci_transport_recv_dgram_cb,
1684 &vsk->sk,
1685 &vmci_trans(vsk)->dg_handle);
1686 if (err < VMCI_SUCCESS)
1687 return vmci_transport_error_to_vsock_error(err);
1688 vsock_addr_init(&vsk->local_addr, addr->svm_cid,
1689 vmci_trans(vsk)->dg_handle.resource);
1690
1691 return 0;
1692 }
1693
1694 static int vmci_transport_dgram_enqueue(
1695 struct vsock_sock *vsk,
1696 struct sockaddr_vm *remote_addr,
1697 struct msghdr *msg,
1698 size_t len)
1699 {
1700 int err;
1701 struct vmci_datagram *dg;
1702
1703 if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
1704 return -EMSGSIZE;
1705
1706 if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
1707 return -EPERM;
1708
1709 /* Allocate a buffer for the user's message and our packet header. */
1710 dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
1711 if (!dg)
1712 return -ENOMEM;
1713
1714 memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len);
1715
1716 dg->dst = vmci_make_handle(remote_addr->svm_cid,
1717 remote_addr->svm_port);
1718 dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
1719 vsk->local_addr.svm_port);
1720 dg->payload_size = len;
1721
1722 err = vmci_datagram_send(dg);
1723 kfree(dg);
1724 if (err < 0)
1725 return vmci_transport_error_to_vsock_error(err);
1726
1727 return err - sizeof(*dg);
1728 }
1729
1730 static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk,
1731 struct msghdr *msg, size_t len,
1732 int flags)
1733 {
1734 int err;
1735 int noblock;
1736 struct vmci_datagram *dg;
1737 size_t payload_len;
1738 struct sk_buff *skb;
1739
1740 noblock = flags & MSG_DONTWAIT;
1741
1742 if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
1743 return -EOPNOTSUPP;
1744
1745 /* Retrieve the head sk_buff from the socket's receive queue. */
1746 err = 0;
1747 skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err);
1748 if (!skb)
1749 return err;
1750
1751 dg = (struct vmci_datagram *)skb->data;
1752 if (!dg)
1753 /* err is 0, meaning we read zero bytes. */
1754 goto out;
1755
1756 payload_len = dg->payload_size;
1757 /* Ensure the sk_buff matches the payload size claimed in the packet. */
1758 if (payload_len != skb->len - sizeof(*dg)) {
1759 err = -EINVAL;
1760 goto out;
1761 }
1762
1763 if (payload_len > len) {
1764 payload_len = len;
1765 msg->msg_flags |= MSG_TRUNC;
1766 }
1767
1768 /* Place the datagram payload in the user's iovec. */
1769 err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len);
1770 if (err)
1771 goto out;
1772
1773 if (msg->msg_name) {
1774 /* Provide the address of the sender. */
1775 DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name);
1776 vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
1777 msg->msg_namelen = sizeof(*vm_addr);
1778 }
1779 err = payload_len;
1780
1781 out:
1782 skb_free_datagram(&vsk->sk, skb);
1783 return err;
1784 }
1785
1786 static bool vmci_transport_dgram_allow(u32 cid, u32 port)
1787 {
1788 if (cid == VMADDR_CID_HYPERVISOR) {
1789 /* Registrations of PBRPC Servers do not modify VMX/Hypervisor
1790 * state and are allowed.
1791 */
1792 return port == VMCI_UNITY_PBRPC_REGISTER;
1793 }
1794
1795 return true;
1796 }
1797
1798 static int vmci_transport_connect(struct vsock_sock *vsk)
1799 {
1800 int err;
1801 bool old_pkt_proto = false;
1802 struct sock *sk = &vsk->sk;
1803
1804 if (vmci_transport_old_proto_override(&old_pkt_proto) &&
1805 old_pkt_proto) {
1806 err = vmci_transport_send_conn_request(sk, vsk->buffer_size);
1807 if (err < 0) {
1808 sk->sk_state = TCP_CLOSE;
1809 return err;
1810 }
1811 } else {
1812 int supported_proto_versions =
1813 vmci_transport_new_proto_supported_versions();
1814 err = vmci_transport_send_conn_request2(sk, vsk->buffer_size,
1815 supported_proto_versions);
1816 if (err < 0) {
1817 sk->sk_state = TCP_CLOSE;
1818 return err;
1819 }
1820
1821 vsk->sent_request = true;
1822 }
1823
1824 return err;
1825 }
1826
1827 static ssize_t vmci_transport_stream_dequeue(
1828 struct vsock_sock *vsk,
1829 struct msghdr *msg,
1830 size_t len,
1831 int flags)
1832 {
1833 if (flags & MSG_PEEK)
1834 return vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0);
1835 else
1836 return vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0);
1837 }
1838
1839 static ssize_t vmci_transport_stream_enqueue(
1840 struct vsock_sock *vsk,
1841 struct msghdr *msg,
1842 size_t len)
1843 {
1844 return vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0);
1845 }
1846
1847 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
1848 {
1849 return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
1850 }
1851
1852 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
1853 {
1854 return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
1855 }
1856
1857 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
1858 {
1859 return vmci_trans(vsk)->consume_size;
1860 }
1861
1862 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
1863 {
1864 return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
1865 }
1866
1867 static int vmci_transport_notify_poll_in(
1868 struct vsock_sock *vsk,
1869 size_t target,
1870 bool *data_ready_now)
1871 {
1872 return vmci_trans(vsk)->notify_ops->poll_in(
1873 &vsk->sk, target, data_ready_now);
1874 }
1875
1876 static int vmci_transport_notify_poll_out(
1877 struct vsock_sock *vsk,
1878 size_t target,
1879 bool *space_available_now)
1880 {
1881 return vmci_trans(vsk)->notify_ops->poll_out(
1882 &vsk->sk, target, space_available_now);
1883 }
1884
1885 static int vmci_transport_notify_recv_init(
1886 struct vsock_sock *vsk,
1887 size_t target,
1888 struct vsock_transport_recv_notify_data *data)
1889 {
1890 return vmci_trans(vsk)->notify_ops->recv_init(
1891 &vsk->sk, target,
1892 (struct vmci_transport_recv_notify_data *)data);
1893 }
1894
1895 static int vmci_transport_notify_recv_pre_block(
1896 struct vsock_sock *vsk,
1897 size_t target,
1898 struct vsock_transport_recv_notify_data *data)
1899 {
1900 return vmci_trans(vsk)->notify_ops->recv_pre_block(
1901 &vsk->sk, target,
1902 (struct vmci_transport_recv_notify_data *)data);
1903 }
1904
1905 static int vmci_transport_notify_recv_pre_dequeue(
1906 struct vsock_sock *vsk,
1907 size_t target,
1908 struct vsock_transport_recv_notify_data *data)
1909 {
1910 return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
1911 &vsk->sk, target,
1912 (struct vmci_transport_recv_notify_data *)data);
1913 }
1914
1915 static int vmci_transport_notify_recv_post_dequeue(
1916 struct vsock_sock *vsk,
1917 size_t target,
1918 ssize_t copied,
1919 bool data_read,
1920 struct vsock_transport_recv_notify_data *data)
1921 {
1922 return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
1923 &vsk->sk, target, copied, data_read,
1924 (struct vmci_transport_recv_notify_data *)data);
1925 }
1926
1927 static int vmci_transport_notify_send_init(
1928 struct vsock_sock *vsk,
1929 struct vsock_transport_send_notify_data *data)
1930 {
1931 return vmci_trans(vsk)->notify_ops->send_init(
1932 &vsk->sk,
1933 (struct vmci_transport_send_notify_data *)data);
1934 }
1935
1936 static int vmci_transport_notify_send_pre_block(
1937 struct vsock_sock *vsk,
1938 struct vsock_transport_send_notify_data *data)
1939 {
1940 return vmci_trans(vsk)->notify_ops->send_pre_block(
1941 &vsk->sk,
1942 (struct vmci_transport_send_notify_data *)data);
1943 }
1944
1945 static int vmci_transport_notify_send_pre_enqueue(
1946 struct vsock_sock *vsk,
1947 struct vsock_transport_send_notify_data *data)
1948 {
1949 return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
1950 &vsk->sk,
1951 (struct vmci_transport_send_notify_data *)data);
1952 }
1953
1954 static int vmci_transport_notify_send_post_enqueue(
1955 struct vsock_sock *vsk,
1956 ssize_t written,
1957 struct vsock_transport_send_notify_data *data)
1958 {
1959 return vmci_trans(vsk)->notify_ops->send_post_enqueue(
1960 &vsk->sk, written,
1961 (struct vmci_transport_send_notify_data *)data);
1962 }
1963
1964 static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
1965 {
1966 if (PROTOCOL_OVERRIDE != -1) {
1967 if (PROTOCOL_OVERRIDE == 0)
1968 *old_pkt_proto = true;
1969 else
1970 *old_pkt_proto = false;
1971
1972 pr_info("Proto override in use\n");
1973 return true;
1974 }
1975
1976 return false;
1977 }
1978
1979 static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
1980 u16 *proto,
1981 bool old_pkt_proto)
1982 {
1983 struct vsock_sock *vsk = vsock_sk(sk);
1984
1985 if (old_pkt_proto) {
1986 if (*proto != VSOCK_PROTO_INVALID) {
1987 pr_err("Can't set both an old and new protocol\n");
1988 return false;
1989 }
1990 vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
1991 goto exit;
1992 }
1993
1994 switch (*proto) {
1995 case VSOCK_PROTO_PKT_ON_NOTIFY:
1996 vmci_trans(vsk)->notify_ops =
1997 &vmci_transport_notify_pkt_q_state_ops;
1998 break;
1999 default:
2000 pr_err("Unknown notify protocol version\n");
2001 return false;
2002 }
2003
2004 exit:
2005 vmci_trans(vsk)->notify_ops->socket_init(sk);
2006 return true;
2007 }
2008
2009 static u16 vmci_transport_new_proto_supported_versions(void)
2010 {
2011 if (PROTOCOL_OVERRIDE != -1)
2012 return PROTOCOL_OVERRIDE;
2013
2014 return VSOCK_PROTO_ALL_SUPPORTED;
2015 }
2016
2017 static u32 vmci_transport_get_local_cid(void)
2018 {
2019 return vmci_get_context_id();
2020 }
2021
2022 static struct vsock_transport vmci_transport = {
2023 .module = THIS_MODULE,
2024 .init = vmci_transport_socket_init,
2025 .destruct = vmci_transport_destruct,
2026 .release = vmci_transport_release,
2027 .connect = vmci_transport_connect,
2028 .dgram_bind = vmci_transport_dgram_bind,
2029 .dgram_dequeue = vmci_transport_dgram_dequeue,
2030 .dgram_enqueue = vmci_transport_dgram_enqueue,
2031 .dgram_allow = vmci_transport_dgram_allow,
2032 .stream_dequeue = vmci_transport_stream_dequeue,
2033 .stream_enqueue = vmci_transport_stream_enqueue,
2034 .stream_has_data = vmci_transport_stream_has_data,
2035 .stream_has_space = vmci_transport_stream_has_space,
2036 .stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
2037 .stream_is_active = vmci_transport_stream_is_active,
2038 .stream_allow = vmci_transport_stream_allow,
2039 .notify_poll_in = vmci_transport_notify_poll_in,
2040 .notify_poll_out = vmci_transport_notify_poll_out,
2041 .notify_recv_init = vmci_transport_notify_recv_init,
2042 .notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
2043 .notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
2044 .notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
2045 .notify_send_init = vmci_transport_notify_send_init,
2046 .notify_send_pre_block = vmci_transport_notify_send_pre_block,
2047 .notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
2048 .notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
2049 .shutdown = vmci_transport_shutdown,
2050 .get_local_cid = vmci_transport_get_local_cid,
2051 };
2052
2053 static bool vmci_check_transport(struct vsock_sock *vsk)
2054 {
2055 return vsk->transport == &vmci_transport;
2056 }
2057
2058 static void vmci_vsock_transport_cb(bool is_host)
2059 {
2060 int features;
2061
2062 if (is_host)
2063 features = VSOCK_TRANSPORT_F_H2G;
2064 else
2065 features = VSOCK_TRANSPORT_F_G2H;
2066
2067 vsock_core_register(&vmci_transport, features);
2068 }
2069
2070 static int __init vmci_transport_init(void)
2071 {
2072 int err;
2073
2074 /* Create the datagram handle that we will use to send and receive all
2075 * VSocket control messages for this context.
2076 */
2077 err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
2078 VMCI_FLAG_ANYCID_DG_HND,
2079 vmci_transport_recv_stream_cb,
2080 NULL,
2081 &vmci_transport_stream_handle);
2082 if (err < VMCI_SUCCESS) {
2083 pr_err("Unable to create datagram handle. (%d)\n", err);
2084 return vmci_transport_error_to_vsock_error(err);
2085 }
2086 err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
2087 vmci_transport_qp_resumed_cb,
2088 NULL, &vmci_transport_qp_resumed_sub_id);
2089 if (err < VMCI_SUCCESS) {
2090 pr_err("Unable to subscribe to resumed event. (%d)\n", err);
2091 err = vmci_transport_error_to_vsock_error(err);
2092 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2093 goto err_destroy_stream_handle;
2094 }
2095
2096 /* Register only with dgram feature, other features (H2G, G2H) will be
2097 * registered when the first host or guest becomes active.
2098 */
2099 err = vsock_core_register(&vmci_transport, VSOCK_TRANSPORT_F_DGRAM);
2100 if (err < 0)
2101 goto err_unsubscribe;
2102
2103 err = vmci_register_vsock_callback(vmci_vsock_transport_cb);
2104 if (err < 0)
2105 goto err_unregister;
2106
2107 return 0;
2108
2109 err_unregister:
2110 vsock_core_unregister(&vmci_transport);
2111 err_unsubscribe:
2112 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2113 err_destroy_stream_handle:
2114 vmci_datagram_destroy_handle(vmci_transport_stream_handle);
2115 return err;
2116 }
2117 module_init(vmci_transport_init);
2118
2119 static void __exit vmci_transport_exit(void)
2120 {
2121 cancel_work_sync(&vmci_transport_cleanup_work);
2122 vmci_transport_free_resources(&vmci_transport_cleanup_list);
2123
2124 if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
2125 if (vmci_datagram_destroy_handle(
2126 vmci_transport_stream_handle) != VMCI_SUCCESS)
2127 pr_err("Couldn't destroy datagram handle\n");
2128 vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
2129 }
2130
2131 if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
2132 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2133 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2134 }
2135
2136 vmci_register_vsock_callback(NULL);
2137 vsock_core_unregister(&vmci_transport);
2138 }
2139 module_exit(vmci_transport_exit);
2140
2141 MODULE_AUTHOR("VMware, Inc.");
2142 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
2143 MODULE_VERSION("1.0.5.0-k");
2144 MODULE_LICENSE("GPL v2");
2145 MODULE_ALIAS("vmware_vsock");
2146 MODULE_ALIAS_NETPROTO(PF_VSOCK);