]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/vmw_vsock/vmci_transport.c
VSOCK: Introduce VM Sockets
[mirror_ubuntu-bionic-kernel.git] / net / vmw_vsock / vmci_transport.c
1 /*
2 * VMware vSockets Driver
3 *
4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation version 2 and no later version.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 */
15
16 #include <linux/types.h>
17
18 #define EXPORT_SYMTAB
19 #include <linux/bitops.h>
20 #include <linux/cred.h>
21 #include <linux/init.h>
22 #include <linux/io.h>
23 #include <linux/kernel.h>
24 #include <linux/kmod.h>
25 #include <linux/list.h>
26 #include <linux/miscdevice.h>
27 #include <linux/module.h>
28 #include <linux/mutex.h>
29 #include <linux/net.h>
30 #include <linux/poll.h>
31 #include <linux/skbuff.h>
32 #include <linux/smp.h>
33 #include <linux/socket.h>
34 #include <linux/stddef.h>
35 #include <linux/unistd.h>
36 #include <linux/wait.h>
37 #include <linux/workqueue.h>
38 #include <net/sock.h>
39
40 #include "af_vsock.h"
41 #include "vmci_transport_notify.h"
42
43 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
44 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
45 static void vmci_transport_peer_attach_cb(u32 sub_id,
46 const struct vmci_event_data *ed,
47 void *client_data);
48 static void vmci_transport_peer_detach_cb(u32 sub_id,
49 const struct vmci_event_data *ed,
50 void *client_data);
51 static void vmci_transport_recv_pkt_work(struct work_struct *work);
52 static int vmci_transport_recv_listen(struct sock *sk,
53 struct vmci_transport_packet *pkt);
54 static int vmci_transport_recv_connecting_server(
55 struct sock *sk,
56 struct sock *pending,
57 struct vmci_transport_packet *pkt);
58 static int vmci_transport_recv_connecting_client(
59 struct sock *sk,
60 struct vmci_transport_packet *pkt);
61 static int vmci_transport_recv_connecting_client_negotiate(
62 struct sock *sk,
63 struct vmci_transport_packet *pkt);
64 static int vmci_transport_recv_connecting_client_invalid(
65 struct sock *sk,
66 struct vmci_transport_packet *pkt);
67 static int vmci_transport_recv_connected(struct sock *sk,
68 struct vmci_transport_packet *pkt);
69 static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
70 static u16 vmci_transport_new_proto_supported_versions(void);
71 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
72 bool old_pkt_proto);
73
74 struct vmci_transport_recv_pkt_info {
75 struct work_struct work;
76 struct sock *sk;
77 struct vmci_transport_packet pkt;
78 };
79
80 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
81 VMCI_INVALID_ID };
82 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
83
84 static int PROTOCOL_OVERRIDE = -1;
85
86 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN 128
87 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE 262144
88 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX 262144
89
90 /* The default peer timeout indicates how long we will wait for a peer response
91 * to a control message.
92 */
93 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
94
95 #define SS_LISTEN 255
96
97 /* Helper function to convert from a VMCI error code to a VSock error code. */
98
99 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
100 {
101 int err;
102
103 switch (vmci_error) {
104 case VMCI_ERROR_NO_MEM:
105 err = ENOMEM;
106 break;
107 case VMCI_ERROR_DUPLICATE_ENTRY:
108 case VMCI_ERROR_ALREADY_EXISTS:
109 err = EADDRINUSE;
110 break;
111 case VMCI_ERROR_NO_ACCESS:
112 err = EPERM;
113 break;
114 case VMCI_ERROR_NO_RESOURCES:
115 err = ENOBUFS;
116 break;
117 case VMCI_ERROR_INVALID_RESOURCE:
118 err = EHOSTUNREACH;
119 break;
120 case VMCI_ERROR_INVALID_ARGS:
121 default:
122 err = EINVAL;
123 }
124
125 return err > 0 ? -err : err;
126 }
127
128 static inline void
129 vmci_transport_packet_init(struct vmci_transport_packet *pkt,
130 struct sockaddr_vm *src,
131 struct sockaddr_vm *dst,
132 u8 type,
133 u64 size,
134 u64 mode,
135 struct vmci_transport_waiting_info *wait,
136 u16 proto,
137 struct vmci_handle handle)
138 {
139 /* We register the stream control handler as an any cid handle so we
140 * must always send from a source address of VMADDR_CID_ANY
141 */
142 pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
143 VMCI_TRANSPORT_PACKET_RID);
144 pkt->dg.dst = vmci_make_handle(dst->svm_cid,
145 VMCI_TRANSPORT_PACKET_RID);
146 pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
147 pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
148 pkt->type = type;
149 pkt->src_port = src->svm_port;
150 pkt->dst_port = dst->svm_port;
151 memset(&pkt->proto, 0, sizeof(pkt->proto));
152 memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
153
154 switch (pkt->type) {
155 case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
156 pkt->u.size = 0;
157 break;
158
159 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
160 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
161 pkt->u.size = size;
162 break;
163
164 case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
165 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
166 pkt->u.handle = handle;
167 break;
168
169 case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
170 case VMCI_TRANSPORT_PACKET_TYPE_READ:
171 case VMCI_TRANSPORT_PACKET_TYPE_RST:
172 pkt->u.size = 0;
173 break;
174
175 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
176 pkt->u.mode = mode;
177 break;
178
179 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
180 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
181 memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
182 break;
183
184 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
185 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
186 pkt->u.size = size;
187 pkt->proto = proto;
188 break;
189 }
190 }
191
192 static inline void
193 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
194 struct sockaddr_vm *local,
195 struct sockaddr_vm *remote)
196 {
197 vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
198 vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
199 }
200
201 static int
202 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
203 struct sockaddr_vm *src,
204 struct sockaddr_vm *dst,
205 enum vmci_transport_packet_type type,
206 u64 size,
207 u64 mode,
208 struct vmci_transport_waiting_info *wait,
209 u16 proto,
210 struct vmci_handle handle,
211 bool convert_error)
212 {
213 int err;
214
215 vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
216 proto, handle);
217 err = vmci_datagram_send(&pkt->dg);
218 if (convert_error && (err < 0))
219 return vmci_transport_error_to_vsock_error(err);
220
221 return err;
222 }
223
224 static int
225 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
226 enum vmci_transport_packet_type type,
227 u64 size,
228 u64 mode,
229 struct vmci_transport_waiting_info *wait,
230 struct vmci_handle handle)
231 {
232 struct vmci_transport_packet reply;
233 struct sockaddr_vm src, dst;
234
235 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
236 return 0;
237 } else {
238 vmci_transport_packet_get_addresses(pkt, &src, &dst);
239 return __vmci_transport_send_control_pkt(&reply, &src, &dst,
240 type,
241 size, mode, wait,
242 VSOCK_PROTO_INVALID,
243 handle, true);
244 }
245 }
246
247 static int
248 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
249 struct sockaddr_vm *dst,
250 enum vmci_transport_packet_type type,
251 u64 size,
252 u64 mode,
253 struct vmci_transport_waiting_info *wait,
254 struct vmci_handle handle)
255 {
256 /* Note that it is safe to use a single packet across all CPUs since
257 * two tasklets of the same type are guaranteed to not ever run
258 * simultaneously. If that ever changes, or VMCI stops using tasklets,
259 * we can use per-cpu packets.
260 */
261 static struct vmci_transport_packet pkt;
262
263 return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
264 size, mode, wait,
265 VSOCK_PROTO_INVALID, handle,
266 false);
267 }
268
269 static int
270 vmci_transport_send_control_pkt(struct sock *sk,
271 enum vmci_transport_packet_type type,
272 u64 size,
273 u64 mode,
274 struct vmci_transport_waiting_info *wait,
275 u16 proto,
276 struct vmci_handle handle)
277 {
278 struct vmci_transport_packet *pkt;
279 struct vsock_sock *vsk;
280 int err;
281
282 vsk = vsock_sk(sk);
283
284 if (!vsock_addr_bound(&vsk->local_addr))
285 return -EINVAL;
286
287 if (!vsock_addr_bound(&vsk->remote_addr))
288 return -EINVAL;
289
290 pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
291 if (!pkt)
292 return -ENOMEM;
293
294 err = __vmci_transport_send_control_pkt(pkt, &vsk->local_addr,
295 &vsk->remote_addr, type, size,
296 mode, wait, proto, handle,
297 true);
298 kfree(pkt);
299
300 return err;
301 }
302
303 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
304 struct sockaddr_vm *src,
305 struct vmci_transport_packet *pkt)
306 {
307 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
308 return 0;
309 return vmci_transport_send_control_pkt_bh(
310 dst, src,
311 VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
312 0, NULL, VMCI_INVALID_HANDLE);
313 }
314
315 static int vmci_transport_send_reset(struct sock *sk,
316 struct vmci_transport_packet *pkt)
317 {
318 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
319 return 0;
320 return vmci_transport_send_control_pkt(sk,
321 VMCI_TRANSPORT_PACKET_TYPE_RST,
322 0, 0, NULL, VSOCK_PROTO_INVALID,
323 VMCI_INVALID_HANDLE);
324 }
325
326 static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
327 {
328 return vmci_transport_send_control_pkt(
329 sk,
330 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
331 size, 0, NULL,
332 VSOCK_PROTO_INVALID,
333 VMCI_INVALID_HANDLE);
334 }
335
336 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
337 u16 version)
338 {
339 return vmci_transport_send_control_pkt(
340 sk,
341 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
342 size, 0, NULL, version,
343 VMCI_INVALID_HANDLE);
344 }
345
346 static int vmci_transport_send_qp_offer(struct sock *sk,
347 struct vmci_handle handle)
348 {
349 return vmci_transport_send_control_pkt(
350 sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
351 0, NULL,
352 VSOCK_PROTO_INVALID, handle);
353 }
354
355 static int vmci_transport_send_attach(struct sock *sk,
356 struct vmci_handle handle)
357 {
358 return vmci_transport_send_control_pkt(
359 sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
360 0, 0, NULL, VSOCK_PROTO_INVALID,
361 handle);
362 }
363
364 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
365 {
366 return vmci_transport_reply_control_pkt_fast(
367 pkt,
368 VMCI_TRANSPORT_PACKET_TYPE_RST,
369 0, 0, NULL,
370 VMCI_INVALID_HANDLE);
371 }
372
373 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
374 struct sockaddr_vm *src)
375 {
376 return vmci_transport_send_control_pkt_bh(
377 dst, src,
378 VMCI_TRANSPORT_PACKET_TYPE_INVALID,
379 0, 0, NULL, VMCI_INVALID_HANDLE);
380 }
381
382 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
383 struct sockaddr_vm *src)
384 {
385 return vmci_transport_send_control_pkt_bh(
386 dst, src,
387 VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
388 0, NULL, VMCI_INVALID_HANDLE);
389 }
390
391 int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
392 struct sockaddr_vm *src)
393 {
394 return vmci_transport_send_control_pkt_bh(
395 dst, src,
396 VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
397 0, NULL, VMCI_INVALID_HANDLE);
398 }
399
400 int vmci_transport_send_wrote(struct sock *sk)
401 {
402 return vmci_transport_send_control_pkt(
403 sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
404 0, NULL, VSOCK_PROTO_INVALID,
405 VMCI_INVALID_HANDLE);
406 }
407
408 int vmci_transport_send_read(struct sock *sk)
409 {
410 return vmci_transport_send_control_pkt(
411 sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
412 0, NULL, VSOCK_PROTO_INVALID,
413 VMCI_INVALID_HANDLE);
414 }
415
416 int vmci_transport_send_waiting_write(struct sock *sk,
417 struct vmci_transport_waiting_info *wait)
418 {
419 return vmci_transport_send_control_pkt(
420 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
421 0, 0, wait, VSOCK_PROTO_INVALID,
422 VMCI_INVALID_HANDLE);
423 }
424
425 int vmci_transport_send_waiting_read(struct sock *sk,
426 struct vmci_transport_waiting_info *wait)
427 {
428 return vmci_transport_send_control_pkt(
429 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
430 0, 0, wait, VSOCK_PROTO_INVALID,
431 VMCI_INVALID_HANDLE);
432 }
433
434 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
435 {
436 return vmci_transport_send_control_pkt(
437 &vsk->sk,
438 VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
439 0, mode, NULL,
440 VSOCK_PROTO_INVALID,
441 VMCI_INVALID_HANDLE);
442 }
443
444 static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
445 {
446 return vmci_transport_send_control_pkt(sk,
447 VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
448 size, 0, NULL,
449 VSOCK_PROTO_INVALID,
450 VMCI_INVALID_HANDLE);
451 }
452
453 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
454 u16 version)
455 {
456 return vmci_transport_send_control_pkt(
457 sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
458 size, 0, NULL, version,
459 VMCI_INVALID_HANDLE);
460 }
461
462 static struct sock *vmci_transport_get_pending(
463 struct sock *listener,
464 struct vmci_transport_packet *pkt)
465 {
466 struct vsock_sock *vlistener;
467 struct vsock_sock *vpending;
468 struct sock *pending;
469
470 vlistener = vsock_sk(listener);
471
472 list_for_each_entry(vpending, &vlistener->pending_links,
473 pending_links) {
474 struct sockaddr_vm src;
475 struct sockaddr_vm dst;
476
477 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
478 vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
479
480 if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
481 vsock_addr_equals_addr(&dst, &vpending->local_addr)) {
482 pending = sk_vsock(vpending);
483 sock_hold(pending);
484 goto found;
485 }
486 }
487
488 pending = NULL;
489 found:
490 return pending;
491
492 }
493
494 static void vmci_transport_release_pending(struct sock *pending)
495 {
496 sock_put(pending);
497 }
498
499 /* We allow two kinds of sockets to communicate with a restricted VM: 1)
500 * trusted sockets 2) sockets from applications running as the same user as the
501 * VM (this is only true for the host side and only when using hosted products)
502 */
503
504 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
505 {
506 return vsock->trusted ||
507 vmci_is_context_owner(peer_cid, vsock->owner->uid);
508 }
509
510 /* We allow sending datagrams to and receiving datagrams from a restricted VM
511 * only if it is trusted as described in vmci_transport_is_trusted.
512 */
513
514 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
515 {
516 if (vsock->cached_peer != peer_cid) {
517 vsock->cached_peer = peer_cid;
518 if (!vmci_transport_is_trusted(vsock, peer_cid) &&
519 (vmci_context_get_priv_flags(peer_cid) &
520 VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
521 vsock->cached_peer_allow_dgram = false;
522 } else {
523 vsock->cached_peer_allow_dgram = true;
524 }
525 }
526
527 return vsock->cached_peer_allow_dgram;
528 }
529
530 static int
531 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
532 struct vmci_handle *handle,
533 u64 produce_size,
534 u64 consume_size,
535 u32 peer, u32 flags, bool trusted)
536 {
537 int err = 0;
538
539 if (trusted) {
540 /* Try to allocate our queue pair as trusted. This will only
541 * work if vsock is running in the host.
542 */
543
544 err = vmci_qpair_alloc(qpair, handle, produce_size,
545 consume_size,
546 peer, flags,
547 VMCI_PRIVILEGE_FLAG_TRUSTED);
548 if (err != VMCI_ERROR_NO_ACCESS)
549 goto out;
550
551 }
552
553 err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
554 peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
555 out:
556 if (err < 0) {
557 pr_err("Could not attach to queue pair with %d\n",
558 err);
559 err = vmci_transport_error_to_vsock_error(err);
560 }
561
562 return err;
563 }
564
565 static int
566 vmci_transport_datagram_create_hnd(u32 resource_id,
567 u32 flags,
568 vmci_datagram_recv_cb recv_cb,
569 void *client_data,
570 struct vmci_handle *out_handle)
571 {
572 int err = 0;
573
574 /* Try to allocate our datagram handler as trusted. This will only work
575 * if vsock is running in the host.
576 */
577
578 err = vmci_datagram_create_handle_priv(resource_id, flags,
579 VMCI_PRIVILEGE_FLAG_TRUSTED,
580 recv_cb,
581 client_data, out_handle);
582
583 if (err == VMCI_ERROR_NO_ACCESS)
584 err = vmci_datagram_create_handle(resource_id, flags,
585 recv_cb, client_data,
586 out_handle);
587
588 return err;
589 }
590
591 /* This is invoked as part of a tasklet that's scheduled when the VMCI
592 * interrupt fires. This is run in bottom-half context and if it ever needs to
593 * sleep it should defer that work to a work queue.
594 */
595
596 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
597 {
598 struct sock *sk;
599 size_t size;
600 struct sk_buff *skb;
601 struct vsock_sock *vsk;
602
603 sk = (struct sock *)data;
604
605 /* This handler is privileged when this module is running on the host.
606 * We will get datagrams from all endpoints (even VMs that are in a
607 * restricted context). If we get one from a restricted context then
608 * the destination socket must be trusted.
609 *
610 * NOTE: We access the socket struct without holding the lock here.
611 * This is ok because the field we are interested is never modified
612 * outside of the create and destruct socket functions.
613 */
614 vsk = vsock_sk(sk);
615 if (!vmci_transport_allow_dgram(vsk, dg->src.context))
616 return VMCI_ERROR_NO_ACCESS;
617
618 size = VMCI_DG_SIZE(dg);
619
620 /* Attach the packet to the socket's receive queue as an sk_buff. */
621 skb = alloc_skb(size, GFP_ATOMIC);
622 if (skb) {
623 /* sk_receive_skb() will do a sock_put(), so hold here. */
624 sock_hold(sk);
625 skb_put(skb, size);
626 memcpy(skb->data, dg, size);
627 sk_receive_skb(sk, skb, 0);
628 }
629
630 return VMCI_SUCCESS;
631 }
632
633 static bool vmci_transport_stream_allow(u32 cid, u32 port)
634 {
635 static const u32 non_socket_contexts[] = {
636 VMADDR_CID_HYPERVISOR,
637 VMADDR_CID_RESERVED,
638 };
639 int i;
640
641 BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
642
643 for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
644 if (cid == non_socket_contexts[i])
645 return false;
646 }
647
648 return true;
649 }
650
651 /* This is invoked as part of a tasklet that's scheduled when the VMCI
652 * interrupt fires. This is run in bottom-half context but it defers most of
653 * its work to the packet handling work queue.
654 */
655
656 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
657 {
658 struct sock *sk;
659 struct sockaddr_vm dst;
660 struct sockaddr_vm src;
661 struct vmci_transport_packet *pkt;
662 struct vsock_sock *vsk;
663 bool bh_process_pkt;
664 int err;
665
666 sk = NULL;
667 err = VMCI_SUCCESS;
668 bh_process_pkt = false;
669
670 /* Ignore incoming packets from contexts without sockets, or resources
671 * that aren't vsock implementations.
672 */
673
674 if (!vmci_transport_stream_allow(dg->src.context, -1)
675 || VMCI_TRANSPORT_PACKET_RID != dg->src.resource)
676 return VMCI_ERROR_NO_ACCESS;
677
678 if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
679 /* Drop datagrams that do not contain full VSock packets. */
680 return VMCI_ERROR_INVALID_ARGS;
681
682 pkt = (struct vmci_transport_packet *)dg;
683
684 /* Find the socket that should handle this packet. First we look for a
685 * connected socket and if there is none we look for a socket bound to
686 * the destintation address.
687 */
688 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
689 vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
690
691 sk = vsock_find_connected_socket(&src, &dst);
692 if (!sk) {
693 sk = vsock_find_bound_socket(&dst);
694 if (!sk) {
695 /* We could not find a socket for this specified
696 * address. If this packet is a RST, we just drop it.
697 * If it is another packet, we send a RST. Note that
698 * we do not send a RST reply to RSTs so that we do not
699 * continually send RSTs between two endpoints.
700 *
701 * Note that since this is a reply, dst is src and src
702 * is dst.
703 */
704 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
705 pr_err("unable to send reset\n");
706
707 err = VMCI_ERROR_NOT_FOUND;
708 goto out;
709 }
710 }
711
712 /* If the received packet type is beyond all types known to this
713 * implementation, reply with an invalid message. Hopefully this will
714 * help when implementing backwards compatibility in the future.
715 */
716 if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
717 vmci_transport_send_invalid_bh(&dst, &src);
718 err = VMCI_ERROR_INVALID_ARGS;
719 goto out;
720 }
721
722 /* This handler is privileged when this module is running on the host.
723 * We will get datagram connect requests from all endpoints (even VMs
724 * that are in a restricted context). If we get one from a restricted
725 * context then the destination socket must be trusted.
726 *
727 * NOTE: We access the socket struct without holding the lock here.
728 * This is ok because the field we are interested is never modified
729 * outside of the create and destruct socket functions.
730 */
731 vsk = vsock_sk(sk);
732 if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
733 err = VMCI_ERROR_NO_ACCESS;
734 goto out;
735 }
736
737 /* We do most everything in a work queue, but let's fast path the
738 * notification of reads and writes to help data transfer performance.
739 * We can only do this if there is no process context code executing
740 * for this socket since that may change the state.
741 */
742 bh_lock_sock(sk);
743
744 if (!sock_owned_by_user(sk) && sk->sk_state == SS_CONNECTED)
745 vmci_trans(vsk)->notify_ops->handle_notify_pkt(
746 sk, pkt, true, &dst, &src,
747 &bh_process_pkt);
748
749 bh_unlock_sock(sk);
750
751 if (!bh_process_pkt) {
752 struct vmci_transport_recv_pkt_info *recv_pkt_info;
753
754 recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
755 if (!recv_pkt_info) {
756 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
757 pr_err("unable to send reset\n");
758
759 err = VMCI_ERROR_NO_MEM;
760 goto out;
761 }
762
763 recv_pkt_info->sk = sk;
764 memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
765 INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
766
767 schedule_work(&recv_pkt_info->work);
768 /* Clear sk so that the reference count incremented by one of
769 * the Find functions above is not decremented below. We need
770 * that reference count for the packet handler we've scheduled
771 * to run.
772 */
773 sk = NULL;
774 }
775
776 out:
777 if (sk)
778 sock_put(sk);
779
780 return err;
781 }
782
783 static void vmci_transport_peer_attach_cb(u32 sub_id,
784 const struct vmci_event_data *e_data,
785 void *client_data)
786 {
787 struct sock *sk = client_data;
788 const struct vmci_event_payload_qp *e_payload;
789 struct vsock_sock *vsk;
790
791 e_payload = vmci_event_data_const_payload(e_data);
792
793 vsk = vsock_sk(sk);
794
795 /* We don't ask for delayed CBs when we subscribe to this event (we
796 * pass 0 as flags to vmci_event_subscribe()). VMCI makes no
797 * guarantees in that case about what context we might be running in,
798 * so it could be BH or process, blockable or non-blockable. So we
799 * need to account for all possible contexts here.
800 */
801 local_bh_disable();
802 bh_lock_sock(sk);
803
804 /* XXX This is lame, we should provide a way to lookup sockets by
805 * qp_handle.
806 */
807 if (vmci_handle_is_equal(vmci_trans(vsk)->qp_handle,
808 e_payload->handle)) {
809 /* XXX This doesn't do anything, but in the future we may want
810 * to set a flag here to verify the attach really did occur and
811 * we weren't just sent a datagram claiming it was.
812 */
813 goto out;
814 }
815
816 out:
817 bh_unlock_sock(sk);
818 local_bh_enable();
819 }
820
821 static void vmci_transport_handle_detach(struct sock *sk)
822 {
823 struct vsock_sock *vsk;
824
825 vsk = vsock_sk(sk);
826 if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
827 sock_set_flag(sk, SOCK_DONE);
828
829 /* On a detach the peer will not be sending or receiving
830 * anymore.
831 */
832 vsk->peer_shutdown = SHUTDOWN_MASK;
833
834 /* We should not be sending anymore since the peer won't be
835 * there to receive, but we can still receive if there is data
836 * left in our consume queue.
837 */
838 if (vsock_stream_has_data(vsk) <= 0) {
839 if (sk->sk_state == SS_CONNECTING) {
840 /* The peer may detach from a queue pair while
841 * we are still in the connecting state, i.e.,
842 * if the peer VM is killed after attaching to
843 * a queue pair, but before we complete the
844 * handshake. In that case, we treat the detach
845 * event like a reset.
846 */
847
848 sk->sk_state = SS_UNCONNECTED;
849 sk->sk_err = ECONNRESET;
850 sk->sk_error_report(sk);
851 return;
852 }
853 sk->sk_state = SS_UNCONNECTED;
854 }
855 sk->sk_state_change(sk);
856 }
857 }
858
859 static void vmci_transport_peer_detach_cb(u32 sub_id,
860 const struct vmci_event_data *e_data,
861 void *client_data)
862 {
863 struct sock *sk = client_data;
864 const struct vmci_event_payload_qp *e_payload;
865 struct vsock_sock *vsk;
866
867 e_payload = vmci_event_data_const_payload(e_data);
868 vsk = vsock_sk(sk);
869 if (vmci_handle_is_invalid(e_payload->handle))
870 return;
871
872 /* Same rules for locking as for peer_attach_cb(). */
873 local_bh_disable();
874 bh_lock_sock(sk);
875
876 /* XXX This is lame, we should provide a way to lookup sockets by
877 * qp_handle.
878 */
879 if (vmci_handle_is_equal(vmci_trans(vsk)->qp_handle,
880 e_payload->handle))
881 vmci_transport_handle_detach(sk);
882
883 bh_unlock_sock(sk);
884 local_bh_enable();
885 }
886
887 static void vmci_transport_qp_resumed_cb(u32 sub_id,
888 const struct vmci_event_data *e_data,
889 void *client_data)
890 {
891 vsock_for_each_connected_socket(vmci_transport_handle_detach);
892 }
893
894 static void vmci_transport_recv_pkt_work(struct work_struct *work)
895 {
896 struct vmci_transport_recv_pkt_info *recv_pkt_info;
897 struct vmci_transport_packet *pkt;
898 struct sock *sk;
899
900 recv_pkt_info =
901 container_of(work, struct vmci_transport_recv_pkt_info, work);
902 sk = recv_pkt_info->sk;
903 pkt = &recv_pkt_info->pkt;
904
905 lock_sock(sk);
906
907 switch (sk->sk_state) {
908 case SS_LISTEN:
909 vmci_transport_recv_listen(sk, pkt);
910 break;
911 case SS_CONNECTING:
912 /* Processing of pending connections for servers goes through
913 * the listening socket, so see vmci_transport_recv_listen()
914 * for that path.
915 */
916 vmci_transport_recv_connecting_client(sk, pkt);
917 break;
918 case SS_CONNECTED:
919 vmci_transport_recv_connected(sk, pkt);
920 break;
921 default:
922 /* Because this function does not run in the same context as
923 * vmci_transport_recv_stream_cb it is possible that the
924 * socket has closed. We need to let the other side know or it
925 * could be sitting in a connect and hang forever. Send a
926 * reset to prevent that.
927 */
928 vmci_transport_send_reset(sk, pkt);
929 goto out;
930 }
931
932 out:
933 release_sock(sk);
934 kfree(recv_pkt_info);
935 /* Release reference obtained in the stream callback when we fetched
936 * this socket out of the bound or connected list.
937 */
938 sock_put(sk);
939 }
940
941 static int vmci_transport_recv_listen(struct sock *sk,
942 struct vmci_transport_packet *pkt)
943 {
944 struct sock *pending;
945 struct vsock_sock *vpending;
946 int err;
947 u64 qp_size;
948 bool old_request = false;
949 bool old_pkt_proto = false;
950
951 err = 0;
952
953 /* Because we are in the listen state, we could be receiving a packet
954 * for ourself or any previous connection requests that we received.
955 * If it's the latter, we try to find a socket in our list of pending
956 * connections and, if we do, call the appropriate handler for the
957 * state that that socket is in. Otherwise we try to service the
958 * connection request.
959 */
960 pending = vmci_transport_get_pending(sk, pkt);
961 if (pending) {
962 lock_sock(pending);
963 switch (pending->sk_state) {
964 case SS_CONNECTING:
965 err = vmci_transport_recv_connecting_server(sk,
966 pending,
967 pkt);
968 break;
969 default:
970 vmci_transport_send_reset(pending, pkt);
971 err = -EINVAL;
972 }
973
974 if (err < 0)
975 vsock_remove_pending(sk, pending);
976
977 release_sock(pending);
978 vmci_transport_release_pending(pending);
979
980 return err;
981 }
982
983 /* The listen state only accepts connection requests. Reply with a
984 * reset unless we received a reset.
985 */
986
987 if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
988 pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
989 vmci_transport_reply_reset(pkt);
990 return -EINVAL;
991 }
992
993 if (pkt->u.size == 0) {
994 vmci_transport_reply_reset(pkt);
995 return -EINVAL;
996 }
997
998 /* If this socket can't accommodate this connection request, we send a
999 * reset. Otherwise we create and initialize a child socket and reply
1000 * with a connection negotiation.
1001 */
1002 if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
1003 vmci_transport_reply_reset(pkt);
1004 return -ECONNREFUSED;
1005 }
1006
1007 pending = __vsock_create(sock_net(sk), NULL, sk, GFP_KERNEL,
1008 sk->sk_type);
1009 if (!pending) {
1010 vmci_transport_send_reset(sk, pkt);
1011 return -ENOMEM;
1012 }
1013
1014 vpending = vsock_sk(pending);
1015
1016 vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
1017 pkt->dst_port);
1018 vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
1019 pkt->src_port);
1020
1021 /* If the proposed size fits within our min/max, accept it. Otherwise
1022 * propose our own size.
1023 */
1024 if (pkt->u.size >= vmci_trans(vpending)->queue_pair_min_size &&
1025 pkt->u.size <= vmci_trans(vpending)->queue_pair_max_size) {
1026 qp_size = pkt->u.size;
1027 } else {
1028 qp_size = vmci_trans(vpending)->queue_pair_size;
1029 }
1030
1031 /* Figure out if we are using old or new requests based on the
1032 * overrides pkt types sent by our peer.
1033 */
1034 if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1035 old_request = old_pkt_proto;
1036 } else {
1037 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
1038 old_request = true;
1039 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
1040 old_request = false;
1041
1042 }
1043
1044 if (old_request) {
1045 /* Handle a REQUEST (or override) */
1046 u16 version = VSOCK_PROTO_INVALID;
1047 if (vmci_transport_proto_to_notify_struct(
1048 pending, &version, true))
1049 err = vmci_transport_send_negotiate(pending, qp_size);
1050 else
1051 err = -EINVAL;
1052
1053 } else {
1054 /* Handle a REQUEST2 (or override) */
1055 int proto_int = pkt->proto;
1056 int pos;
1057 u16 active_proto_version = 0;
1058
1059 /* The list of possible protocols is the intersection of all
1060 * protocols the client supports ... plus all the protocols we
1061 * support.
1062 */
1063 proto_int &= vmci_transport_new_proto_supported_versions();
1064
1065 /* We choose the highest possible protocol version and use that
1066 * one.
1067 */
1068 pos = fls(proto_int);
1069 if (pos) {
1070 active_proto_version = (1 << (pos - 1));
1071 if (vmci_transport_proto_to_notify_struct(
1072 pending, &active_proto_version, false))
1073 err = vmci_transport_send_negotiate2(pending,
1074 qp_size,
1075 active_proto_version);
1076 else
1077 err = -EINVAL;
1078
1079 } else {
1080 err = -EINVAL;
1081 }
1082 }
1083
1084 if (err < 0) {
1085 vmci_transport_send_reset(sk, pkt);
1086 sock_put(pending);
1087 err = vmci_transport_error_to_vsock_error(err);
1088 goto out;
1089 }
1090
1091 vsock_add_pending(sk, pending);
1092 sk->sk_ack_backlog++;
1093
1094 pending->sk_state = SS_CONNECTING;
1095 vmci_trans(vpending)->produce_size =
1096 vmci_trans(vpending)->consume_size = qp_size;
1097 vmci_trans(vpending)->queue_pair_size = qp_size;
1098
1099 vmci_trans(vpending)->notify_ops->process_request(pending);
1100
1101 /* We might never receive another message for this socket and it's not
1102 * connected to any process, so we have to ensure it gets cleaned up
1103 * ourself. Our delayed work function will take care of that. Note
1104 * that we do not ever cancel this function since we have few
1105 * guarantees about its state when calling cancel_delayed_work().
1106 * Instead we hold a reference on the socket for that function and make
1107 * it capable of handling cases where it needs to do nothing but
1108 * release that reference.
1109 */
1110 vpending->listener = sk;
1111 sock_hold(sk);
1112 sock_hold(pending);
1113 INIT_DELAYED_WORK(&vpending->dwork, vsock_pending_work);
1114 schedule_delayed_work(&vpending->dwork, HZ);
1115
1116 out:
1117 return err;
1118 }
1119
1120 static int
1121 vmci_transport_recv_connecting_server(struct sock *listener,
1122 struct sock *pending,
1123 struct vmci_transport_packet *pkt)
1124 {
1125 struct vsock_sock *vpending;
1126 struct vmci_handle handle;
1127 struct vmci_qp *qpair;
1128 bool is_local;
1129 u32 flags;
1130 u32 detach_sub_id;
1131 int err;
1132 int skerr;
1133
1134 vpending = vsock_sk(pending);
1135 detach_sub_id = VMCI_INVALID_ID;
1136
1137 switch (pkt->type) {
1138 case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
1139 if (vmci_handle_is_invalid(pkt->u.handle)) {
1140 vmci_transport_send_reset(pending, pkt);
1141 skerr = EPROTO;
1142 err = -EINVAL;
1143 goto destroy;
1144 }
1145 break;
1146 default:
1147 /* Close and cleanup the connection. */
1148 vmci_transport_send_reset(pending, pkt);
1149 skerr = EPROTO;
1150 err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
1151 goto destroy;
1152 }
1153
1154 /* In order to complete the connection we need to attach to the offered
1155 * queue pair and send an attach notification. We also subscribe to the
1156 * detach event so we know when our peer goes away, and we do that
1157 * before attaching so we don't miss an event. If all this succeeds,
1158 * we update our state and wakeup anything waiting in accept() for a
1159 * connection.
1160 */
1161
1162 /* We don't care about attach since we ensure the other side has
1163 * attached by specifying the ATTACH_ONLY flag below.
1164 */
1165 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1166 vmci_transport_peer_detach_cb,
1167 pending, &detach_sub_id);
1168 if (err < VMCI_SUCCESS) {
1169 vmci_transport_send_reset(pending, pkt);
1170 err = vmci_transport_error_to_vsock_error(err);
1171 skerr = -err;
1172 goto destroy;
1173 }
1174
1175 vmci_trans(vpending)->detach_sub_id = detach_sub_id;
1176
1177 /* Now attach to the queue pair the client created. */
1178 handle = pkt->u.handle;
1179
1180 /* vpending->local_addr always has a context id so we do not need to
1181 * worry about VMADDR_CID_ANY in this case.
1182 */
1183 is_local =
1184 vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
1185 flags = VMCI_QPFLAG_ATTACH_ONLY;
1186 flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
1187
1188 err = vmci_transport_queue_pair_alloc(
1189 &qpair,
1190 &handle,
1191 vmci_trans(vpending)->produce_size,
1192 vmci_trans(vpending)->consume_size,
1193 pkt->dg.src.context,
1194 flags,
1195 vmci_transport_is_trusted(
1196 vpending,
1197 vpending->remote_addr.svm_cid));
1198 if (err < 0) {
1199 vmci_transport_send_reset(pending, pkt);
1200 skerr = -err;
1201 goto destroy;
1202 }
1203
1204 vmci_trans(vpending)->qp_handle = handle;
1205 vmci_trans(vpending)->qpair = qpair;
1206
1207 /* When we send the attach message, we must be ready to handle incoming
1208 * control messages on the newly connected socket. So we move the
1209 * pending socket to the connected state before sending the attach
1210 * message. Otherwise, an incoming packet triggered by the attach being
1211 * received by the peer may be processed concurrently with what happens
1212 * below after sending the attach message, and that incoming packet
1213 * will find the listening socket instead of the (currently) pending
1214 * socket. Note that enqueueing the socket increments the reference
1215 * count, so even if a reset comes before the connection is accepted,
1216 * the socket will be valid until it is removed from the queue.
1217 *
1218 * If we fail sending the attach below, we remove the socket from the
1219 * connected list and move the socket to SS_UNCONNECTED before
1220 * releasing the lock, so a pending slow path processing of an incoming
1221 * packet will not see the socket in the connected state in that case.
1222 */
1223 pending->sk_state = SS_CONNECTED;
1224
1225 vsock_insert_connected(vpending);
1226
1227 /* Notify our peer of our attach. */
1228 err = vmci_transport_send_attach(pending, handle);
1229 if (err < 0) {
1230 vsock_remove_connected(vpending);
1231 pr_err("Could not send attach\n");
1232 vmci_transport_send_reset(pending, pkt);
1233 err = vmci_transport_error_to_vsock_error(err);
1234 skerr = -err;
1235 goto destroy;
1236 }
1237
1238 /* We have a connection. Move the now connected socket from the
1239 * listener's pending list to the accept queue so callers of accept()
1240 * can find it.
1241 */
1242 vsock_remove_pending(listener, pending);
1243 vsock_enqueue_accept(listener, pending);
1244
1245 /* Callers of accept() will be be waiting on the listening socket, not
1246 * the pending socket.
1247 */
1248 listener->sk_state_change(listener);
1249
1250 return 0;
1251
1252 destroy:
1253 pending->sk_err = skerr;
1254 pending->sk_state = SS_UNCONNECTED;
1255 /* As long as we drop our reference, all necessary cleanup will handle
1256 * when the cleanup function drops its reference and our destruct
1257 * implementation is called. Note that since the listen handler will
1258 * remove pending from the pending list upon our failure, the cleanup
1259 * function won't drop the additional reference, which is why we do it
1260 * here.
1261 */
1262 sock_put(pending);
1263
1264 return err;
1265 }
1266
1267 static int
1268 vmci_transport_recv_connecting_client(struct sock *sk,
1269 struct vmci_transport_packet *pkt)
1270 {
1271 struct vsock_sock *vsk;
1272 int err;
1273 int skerr;
1274
1275 vsk = vsock_sk(sk);
1276
1277 switch (pkt->type) {
1278 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
1279 if (vmci_handle_is_invalid(pkt->u.handle) ||
1280 !vmci_handle_is_equal(pkt->u.handle,
1281 vmci_trans(vsk)->qp_handle)) {
1282 skerr = EPROTO;
1283 err = -EINVAL;
1284 goto destroy;
1285 }
1286
1287 /* Signify the socket is connected and wakeup the waiter in
1288 * connect(). Also place the socket in the connected table for
1289 * accounting (it can already be found since it's in the bound
1290 * table).
1291 */
1292 sk->sk_state = SS_CONNECTED;
1293 sk->sk_socket->state = SS_CONNECTED;
1294 vsock_insert_connected(vsk);
1295 sk->sk_state_change(sk);
1296
1297 break;
1298 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
1299 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
1300 if (pkt->u.size == 0
1301 || pkt->dg.src.context != vsk->remote_addr.svm_cid
1302 || pkt->src_port != vsk->remote_addr.svm_port
1303 || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
1304 || vmci_trans(vsk)->qpair
1305 || vmci_trans(vsk)->produce_size != 0
1306 || vmci_trans(vsk)->consume_size != 0
1307 || vmci_trans(vsk)->attach_sub_id != VMCI_INVALID_ID
1308 || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1309 skerr = EPROTO;
1310 err = -EINVAL;
1311
1312 goto destroy;
1313 }
1314
1315 err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
1316 if (err) {
1317 skerr = -err;
1318 goto destroy;
1319 }
1320
1321 break;
1322 case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
1323 err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
1324 if (err) {
1325 skerr = -err;
1326 goto destroy;
1327 }
1328
1329 break;
1330 case VMCI_TRANSPORT_PACKET_TYPE_RST:
1331 /* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
1332 * continue processing here after they sent an INVALID packet.
1333 * This meant that we got a RST after the INVALID. We ignore a
1334 * RST after an INVALID. The common code doesn't send the RST
1335 * ... so we can hang if an old version of the common code
1336 * fails between getting a REQUEST and sending an OFFER back.
1337 * Not much we can do about it... except hope that it doesn't
1338 * happen.
1339 */
1340 if (vsk->ignore_connecting_rst) {
1341 vsk->ignore_connecting_rst = false;
1342 } else {
1343 skerr = ECONNRESET;
1344 err = 0;
1345 goto destroy;
1346 }
1347
1348 break;
1349 default:
1350 /* Close and cleanup the connection. */
1351 skerr = EPROTO;
1352 err = -EINVAL;
1353 goto destroy;
1354 }
1355
1356 return 0;
1357
1358 destroy:
1359 vmci_transport_send_reset(sk, pkt);
1360
1361 sk->sk_state = SS_UNCONNECTED;
1362 sk->sk_err = skerr;
1363 sk->sk_error_report(sk);
1364 return err;
1365 }
1366
1367 static int vmci_transport_recv_connecting_client_negotiate(
1368 struct sock *sk,
1369 struct vmci_transport_packet *pkt)
1370 {
1371 int err;
1372 struct vsock_sock *vsk;
1373 struct vmci_handle handle;
1374 struct vmci_qp *qpair;
1375 u32 attach_sub_id;
1376 u32 detach_sub_id;
1377 bool is_local;
1378 u32 flags;
1379 bool old_proto = true;
1380 bool old_pkt_proto;
1381 u16 version;
1382
1383 vsk = vsock_sk(sk);
1384 handle = VMCI_INVALID_HANDLE;
1385 attach_sub_id = VMCI_INVALID_ID;
1386 detach_sub_id = VMCI_INVALID_ID;
1387
1388 /* If we have gotten here then we should be past the point where old
1389 * linux vsock could have sent the bogus rst.
1390 */
1391 vsk->sent_request = false;
1392 vsk->ignore_connecting_rst = false;
1393
1394 /* Verify that we're OK with the proposed queue pair size */
1395 if (pkt->u.size < vmci_trans(vsk)->queue_pair_min_size ||
1396 pkt->u.size > vmci_trans(vsk)->queue_pair_max_size) {
1397 err = -EINVAL;
1398 goto destroy;
1399 }
1400
1401 /* At this point we know the CID the peer is using to talk to us. */
1402
1403 if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
1404 vsk->local_addr.svm_cid = pkt->dg.dst.context;
1405
1406 /* Setup the notify ops to be the highest supported version that both
1407 * the server and the client support.
1408 */
1409
1410 if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1411 old_proto = old_pkt_proto;
1412 } else {
1413 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
1414 old_proto = true;
1415 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
1416 old_proto = false;
1417
1418 }
1419
1420 if (old_proto)
1421 version = VSOCK_PROTO_INVALID;
1422 else
1423 version = pkt->proto;
1424
1425 if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
1426 err = -EINVAL;
1427 goto destroy;
1428 }
1429
1430 /* Subscribe to attach and detach events first.
1431 *
1432 * XXX We attach once for each queue pair created for now so it is easy
1433 * to find the socket (it's provided), but later we should only
1434 * subscribe once and add a way to lookup sockets by queue pair handle.
1435 */
1436 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_ATTACH,
1437 vmci_transport_peer_attach_cb,
1438 sk, &attach_sub_id);
1439 if (err < VMCI_SUCCESS) {
1440 err = vmci_transport_error_to_vsock_error(err);
1441 goto destroy;
1442 }
1443
1444 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1445 vmci_transport_peer_detach_cb,
1446 sk, &detach_sub_id);
1447 if (err < VMCI_SUCCESS) {
1448 err = vmci_transport_error_to_vsock_error(err);
1449 goto destroy;
1450 }
1451
1452 /* Make VMCI select the handle for us. */
1453 handle = VMCI_INVALID_HANDLE;
1454 is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
1455 flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
1456
1457 err = vmci_transport_queue_pair_alloc(&qpair,
1458 &handle,
1459 pkt->u.size,
1460 pkt->u.size,
1461 vsk->remote_addr.svm_cid,
1462 flags,
1463 vmci_transport_is_trusted(
1464 vsk,
1465 vsk->
1466 remote_addr.svm_cid));
1467 if (err < 0)
1468 goto destroy;
1469
1470 err = vmci_transport_send_qp_offer(sk, handle);
1471 if (err < 0) {
1472 err = vmci_transport_error_to_vsock_error(err);
1473 goto destroy;
1474 }
1475
1476 vmci_trans(vsk)->qp_handle = handle;
1477 vmci_trans(vsk)->qpair = qpair;
1478
1479 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
1480 pkt->u.size;
1481
1482 vmci_trans(vsk)->attach_sub_id = attach_sub_id;
1483 vmci_trans(vsk)->detach_sub_id = detach_sub_id;
1484
1485 vmci_trans(vsk)->notify_ops->process_negotiate(sk);
1486
1487 return 0;
1488
1489 destroy:
1490 if (attach_sub_id != VMCI_INVALID_ID)
1491 vmci_event_unsubscribe(attach_sub_id);
1492
1493 if (detach_sub_id != VMCI_INVALID_ID)
1494 vmci_event_unsubscribe(detach_sub_id);
1495
1496 if (!vmci_handle_is_invalid(handle))
1497 vmci_qpair_detach(&qpair);
1498
1499 return err;
1500 }
1501
1502 static int
1503 vmci_transport_recv_connecting_client_invalid(struct sock *sk,
1504 struct vmci_transport_packet *pkt)
1505 {
1506 int err = 0;
1507 struct vsock_sock *vsk = vsock_sk(sk);
1508
1509 if (vsk->sent_request) {
1510 vsk->sent_request = false;
1511 vsk->ignore_connecting_rst = true;
1512
1513 err = vmci_transport_send_conn_request(
1514 sk, vmci_trans(vsk)->queue_pair_size);
1515 if (err < 0)
1516 err = vmci_transport_error_to_vsock_error(err);
1517 else
1518 err = 0;
1519
1520 }
1521
1522 return err;
1523 }
1524
1525 static int vmci_transport_recv_connected(struct sock *sk,
1526 struct vmci_transport_packet *pkt)
1527 {
1528 struct vsock_sock *vsk;
1529 bool pkt_processed = false;
1530
1531 /* In cases where we are closing the connection, it's sufficient to
1532 * mark the state change (and maybe error) and wake up any waiting
1533 * threads. Since this is a connected socket, it's owned by a user
1534 * process and will be cleaned up when the failure is passed back on
1535 * the current or next system call. Our system call implementations
1536 * must therefore check for error and state changes on entry and when
1537 * being awoken.
1538 */
1539 switch (pkt->type) {
1540 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
1541 if (pkt->u.mode) {
1542 vsk = vsock_sk(sk);
1543
1544 vsk->peer_shutdown |= pkt->u.mode;
1545 sk->sk_state_change(sk);
1546 }
1547 break;
1548
1549 case VMCI_TRANSPORT_PACKET_TYPE_RST:
1550 vsk = vsock_sk(sk);
1551 /* It is possible that we sent our peer a message (e.g a
1552 * WAITING_READ) right before we got notified that the peer had
1553 * detached. If that happens then we can get a RST pkt back
1554 * from our peer even though there is data available for us to
1555 * read. In that case, don't shutdown the socket completely but
1556 * instead allow the local client to finish reading data off
1557 * the queuepair. Always treat a RST pkt in connected mode like
1558 * a clean shutdown.
1559 */
1560 sock_set_flag(sk, SOCK_DONE);
1561 vsk->peer_shutdown = SHUTDOWN_MASK;
1562 if (vsock_stream_has_data(vsk) <= 0)
1563 sk->sk_state = SS_DISCONNECTING;
1564
1565 sk->sk_state_change(sk);
1566 break;
1567
1568 default:
1569 vsk = vsock_sk(sk);
1570 vmci_trans(vsk)->notify_ops->handle_notify_pkt(
1571 sk, pkt, false, NULL, NULL,
1572 &pkt_processed);
1573 if (!pkt_processed)
1574 return -EINVAL;
1575
1576 break;
1577 }
1578
1579 return 0;
1580 }
1581
1582 static int vmci_transport_socket_init(struct vsock_sock *vsk,
1583 struct vsock_sock *psk)
1584 {
1585 vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
1586 if (!vsk->trans)
1587 return -ENOMEM;
1588
1589 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1590 vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1591 vmci_trans(vsk)->qpair = NULL;
1592 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
1593 vmci_trans(vsk)->attach_sub_id = vmci_trans(vsk)->detach_sub_id =
1594 VMCI_INVALID_ID;
1595 vmci_trans(vsk)->notify_ops = NULL;
1596 if (psk) {
1597 vmci_trans(vsk)->queue_pair_size =
1598 vmci_trans(psk)->queue_pair_size;
1599 vmci_trans(vsk)->queue_pair_min_size =
1600 vmci_trans(psk)->queue_pair_min_size;
1601 vmci_trans(vsk)->queue_pair_max_size =
1602 vmci_trans(psk)->queue_pair_max_size;
1603 } else {
1604 vmci_trans(vsk)->queue_pair_size =
1605 VMCI_TRANSPORT_DEFAULT_QP_SIZE;
1606 vmci_trans(vsk)->queue_pair_min_size =
1607 VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN;
1608 vmci_trans(vsk)->queue_pair_max_size =
1609 VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX;
1610 }
1611
1612 return 0;
1613 }
1614
1615 static void vmci_transport_destruct(struct vsock_sock *vsk)
1616 {
1617 if (vmci_trans(vsk)->attach_sub_id != VMCI_INVALID_ID) {
1618 vmci_event_unsubscribe(vmci_trans(vsk)->attach_sub_id);
1619 vmci_trans(vsk)->attach_sub_id = VMCI_INVALID_ID;
1620 }
1621
1622 if (vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1623 vmci_event_unsubscribe(vmci_trans(vsk)->detach_sub_id);
1624 vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
1625 }
1626
1627 if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
1628 vmci_qpair_detach(&vmci_trans(vsk)->qpair);
1629 vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1630 vmci_trans(vsk)->produce_size = 0;
1631 vmci_trans(vsk)->consume_size = 0;
1632 }
1633
1634 if (vmci_trans(vsk)->notify_ops)
1635 vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
1636
1637 kfree(vsk->trans);
1638 vsk->trans = NULL;
1639 }
1640
1641 static void vmci_transport_release(struct vsock_sock *vsk)
1642 {
1643 if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
1644 vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
1645 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1646 }
1647 }
1648
1649 static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
1650 struct sockaddr_vm *addr)
1651 {
1652 u32 port;
1653 u32 flags;
1654 int err;
1655
1656 /* VMCI will select a resource ID for us if we provide
1657 * VMCI_INVALID_ID.
1658 */
1659 port = addr->svm_port == VMADDR_PORT_ANY ?
1660 VMCI_INVALID_ID : addr->svm_port;
1661
1662 if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
1663 return -EACCES;
1664
1665 flags = addr->svm_cid == VMADDR_CID_ANY ?
1666 VMCI_FLAG_ANYCID_DG_HND : 0;
1667
1668 err = vmci_transport_datagram_create_hnd(port, flags,
1669 vmci_transport_recv_dgram_cb,
1670 &vsk->sk,
1671 &vmci_trans(vsk)->dg_handle);
1672 if (err < VMCI_SUCCESS)
1673 return vmci_transport_error_to_vsock_error(err);
1674 vsock_addr_init(&vsk->local_addr, addr->svm_cid,
1675 vmci_trans(vsk)->dg_handle.resource);
1676
1677 return 0;
1678 }
1679
1680 static int vmci_transport_dgram_enqueue(
1681 struct vsock_sock *vsk,
1682 struct sockaddr_vm *remote_addr,
1683 struct iovec *iov,
1684 size_t len)
1685 {
1686 int err;
1687 struct vmci_datagram *dg;
1688
1689 if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
1690 return -EMSGSIZE;
1691
1692 if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
1693 return -EPERM;
1694
1695 /* Allocate a buffer for the user's message and our packet header. */
1696 dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
1697 if (!dg)
1698 return -ENOMEM;
1699
1700 memcpy_fromiovec(VMCI_DG_PAYLOAD(dg), iov, len);
1701
1702 dg->dst = vmci_make_handle(remote_addr->svm_cid,
1703 remote_addr->svm_port);
1704 dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
1705 vsk->local_addr.svm_port);
1706 dg->payload_size = len;
1707
1708 err = vmci_datagram_send(dg);
1709 kfree(dg);
1710 if (err < 0)
1711 return vmci_transport_error_to_vsock_error(err);
1712
1713 return err - sizeof(*dg);
1714 }
1715
1716 static int vmci_transport_dgram_dequeue(struct kiocb *kiocb,
1717 struct vsock_sock *vsk,
1718 struct msghdr *msg, size_t len,
1719 int flags)
1720 {
1721 int err;
1722 int noblock;
1723 struct vmci_datagram *dg;
1724 size_t payload_len;
1725 struct sk_buff *skb;
1726
1727 noblock = flags & MSG_DONTWAIT;
1728
1729 if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
1730 return -EOPNOTSUPP;
1731
1732 /* Retrieve the head sk_buff from the socket's receive queue. */
1733 err = 0;
1734 skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err);
1735 if (err)
1736 return err;
1737
1738 if (!skb)
1739 return -EAGAIN;
1740
1741 dg = (struct vmci_datagram *)skb->data;
1742 if (!dg)
1743 /* err is 0, meaning we read zero bytes. */
1744 goto out;
1745
1746 payload_len = dg->payload_size;
1747 /* Ensure the sk_buff matches the payload size claimed in the packet. */
1748 if (payload_len != skb->len - sizeof(*dg)) {
1749 err = -EINVAL;
1750 goto out;
1751 }
1752
1753 if (payload_len > len) {
1754 payload_len = len;
1755 msg->msg_flags |= MSG_TRUNC;
1756 }
1757
1758 /* Place the datagram payload in the user's iovec. */
1759 err = skb_copy_datagram_iovec(skb, sizeof(*dg), msg->msg_iov,
1760 payload_len);
1761 if (err)
1762 goto out;
1763
1764 msg->msg_namelen = 0;
1765 if (msg->msg_name) {
1766 struct sockaddr_vm *vm_addr;
1767
1768 /* Provide the address of the sender. */
1769 vm_addr = (struct sockaddr_vm *)msg->msg_name;
1770 vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
1771 msg->msg_namelen = sizeof(*vm_addr);
1772 }
1773 err = payload_len;
1774
1775 out:
1776 skb_free_datagram(&vsk->sk, skb);
1777 return err;
1778 }
1779
1780 static bool vmci_transport_dgram_allow(u32 cid, u32 port)
1781 {
1782 if (cid == VMADDR_CID_HYPERVISOR) {
1783 /* Registrations of PBRPC Servers do not modify VMX/Hypervisor
1784 * state and are allowed.
1785 */
1786 return port == VMCI_UNITY_PBRPC_REGISTER;
1787 }
1788
1789 return true;
1790 }
1791
1792 static int vmci_transport_connect(struct vsock_sock *vsk)
1793 {
1794 int err;
1795 bool old_pkt_proto = false;
1796 struct sock *sk = &vsk->sk;
1797
1798 if (vmci_transport_old_proto_override(&old_pkt_proto) &&
1799 old_pkt_proto) {
1800 err = vmci_transport_send_conn_request(
1801 sk, vmci_trans(vsk)->queue_pair_size);
1802 if (err < 0) {
1803 sk->sk_state = SS_UNCONNECTED;
1804 return err;
1805 }
1806 } else {
1807 int supported_proto_versions =
1808 vmci_transport_new_proto_supported_versions();
1809 err = vmci_transport_send_conn_request2(
1810 sk, vmci_trans(vsk)->queue_pair_size,
1811 supported_proto_versions);
1812 if (err < 0) {
1813 sk->sk_state = SS_UNCONNECTED;
1814 return err;
1815 }
1816
1817 vsk->sent_request = true;
1818 }
1819
1820 return err;
1821 }
1822
1823 static ssize_t vmci_transport_stream_dequeue(
1824 struct vsock_sock *vsk,
1825 struct iovec *iov,
1826 size_t len,
1827 int flags)
1828 {
1829 if (flags & MSG_PEEK)
1830 return vmci_qpair_peekv(vmci_trans(vsk)->qpair, iov, len, 0);
1831 else
1832 return vmci_qpair_dequev(vmci_trans(vsk)->qpair, iov, len, 0);
1833 }
1834
1835 static ssize_t vmci_transport_stream_enqueue(
1836 struct vsock_sock *vsk,
1837 struct iovec *iov,
1838 size_t len)
1839 {
1840 return vmci_qpair_enquev(vmci_trans(vsk)->qpair, iov, len, 0);
1841 }
1842
1843 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
1844 {
1845 return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
1846 }
1847
1848 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
1849 {
1850 return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
1851 }
1852
1853 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
1854 {
1855 return vmci_trans(vsk)->consume_size;
1856 }
1857
1858 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
1859 {
1860 return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
1861 }
1862
1863 static u64 vmci_transport_get_buffer_size(struct vsock_sock *vsk)
1864 {
1865 return vmci_trans(vsk)->queue_pair_size;
1866 }
1867
1868 static u64 vmci_transport_get_min_buffer_size(struct vsock_sock *vsk)
1869 {
1870 return vmci_trans(vsk)->queue_pair_min_size;
1871 }
1872
1873 static u64 vmci_transport_get_max_buffer_size(struct vsock_sock *vsk)
1874 {
1875 return vmci_trans(vsk)->queue_pair_max_size;
1876 }
1877
1878 static void vmci_transport_set_buffer_size(struct vsock_sock *vsk, u64 val)
1879 {
1880 if (val < vmci_trans(vsk)->queue_pair_min_size)
1881 vmci_trans(vsk)->queue_pair_min_size = val;
1882 if (val > vmci_trans(vsk)->queue_pair_max_size)
1883 vmci_trans(vsk)->queue_pair_max_size = val;
1884 vmci_trans(vsk)->queue_pair_size = val;
1885 }
1886
1887 static void vmci_transport_set_min_buffer_size(struct vsock_sock *vsk,
1888 u64 val)
1889 {
1890 if (val > vmci_trans(vsk)->queue_pair_size)
1891 vmci_trans(vsk)->queue_pair_size = val;
1892 vmci_trans(vsk)->queue_pair_min_size = val;
1893 }
1894
1895 static void vmci_transport_set_max_buffer_size(struct vsock_sock *vsk,
1896 u64 val)
1897 {
1898 if (val < vmci_trans(vsk)->queue_pair_size)
1899 vmci_trans(vsk)->queue_pair_size = val;
1900 vmci_trans(vsk)->queue_pair_max_size = val;
1901 }
1902
1903 static int vmci_transport_notify_poll_in(
1904 struct vsock_sock *vsk,
1905 size_t target,
1906 bool *data_ready_now)
1907 {
1908 return vmci_trans(vsk)->notify_ops->poll_in(
1909 &vsk->sk, target, data_ready_now);
1910 }
1911
1912 static int vmci_transport_notify_poll_out(
1913 struct vsock_sock *vsk,
1914 size_t target,
1915 bool *space_available_now)
1916 {
1917 return vmci_trans(vsk)->notify_ops->poll_out(
1918 &vsk->sk, target, space_available_now);
1919 }
1920
1921 static int vmci_transport_notify_recv_init(
1922 struct vsock_sock *vsk,
1923 size_t target,
1924 struct vsock_transport_recv_notify_data *data)
1925 {
1926 return vmci_trans(vsk)->notify_ops->recv_init(
1927 &vsk->sk, target,
1928 (struct vmci_transport_recv_notify_data *)data);
1929 }
1930
1931 static int vmci_transport_notify_recv_pre_block(
1932 struct vsock_sock *vsk,
1933 size_t target,
1934 struct vsock_transport_recv_notify_data *data)
1935 {
1936 return vmci_trans(vsk)->notify_ops->recv_pre_block(
1937 &vsk->sk, target,
1938 (struct vmci_transport_recv_notify_data *)data);
1939 }
1940
1941 static int vmci_transport_notify_recv_pre_dequeue(
1942 struct vsock_sock *vsk,
1943 size_t target,
1944 struct vsock_transport_recv_notify_data *data)
1945 {
1946 return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
1947 &vsk->sk, target,
1948 (struct vmci_transport_recv_notify_data *)data);
1949 }
1950
1951 static int vmci_transport_notify_recv_post_dequeue(
1952 struct vsock_sock *vsk,
1953 size_t target,
1954 ssize_t copied,
1955 bool data_read,
1956 struct vsock_transport_recv_notify_data *data)
1957 {
1958 return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
1959 &vsk->sk, target, copied, data_read,
1960 (struct vmci_transport_recv_notify_data *)data);
1961 }
1962
1963 static int vmci_transport_notify_send_init(
1964 struct vsock_sock *vsk,
1965 struct vsock_transport_send_notify_data *data)
1966 {
1967 return vmci_trans(vsk)->notify_ops->send_init(
1968 &vsk->sk,
1969 (struct vmci_transport_send_notify_data *)data);
1970 }
1971
1972 static int vmci_transport_notify_send_pre_block(
1973 struct vsock_sock *vsk,
1974 struct vsock_transport_send_notify_data *data)
1975 {
1976 return vmci_trans(vsk)->notify_ops->send_pre_block(
1977 &vsk->sk,
1978 (struct vmci_transport_send_notify_data *)data);
1979 }
1980
1981 static int vmci_transport_notify_send_pre_enqueue(
1982 struct vsock_sock *vsk,
1983 struct vsock_transport_send_notify_data *data)
1984 {
1985 return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
1986 &vsk->sk,
1987 (struct vmci_transport_send_notify_data *)data);
1988 }
1989
1990 static int vmci_transport_notify_send_post_enqueue(
1991 struct vsock_sock *vsk,
1992 ssize_t written,
1993 struct vsock_transport_send_notify_data *data)
1994 {
1995 return vmci_trans(vsk)->notify_ops->send_post_enqueue(
1996 &vsk->sk, written,
1997 (struct vmci_transport_send_notify_data *)data);
1998 }
1999
2000 static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
2001 {
2002 if (PROTOCOL_OVERRIDE != -1) {
2003 if (PROTOCOL_OVERRIDE == 0)
2004 *old_pkt_proto = true;
2005 else
2006 *old_pkt_proto = false;
2007
2008 pr_info("Proto override in use\n");
2009 return true;
2010 }
2011
2012 return false;
2013 }
2014
2015 static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
2016 u16 *proto,
2017 bool old_pkt_proto)
2018 {
2019 struct vsock_sock *vsk = vsock_sk(sk);
2020
2021 if (old_pkt_proto) {
2022 if (*proto != VSOCK_PROTO_INVALID) {
2023 pr_err("Can't set both an old and new protocol\n");
2024 return false;
2025 }
2026 vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
2027 goto exit;
2028 }
2029
2030 switch (*proto) {
2031 case VSOCK_PROTO_PKT_ON_NOTIFY:
2032 vmci_trans(vsk)->notify_ops =
2033 &vmci_transport_notify_pkt_q_state_ops;
2034 break;
2035 default:
2036 pr_err("Unknown notify protocol version\n");
2037 return false;
2038 }
2039
2040 exit:
2041 vmci_trans(vsk)->notify_ops->socket_init(sk);
2042 return true;
2043 }
2044
2045 static u16 vmci_transport_new_proto_supported_versions(void)
2046 {
2047 if (PROTOCOL_OVERRIDE != -1)
2048 return PROTOCOL_OVERRIDE;
2049
2050 return VSOCK_PROTO_ALL_SUPPORTED;
2051 }
2052
2053 static u32 vmci_transport_get_local_cid(void)
2054 {
2055 return vmci_get_context_id();
2056 }
2057
2058 static struct vsock_transport vmci_transport = {
2059 .init = vmci_transport_socket_init,
2060 .destruct = vmci_transport_destruct,
2061 .release = vmci_transport_release,
2062 .connect = vmci_transport_connect,
2063 .dgram_bind = vmci_transport_dgram_bind,
2064 .dgram_dequeue = vmci_transport_dgram_dequeue,
2065 .dgram_enqueue = vmci_transport_dgram_enqueue,
2066 .dgram_allow = vmci_transport_dgram_allow,
2067 .stream_dequeue = vmci_transport_stream_dequeue,
2068 .stream_enqueue = vmci_transport_stream_enqueue,
2069 .stream_has_data = vmci_transport_stream_has_data,
2070 .stream_has_space = vmci_transport_stream_has_space,
2071 .stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
2072 .stream_is_active = vmci_transport_stream_is_active,
2073 .stream_allow = vmci_transport_stream_allow,
2074 .notify_poll_in = vmci_transport_notify_poll_in,
2075 .notify_poll_out = vmci_transport_notify_poll_out,
2076 .notify_recv_init = vmci_transport_notify_recv_init,
2077 .notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
2078 .notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
2079 .notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
2080 .notify_send_init = vmci_transport_notify_send_init,
2081 .notify_send_pre_block = vmci_transport_notify_send_pre_block,
2082 .notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
2083 .notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
2084 .shutdown = vmci_transport_shutdown,
2085 .set_buffer_size = vmci_transport_set_buffer_size,
2086 .set_min_buffer_size = vmci_transport_set_min_buffer_size,
2087 .set_max_buffer_size = vmci_transport_set_max_buffer_size,
2088 .get_buffer_size = vmci_transport_get_buffer_size,
2089 .get_min_buffer_size = vmci_transport_get_min_buffer_size,
2090 .get_max_buffer_size = vmci_transport_get_max_buffer_size,
2091 .get_local_cid = vmci_transport_get_local_cid,
2092 };
2093
2094 static int __init vmci_transport_init(void)
2095 {
2096 int err;
2097
2098 /* Create the datagram handle that we will use to send and receive all
2099 * VSocket control messages for this context.
2100 */
2101 err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
2102 VMCI_FLAG_ANYCID_DG_HND,
2103 vmci_transport_recv_stream_cb,
2104 NULL,
2105 &vmci_transport_stream_handle);
2106 if (err < VMCI_SUCCESS) {
2107 pr_err("Unable to create datagram handle. (%d)\n", err);
2108 return vmci_transport_error_to_vsock_error(err);
2109 }
2110
2111 err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
2112 vmci_transport_qp_resumed_cb,
2113 NULL, &vmci_transport_qp_resumed_sub_id);
2114 if (err < VMCI_SUCCESS) {
2115 pr_err("Unable to subscribe to resumed event. (%d)\n", err);
2116 err = vmci_transport_error_to_vsock_error(err);
2117 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2118 goto err_destroy_stream_handle;
2119 }
2120
2121 err = vsock_core_init(&vmci_transport);
2122 if (err < 0)
2123 goto err_unsubscribe;
2124
2125 return 0;
2126
2127 err_unsubscribe:
2128 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2129 err_destroy_stream_handle:
2130 vmci_datagram_destroy_handle(vmci_transport_stream_handle);
2131 return err;
2132 }
2133 module_init(vmci_transport_init);
2134
2135 static void __exit vmci_transport_exit(void)
2136 {
2137 if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
2138 if (vmci_datagram_destroy_handle(
2139 vmci_transport_stream_handle) != VMCI_SUCCESS)
2140 pr_err("Couldn't destroy datagram handle\n");
2141 vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
2142 }
2143
2144 if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
2145 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2146 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2147 }
2148
2149 vsock_core_exit();
2150 }
2151 module_exit(vmci_transport_exit);
2152
2153 MODULE_AUTHOR("VMware, Inc.");
2154 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
2155 MODULE_LICENSE("GPL v2");
2156 MODULE_ALIAS("vmware_vsock");
2157 MODULE_ALIAS_NETPROTO(PF_VSOCK);