]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - net/vmw_vsock/vmci_transport.c
UBUNTU: Ubuntu-5.11.0-22.23
[mirror_ubuntu-hirsute-kernel.git] / net / vmw_vsock / vmci_transport.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VMware vSockets Driver
4 *
5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 */
7
8 #include <linux/types.h>
9 #include <linux/bitops.h>
10 #include <linux/cred.h>
11 #include <linux/init.h>
12 #include <linux/io.h>
13 #include <linux/kernel.h>
14 #include <linux/kmod.h>
15 #include <linux/list.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/net.h>
19 #include <linux/poll.h>
20 #include <linux/skbuff.h>
21 #include <linux/smp.h>
22 #include <linux/socket.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/wait.h>
26 #include <linux/workqueue.h>
27 #include <net/sock.h>
28 #include <net/af_vsock.h>
29
30 #include "vmci_transport_notify.h"
31
32 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
33 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
34 static void vmci_transport_peer_detach_cb(u32 sub_id,
35 const struct vmci_event_data *ed,
36 void *client_data);
37 static void vmci_transport_recv_pkt_work(struct work_struct *work);
38 static void vmci_transport_cleanup(struct work_struct *work);
39 static int vmci_transport_recv_listen(struct sock *sk,
40 struct vmci_transport_packet *pkt);
41 static int vmci_transport_recv_connecting_server(
42 struct sock *sk,
43 struct sock *pending,
44 struct vmci_transport_packet *pkt);
45 static int vmci_transport_recv_connecting_client(
46 struct sock *sk,
47 struct vmci_transport_packet *pkt);
48 static int vmci_transport_recv_connecting_client_negotiate(
49 struct sock *sk,
50 struct vmci_transport_packet *pkt);
51 static int vmci_transport_recv_connecting_client_invalid(
52 struct sock *sk,
53 struct vmci_transport_packet *pkt);
54 static int vmci_transport_recv_connected(struct sock *sk,
55 struct vmci_transport_packet *pkt);
56 static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
57 static u16 vmci_transport_new_proto_supported_versions(void);
58 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
59 bool old_pkt_proto);
60 static bool vmci_check_transport(struct vsock_sock *vsk);
61
62 struct vmci_transport_recv_pkt_info {
63 struct work_struct work;
64 struct sock *sk;
65 struct vmci_transport_packet pkt;
66 };
67
68 static LIST_HEAD(vmci_transport_cleanup_list);
69 static DEFINE_SPINLOCK(vmci_transport_cleanup_lock);
70 static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup);
71
72 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
73 VMCI_INVALID_ID };
74 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
75
76 static int PROTOCOL_OVERRIDE = -1;
77
78 /* Helper function to convert from a VMCI error code to a VSock error code. */
79
80 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
81 {
82 switch (vmci_error) {
83 case VMCI_ERROR_NO_MEM:
84 return -ENOMEM;
85 case VMCI_ERROR_DUPLICATE_ENTRY:
86 case VMCI_ERROR_ALREADY_EXISTS:
87 return -EADDRINUSE;
88 case VMCI_ERROR_NO_ACCESS:
89 return -EPERM;
90 case VMCI_ERROR_NO_RESOURCES:
91 return -ENOBUFS;
92 case VMCI_ERROR_INVALID_RESOURCE:
93 return -EHOSTUNREACH;
94 case VMCI_ERROR_INVALID_ARGS:
95 default:
96 break;
97 }
98 return -EINVAL;
99 }
100
101 static u32 vmci_transport_peer_rid(u32 peer_cid)
102 {
103 if (VMADDR_CID_HYPERVISOR == peer_cid)
104 return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
105
106 return VMCI_TRANSPORT_PACKET_RID;
107 }
108
109 static inline void
110 vmci_transport_packet_init(struct vmci_transport_packet *pkt,
111 struct sockaddr_vm *src,
112 struct sockaddr_vm *dst,
113 u8 type,
114 u64 size,
115 u64 mode,
116 struct vmci_transport_waiting_info *wait,
117 u16 proto,
118 struct vmci_handle handle)
119 {
120 /* We register the stream control handler as an any cid handle so we
121 * must always send from a source address of VMADDR_CID_ANY
122 */
123 pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
124 VMCI_TRANSPORT_PACKET_RID);
125 pkt->dg.dst = vmci_make_handle(dst->svm_cid,
126 vmci_transport_peer_rid(dst->svm_cid));
127 pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
128 pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
129 pkt->type = type;
130 pkt->src_port = src->svm_port;
131 pkt->dst_port = dst->svm_port;
132 memset(&pkt->proto, 0, sizeof(pkt->proto));
133 memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
134
135 switch (pkt->type) {
136 case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
137 pkt->u.size = 0;
138 break;
139
140 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
141 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
142 pkt->u.size = size;
143 break;
144
145 case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
146 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
147 pkt->u.handle = handle;
148 break;
149
150 case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
151 case VMCI_TRANSPORT_PACKET_TYPE_READ:
152 case VMCI_TRANSPORT_PACKET_TYPE_RST:
153 pkt->u.size = 0;
154 break;
155
156 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
157 pkt->u.mode = mode;
158 break;
159
160 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
161 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
162 memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
163 break;
164
165 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
166 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
167 pkt->u.size = size;
168 pkt->proto = proto;
169 break;
170 }
171 }
172
173 static inline void
174 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
175 struct sockaddr_vm *local,
176 struct sockaddr_vm *remote)
177 {
178 vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
179 vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
180 }
181
182 static int
183 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
184 struct sockaddr_vm *src,
185 struct sockaddr_vm *dst,
186 enum vmci_transport_packet_type type,
187 u64 size,
188 u64 mode,
189 struct vmci_transport_waiting_info *wait,
190 u16 proto,
191 struct vmci_handle handle,
192 bool convert_error)
193 {
194 int err;
195
196 vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
197 proto, handle);
198 err = vmci_datagram_send(&pkt->dg);
199 if (convert_error && (err < 0))
200 return vmci_transport_error_to_vsock_error(err);
201
202 return err;
203 }
204
205 static int
206 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
207 enum vmci_transport_packet_type type,
208 u64 size,
209 u64 mode,
210 struct vmci_transport_waiting_info *wait,
211 struct vmci_handle handle)
212 {
213 struct vmci_transport_packet reply;
214 struct sockaddr_vm src, dst;
215
216 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
217 return 0;
218 } else {
219 vmci_transport_packet_get_addresses(pkt, &src, &dst);
220 return __vmci_transport_send_control_pkt(&reply, &src, &dst,
221 type,
222 size, mode, wait,
223 VSOCK_PROTO_INVALID,
224 handle, true);
225 }
226 }
227
228 static int
229 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
230 struct sockaddr_vm *dst,
231 enum vmci_transport_packet_type type,
232 u64 size,
233 u64 mode,
234 struct vmci_transport_waiting_info *wait,
235 struct vmci_handle handle)
236 {
237 /* Note that it is safe to use a single packet across all CPUs since
238 * two tasklets of the same type are guaranteed to not ever run
239 * simultaneously. If that ever changes, or VMCI stops using tasklets,
240 * we can use per-cpu packets.
241 */
242 static struct vmci_transport_packet pkt;
243
244 return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
245 size, mode, wait,
246 VSOCK_PROTO_INVALID, handle,
247 false);
248 }
249
250 static int
251 vmci_transport_alloc_send_control_pkt(struct sockaddr_vm *src,
252 struct sockaddr_vm *dst,
253 enum vmci_transport_packet_type type,
254 u64 size,
255 u64 mode,
256 struct vmci_transport_waiting_info *wait,
257 u16 proto,
258 struct vmci_handle handle)
259 {
260 struct vmci_transport_packet *pkt;
261 int err;
262
263 pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
264 if (!pkt)
265 return -ENOMEM;
266
267 err = __vmci_transport_send_control_pkt(pkt, src, dst, type, size,
268 mode, wait, proto, handle,
269 true);
270 kfree(pkt);
271
272 return err;
273 }
274
275 static int
276 vmci_transport_send_control_pkt(struct sock *sk,
277 enum vmci_transport_packet_type type,
278 u64 size,
279 u64 mode,
280 struct vmci_transport_waiting_info *wait,
281 u16 proto,
282 struct vmci_handle handle)
283 {
284 struct vsock_sock *vsk;
285
286 vsk = vsock_sk(sk);
287
288 if (!vsock_addr_bound(&vsk->local_addr))
289 return -EINVAL;
290
291 if (!vsock_addr_bound(&vsk->remote_addr))
292 return -EINVAL;
293
294 return vmci_transport_alloc_send_control_pkt(&vsk->local_addr,
295 &vsk->remote_addr,
296 type, size, mode,
297 wait, proto, handle);
298 }
299
300 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
301 struct sockaddr_vm *src,
302 struct vmci_transport_packet *pkt)
303 {
304 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
305 return 0;
306 return vmci_transport_send_control_pkt_bh(
307 dst, src,
308 VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
309 0, NULL, VMCI_INVALID_HANDLE);
310 }
311
312 static int vmci_transport_send_reset(struct sock *sk,
313 struct vmci_transport_packet *pkt)
314 {
315 struct sockaddr_vm *dst_ptr;
316 struct sockaddr_vm dst;
317 struct vsock_sock *vsk;
318
319 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
320 return 0;
321
322 vsk = vsock_sk(sk);
323
324 if (!vsock_addr_bound(&vsk->local_addr))
325 return -EINVAL;
326
327 if (vsock_addr_bound(&vsk->remote_addr)) {
328 dst_ptr = &vsk->remote_addr;
329 } else {
330 vsock_addr_init(&dst, pkt->dg.src.context,
331 pkt->src_port);
332 dst_ptr = &dst;
333 }
334 return vmci_transport_alloc_send_control_pkt(&vsk->local_addr, dst_ptr,
335 VMCI_TRANSPORT_PACKET_TYPE_RST,
336 0, 0, NULL, VSOCK_PROTO_INVALID,
337 VMCI_INVALID_HANDLE);
338 }
339
340 static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
341 {
342 return vmci_transport_send_control_pkt(
343 sk,
344 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
345 size, 0, NULL,
346 VSOCK_PROTO_INVALID,
347 VMCI_INVALID_HANDLE);
348 }
349
350 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
351 u16 version)
352 {
353 return vmci_transport_send_control_pkt(
354 sk,
355 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
356 size, 0, NULL, version,
357 VMCI_INVALID_HANDLE);
358 }
359
360 static int vmci_transport_send_qp_offer(struct sock *sk,
361 struct vmci_handle handle)
362 {
363 return vmci_transport_send_control_pkt(
364 sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
365 0, NULL,
366 VSOCK_PROTO_INVALID, handle);
367 }
368
369 static int vmci_transport_send_attach(struct sock *sk,
370 struct vmci_handle handle)
371 {
372 return vmci_transport_send_control_pkt(
373 sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
374 0, 0, NULL, VSOCK_PROTO_INVALID,
375 handle);
376 }
377
378 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
379 {
380 return vmci_transport_reply_control_pkt_fast(
381 pkt,
382 VMCI_TRANSPORT_PACKET_TYPE_RST,
383 0, 0, NULL,
384 VMCI_INVALID_HANDLE);
385 }
386
387 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
388 struct sockaddr_vm *src)
389 {
390 return vmci_transport_send_control_pkt_bh(
391 dst, src,
392 VMCI_TRANSPORT_PACKET_TYPE_INVALID,
393 0, 0, NULL, VMCI_INVALID_HANDLE);
394 }
395
396 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
397 struct sockaddr_vm *src)
398 {
399 return vmci_transport_send_control_pkt_bh(
400 dst, src,
401 VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
402 0, NULL, VMCI_INVALID_HANDLE);
403 }
404
405 int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
406 struct sockaddr_vm *src)
407 {
408 return vmci_transport_send_control_pkt_bh(
409 dst, src,
410 VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
411 0, NULL, VMCI_INVALID_HANDLE);
412 }
413
414 int vmci_transport_send_wrote(struct sock *sk)
415 {
416 return vmci_transport_send_control_pkt(
417 sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
418 0, NULL, VSOCK_PROTO_INVALID,
419 VMCI_INVALID_HANDLE);
420 }
421
422 int vmci_transport_send_read(struct sock *sk)
423 {
424 return vmci_transport_send_control_pkt(
425 sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
426 0, NULL, VSOCK_PROTO_INVALID,
427 VMCI_INVALID_HANDLE);
428 }
429
430 int vmci_transport_send_waiting_write(struct sock *sk,
431 struct vmci_transport_waiting_info *wait)
432 {
433 return vmci_transport_send_control_pkt(
434 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
435 0, 0, wait, VSOCK_PROTO_INVALID,
436 VMCI_INVALID_HANDLE);
437 }
438
439 int vmci_transport_send_waiting_read(struct sock *sk,
440 struct vmci_transport_waiting_info *wait)
441 {
442 return vmci_transport_send_control_pkt(
443 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
444 0, 0, wait, VSOCK_PROTO_INVALID,
445 VMCI_INVALID_HANDLE);
446 }
447
448 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
449 {
450 return vmci_transport_send_control_pkt(
451 &vsk->sk,
452 VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
453 0, mode, NULL,
454 VSOCK_PROTO_INVALID,
455 VMCI_INVALID_HANDLE);
456 }
457
458 static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
459 {
460 return vmci_transport_send_control_pkt(sk,
461 VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
462 size, 0, NULL,
463 VSOCK_PROTO_INVALID,
464 VMCI_INVALID_HANDLE);
465 }
466
467 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
468 u16 version)
469 {
470 return vmci_transport_send_control_pkt(
471 sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
472 size, 0, NULL, version,
473 VMCI_INVALID_HANDLE);
474 }
475
476 static struct sock *vmci_transport_get_pending(
477 struct sock *listener,
478 struct vmci_transport_packet *pkt)
479 {
480 struct vsock_sock *vlistener;
481 struct vsock_sock *vpending;
482 struct sock *pending;
483 struct sockaddr_vm src;
484
485 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
486
487 vlistener = vsock_sk(listener);
488
489 list_for_each_entry(vpending, &vlistener->pending_links,
490 pending_links) {
491 if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
492 pkt->dst_port == vpending->local_addr.svm_port) {
493 pending = sk_vsock(vpending);
494 sock_hold(pending);
495 goto found;
496 }
497 }
498
499 pending = NULL;
500 found:
501 return pending;
502
503 }
504
505 static void vmci_transport_release_pending(struct sock *pending)
506 {
507 sock_put(pending);
508 }
509
510 /* We allow two kinds of sockets to communicate with a restricted VM: 1)
511 * trusted sockets 2) sockets from applications running as the same user as the
512 * VM (this is only true for the host side and only when using hosted products)
513 */
514
515 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
516 {
517 return vsock->trusted ||
518 vmci_is_context_owner(peer_cid, vsock->owner->uid);
519 }
520
521 /* We allow sending datagrams to and receiving datagrams from a restricted VM
522 * only if it is trusted as described in vmci_transport_is_trusted.
523 */
524
525 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
526 {
527 if (VMADDR_CID_HYPERVISOR == peer_cid)
528 return true;
529
530 if (vsock->cached_peer != peer_cid) {
531 vsock->cached_peer = peer_cid;
532 if (!vmci_transport_is_trusted(vsock, peer_cid) &&
533 (vmci_context_get_priv_flags(peer_cid) &
534 VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
535 vsock->cached_peer_allow_dgram = false;
536 } else {
537 vsock->cached_peer_allow_dgram = true;
538 }
539 }
540
541 return vsock->cached_peer_allow_dgram;
542 }
543
544 static int
545 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
546 struct vmci_handle *handle,
547 u64 produce_size,
548 u64 consume_size,
549 u32 peer, u32 flags, bool trusted)
550 {
551 int err = 0;
552
553 if (trusted) {
554 /* Try to allocate our queue pair as trusted. This will only
555 * work if vsock is running in the host.
556 */
557
558 err = vmci_qpair_alloc(qpair, handle, produce_size,
559 consume_size,
560 peer, flags,
561 VMCI_PRIVILEGE_FLAG_TRUSTED);
562 if (err != VMCI_ERROR_NO_ACCESS)
563 goto out;
564
565 }
566
567 err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
568 peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
569 out:
570 if (err < 0) {
571 pr_err_once("Could not attach to queue pair with %d\n", err);
572 err = vmci_transport_error_to_vsock_error(err);
573 }
574
575 return err;
576 }
577
578 static int
579 vmci_transport_datagram_create_hnd(u32 resource_id,
580 u32 flags,
581 vmci_datagram_recv_cb recv_cb,
582 void *client_data,
583 struct vmci_handle *out_handle)
584 {
585 int err = 0;
586
587 /* Try to allocate our datagram handler as trusted. This will only work
588 * if vsock is running in the host.
589 */
590
591 err = vmci_datagram_create_handle_priv(resource_id, flags,
592 VMCI_PRIVILEGE_FLAG_TRUSTED,
593 recv_cb,
594 client_data, out_handle);
595
596 if (err == VMCI_ERROR_NO_ACCESS)
597 err = vmci_datagram_create_handle(resource_id, flags,
598 recv_cb, client_data,
599 out_handle);
600
601 return err;
602 }
603
604 /* This is invoked as part of a tasklet that's scheduled when the VMCI
605 * interrupt fires. This is run in bottom-half context and if it ever needs to
606 * sleep it should defer that work to a work queue.
607 */
608
609 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
610 {
611 struct sock *sk;
612 size_t size;
613 struct sk_buff *skb;
614 struct vsock_sock *vsk;
615
616 sk = (struct sock *)data;
617
618 /* This handler is privileged when this module is running on the host.
619 * We will get datagrams from all endpoints (even VMs that are in a
620 * restricted context). If we get one from a restricted context then
621 * the destination socket must be trusted.
622 *
623 * NOTE: We access the socket struct without holding the lock here.
624 * This is ok because the field we are interested is never modified
625 * outside of the create and destruct socket functions.
626 */
627 vsk = vsock_sk(sk);
628 if (!vmci_transport_allow_dgram(vsk, dg->src.context))
629 return VMCI_ERROR_NO_ACCESS;
630
631 size = VMCI_DG_SIZE(dg);
632
633 /* Attach the packet to the socket's receive queue as an sk_buff. */
634 skb = alloc_skb(size, GFP_ATOMIC);
635 if (!skb)
636 return VMCI_ERROR_NO_MEM;
637
638 /* sk_receive_skb() will do a sock_put(), so hold here. */
639 sock_hold(sk);
640 skb_put(skb, size);
641 memcpy(skb->data, dg, size);
642 sk_receive_skb(sk, skb, 0);
643
644 return VMCI_SUCCESS;
645 }
646
647 static bool vmci_transport_stream_allow(u32 cid, u32 port)
648 {
649 static const u32 non_socket_contexts[] = {
650 VMADDR_CID_LOCAL,
651 };
652 int i;
653
654 BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
655
656 for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
657 if (cid == non_socket_contexts[i])
658 return false;
659 }
660
661 return true;
662 }
663
664 /* This is invoked as part of a tasklet that's scheduled when the VMCI
665 * interrupt fires. This is run in bottom-half context but it defers most of
666 * its work to the packet handling work queue.
667 */
668
669 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
670 {
671 struct sock *sk;
672 struct sockaddr_vm dst;
673 struct sockaddr_vm src;
674 struct vmci_transport_packet *pkt;
675 struct vsock_sock *vsk;
676 bool bh_process_pkt;
677 int err;
678
679 sk = NULL;
680 err = VMCI_SUCCESS;
681 bh_process_pkt = false;
682
683 /* Ignore incoming packets from contexts without sockets, or resources
684 * that aren't vsock implementations.
685 */
686
687 if (!vmci_transport_stream_allow(dg->src.context, -1)
688 || vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
689 return VMCI_ERROR_NO_ACCESS;
690
691 if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
692 /* Drop datagrams that do not contain full VSock packets. */
693 return VMCI_ERROR_INVALID_ARGS;
694
695 pkt = (struct vmci_transport_packet *)dg;
696
697 /* Find the socket that should handle this packet. First we look for a
698 * connected socket and if there is none we look for a socket bound to
699 * the destintation address.
700 */
701 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
702 vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
703
704 sk = vsock_find_connected_socket(&src, &dst);
705 if (!sk) {
706 sk = vsock_find_bound_socket(&dst);
707 if (!sk) {
708 /* We could not find a socket for this specified
709 * address. If this packet is a RST, we just drop it.
710 * If it is another packet, we send a RST. Note that
711 * we do not send a RST reply to RSTs so that we do not
712 * continually send RSTs between two endpoints.
713 *
714 * Note that since this is a reply, dst is src and src
715 * is dst.
716 */
717 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
718 pr_err("unable to send reset\n");
719
720 err = VMCI_ERROR_NOT_FOUND;
721 goto out;
722 }
723 }
724
725 /* If the received packet type is beyond all types known to this
726 * implementation, reply with an invalid message. Hopefully this will
727 * help when implementing backwards compatibility in the future.
728 */
729 if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
730 vmci_transport_send_invalid_bh(&dst, &src);
731 err = VMCI_ERROR_INVALID_ARGS;
732 goto out;
733 }
734
735 /* This handler is privileged when this module is running on the host.
736 * We will get datagram connect requests from all endpoints (even VMs
737 * that are in a restricted context). If we get one from a restricted
738 * context then the destination socket must be trusted.
739 *
740 * NOTE: We access the socket struct without holding the lock here.
741 * This is ok because the field we are interested is never modified
742 * outside of the create and destruct socket functions.
743 */
744 vsk = vsock_sk(sk);
745 if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
746 err = VMCI_ERROR_NO_ACCESS;
747 goto out;
748 }
749
750 /* We do most everything in a work queue, but let's fast path the
751 * notification of reads and writes to help data transfer performance.
752 * We can only do this if there is no process context code executing
753 * for this socket since that may change the state.
754 */
755 bh_lock_sock(sk);
756
757 if (!sock_owned_by_user(sk)) {
758 /* The local context ID may be out of date, update it. */
759 vsk->local_addr.svm_cid = dst.svm_cid;
760
761 if (sk->sk_state == TCP_ESTABLISHED)
762 vmci_trans(vsk)->notify_ops->handle_notify_pkt(
763 sk, pkt, true, &dst, &src,
764 &bh_process_pkt);
765 }
766
767 bh_unlock_sock(sk);
768
769 if (!bh_process_pkt) {
770 struct vmci_transport_recv_pkt_info *recv_pkt_info;
771
772 recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
773 if (!recv_pkt_info) {
774 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
775 pr_err("unable to send reset\n");
776
777 err = VMCI_ERROR_NO_MEM;
778 goto out;
779 }
780
781 recv_pkt_info->sk = sk;
782 memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
783 INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
784
785 schedule_work(&recv_pkt_info->work);
786 /* Clear sk so that the reference count incremented by one of
787 * the Find functions above is not decremented below. We need
788 * that reference count for the packet handler we've scheduled
789 * to run.
790 */
791 sk = NULL;
792 }
793
794 out:
795 if (sk)
796 sock_put(sk);
797
798 return err;
799 }
800
801 static void vmci_transport_handle_detach(struct sock *sk)
802 {
803 struct vsock_sock *vsk;
804
805 vsk = vsock_sk(sk);
806 if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
807 sock_set_flag(sk, SOCK_DONE);
808
809 /* On a detach the peer will not be sending or receiving
810 * anymore.
811 */
812 vsk->peer_shutdown = SHUTDOWN_MASK;
813
814 /* We should not be sending anymore since the peer won't be
815 * there to receive, but we can still receive if there is data
816 * left in our consume queue. If the local endpoint is a host,
817 * we can't call vsock_stream_has_data, since that may block,
818 * but a host endpoint can't read data once the VM has
819 * detached, so there is no available data in that case.
820 */
821 if (vsk->local_addr.svm_cid == VMADDR_CID_HOST ||
822 vsock_stream_has_data(vsk) <= 0) {
823 if (sk->sk_state == TCP_SYN_SENT) {
824 /* The peer may detach from a queue pair while
825 * we are still in the connecting state, i.e.,
826 * if the peer VM is killed after attaching to
827 * a queue pair, but before we complete the
828 * handshake. In that case, we treat the detach
829 * event like a reset.
830 */
831
832 sk->sk_state = TCP_CLOSE;
833 sk->sk_err = ECONNRESET;
834 sk->sk_error_report(sk);
835 return;
836 }
837 sk->sk_state = TCP_CLOSE;
838 }
839 sk->sk_state_change(sk);
840 }
841 }
842
843 static void vmci_transport_peer_detach_cb(u32 sub_id,
844 const struct vmci_event_data *e_data,
845 void *client_data)
846 {
847 struct vmci_transport *trans = client_data;
848 const struct vmci_event_payload_qp *e_payload;
849
850 e_payload = vmci_event_data_const_payload(e_data);
851
852 /* XXX This is lame, we should provide a way to lookup sockets by
853 * qp_handle.
854 */
855 if (vmci_handle_is_invalid(e_payload->handle) ||
856 !vmci_handle_is_equal(trans->qp_handle, e_payload->handle))
857 return;
858
859 /* We don't ask for delayed CBs when we subscribe to this event (we
860 * pass 0 as flags to vmci_event_subscribe()). VMCI makes no
861 * guarantees in that case about what context we might be running in,
862 * so it could be BH or process, blockable or non-blockable. So we
863 * need to account for all possible contexts here.
864 */
865 spin_lock_bh(&trans->lock);
866 if (!trans->sk)
867 goto out;
868
869 /* Apart from here, trans->lock is only grabbed as part of sk destruct,
870 * where trans->sk isn't locked.
871 */
872 bh_lock_sock(trans->sk);
873
874 vmci_transport_handle_detach(trans->sk);
875
876 bh_unlock_sock(trans->sk);
877 out:
878 spin_unlock_bh(&trans->lock);
879 }
880
881 static void vmci_transport_qp_resumed_cb(u32 sub_id,
882 const struct vmci_event_data *e_data,
883 void *client_data)
884 {
885 vsock_for_each_connected_socket(vmci_transport_handle_detach);
886 }
887
888 static void vmci_transport_recv_pkt_work(struct work_struct *work)
889 {
890 struct vmci_transport_recv_pkt_info *recv_pkt_info;
891 struct vmci_transport_packet *pkt;
892 struct sock *sk;
893
894 recv_pkt_info =
895 container_of(work, struct vmci_transport_recv_pkt_info, work);
896 sk = recv_pkt_info->sk;
897 pkt = &recv_pkt_info->pkt;
898
899 lock_sock(sk);
900
901 /* The local context ID may be out of date. */
902 vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context;
903
904 switch (sk->sk_state) {
905 case TCP_LISTEN:
906 vmci_transport_recv_listen(sk, pkt);
907 break;
908 case TCP_SYN_SENT:
909 /* Processing of pending connections for servers goes through
910 * the listening socket, so see vmci_transport_recv_listen()
911 * for that path.
912 */
913 vmci_transport_recv_connecting_client(sk, pkt);
914 break;
915 case TCP_ESTABLISHED:
916 vmci_transport_recv_connected(sk, pkt);
917 break;
918 default:
919 /* Because this function does not run in the same context as
920 * vmci_transport_recv_stream_cb it is possible that the
921 * socket has closed. We need to let the other side know or it
922 * could be sitting in a connect and hang forever. Send a
923 * reset to prevent that.
924 */
925 vmci_transport_send_reset(sk, pkt);
926 break;
927 }
928
929 release_sock(sk);
930 kfree(recv_pkt_info);
931 /* Release reference obtained in the stream callback when we fetched
932 * this socket out of the bound or connected list.
933 */
934 sock_put(sk);
935 }
936
937 static int vmci_transport_recv_listen(struct sock *sk,
938 struct vmci_transport_packet *pkt)
939 {
940 struct sock *pending;
941 struct vsock_sock *vpending;
942 int err;
943 u64 qp_size;
944 bool old_request = false;
945 bool old_pkt_proto = false;
946
947 err = 0;
948
949 /* Because we are in the listen state, we could be receiving a packet
950 * for ourself or any previous connection requests that we received.
951 * If it's the latter, we try to find a socket in our list of pending
952 * connections and, if we do, call the appropriate handler for the
953 * state that that socket is in. Otherwise we try to service the
954 * connection request.
955 */
956 pending = vmci_transport_get_pending(sk, pkt);
957 if (pending) {
958 lock_sock(pending);
959
960 /* The local context ID may be out of date. */
961 vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context;
962
963 switch (pending->sk_state) {
964 case TCP_SYN_SENT:
965 err = vmci_transport_recv_connecting_server(sk,
966 pending,
967 pkt);
968 break;
969 default:
970 vmci_transport_send_reset(pending, pkt);
971 err = -EINVAL;
972 }
973
974 if (err < 0)
975 vsock_remove_pending(sk, pending);
976
977 release_sock(pending);
978 vmci_transport_release_pending(pending);
979
980 return err;
981 }
982
983 /* The listen state only accepts connection requests. Reply with a
984 * reset unless we received a reset.
985 */
986
987 if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
988 pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
989 vmci_transport_reply_reset(pkt);
990 return -EINVAL;
991 }
992
993 if (pkt->u.size == 0) {
994 vmci_transport_reply_reset(pkt);
995 return -EINVAL;
996 }
997
998 /* If this socket can't accommodate this connection request, we send a
999 * reset. Otherwise we create and initialize a child socket and reply
1000 * with a connection negotiation.
1001 */
1002 if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
1003 vmci_transport_reply_reset(pkt);
1004 return -ECONNREFUSED;
1005 }
1006
1007 pending = vsock_create_connected(sk);
1008 if (!pending) {
1009 vmci_transport_send_reset(sk, pkt);
1010 return -ENOMEM;
1011 }
1012
1013 vpending = vsock_sk(pending);
1014
1015 vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
1016 pkt->dst_port);
1017 vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
1018 pkt->src_port);
1019
1020 err = vsock_assign_transport(vpending, vsock_sk(sk));
1021 /* Transport assigned (looking at remote_addr) must be the same
1022 * where we received the request.
1023 */
1024 if (err || !vmci_check_transport(vpending)) {
1025 vmci_transport_send_reset(sk, pkt);
1026 sock_put(pending);
1027 return err;
1028 }
1029
1030 /* If the proposed size fits within our min/max, accept it. Otherwise
1031 * propose our own size.
1032 */
1033 if (pkt->u.size >= vpending->buffer_min_size &&
1034 pkt->u.size <= vpending->buffer_max_size) {
1035 qp_size = pkt->u.size;
1036 } else {
1037 qp_size = vpending->buffer_size;
1038 }
1039
1040 /* Figure out if we are using old or new requests based on the
1041 * overrides pkt types sent by our peer.
1042 */
1043 if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1044 old_request = old_pkt_proto;
1045 } else {
1046 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
1047 old_request = true;
1048 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
1049 old_request = false;
1050
1051 }
1052
1053 if (old_request) {
1054 /* Handle a REQUEST (or override) */
1055 u16 version = VSOCK_PROTO_INVALID;
1056 if (vmci_transport_proto_to_notify_struct(
1057 pending, &version, true))
1058 err = vmci_transport_send_negotiate(pending, qp_size);
1059 else
1060 err = -EINVAL;
1061
1062 } else {
1063 /* Handle a REQUEST2 (or override) */
1064 int proto_int = pkt->proto;
1065 int pos;
1066 u16 active_proto_version = 0;
1067
1068 /* The list of possible protocols is the intersection of all
1069 * protocols the client supports ... plus all the protocols we
1070 * support.
1071 */
1072 proto_int &= vmci_transport_new_proto_supported_versions();
1073
1074 /* We choose the highest possible protocol version and use that
1075 * one.
1076 */
1077 pos = fls(proto_int);
1078 if (pos) {
1079 active_proto_version = (1 << (pos - 1));
1080 if (vmci_transport_proto_to_notify_struct(
1081 pending, &active_proto_version, false))
1082 err = vmci_transport_send_negotiate2(pending,
1083 qp_size,
1084 active_proto_version);
1085 else
1086 err = -EINVAL;
1087
1088 } else {
1089 err = -EINVAL;
1090 }
1091 }
1092
1093 if (err < 0) {
1094 vmci_transport_send_reset(sk, pkt);
1095 sock_put(pending);
1096 err = vmci_transport_error_to_vsock_error(err);
1097 goto out;
1098 }
1099
1100 vsock_add_pending(sk, pending);
1101 sk_acceptq_added(sk);
1102
1103 pending->sk_state = TCP_SYN_SENT;
1104 vmci_trans(vpending)->produce_size =
1105 vmci_trans(vpending)->consume_size = qp_size;
1106 vpending->buffer_size = qp_size;
1107
1108 vmci_trans(vpending)->notify_ops->process_request(pending);
1109
1110 /* We might never receive another message for this socket and it's not
1111 * connected to any process, so we have to ensure it gets cleaned up
1112 * ourself. Our delayed work function will take care of that. Note
1113 * that we do not ever cancel this function since we have few
1114 * guarantees about its state when calling cancel_delayed_work().
1115 * Instead we hold a reference on the socket for that function and make
1116 * it capable of handling cases where it needs to do nothing but
1117 * release that reference.
1118 */
1119 vpending->listener = sk;
1120 sock_hold(sk);
1121 sock_hold(pending);
1122 schedule_delayed_work(&vpending->pending_work, HZ);
1123
1124 out:
1125 return err;
1126 }
1127
1128 static int
1129 vmci_transport_recv_connecting_server(struct sock *listener,
1130 struct sock *pending,
1131 struct vmci_transport_packet *pkt)
1132 {
1133 struct vsock_sock *vpending;
1134 struct vmci_handle handle;
1135 struct vmci_qp *qpair;
1136 bool is_local;
1137 u32 flags;
1138 u32 detach_sub_id;
1139 int err;
1140 int skerr;
1141
1142 vpending = vsock_sk(pending);
1143 detach_sub_id = VMCI_INVALID_ID;
1144
1145 switch (pkt->type) {
1146 case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
1147 if (vmci_handle_is_invalid(pkt->u.handle)) {
1148 vmci_transport_send_reset(pending, pkt);
1149 skerr = EPROTO;
1150 err = -EINVAL;
1151 goto destroy;
1152 }
1153 break;
1154 default:
1155 /* Close and cleanup the connection. */
1156 vmci_transport_send_reset(pending, pkt);
1157 skerr = EPROTO;
1158 err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
1159 goto destroy;
1160 }
1161
1162 /* In order to complete the connection we need to attach to the offered
1163 * queue pair and send an attach notification. We also subscribe to the
1164 * detach event so we know when our peer goes away, and we do that
1165 * before attaching so we don't miss an event. If all this succeeds,
1166 * we update our state and wakeup anything waiting in accept() for a
1167 * connection.
1168 */
1169
1170 /* We don't care about attach since we ensure the other side has
1171 * attached by specifying the ATTACH_ONLY flag below.
1172 */
1173 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1174 vmci_transport_peer_detach_cb,
1175 vmci_trans(vpending), &detach_sub_id);
1176 if (err < VMCI_SUCCESS) {
1177 vmci_transport_send_reset(pending, pkt);
1178 err = vmci_transport_error_to_vsock_error(err);
1179 skerr = -err;
1180 goto destroy;
1181 }
1182
1183 vmci_trans(vpending)->detach_sub_id = detach_sub_id;
1184
1185 /* Now attach to the queue pair the client created. */
1186 handle = pkt->u.handle;
1187
1188 /* vpending->local_addr always has a context id so we do not need to
1189 * worry about VMADDR_CID_ANY in this case.
1190 */
1191 is_local =
1192 vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
1193 flags = VMCI_QPFLAG_ATTACH_ONLY;
1194 flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
1195
1196 err = vmci_transport_queue_pair_alloc(
1197 &qpair,
1198 &handle,
1199 vmci_trans(vpending)->produce_size,
1200 vmci_trans(vpending)->consume_size,
1201 pkt->dg.src.context,
1202 flags,
1203 vmci_transport_is_trusted(
1204 vpending,
1205 vpending->remote_addr.svm_cid));
1206 if (err < 0) {
1207 vmci_transport_send_reset(pending, pkt);
1208 skerr = -err;
1209 goto destroy;
1210 }
1211
1212 vmci_trans(vpending)->qp_handle = handle;
1213 vmci_trans(vpending)->qpair = qpair;
1214
1215 /* When we send the attach message, we must be ready to handle incoming
1216 * control messages on the newly connected socket. So we move the
1217 * pending socket to the connected state before sending the attach
1218 * message. Otherwise, an incoming packet triggered by the attach being
1219 * received by the peer may be processed concurrently with what happens
1220 * below after sending the attach message, and that incoming packet
1221 * will find the listening socket instead of the (currently) pending
1222 * socket. Note that enqueueing the socket increments the reference
1223 * count, so even if a reset comes before the connection is accepted,
1224 * the socket will be valid until it is removed from the queue.
1225 *
1226 * If we fail sending the attach below, we remove the socket from the
1227 * connected list and move the socket to TCP_CLOSE before
1228 * releasing the lock, so a pending slow path processing of an incoming
1229 * packet will not see the socket in the connected state in that case.
1230 */
1231 pending->sk_state = TCP_ESTABLISHED;
1232
1233 vsock_insert_connected(vpending);
1234
1235 /* Notify our peer of our attach. */
1236 err = vmci_transport_send_attach(pending, handle);
1237 if (err < 0) {
1238 vsock_remove_connected(vpending);
1239 pr_err("Could not send attach\n");
1240 vmci_transport_send_reset(pending, pkt);
1241 err = vmci_transport_error_to_vsock_error(err);
1242 skerr = -err;
1243 goto destroy;
1244 }
1245
1246 /* We have a connection. Move the now connected socket from the
1247 * listener's pending list to the accept queue so callers of accept()
1248 * can find it.
1249 */
1250 vsock_remove_pending(listener, pending);
1251 vsock_enqueue_accept(listener, pending);
1252
1253 /* Callers of accept() will be be waiting on the listening socket, not
1254 * the pending socket.
1255 */
1256 listener->sk_data_ready(listener);
1257
1258 return 0;
1259
1260 destroy:
1261 pending->sk_err = skerr;
1262 pending->sk_state = TCP_CLOSE;
1263 /* As long as we drop our reference, all necessary cleanup will handle
1264 * when the cleanup function drops its reference and our destruct
1265 * implementation is called. Note that since the listen handler will
1266 * remove pending from the pending list upon our failure, the cleanup
1267 * function won't drop the additional reference, which is why we do it
1268 * here.
1269 */
1270 sock_put(pending);
1271
1272 return err;
1273 }
1274
1275 static int
1276 vmci_transport_recv_connecting_client(struct sock *sk,
1277 struct vmci_transport_packet *pkt)
1278 {
1279 struct vsock_sock *vsk;
1280 int err;
1281 int skerr;
1282
1283 vsk = vsock_sk(sk);
1284
1285 switch (pkt->type) {
1286 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
1287 if (vmci_handle_is_invalid(pkt->u.handle) ||
1288 !vmci_handle_is_equal(pkt->u.handle,
1289 vmci_trans(vsk)->qp_handle)) {
1290 skerr = EPROTO;
1291 err = -EINVAL;
1292 goto destroy;
1293 }
1294
1295 /* Signify the socket is connected and wakeup the waiter in
1296 * connect(). Also place the socket in the connected table for
1297 * accounting (it can already be found since it's in the bound
1298 * table).
1299 */
1300 sk->sk_state = TCP_ESTABLISHED;
1301 sk->sk_socket->state = SS_CONNECTED;
1302 vsock_insert_connected(vsk);
1303 sk->sk_state_change(sk);
1304
1305 break;
1306 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
1307 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
1308 if (pkt->u.size == 0
1309 || pkt->dg.src.context != vsk->remote_addr.svm_cid
1310 || pkt->src_port != vsk->remote_addr.svm_port
1311 || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
1312 || vmci_trans(vsk)->qpair
1313 || vmci_trans(vsk)->produce_size != 0
1314 || vmci_trans(vsk)->consume_size != 0
1315 || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1316 skerr = EPROTO;
1317 err = -EINVAL;
1318
1319 goto destroy;
1320 }
1321
1322 err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
1323 if (err) {
1324 skerr = -err;
1325 goto destroy;
1326 }
1327
1328 break;
1329 case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
1330 err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
1331 if (err) {
1332 skerr = -err;
1333 goto destroy;
1334 }
1335
1336 break;
1337 case VMCI_TRANSPORT_PACKET_TYPE_RST:
1338 /* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
1339 * continue processing here after they sent an INVALID packet.
1340 * This meant that we got a RST after the INVALID. We ignore a
1341 * RST after an INVALID. The common code doesn't send the RST
1342 * ... so we can hang if an old version of the common code
1343 * fails between getting a REQUEST and sending an OFFER back.
1344 * Not much we can do about it... except hope that it doesn't
1345 * happen.
1346 */
1347 if (vsk->ignore_connecting_rst) {
1348 vsk->ignore_connecting_rst = false;
1349 } else {
1350 skerr = ECONNRESET;
1351 err = 0;
1352 goto destroy;
1353 }
1354
1355 break;
1356 default:
1357 /* Close and cleanup the connection. */
1358 skerr = EPROTO;
1359 err = -EINVAL;
1360 goto destroy;
1361 }
1362
1363 return 0;
1364
1365 destroy:
1366 vmci_transport_send_reset(sk, pkt);
1367
1368 sk->sk_state = TCP_CLOSE;
1369 sk->sk_err = skerr;
1370 sk->sk_error_report(sk);
1371 return err;
1372 }
1373
1374 static int vmci_transport_recv_connecting_client_negotiate(
1375 struct sock *sk,
1376 struct vmci_transport_packet *pkt)
1377 {
1378 int err;
1379 struct vsock_sock *vsk;
1380 struct vmci_handle handle;
1381 struct vmci_qp *qpair;
1382 u32 detach_sub_id;
1383 bool is_local;
1384 u32 flags;
1385 bool old_proto = true;
1386 bool old_pkt_proto;
1387 u16 version;
1388
1389 vsk = vsock_sk(sk);
1390 handle = VMCI_INVALID_HANDLE;
1391 detach_sub_id = VMCI_INVALID_ID;
1392
1393 /* If we have gotten here then we should be past the point where old
1394 * linux vsock could have sent the bogus rst.
1395 */
1396 vsk->sent_request = false;
1397 vsk->ignore_connecting_rst = false;
1398
1399 /* Verify that we're OK with the proposed queue pair size */
1400 if (pkt->u.size < vsk->buffer_min_size ||
1401 pkt->u.size > vsk->buffer_max_size) {
1402 err = -EINVAL;
1403 goto destroy;
1404 }
1405
1406 /* At this point we know the CID the peer is using to talk to us. */
1407
1408 if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
1409 vsk->local_addr.svm_cid = pkt->dg.dst.context;
1410
1411 /* Setup the notify ops to be the highest supported version that both
1412 * the server and the client support.
1413 */
1414
1415 if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1416 old_proto = old_pkt_proto;
1417 } else {
1418 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
1419 old_proto = true;
1420 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
1421 old_proto = false;
1422
1423 }
1424
1425 if (old_proto)
1426 version = VSOCK_PROTO_INVALID;
1427 else
1428 version = pkt->proto;
1429
1430 if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
1431 err = -EINVAL;
1432 goto destroy;
1433 }
1434
1435 /* Subscribe to detach events first.
1436 *
1437 * XXX We attach once for each queue pair created for now so it is easy
1438 * to find the socket (it's provided), but later we should only
1439 * subscribe once and add a way to lookup sockets by queue pair handle.
1440 */
1441 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1442 vmci_transport_peer_detach_cb,
1443 vmci_trans(vsk), &detach_sub_id);
1444 if (err < VMCI_SUCCESS) {
1445 err = vmci_transport_error_to_vsock_error(err);
1446 goto destroy;
1447 }
1448
1449 /* Make VMCI select the handle for us. */
1450 handle = VMCI_INVALID_HANDLE;
1451 is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
1452 flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
1453
1454 err = vmci_transport_queue_pair_alloc(&qpair,
1455 &handle,
1456 pkt->u.size,
1457 pkt->u.size,
1458 vsk->remote_addr.svm_cid,
1459 flags,
1460 vmci_transport_is_trusted(
1461 vsk,
1462 vsk->
1463 remote_addr.svm_cid));
1464 if (err < 0)
1465 goto destroy;
1466
1467 err = vmci_transport_send_qp_offer(sk, handle);
1468 if (err < 0) {
1469 err = vmci_transport_error_to_vsock_error(err);
1470 goto destroy;
1471 }
1472
1473 vmci_trans(vsk)->qp_handle = handle;
1474 vmci_trans(vsk)->qpair = qpair;
1475
1476 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
1477 pkt->u.size;
1478
1479 vmci_trans(vsk)->detach_sub_id = detach_sub_id;
1480
1481 vmci_trans(vsk)->notify_ops->process_negotiate(sk);
1482
1483 return 0;
1484
1485 destroy:
1486 if (detach_sub_id != VMCI_INVALID_ID)
1487 vmci_event_unsubscribe(detach_sub_id);
1488
1489 if (!vmci_handle_is_invalid(handle))
1490 vmci_qpair_detach(&qpair);
1491
1492 return err;
1493 }
1494
1495 static int
1496 vmci_transport_recv_connecting_client_invalid(struct sock *sk,
1497 struct vmci_transport_packet *pkt)
1498 {
1499 int err = 0;
1500 struct vsock_sock *vsk = vsock_sk(sk);
1501
1502 if (vsk->sent_request) {
1503 vsk->sent_request = false;
1504 vsk->ignore_connecting_rst = true;
1505
1506 err = vmci_transport_send_conn_request(sk, vsk->buffer_size);
1507 if (err < 0)
1508 err = vmci_transport_error_to_vsock_error(err);
1509 else
1510 err = 0;
1511
1512 }
1513
1514 return err;
1515 }
1516
1517 static int vmci_transport_recv_connected(struct sock *sk,
1518 struct vmci_transport_packet *pkt)
1519 {
1520 struct vsock_sock *vsk;
1521 bool pkt_processed = false;
1522
1523 /* In cases where we are closing the connection, it's sufficient to
1524 * mark the state change (and maybe error) and wake up any waiting
1525 * threads. Since this is a connected socket, it's owned by a user
1526 * process and will be cleaned up when the failure is passed back on
1527 * the current or next system call. Our system call implementations
1528 * must therefore check for error and state changes on entry and when
1529 * being awoken.
1530 */
1531 switch (pkt->type) {
1532 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
1533 if (pkt->u.mode) {
1534 vsk = vsock_sk(sk);
1535
1536 vsk->peer_shutdown |= pkt->u.mode;
1537 sk->sk_state_change(sk);
1538 }
1539 break;
1540
1541 case VMCI_TRANSPORT_PACKET_TYPE_RST:
1542 vsk = vsock_sk(sk);
1543 /* It is possible that we sent our peer a message (e.g a
1544 * WAITING_READ) right before we got notified that the peer had
1545 * detached. If that happens then we can get a RST pkt back
1546 * from our peer even though there is data available for us to
1547 * read. In that case, don't shutdown the socket completely but
1548 * instead allow the local client to finish reading data off
1549 * the queuepair. Always treat a RST pkt in connected mode like
1550 * a clean shutdown.
1551 */
1552 sock_set_flag(sk, SOCK_DONE);
1553 vsk->peer_shutdown = SHUTDOWN_MASK;
1554 if (vsock_stream_has_data(vsk) <= 0)
1555 sk->sk_state = TCP_CLOSING;
1556
1557 sk->sk_state_change(sk);
1558 break;
1559
1560 default:
1561 vsk = vsock_sk(sk);
1562 vmci_trans(vsk)->notify_ops->handle_notify_pkt(
1563 sk, pkt, false, NULL, NULL,
1564 &pkt_processed);
1565 if (!pkt_processed)
1566 return -EINVAL;
1567
1568 break;
1569 }
1570
1571 return 0;
1572 }
1573
1574 static int vmci_transport_socket_init(struct vsock_sock *vsk,
1575 struct vsock_sock *psk)
1576 {
1577 vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
1578 if (!vsk->trans)
1579 return -ENOMEM;
1580
1581 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1582 vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1583 vmci_trans(vsk)->qpair = NULL;
1584 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
1585 vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
1586 vmci_trans(vsk)->notify_ops = NULL;
1587 INIT_LIST_HEAD(&vmci_trans(vsk)->elem);
1588 vmci_trans(vsk)->sk = &vsk->sk;
1589 spin_lock_init(&vmci_trans(vsk)->lock);
1590
1591 return 0;
1592 }
1593
1594 static void vmci_transport_free_resources(struct list_head *transport_list)
1595 {
1596 while (!list_empty(transport_list)) {
1597 struct vmci_transport *transport =
1598 list_first_entry(transport_list, struct vmci_transport,
1599 elem);
1600 list_del(&transport->elem);
1601
1602 if (transport->detach_sub_id != VMCI_INVALID_ID) {
1603 vmci_event_unsubscribe(transport->detach_sub_id);
1604 transport->detach_sub_id = VMCI_INVALID_ID;
1605 }
1606
1607 if (!vmci_handle_is_invalid(transport->qp_handle)) {
1608 vmci_qpair_detach(&transport->qpair);
1609 transport->qp_handle = VMCI_INVALID_HANDLE;
1610 transport->produce_size = 0;
1611 transport->consume_size = 0;
1612 }
1613
1614 kfree(transport);
1615 }
1616 }
1617
1618 static void vmci_transport_cleanup(struct work_struct *work)
1619 {
1620 LIST_HEAD(pending);
1621
1622 spin_lock_bh(&vmci_transport_cleanup_lock);
1623 list_replace_init(&vmci_transport_cleanup_list, &pending);
1624 spin_unlock_bh(&vmci_transport_cleanup_lock);
1625 vmci_transport_free_resources(&pending);
1626 }
1627
1628 static void vmci_transport_destruct(struct vsock_sock *vsk)
1629 {
1630 /* transport can be NULL if we hit a failure at init() time */
1631 if (!vmci_trans(vsk))
1632 return;
1633
1634 /* Ensure that the detach callback doesn't use the sk/vsk
1635 * we are about to destruct.
1636 */
1637 spin_lock_bh(&vmci_trans(vsk)->lock);
1638 vmci_trans(vsk)->sk = NULL;
1639 spin_unlock_bh(&vmci_trans(vsk)->lock);
1640
1641 if (vmci_trans(vsk)->notify_ops)
1642 vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
1643
1644 spin_lock_bh(&vmci_transport_cleanup_lock);
1645 list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list);
1646 spin_unlock_bh(&vmci_transport_cleanup_lock);
1647 schedule_work(&vmci_transport_cleanup_work);
1648
1649 vsk->trans = NULL;
1650 }
1651
1652 static void vmci_transport_release(struct vsock_sock *vsk)
1653 {
1654 vsock_remove_sock(vsk);
1655
1656 if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
1657 vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
1658 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1659 }
1660 }
1661
1662 static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
1663 struct sockaddr_vm *addr)
1664 {
1665 u32 port;
1666 u32 flags;
1667 int err;
1668
1669 /* VMCI will select a resource ID for us if we provide
1670 * VMCI_INVALID_ID.
1671 */
1672 port = addr->svm_port == VMADDR_PORT_ANY ?
1673 VMCI_INVALID_ID : addr->svm_port;
1674
1675 if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
1676 return -EACCES;
1677
1678 flags = addr->svm_cid == VMADDR_CID_ANY ?
1679 VMCI_FLAG_ANYCID_DG_HND : 0;
1680
1681 err = vmci_transport_datagram_create_hnd(port, flags,
1682 vmci_transport_recv_dgram_cb,
1683 &vsk->sk,
1684 &vmci_trans(vsk)->dg_handle);
1685 if (err < VMCI_SUCCESS)
1686 return vmci_transport_error_to_vsock_error(err);
1687 vsock_addr_init(&vsk->local_addr, addr->svm_cid,
1688 vmci_trans(vsk)->dg_handle.resource);
1689
1690 return 0;
1691 }
1692
1693 static int vmci_transport_dgram_enqueue(
1694 struct vsock_sock *vsk,
1695 struct sockaddr_vm *remote_addr,
1696 struct msghdr *msg,
1697 size_t len)
1698 {
1699 int err;
1700 struct vmci_datagram *dg;
1701
1702 if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
1703 return -EMSGSIZE;
1704
1705 if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
1706 return -EPERM;
1707
1708 /* Allocate a buffer for the user's message and our packet header. */
1709 dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
1710 if (!dg)
1711 return -ENOMEM;
1712
1713 memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len);
1714
1715 dg->dst = vmci_make_handle(remote_addr->svm_cid,
1716 remote_addr->svm_port);
1717 dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
1718 vsk->local_addr.svm_port);
1719 dg->payload_size = len;
1720
1721 err = vmci_datagram_send(dg);
1722 kfree(dg);
1723 if (err < 0)
1724 return vmci_transport_error_to_vsock_error(err);
1725
1726 return err - sizeof(*dg);
1727 }
1728
1729 static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk,
1730 struct msghdr *msg, size_t len,
1731 int flags)
1732 {
1733 int err;
1734 int noblock;
1735 struct vmci_datagram *dg;
1736 size_t payload_len;
1737 struct sk_buff *skb;
1738
1739 noblock = flags & MSG_DONTWAIT;
1740
1741 if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
1742 return -EOPNOTSUPP;
1743
1744 /* Retrieve the head sk_buff from the socket's receive queue. */
1745 err = 0;
1746 skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err);
1747 if (!skb)
1748 return err;
1749
1750 dg = (struct vmci_datagram *)skb->data;
1751 if (!dg)
1752 /* err is 0, meaning we read zero bytes. */
1753 goto out;
1754
1755 payload_len = dg->payload_size;
1756 /* Ensure the sk_buff matches the payload size claimed in the packet. */
1757 if (payload_len != skb->len - sizeof(*dg)) {
1758 err = -EINVAL;
1759 goto out;
1760 }
1761
1762 if (payload_len > len) {
1763 payload_len = len;
1764 msg->msg_flags |= MSG_TRUNC;
1765 }
1766
1767 /* Place the datagram payload in the user's iovec. */
1768 err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len);
1769 if (err)
1770 goto out;
1771
1772 if (msg->msg_name) {
1773 /* Provide the address of the sender. */
1774 DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name);
1775 vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
1776 msg->msg_namelen = sizeof(*vm_addr);
1777 }
1778 err = payload_len;
1779
1780 out:
1781 skb_free_datagram(&vsk->sk, skb);
1782 return err;
1783 }
1784
1785 static bool vmci_transport_dgram_allow(u32 cid, u32 port)
1786 {
1787 if (cid == VMADDR_CID_HYPERVISOR) {
1788 /* Registrations of PBRPC Servers do not modify VMX/Hypervisor
1789 * state and are allowed.
1790 */
1791 return port == VMCI_UNITY_PBRPC_REGISTER;
1792 }
1793
1794 return true;
1795 }
1796
1797 static int vmci_transport_connect(struct vsock_sock *vsk)
1798 {
1799 int err;
1800 bool old_pkt_proto = false;
1801 struct sock *sk = &vsk->sk;
1802
1803 if (vmci_transport_old_proto_override(&old_pkt_proto) &&
1804 old_pkt_proto) {
1805 err = vmci_transport_send_conn_request(sk, vsk->buffer_size);
1806 if (err < 0) {
1807 sk->sk_state = TCP_CLOSE;
1808 return err;
1809 }
1810 } else {
1811 int supported_proto_versions =
1812 vmci_transport_new_proto_supported_versions();
1813 err = vmci_transport_send_conn_request2(sk, vsk->buffer_size,
1814 supported_proto_versions);
1815 if (err < 0) {
1816 sk->sk_state = TCP_CLOSE;
1817 return err;
1818 }
1819
1820 vsk->sent_request = true;
1821 }
1822
1823 return err;
1824 }
1825
1826 static ssize_t vmci_transport_stream_dequeue(
1827 struct vsock_sock *vsk,
1828 struct msghdr *msg,
1829 size_t len,
1830 int flags)
1831 {
1832 if (flags & MSG_PEEK)
1833 return vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0);
1834 else
1835 return vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0);
1836 }
1837
1838 static ssize_t vmci_transport_stream_enqueue(
1839 struct vsock_sock *vsk,
1840 struct msghdr *msg,
1841 size_t len)
1842 {
1843 return vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0);
1844 }
1845
1846 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
1847 {
1848 return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
1849 }
1850
1851 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
1852 {
1853 return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
1854 }
1855
1856 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
1857 {
1858 return vmci_trans(vsk)->consume_size;
1859 }
1860
1861 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
1862 {
1863 return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
1864 }
1865
1866 static int vmci_transport_notify_poll_in(
1867 struct vsock_sock *vsk,
1868 size_t target,
1869 bool *data_ready_now)
1870 {
1871 return vmci_trans(vsk)->notify_ops->poll_in(
1872 &vsk->sk, target, data_ready_now);
1873 }
1874
1875 static int vmci_transport_notify_poll_out(
1876 struct vsock_sock *vsk,
1877 size_t target,
1878 bool *space_available_now)
1879 {
1880 return vmci_trans(vsk)->notify_ops->poll_out(
1881 &vsk->sk, target, space_available_now);
1882 }
1883
1884 static int vmci_transport_notify_recv_init(
1885 struct vsock_sock *vsk,
1886 size_t target,
1887 struct vsock_transport_recv_notify_data *data)
1888 {
1889 return vmci_trans(vsk)->notify_ops->recv_init(
1890 &vsk->sk, target,
1891 (struct vmci_transport_recv_notify_data *)data);
1892 }
1893
1894 static int vmci_transport_notify_recv_pre_block(
1895 struct vsock_sock *vsk,
1896 size_t target,
1897 struct vsock_transport_recv_notify_data *data)
1898 {
1899 return vmci_trans(vsk)->notify_ops->recv_pre_block(
1900 &vsk->sk, target,
1901 (struct vmci_transport_recv_notify_data *)data);
1902 }
1903
1904 static int vmci_transport_notify_recv_pre_dequeue(
1905 struct vsock_sock *vsk,
1906 size_t target,
1907 struct vsock_transport_recv_notify_data *data)
1908 {
1909 return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
1910 &vsk->sk, target,
1911 (struct vmci_transport_recv_notify_data *)data);
1912 }
1913
1914 static int vmci_transport_notify_recv_post_dequeue(
1915 struct vsock_sock *vsk,
1916 size_t target,
1917 ssize_t copied,
1918 bool data_read,
1919 struct vsock_transport_recv_notify_data *data)
1920 {
1921 return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
1922 &vsk->sk, target, copied, data_read,
1923 (struct vmci_transport_recv_notify_data *)data);
1924 }
1925
1926 static int vmci_transport_notify_send_init(
1927 struct vsock_sock *vsk,
1928 struct vsock_transport_send_notify_data *data)
1929 {
1930 return vmci_trans(vsk)->notify_ops->send_init(
1931 &vsk->sk,
1932 (struct vmci_transport_send_notify_data *)data);
1933 }
1934
1935 static int vmci_transport_notify_send_pre_block(
1936 struct vsock_sock *vsk,
1937 struct vsock_transport_send_notify_data *data)
1938 {
1939 return vmci_trans(vsk)->notify_ops->send_pre_block(
1940 &vsk->sk,
1941 (struct vmci_transport_send_notify_data *)data);
1942 }
1943
1944 static int vmci_transport_notify_send_pre_enqueue(
1945 struct vsock_sock *vsk,
1946 struct vsock_transport_send_notify_data *data)
1947 {
1948 return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
1949 &vsk->sk,
1950 (struct vmci_transport_send_notify_data *)data);
1951 }
1952
1953 static int vmci_transport_notify_send_post_enqueue(
1954 struct vsock_sock *vsk,
1955 ssize_t written,
1956 struct vsock_transport_send_notify_data *data)
1957 {
1958 return vmci_trans(vsk)->notify_ops->send_post_enqueue(
1959 &vsk->sk, written,
1960 (struct vmci_transport_send_notify_data *)data);
1961 }
1962
1963 static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
1964 {
1965 if (PROTOCOL_OVERRIDE != -1) {
1966 if (PROTOCOL_OVERRIDE == 0)
1967 *old_pkt_proto = true;
1968 else
1969 *old_pkt_proto = false;
1970
1971 pr_info("Proto override in use\n");
1972 return true;
1973 }
1974
1975 return false;
1976 }
1977
1978 static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
1979 u16 *proto,
1980 bool old_pkt_proto)
1981 {
1982 struct vsock_sock *vsk = vsock_sk(sk);
1983
1984 if (old_pkt_proto) {
1985 if (*proto != VSOCK_PROTO_INVALID) {
1986 pr_err("Can't set both an old and new protocol\n");
1987 return false;
1988 }
1989 vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
1990 goto exit;
1991 }
1992
1993 switch (*proto) {
1994 case VSOCK_PROTO_PKT_ON_NOTIFY:
1995 vmci_trans(vsk)->notify_ops =
1996 &vmci_transport_notify_pkt_q_state_ops;
1997 break;
1998 default:
1999 pr_err("Unknown notify protocol version\n");
2000 return false;
2001 }
2002
2003 exit:
2004 vmci_trans(vsk)->notify_ops->socket_init(sk);
2005 return true;
2006 }
2007
2008 static u16 vmci_transport_new_proto_supported_versions(void)
2009 {
2010 if (PROTOCOL_OVERRIDE != -1)
2011 return PROTOCOL_OVERRIDE;
2012
2013 return VSOCK_PROTO_ALL_SUPPORTED;
2014 }
2015
2016 static u32 vmci_transport_get_local_cid(void)
2017 {
2018 return vmci_get_context_id();
2019 }
2020
2021 static struct vsock_transport vmci_transport = {
2022 .module = THIS_MODULE,
2023 .init = vmci_transport_socket_init,
2024 .destruct = vmci_transport_destruct,
2025 .release = vmci_transport_release,
2026 .connect = vmci_transport_connect,
2027 .dgram_bind = vmci_transport_dgram_bind,
2028 .dgram_dequeue = vmci_transport_dgram_dequeue,
2029 .dgram_enqueue = vmci_transport_dgram_enqueue,
2030 .dgram_allow = vmci_transport_dgram_allow,
2031 .stream_dequeue = vmci_transport_stream_dequeue,
2032 .stream_enqueue = vmci_transport_stream_enqueue,
2033 .stream_has_data = vmci_transport_stream_has_data,
2034 .stream_has_space = vmci_transport_stream_has_space,
2035 .stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
2036 .stream_is_active = vmci_transport_stream_is_active,
2037 .stream_allow = vmci_transport_stream_allow,
2038 .notify_poll_in = vmci_transport_notify_poll_in,
2039 .notify_poll_out = vmci_transport_notify_poll_out,
2040 .notify_recv_init = vmci_transport_notify_recv_init,
2041 .notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
2042 .notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
2043 .notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
2044 .notify_send_init = vmci_transport_notify_send_init,
2045 .notify_send_pre_block = vmci_transport_notify_send_pre_block,
2046 .notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
2047 .notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
2048 .shutdown = vmci_transport_shutdown,
2049 .get_local_cid = vmci_transport_get_local_cid,
2050 };
2051
2052 static bool vmci_check_transport(struct vsock_sock *vsk)
2053 {
2054 return vsk->transport == &vmci_transport;
2055 }
2056
2057 static void vmci_vsock_transport_cb(bool is_host)
2058 {
2059 int features;
2060
2061 if (is_host)
2062 features = VSOCK_TRANSPORT_F_H2G;
2063 else
2064 features = VSOCK_TRANSPORT_F_G2H;
2065
2066 vsock_core_register(&vmci_transport, features);
2067 }
2068
2069 static int __init vmci_transport_init(void)
2070 {
2071 int err;
2072
2073 /* Create the datagram handle that we will use to send and receive all
2074 * VSocket control messages for this context.
2075 */
2076 err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
2077 VMCI_FLAG_ANYCID_DG_HND,
2078 vmci_transport_recv_stream_cb,
2079 NULL,
2080 &vmci_transport_stream_handle);
2081 if (err < VMCI_SUCCESS) {
2082 pr_err("Unable to create datagram handle. (%d)\n", err);
2083 return vmci_transport_error_to_vsock_error(err);
2084 }
2085 err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
2086 vmci_transport_qp_resumed_cb,
2087 NULL, &vmci_transport_qp_resumed_sub_id);
2088 if (err < VMCI_SUCCESS) {
2089 pr_err("Unable to subscribe to resumed event. (%d)\n", err);
2090 err = vmci_transport_error_to_vsock_error(err);
2091 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2092 goto err_destroy_stream_handle;
2093 }
2094
2095 /* Register only with dgram feature, other features (H2G, G2H) will be
2096 * registered when the first host or guest becomes active.
2097 */
2098 err = vsock_core_register(&vmci_transport, VSOCK_TRANSPORT_F_DGRAM);
2099 if (err < 0)
2100 goto err_unsubscribe;
2101
2102 err = vmci_register_vsock_callback(vmci_vsock_transport_cb);
2103 if (err < 0)
2104 goto err_unregister;
2105
2106 return 0;
2107
2108 err_unregister:
2109 vsock_core_unregister(&vmci_transport);
2110 err_unsubscribe:
2111 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2112 err_destroy_stream_handle:
2113 vmci_datagram_destroy_handle(vmci_transport_stream_handle);
2114 return err;
2115 }
2116 module_init(vmci_transport_init);
2117
2118 static void __exit vmci_transport_exit(void)
2119 {
2120 cancel_work_sync(&vmci_transport_cleanup_work);
2121 vmci_transport_free_resources(&vmci_transport_cleanup_list);
2122
2123 if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
2124 if (vmci_datagram_destroy_handle(
2125 vmci_transport_stream_handle) != VMCI_SUCCESS)
2126 pr_err("Couldn't destroy datagram handle\n");
2127 vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
2128 }
2129
2130 if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
2131 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2132 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2133 }
2134
2135 vmci_register_vsock_callback(NULL);
2136 vsock_core_unregister(&vmci_transport);
2137 }
2138 module_exit(vmci_transport_exit);
2139
2140 MODULE_AUTHOR("VMware, Inc.");
2141 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
2142 MODULE_VERSION("1.0.5.0-k");
2143 MODULE_LICENSE("GPL v2");
2144 MODULE_ALIAS("vmware_vsock");
2145 MODULE_ALIAS_NETPROTO(PF_VSOCK);