]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/wireless/reg.c
cfg80211: move world roaming check for beacon hints
[mirror_ubuntu-bionic-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20
21 /**
22 * DOC: Wireless regulatory infrastructure
23 *
24 * The usual implementation is for a driver to read a device EEPROM to
25 * determine which regulatory domain it should be operating under, then
26 * looking up the allowable channels in a driver-local table and finally
27 * registering those channels in the wiphy structure.
28 *
29 * Another set of compliance enforcement is for drivers to use their
30 * own compliance limits which can be stored on the EEPROM. The host
31 * driver or firmware may ensure these are used.
32 *
33 * In addition to all this we provide an extra layer of regulatory
34 * conformance. For drivers which do not have any regulatory
35 * information CRDA provides the complete regulatory solution.
36 * For others it provides a community effort on further restrictions
37 * to enhance compliance.
38 *
39 * Note: When number of rules --> infinity we will not be able to
40 * index on alpha2 any more, instead we'll probably have to
41 * rely on some SHA1 checksum of the regdomain for example.
42 *
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
56 #include "core.h"
57 #include "reg.h"
58 #include "regdb.h"
59 #include "nl80211.h"
60
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...) \
63 printk(KERN_DEBUG pr_fmt(format), ##args)
64 #else
65 #define REG_DBG_PRINT(args...)
66 #endif
67
68 enum reg_request_treatment {
69 REG_REQ_OK,
70 REG_REQ_IGNORE,
71 REG_REQ_INTERSECT,
72 REG_REQ_ALREADY_SET,
73 };
74
75 static struct regulatory_request core_request_world = {
76 .initiator = NL80211_REGDOM_SET_BY_CORE,
77 .alpha2[0] = '0',
78 .alpha2[1] = '0',
79 .intersect = false,
80 .processed = true,
81 .country_ie_env = ENVIRON_ANY,
82 };
83
84 /* Receipt of information from last regulatory request */
85 static struct regulatory_request __rcu *last_request =
86 (void __rcu *)&core_request_world;
87
88 /* To trigger userspace events */
89 static struct platform_device *reg_pdev;
90
91 static struct device_type reg_device_type = {
92 .uevent = reg_device_uevent,
93 };
94
95 /*
96 * Central wireless core regulatory domains, we only need two,
97 * the current one and a world regulatory domain in case we have no
98 * information to give us an alpha2.
99 */
100 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
101
102 /*
103 * Protects static reg.c components:
104 * - cfg80211_regdomain (if not used with RCU)
105 * - cfg80211_world_regdom
106 * - last_request (if not used with RCU)
107 * - reg_num_devs_support_basehint
108 */
109 static DEFINE_MUTEX(reg_mutex);
110
111 /*
112 * Number of devices that registered to the core
113 * that support cellular base station regulatory hints
114 */
115 static int reg_num_devs_support_basehint;
116
117 static inline void assert_reg_lock(void)
118 {
119 lockdep_assert_held(&reg_mutex);
120 }
121
122 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
123 {
124 return rcu_dereference_protected(cfg80211_regdomain,
125 lockdep_is_held(&reg_mutex));
126 }
127
128 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
129 {
130 return rcu_dereference_protected(wiphy->regd,
131 lockdep_is_held(&reg_mutex));
132 }
133
134 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
135 {
136 if (!r)
137 return;
138 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
139 }
140
141 static struct regulatory_request *get_last_request(void)
142 {
143 return rcu_dereference_protected(last_request,
144 lockdep_is_held(&reg_mutex));
145 }
146
147 /* Used to queue up regulatory hints */
148 static LIST_HEAD(reg_requests_list);
149 static spinlock_t reg_requests_lock;
150
151 /* Used to queue up beacon hints for review */
152 static LIST_HEAD(reg_pending_beacons);
153 static spinlock_t reg_pending_beacons_lock;
154
155 /* Used to keep track of processed beacon hints */
156 static LIST_HEAD(reg_beacon_list);
157
158 struct reg_beacon {
159 struct list_head list;
160 struct ieee80211_channel chan;
161 };
162
163 static void reg_todo(struct work_struct *work);
164 static DECLARE_WORK(reg_work, reg_todo);
165
166 static void reg_timeout_work(struct work_struct *work);
167 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
168
169 /* We keep a static world regulatory domain in case of the absence of CRDA */
170 static const struct ieee80211_regdomain world_regdom = {
171 .n_reg_rules = 6,
172 .alpha2 = "00",
173 .reg_rules = {
174 /* IEEE 802.11b/g, channels 1..11 */
175 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
176 /* IEEE 802.11b/g, channels 12..13. */
177 REG_RULE(2467-10, 2472+10, 40, 6, 20,
178 NL80211_RRF_PASSIVE_SCAN |
179 NL80211_RRF_NO_IBSS),
180 /* IEEE 802.11 channel 14 - Only JP enables
181 * this and for 802.11b only */
182 REG_RULE(2484-10, 2484+10, 20, 6, 20,
183 NL80211_RRF_PASSIVE_SCAN |
184 NL80211_RRF_NO_IBSS |
185 NL80211_RRF_NO_OFDM),
186 /* IEEE 802.11a, channel 36..48 */
187 REG_RULE(5180-10, 5240+10, 40, 6, 20,
188 NL80211_RRF_PASSIVE_SCAN |
189 NL80211_RRF_NO_IBSS),
190
191 /* NB: 5260 MHz - 5700 MHz requies DFS */
192
193 /* IEEE 802.11a, channel 149..165 */
194 REG_RULE(5745-10, 5825+10, 40, 6, 20,
195 NL80211_RRF_PASSIVE_SCAN |
196 NL80211_RRF_NO_IBSS),
197
198 /* IEEE 802.11ad (60gHz), channels 1..3 */
199 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
200 }
201 };
202
203 static const struct ieee80211_regdomain *cfg80211_world_regdom =
204 &world_regdom;
205
206 static char *ieee80211_regdom = "00";
207 static char user_alpha2[2];
208
209 module_param(ieee80211_regdom, charp, 0444);
210 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
211
212 static void reset_regdomains(bool full_reset,
213 const struct ieee80211_regdomain *new_regdom)
214 {
215 const struct ieee80211_regdomain *r;
216 struct regulatory_request *lr;
217
218 assert_reg_lock();
219
220 r = get_cfg80211_regdom();
221
222 /* avoid freeing static information or freeing something twice */
223 if (r == cfg80211_world_regdom)
224 r = NULL;
225 if (cfg80211_world_regdom == &world_regdom)
226 cfg80211_world_regdom = NULL;
227 if (r == &world_regdom)
228 r = NULL;
229
230 rcu_free_regdom(r);
231 rcu_free_regdom(cfg80211_world_regdom);
232
233 cfg80211_world_regdom = &world_regdom;
234 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
235
236 if (!full_reset)
237 return;
238
239 lr = get_last_request();
240 if (lr != &core_request_world && lr)
241 kfree_rcu(lr, rcu_head);
242 rcu_assign_pointer(last_request, &core_request_world);
243 }
244
245 /*
246 * Dynamic world regulatory domain requested by the wireless
247 * core upon initialization
248 */
249 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
250 {
251 struct regulatory_request *lr;
252
253 lr = get_last_request();
254
255 WARN_ON(!lr);
256
257 reset_regdomains(false, rd);
258
259 cfg80211_world_regdom = rd;
260 }
261
262 bool is_world_regdom(const char *alpha2)
263 {
264 if (!alpha2)
265 return false;
266 return alpha2[0] == '0' && alpha2[1] == '0';
267 }
268
269 static bool is_alpha2_set(const char *alpha2)
270 {
271 if (!alpha2)
272 return false;
273 return alpha2[0] && alpha2[1];
274 }
275
276 static bool is_unknown_alpha2(const char *alpha2)
277 {
278 if (!alpha2)
279 return false;
280 /*
281 * Special case where regulatory domain was built by driver
282 * but a specific alpha2 cannot be determined
283 */
284 return alpha2[0] == '9' && alpha2[1] == '9';
285 }
286
287 static bool is_intersected_alpha2(const char *alpha2)
288 {
289 if (!alpha2)
290 return false;
291 /*
292 * Special case where regulatory domain is the
293 * result of an intersection between two regulatory domain
294 * structures
295 */
296 return alpha2[0] == '9' && alpha2[1] == '8';
297 }
298
299 static bool is_an_alpha2(const char *alpha2)
300 {
301 if (!alpha2)
302 return false;
303 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
304 }
305
306 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
307 {
308 if (!alpha2_x || !alpha2_y)
309 return false;
310 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
311 }
312
313 static bool regdom_changes(const char *alpha2)
314 {
315 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
316
317 if (!r)
318 return true;
319 return !alpha2_equal(r->alpha2, alpha2);
320 }
321
322 /*
323 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
324 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
325 * has ever been issued.
326 */
327 static bool is_user_regdom_saved(void)
328 {
329 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
330 return false;
331
332 /* This would indicate a mistake on the design */
333 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
334 "Unexpected user alpha2: %c%c\n",
335 user_alpha2[0], user_alpha2[1]))
336 return false;
337
338 return true;
339 }
340
341 static const struct ieee80211_regdomain *
342 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
343 {
344 struct ieee80211_regdomain *regd;
345 int size_of_regd;
346 unsigned int i;
347
348 size_of_regd =
349 sizeof(struct ieee80211_regdomain) +
350 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
351
352 regd = kzalloc(size_of_regd, GFP_KERNEL);
353 if (!regd)
354 return ERR_PTR(-ENOMEM);
355
356 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
357
358 for (i = 0; i < src_regd->n_reg_rules; i++)
359 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
360 sizeof(struct ieee80211_reg_rule));
361
362 return regd;
363 }
364
365 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
366 struct reg_regdb_search_request {
367 char alpha2[2];
368 struct list_head list;
369 };
370
371 static LIST_HEAD(reg_regdb_search_list);
372 static DEFINE_MUTEX(reg_regdb_search_mutex);
373
374 static void reg_regdb_search(struct work_struct *work)
375 {
376 struct reg_regdb_search_request *request;
377 const struct ieee80211_regdomain *curdom, *regdom = NULL;
378 int i;
379
380 mutex_lock(&cfg80211_mutex);
381
382 mutex_lock(&reg_regdb_search_mutex);
383 while (!list_empty(&reg_regdb_search_list)) {
384 request = list_first_entry(&reg_regdb_search_list,
385 struct reg_regdb_search_request,
386 list);
387 list_del(&request->list);
388
389 for (i = 0; i < reg_regdb_size; i++) {
390 curdom = reg_regdb[i];
391
392 if (alpha2_equal(request->alpha2, curdom->alpha2)) {
393 regdom = reg_copy_regd(curdom);
394 break;
395 }
396 }
397
398 kfree(request);
399 }
400 mutex_unlock(&reg_regdb_search_mutex);
401
402 if (!IS_ERR_OR_NULL(regdom))
403 set_regdom(regdom);
404
405 mutex_unlock(&cfg80211_mutex);
406 }
407
408 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
409
410 static void reg_regdb_query(const char *alpha2)
411 {
412 struct reg_regdb_search_request *request;
413
414 if (!alpha2)
415 return;
416
417 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
418 if (!request)
419 return;
420
421 memcpy(request->alpha2, alpha2, 2);
422
423 mutex_lock(&reg_regdb_search_mutex);
424 list_add_tail(&request->list, &reg_regdb_search_list);
425 mutex_unlock(&reg_regdb_search_mutex);
426
427 schedule_work(&reg_regdb_work);
428 }
429
430 /* Feel free to add any other sanity checks here */
431 static void reg_regdb_size_check(void)
432 {
433 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
434 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
435 }
436 #else
437 static inline void reg_regdb_size_check(void) {}
438 static inline void reg_regdb_query(const char *alpha2) {}
439 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
440
441 /*
442 * This lets us keep regulatory code which is updated on a regulatory
443 * basis in userspace. Country information is filled in by
444 * reg_device_uevent
445 */
446 static int call_crda(const char *alpha2)
447 {
448 if (!is_world_regdom((char *) alpha2))
449 pr_info("Calling CRDA for country: %c%c\n",
450 alpha2[0], alpha2[1]);
451 else
452 pr_info("Calling CRDA to update world regulatory domain\n");
453
454 /* query internal regulatory database (if it exists) */
455 reg_regdb_query(alpha2);
456
457 return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
458 }
459
460 static bool reg_is_valid_request(const char *alpha2)
461 {
462 struct regulatory_request *lr = get_last_request();
463
464 if (!lr || lr->processed)
465 return false;
466
467 return alpha2_equal(lr->alpha2, alpha2);
468 }
469
470 /* Sanity check on a regulatory rule */
471 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
472 {
473 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
474 u32 freq_diff;
475
476 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
477 return false;
478
479 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
480 return false;
481
482 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
483
484 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
485 freq_range->max_bandwidth_khz > freq_diff)
486 return false;
487
488 return true;
489 }
490
491 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
492 {
493 const struct ieee80211_reg_rule *reg_rule = NULL;
494 unsigned int i;
495
496 if (!rd->n_reg_rules)
497 return false;
498
499 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
500 return false;
501
502 for (i = 0; i < rd->n_reg_rules; i++) {
503 reg_rule = &rd->reg_rules[i];
504 if (!is_valid_reg_rule(reg_rule))
505 return false;
506 }
507
508 return true;
509 }
510
511 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
512 u32 center_freq_khz, u32 bw_khz)
513 {
514 u32 start_freq_khz, end_freq_khz;
515
516 start_freq_khz = center_freq_khz - (bw_khz/2);
517 end_freq_khz = center_freq_khz + (bw_khz/2);
518
519 if (start_freq_khz >= freq_range->start_freq_khz &&
520 end_freq_khz <= freq_range->end_freq_khz)
521 return true;
522
523 return false;
524 }
525
526 /**
527 * freq_in_rule_band - tells us if a frequency is in a frequency band
528 * @freq_range: frequency rule we want to query
529 * @freq_khz: frequency we are inquiring about
530 *
531 * This lets us know if a specific frequency rule is or is not relevant to
532 * a specific frequency's band. Bands are device specific and artificial
533 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
534 * however it is safe for now to assume that a frequency rule should not be
535 * part of a frequency's band if the start freq or end freq are off by more
536 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
537 * 60 GHz band.
538 * This resolution can be lowered and should be considered as we add
539 * regulatory rule support for other "bands".
540 **/
541 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
542 u32 freq_khz)
543 {
544 #define ONE_GHZ_IN_KHZ 1000000
545 /*
546 * From 802.11ad: directional multi-gigabit (DMG):
547 * Pertaining to operation in a frequency band containing a channel
548 * with the Channel starting frequency above 45 GHz.
549 */
550 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
551 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
552 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
553 return true;
554 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
555 return true;
556 return false;
557 #undef ONE_GHZ_IN_KHZ
558 }
559
560 /*
561 * Helper for regdom_intersect(), this does the real
562 * mathematical intersection fun
563 */
564 static int reg_rules_intersect(const struct ieee80211_reg_rule *rule1,
565 const struct ieee80211_reg_rule *rule2,
566 struct ieee80211_reg_rule *intersected_rule)
567 {
568 const struct ieee80211_freq_range *freq_range1, *freq_range2;
569 struct ieee80211_freq_range *freq_range;
570 const struct ieee80211_power_rule *power_rule1, *power_rule2;
571 struct ieee80211_power_rule *power_rule;
572 u32 freq_diff;
573
574 freq_range1 = &rule1->freq_range;
575 freq_range2 = &rule2->freq_range;
576 freq_range = &intersected_rule->freq_range;
577
578 power_rule1 = &rule1->power_rule;
579 power_rule2 = &rule2->power_rule;
580 power_rule = &intersected_rule->power_rule;
581
582 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
583 freq_range2->start_freq_khz);
584 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
585 freq_range2->end_freq_khz);
586 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
587 freq_range2->max_bandwidth_khz);
588
589 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
590 if (freq_range->max_bandwidth_khz > freq_diff)
591 freq_range->max_bandwidth_khz = freq_diff;
592
593 power_rule->max_eirp = min(power_rule1->max_eirp,
594 power_rule2->max_eirp);
595 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
596 power_rule2->max_antenna_gain);
597
598 intersected_rule->flags = rule1->flags | rule2->flags;
599
600 if (!is_valid_reg_rule(intersected_rule))
601 return -EINVAL;
602
603 return 0;
604 }
605
606 /**
607 * regdom_intersect - do the intersection between two regulatory domains
608 * @rd1: first regulatory domain
609 * @rd2: second regulatory domain
610 *
611 * Use this function to get the intersection between two regulatory domains.
612 * Once completed we will mark the alpha2 for the rd as intersected, "98",
613 * as no one single alpha2 can represent this regulatory domain.
614 *
615 * Returns a pointer to the regulatory domain structure which will hold the
616 * resulting intersection of rules between rd1 and rd2. We will
617 * kzalloc() this structure for you.
618 */
619 static struct ieee80211_regdomain *
620 regdom_intersect(const struct ieee80211_regdomain *rd1,
621 const struct ieee80211_regdomain *rd2)
622 {
623 int r, size_of_regd;
624 unsigned int x, y;
625 unsigned int num_rules = 0, rule_idx = 0;
626 const struct ieee80211_reg_rule *rule1, *rule2;
627 struct ieee80211_reg_rule *intersected_rule;
628 struct ieee80211_regdomain *rd;
629 /* This is just a dummy holder to help us count */
630 struct ieee80211_reg_rule dummy_rule;
631
632 if (!rd1 || !rd2)
633 return NULL;
634
635 /*
636 * First we get a count of the rules we'll need, then we actually
637 * build them. This is to so we can malloc() and free() a
638 * regdomain once. The reason we use reg_rules_intersect() here
639 * is it will return -EINVAL if the rule computed makes no sense.
640 * All rules that do check out OK are valid.
641 */
642
643 for (x = 0; x < rd1->n_reg_rules; x++) {
644 rule1 = &rd1->reg_rules[x];
645 for (y = 0; y < rd2->n_reg_rules; y++) {
646 rule2 = &rd2->reg_rules[y];
647 if (!reg_rules_intersect(rule1, rule2, &dummy_rule))
648 num_rules++;
649 }
650 }
651
652 if (!num_rules)
653 return NULL;
654
655 size_of_regd = sizeof(struct ieee80211_regdomain) +
656 num_rules * sizeof(struct ieee80211_reg_rule);
657
658 rd = kzalloc(size_of_regd, GFP_KERNEL);
659 if (!rd)
660 return NULL;
661
662 for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
663 rule1 = &rd1->reg_rules[x];
664 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
665 rule2 = &rd2->reg_rules[y];
666 /*
667 * This time around instead of using the stack lets
668 * write to the target rule directly saving ourselves
669 * a memcpy()
670 */
671 intersected_rule = &rd->reg_rules[rule_idx];
672 r = reg_rules_intersect(rule1, rule2, intersected_rule);
673 /*
674 * No need to memset here the intersected rule here as
675 * we're not using the stack anymore
676 */
677 if (r)
678 continue;
679 rule_idx++;
680 }
681 }
682
683 if (rule_idx != num_rules) {
684 kfree(rd);
685 return NULL;
686 }
687
688 rd->n_reg_rules = num_rules;
689 rd->alpha2[0] = '9';
690 rd->alpha2[1] = '8';
691
692 return rd;
693 }
694
695 /*
696 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
697 * want to just have the channel structure use these
698 */
699 static u32 map_regdom_flags(u32 rd_flags)
700 {
701 u32 channel_flags = 0;
702 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
703 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
704 if (rd_flags & NL80211_RRF_NO_IBSS)
705 channel_flags |= IEEE80211_CHAN_NO_IBSS;
706 if (rd_flags & NL80211_RRF_DFS)
707 channel_flags |= IEEE80211_CHAN_RADAR;
708 if (rd_flags & NL80211_RRF_NO_OFDM)
709 channel_flags |= IEEE80211_CHAN_NO_OFDM;
710 return channel_flags;
711 }
712
713 static const struct ieee80211_reg_rule *
714 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
715 const struct ieee80211_regdomain *regd)
716 {
717 int i;
718 bool band_rule_found = false;
719 bool bw_fits = false;
720
721 if (!regd)
722 return ERR_PTR(-EINVAL);
723
724 for (i = 0; i < regd->n_reg_rules; i++) {
725 const struct ieee80211_reg_rule *rr;
726 const struct ieee80211_freq_range *fr = NULL;
727
728 rr = &regd->reg_rules[i];
729 fr = &rr->freq_range;
730
731 /*
732 * We only need to know if one frequency rule was
733 * was in center_freq's band, that's enough, so lets
734 * not overwrite it once found
735 */
736 if (!band_rule_found)
737 band_rule_found = freq_in_rule_band(fr, center_freq);
738
739 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
740
741 if (band_rule_found && bw_fits)
742 return rr;
743 }
744
745 if (!band_rule_found)
746 return ERR_PTR(-ERANGE);
747
748 return ERR_PTR(-EINVAL);
749 }
750
751 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
752 u32 center_freq)
753 {
754 const struct ieee80211_regdomain *regd;
755 struct regulatory_request *lr = get_last_request();
756
757 /*
758 * Follow the driver's regulatory domain, if present, unless a country
759 * IE has been processed or a user wants to help complaince further
760 */
761 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
762 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
763 wiphy->regd)
764 regd = get_wiphy_regdom(wiphy);
765 else
766 regd = get_cfg80211_regdom();
767
768 return freq_reg_info_regd(wiphy, center_freq, regd);
769 }
770 EXPORT_SYMBOL(freq_reg_info);
771
772 #ifdef CONFIG_CFG80211_REG_DEBUG
773 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
774 {
775 switch (initiator) {
776 case NL80211_REGDOM_SET_BY_CORE:
777 return "Set by core";
778 case NL80211_REGDOM_SET_BY_USER:
779 return "Set by user";
780 case NL80211_REGDOM_SET_BY_DRIVER:
781 return "Set by driver";
782 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
783 return "Set by country IE";
784 default:
785 WARN_ON(1);
786 return "Set by bug";
787 }
788 }
789
790 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
791 const struct ieee80211_reg_rule *reg_rule)
792 {
793 const struct ieee80211_power_rule *power_rule;
794 const struct ieee80211_freq_range *freq_range;
795 char max_antenna_gain[32];
796
797 power_rule = &reg_rule->power_rule;
798 freq_range = &reg_rule->freq_range;
799
800 if (!power_rule->max_antenna_gain)
801 snprintf(max_antenna_gain, 32, "N/A");
802 else
803 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
804
805 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
806 chan->center_freq);
807
808 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
809 freq_range->start_freq_khz, freq_range->end_freq_khz,
810 freq_range->max_bandwidth_khz, max_antenna_gain,
811 power_rule->max_eirp);
812 }
813 #else
814 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
815 const struct ieee80211_reg_rule *reg_rule)
816 {
817 return;
818 }
819 #endif
820
821 /*
822 * Note that right now we assume the desired channel bandwidth
823 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
824 * per channel, the primary and the extension channel).
825 */
826 static void handle_channel(struct wiphy *wiphy,
827 enum nl80211_reg_initiator initiator,
828 struct ieee80211_channel *chan)
829 {
830 u32 flags, bw_flags = 0;
831 const struct ieee80211_reg_rule *reg_rule = NULL;
832 const struct ieee80211_power_rule *power_rule = NULL;
833 const struct ieee80211_freq_range *freq_range = NULL;
834 struct wiphy *request_wiphy = NULL;
835 struct regulatory_request *lr = get_last_request();
836
837 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
838
839 flags = chan->orig_flags;
840
841 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
842 if (IS_ERR(reg_rule)) {
843 /*
844 * We will disable all channels that do not match our
845 * received regulatory rule unless the hint is coming
846 * from a Country IE and the Country IE had no information
847 * about a band. The IEEE 802.11 spec allows for an AP
848 * to send only a subset of the regulatory rules allowed,
849 * so an AP in the US that only supports 2.4 GHz may only send
850 * a country IE with information for the 2.4 GHz band
851 * while 5 GHz is still supported.
852 */
853 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
854 PTR_ERR(reg_rule) == -ERANGE)
855 return;
856
857 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
858 chan->flags = IEEE80211_CHAN_DISABLED;
859 return;
860 }
861
862 chan_reg_rule_print_dbg(chan, reg_rule);
863
864 power_rule = &reg_rule->power_rule;
865 freq_range = &reg_rule->freq_range;
866
867 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
868 bw_flags = IEEE80211_CHAN_NO_HT40;
869
870 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
871 request_wiphy && request_wiphy == wiphy &&
872 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
873 /*
874 * This guarantees the driver's requested regulatory domain
875 * will always be used as a base for further regulatory
876 * settings
877 */
878 chan->flags = chan->orig_flags =
879 map_regdom_flags(reg_rule->flags) | bw_flags;
880 chan->max_antenna_gain = chan->orig_mag =
881 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
882 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
883 (int) MBM_TO_DBM(power_rule->max_eirp);
884 return;
885 }
886
887 chan->beacon_found = false;
888 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
889 chan->max_antenna_gain =
890 min_t(int, chan->orig_mag,
891 MBI_TO_DBI(power_rule->max_antenna_gain));
892 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
893 if (chan->orig_mpwr) {
894 /*
895 * Devices that have their own custom regulatory domain
896 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
897 * passed country IE power settings.
898 */
899 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
900 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
901 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
902 chan->max_power = chan->max_reg_power;
903 else
904 chan->max_power = min(chan->orig_mpwr,
905 chan->max_reg_power);
906 } else
907 chan->max_power = chan->max_reg_power;
908 }
909
910 static void handle_band(struct wiphy *wiphy,
911 enum nl80211_reg_initiator initiator,
912 struct ieee80211_supported_band *sband)
913 {
914 unsigned int i;
915
916 if (!sband)
917 return;
918
919 for (i = 0; i < sband->n_channels; i++)
920 handle_channel(wiphy, initiator, &sband->channels[i]);
921 }
922
923 static bool reg_request_cell_base(struct regulatory_request *request)
924 {
925 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
926 return false;
927 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
928 }
929
930 bool reg_last_request_cell_base(void)
931 {
932 bool val;
933
934 mutex_lock(&reg_mutex);
935 val = reg_request_cell_base(get_last_request());
936 mutex_unlock(&reg_mutex);
937
938 return val;
939 }
940
941 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
942 /* Core specific check */
943 static enum reg_request_treatment
944 reg_ignore_cell_hint(struct regulatory_request *pending_request)
945 {
946 struct regulatory_request *lr = get_last_request();
947
948 if (!reg_num_devs_support_basehint)
949 return REG_REQ_IGNORE;
950
951 if (reg_request_cell_base(lr) &&
952 !regdom_changes(pending_request->alpha2))
953 return REG_REQ_ALREADY_SET;
954
955 return REG_REQ_OK;
956 }
957
958 /* Device specific check */
959 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
960 {
961 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
962 }
963 #else
964 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
965 {
966 return REG_REQ_IGNORE;
967 }
968
969 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
970 {
971 return true;
972 }
973 #endif
974
975
976 static bool ignore_reg_update(struct wiphy *wiphy,
977 enum nl80211_reg_initiator initiator)
978 {
979 struct regulatory_request *lr = get_last_request();
980
981 if (!lr) {
982 REG_DBG_PRINT("Ignoring regulatory request %s since last_request is not set\n",
983 reg_initiator_name(initiator));
984 return true;
985 }
986
987 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
988 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
989 REG_DBG_PRINT("Ignoring regulatory request %s since the driver uses its own custom regulatory domain\n",
990 reg_initiator_name(initiator));
991 return true;
992 }
993
994 /*
995 * wiphy->regd will be set once the device has its own
996 * desired regulatory domain set
997 */
998 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
999 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1000 !is_world_regdom(lr->alpha2)) {
1001 REG_DBG_PRINT("Ignoring regulatory request %s since the driver requires its own regulatory domain to be set first\n",
1002 reg_initiator_name(initiator));
1003 return true;
1004 }
1005
1006 if (reg_request_cell_base(lr))
1007 return reg_dev_ignore_cell_hint(wiphy);
1008
1009 return false;
1010 }
1011
1012 static bool reg_is_world_roaming(struct wiphy *wiphy)
1013 {
1014 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1015 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1016 struct regulatory_request *lr = get_last_request();
1017
1018 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1019 return true;
1020
1021 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1022 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1023 return true;
1024
1025 return false;
1026 }
1027
1028 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1029 struct reg_beacon *reg_beacon)
1030 {
1031 struct ieee80211_supported_band *sband;
1032 struct ieee80211_channel *chan;
1033 bool channel_changed = false;
1034 struct ieee80211_channel chan_before;
1035
1036 sband = wiphy->bands[reg_beacon->chan.band];
1037 chan = &sband->channels[chan_idx];
1038
1039 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1040 return;
1041
1042 if (chan->beacon_found)
1043 return;
1044
1045 chan->beacon_found = true;
1046
1047 if (!reg_is_world_roaming(wiphy))
1048 return;
1049
1050 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1051 return;
1052
1053 chan_before.center_freq = chan->center_freq;
1054 chan_before.flags = chan->flags;
1055
1056 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1057 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1058 channel_changed = true;
1059 }
1060
1061 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1062 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1063 channel_changed = true;
1064 }
1065
1066 if (channel_changed)
1067 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1068 }
1069
1070 /*
1071 * Called when a scan on a wiphy finds a beacon on
1072 * new channel
1073 */
1074 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1075 struct reg_beacon *reg_beacon)
1076 {
1077 unsigned int i;
1078 struct ieee80211_supported_band *sband;
1079
1080 if (!wiphy->bands[reg_beacon->chan.band])
1081 return;
1082
1083 sband = wiphy->bands[reg_beacon->chan.band];
1084
1085 for (i = 0; i < sband->n_channels; i++)
1086 handle_reg_beacon(wiphy, i, reg_beacon);
1087 }
1088
1089 /*
1090 * Called upon reg changes or a new wiphy is added
1091 */
1092 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1093 {
1094 unsigned int i;
1095 struct ieee80211_supported_band *sband;
1096 struct reg_beacon *reg_beacon;
1097
1098 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1099 if (!wiphy->bands[reg_beacon->chan.band])
1100 continue;
1101 sband = wiphy->bands[reg_beacon->chan.band];
1102 for (i = 0; i < sband->n_channels; i++)
1103 handle_reg_beacon(wiphy, i, reg_beacon);
1104 }
1105 }
1106
1107 /* Reap the advantages of previously found beacons */
1108 static void reg_process_beacons(struct wiphy *wiphy)
1109 {
1110 /*
1111 * Means we are just firing up cfg80211, so no beacons would
1112 * have been processed yet.
1113 */
1114 if (!last_request)
1115 return;
1116 wiphy_update_beacon_reg(wiphy);
1117 }
1118
1119 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1120 {
1121 if (!chan)
1122 return false;
1123 if (chan->flags & IEEE80211_CHAN_DISABLED)
1124 return false;
1125 /* This would happen when regulatory rules disallow HT40 completely */
1126 return !(chan->flags & IEEE80211_CHAN_NO_HT40);
1127 }
1128
1129 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1130 struct ieee80211_channel *channel)
1131 {
1132 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1133 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1134 unsigned int i;
1135
1136 if (!is_ht40_allowed(channel)) {
1137 channel->flags |= IEEE80211_CHAN_NO_HT40;
1138 return;
1139 }
1140
1141 /*
1142 * We need to ensure the extension channels exist to
1143 * be able to use HT40- or HT40+, this finds them (or not)
1144 */
1145 for (i = 0; i < sband->n_channels; i++) {
1146 struct ieee80211_channel *c = &sband->channels[i];
1147
1148 if (c->center_freq == (channel->center_freq - 20))
1149 channel_before = c;
1150 if (c->center_freq == (channel->center_freq + 20))
1151 channel_after = c;
1152 }
1153
1154 /*
1155 * Please note that this assumes target bandwidth is 20 MHz,
1156 * if that ever changes we also need to change the below logic
1157 * to include that as well.
1158 */
1159 if (!is_ht40_allowed(channel_before))
1160 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1161 else
1162 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1163
1164 if (!is_ht40_allowed(channel_after))
1165 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1166 else
1167 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1168 }
1169
1170 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1171 struct ieee80211_supported_band *sband)
1172 {
1173 unsigned int i;
1174
1175 if (!sband)
1176 return;
1177
1178 for (i = 0; i < sband->n_channels; i++)
1179 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1180 }
1181
1182 static void reg_process_ht_flags(struct wiphy *wiphy)
1183 {
1184 enum ieee80211_band band;
1185
1186 if (!wiphy)
1187 return;
1188
1189 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1190 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1191 }
1192
1193 static void wiphy_update_regulatory(struct wiphy *wiphy,
1194 enum nl80211_reg_initiator initiator)
1195 {
1196 enum ieee80211_band band;
1197 struct regulatory_request *lr = get_last_request();
1198
1199 if (ignore_reg_update(wiphy, initiator))
1200 return;
1201
1202 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1203
1204 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1205 handle_band(wiphy, initiator, wiphy->bands[band]);
1206
1207 reg_process_beacons(wiphy);
1208 reg_process_ht_flags(wiphy);
1209
1210 if (wiphy->reg_notifier)
1211 wiphy->reg_notifier(wiphy, lr);
1212 }
1213
1214 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1215 {
1216 struct cfg80211_registered_device *rdev;
1217 struct wiphy *wiphy;
1218
1219 assert_cfg80211_lock();
1220
1221 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1222 wiphy = &rdev->wiphy;
1223 wiphy_update_regulatory(wiphy, initiator);
1224 /*
1225 * Regulatory updates set by CORE are ignored for custom
1226 * regulatory cards. Let us notify the changes to the driver,
1227 * as some drivers used this to restore its orig_* reg domain.
1228 */
1229 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1230 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1231 wiphy->reg_notifier)
1232 wiphy->reg_notifier(wiphy, get_last_request());
1233 }
1234 }
1235
1236 static void handle_channel_custom(struct wiphy *wiphy,
1237 struct ieee80211_channel *chan,
1238 const struct ieee80211_regdomain *regd)
1239 {
1240 u32 bw_flags = 0;
1241 const struct ieee80211_reg_rule *reg_rule = NULL;
1242 const struct ieee80211_power_rule *power_rule = NULL;
1243 const struct ieee80211_freq_range *freq_range = NULL;
1244
1245 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1246 regd);
1247
1248 if (IS_ERR(reg_rule)) {
1249 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1250 chan->center_freq);
1251 chan->flags = IEEE80211_CHAN_DISABLED;
1252 return;
1253 }
1254
1255 chan_reg_rule_print_dbg(chan, reg_rule);
1256
1257 power_rule = &reg_rule->power_rule;
1258 freq_range = &reg_rule->freq_range;
1259
1260 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1261 bw_flags = IEEE80211_CHAN_NO_HT40;
1262
1263 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1264 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1265 chan->max_reg_power = chan->max_power =
1266 (int) MBM_TO_DBM(power_rule->max_eirp);
1267 }
1268
1269 static void handle_band_custom(struct wiphy *wiphy,
1270 struct ieee80211_supported_band *sband,
1271 const struct ieee80211_regdomain *regd)
1272 {
1273 unsigned int i;
1274
1275 if (!sband)
1276 return;
1277
1278 for (i = 0; i < sband->n_channels; i++)
1279 handle_channel_custom(wiphy, &sband->channels[i], regd);
1280 }
1281
1282 /* Used by drivers prior to wiphy registration */
1283 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1284 const struct ieee80211_regdomain *regd)
1285 {
1286 enum ieee80211_band band;
1287 unsigned int bands_set = 0;
1288
1289 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1290 if (!wiphy->bands[band])
1291 continue;
1292 handle_band_custom(wiphy, wiphy->bands[band], regd);
1293 bands_set++;
1294 }
1295
1296 /*
1297 * no point in calling this if it won't have any effect
1298 * on your device's supported bands.
1299 */
1300 WARN_ON(!bands_set);
1301 }
1302 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1303
1304 /* This has the logic which determines when a new request
1305 * should be ignored. */
1306 static enum reg_request_treatment
1307 get_reg_request_treatment(struct wiphy *wiphy,
1308 struct regulatory_request *pending_request)
1309 {
1310 struct wiphy *last_wiphy = NULL;
1311 struct regulatory_request *lr = get_last_request();
1312
1313 /* All initial requests are respected */
1314 if (!lr)
1315 return REG_REQ_OK;
1316
1317 switch (pending_request->initiator) {
1318 case NL80211_REGDOM_SET_BY_CORE:
1319 return REG_REQ_OK;
1320 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1321 if (reg_request_cell_base(lr)) {
1322 /* Trust a Cell base station over the AP's country IE */
1323 if (regdom_changes(pending_request->alpha2))
1324 return REG_REQ_IGNORE;
1325 return REG_REQ_ALREADY_SET;
1326 }
1327
1328 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1329
1330 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1331 return -EINVAL;
1332 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1333 if (last_wiphy != wiphy) {
1334 /*
1335 * Two cards with two APs claiming different
1336 * Country IE alpha2s. We could
1337 * intersect them, but that seems unlikely
1338 * to be correct. Reject second one for now.
1339 */
1340 if (regdom_changes(pending_request->alpha2))
1341 return REG_REQ_IGNORE;
1342 return REG_REQ_ALREADY_SET;
1343 }
1344 /*
1345 * Two consecutive Country IE hints on the same wiphy.
1346 * This should be picked up early by the driver/stack
1347 */
1348 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1349 return REG_REQ_OK;
1350 return REG_REQ_ALREADY_SET;
1351 }
1352 return 0;
1353 case NL80211_REGDOM_SET_BY_DRIVER:
1354 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1355 if (regdom_changes(pending_request->alpha2))
1356 return REG_REQ_OK;
1357 return REG_REQ_ALREADY_SET;
1358 }
1359
1360 /*
1361 * This would happen if you unplug and plug your card
1362 * back in or if you add a new device for which the previously
1363 * loaded card also agrees on the regulatory domain.
1364 */
1365 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1366 !regdom_changes(pending_request->alpha2))
1367 return REG_REQ_ALREADY_SET;
1368
1369 return REG_REQ_INTERSECT;
1370 case NL80211_REGDOM_SET_BY_USER:
1371 if (reg_request_cell_base(pending_request))
1372 return reg_ignore_cell_hint(pending_request);
1373
1374 if (reg_request_cell_base(lr))
1375 return REG_REQ_IGNORE;
1376
1377 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1378 return REG_REQ_INTERSECT;
1379 /*
1380 * If the user knows better the user should set the regdom
1381 * to their country before the IE is picked up
1382 */
1383 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1384 lr->intersect)
1385 return REG_REQ_IGNORE;
1386 /*
1387 * Process user requests only after previous user/driver/core
1388 * requests have been processed
1389 */
1390 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1391 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1392 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1393 regdom_changes(lr->alpha2))
1394 return REG_REQ_IGNORE;
1395
1396 if (!regdom_changes(pending_request->alpha2))
1397 return REG_REQ_ALREADY_SET;
1398
1399 return REG_REQ_OK;
1400 }
1401
1402 return REG_REQ_IGNORE;
1403 }
1404
1405 static void reg_set_request_processed(void)
1406 {
1407 bool need_more_processing = false;
1408 struct regulatory_request *lr = get_last_request();
1409
1410 lr->processed = true;
1411
1412 spin_lock(&reg_requests_lock);
1413 if (!list_empty(&reg_requests_list))
1414 need_more_processing = true;
1415 spin_unlock(&reg_requests_lock);
1416
1417 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1418 cancel_delayed_work(&reg_timeout);
1419
1420 if (need_more_processing)
1421 schedule_work(&reg_work);
1422 }
1423
1424 /**
1425 * __regulatory_hint - hint to the wireless core a regulatory domain
1426 * @wiphy: if the hint comes from country information from an AP, this
1427 * is required to be set to the wiphy that received the information
1428 * @pending_request: the regulatory request currently being processed
1429 *
1430 * The Wireless subsystem can use this function to hint to the wireless core
1431 * what it believes should be the current regulatory domain.
1432 *
1433 * Returns one of the different reg request treatment values.
1434 *
1435 * Caller must hold &reg_mutex
1436 */
1437 static enum reg_request_treatment
1438 __regulatory_hint(struct wiphy *wiphy,
1439 struct regulatory_request *pending_request)
1440 {
1441 const struct ieee80211_regdomain *regd;
1442 bool intersect = false;
1443 enum reg_request_treatment treatment;
1444 struct regulatory_request *lr;
1445
1446 treatment = get_reg_request_treatment(wiphy, pending_request);
1447
1448 switch (treatment) {
1449 case REG_REQ_INTERSECT:
1450 if (pending_request->initiator ==
1451 NL80211_REGDOM_SET_BY_DRIVER) {
1452 regd = reg_copy_regd(get_cfg80211_regdom());
1453 if (IS_ERR(regd)) {
1454 kfree(pending_request);
1455 return PTR_ERR(regd);
1456 }
1457 rcu_assign_pointer(wiphy->regd, regd);
1458 }
1459 intersect = true;
1460 break;
1461 case REG_REQ_OK:
1462 break;
1463 default:
1464 /*
1465 * If the regulatory domain being requested by the
1466 * driver has already been set just copy it to the
1467 * wiphy
1468 */
1469 if (treatment == REG_REQ_ALREADY_SET &&
1470 pending_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) {
1471 regd = reg_copy_regd(get_cfg80211_regdom());
1472 if (IS_ERR(regd)) {
1473 kfree(pending_request);
1474 return REG_REQ_IGNORE;
1475 }
1476 treatment = REG_REQ_ALREADY_SET;
1477 rcu_assign_pointer(wiphy->regd, regd);
1478 goto new_request;
1479 }
1480 kfree(pending_request);
1481 return treatment;
1482 }
1483
1484 new_request:
1485 lr = get_last_request();
1486 if (lr != &core_request_world && lr)
1487 kfree_rcu(lr, rcu_head);
1488
1489 pending_request->intersect = intersect;
1490 pending_request->processed = false;
1491 rcu_assign_pointer(last_request, pending_request);
1492 lr = pending_request;
1493
1494 pending_request = NULL;
1495
1496 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) {
1497 user_alpha2[0] = lr->alpha2[0];
1498 user_alpha2[1] = lr->alpha2[1];
1499 }
1500
1501 /* When r == REG_REQ_INTERSECT we do need to call CRDA */
1502 if (treatment != REG_REQ_OK && treatment != REG_REQ_INTERSECT) {
1503 /*
1504 * Since CRDA will not be called in this case as we already
1505 * have applied the requested regulatory domain before we just
1506 * inform userspace we have processed the request
1507 */
1508 if (treatment == REG_REQ_ALREADY_SET) {
1509 nl80211_send_reg_change_event(lr);
1510 reg_set_request_processed();
1511 }
1512 return treatment;
1513 }
1514
1515 if (call_crda(lr->alpha2))
1516 return REG_REQ_IGNORE;
1517 return REG_REQ_OK;
1518 }
1519
1520 /* This processes *all* regulatory hints */
1521 static void reg_process_hint(struct regulatory_request *reg_request,
1522 enum nl80211_reg_initiator reg_initiator)
1523 {
1524 struct wiphy *wiphy = NULL;
1525
1526 if (WARN_ON(!reg_request->alpha2))
1527 return;
1528
1529 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1530 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1531
1532 if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER && !wiphy) {
1533 kfree(reg_request);
1534 return;
1535 }
1536
1537 switch (__regulatory_hint(wiphy, reg_request)) {
1538 case REG_REQ_ALREADY_SET:
1539 /* This is required so that the orig_* parameters are saved */
1540 if (wiphy && wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1541 wiphy_update_regulatory(wiphy, reg_initiator);
1542 break;
1543 default:
1544 if (reg_initiator == NL80211_REGDOM_SET_BY_USER)
1545 schedule_delayed_work(&reg_timeout,
1546 msecs_to_jiffies(3142));
1547 break;
1548 }
1549 }
1550
1551 /*
1552 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1553 * Regulatory hints come on a first come first serve basis and we
1554 * must process each one atomically.
1555 */
1556 static void reg_process_pending_hints(void)
1557 {
1558 struct regulatory_request *reg_request, *lr;
1559
1560 mutex_lock(&cfg80211_mutex);
1561 mutex_lock(&reg_mutex);
1562 lr = get_last_request();
1563
1564 /* When last_request->processed becomes true this will be rescheduled */
1565 if (lr && !lr->processed) {
1566 REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n");
1567 goto out;
1568 }
1569
1570 spin_lock(&reg_requests_lock);
1571
1572 if (list_empty(&reg_requests_list)) {
1573 spin_unlock(&reg_requests_lock);
1574 goto out;
1575 }
1576
1577 reg_request = list_first_entry(&reg_requests_list,
1578 struct regulatory_request,
1579 list);
1580 list_del_init(&reg_request->list);
1581
1582 spin_unlock(&reg_requests_lock);
1583
1584 reg_process_hint(reg_request, reg_request->initiator);
1585
1586 out:
1587 mutex_unlock(&reg_mutex);
1588 mutex_unlock(&cfg80211_mutex);
1589 }
1590
1591 /* Processes beacon hints -- this has nothing to do with country IEs */
1592 static void reg_process_pending_beacon_hints(void)
1593 {
1594 struct cfg80211_registered_device *rdev;
1595 struct reg_beacon *pending_beacon, *tmp;
1596
1597 mutex_lock(&cfg80211_mutex);
1598 mutex_lock(&reg_mutex);
1599
1600 /* This goes through the _pending_ beacon list */
1601 spin_lock_bh(&reg_pending_beacons_lock);
1602
1603 list_for_each_entry_safe(pending_beacon, tmp,
1604 &reg_pending_beacons, list) {
1605 list_del_init(&pending_beacon->list);
1606
1607 /* Applies the beacon hint to current wiphys */
1608 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1609 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1610
1611 /* Remembers the beacon hint for new wiphys or reg changes */
1612 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1613 }
1614
1615 spin_unlock_bh(&reg_pending_beacons_lock);
1616 mutex_unlock(&reg_mutex);
1617 mutex_unlock(&cfg80211_mutex);
1618 }
1619
1620 static void reg_todo(struct work_struct *work)
1621 {
1622 reg_process_pending_hints();
1623 reg_process_pending_beacon_hints();
1624 }
1625
1626 static void queue_regulatory_request(struct regulatory_request *request)
1627 {
1628 request->alpha2[0] = toupper(request->alpha2[0]);
1629 request->alpha2[1] = toupper(request->alpha2[1]);
1630
1631 spin_lock(&reg_requests_lock);
1632 list_add_tail(&request->list, &reg_requests_list);
1633 spin_unlock(&reg_requests_lock);
1634
1635 schedule_work(&reg_work);
1636 }
1637
1638 /*
1639 * Core regulatory hint -- happens during cfg80211_init()
1640 * and when we restore regulatory settings.
1641 */
1642 static int regulatory_hint_core(const char *alpha2)
1643 {
1644 struct regulatory_request *request;
1645
1646 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1647 if (!request)
1648 return -ENOMEM;
1649
1650 request->alpha2[0] = alpha2[0];
1651 request->alpha2[1] = alpha2[1];
1652 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1653
1654 queue_regulatory_request(request);
1655
1656 return 0;
1657 }
1658
1659 /* User hints */
1660 int regulatory_hint_user(const char *alpha2,
1661 enum nl80211_user_reg_hint_type user_reg_hint_type)
1662 {
1663 struct regulatory_request *request;
1664
1665 if (WARN_ON(!alpha2))
1666 return -EINVAL;
1667
1668 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1669 if (!request)
1670 return -ENOMEM;
1671
1672 request->wiphy_idx = WIPHY_IDX_INVALID;
1673 request->alpha2[0] = alpha2[0];
1674 request->alpha2[1] = alpha2[1];
1675 request->initiator = NL80211_REGDOM_SET_BY_USER;
1676 request->user_reg_hint_type = user_reg_hint_type;
1677
1678 queue_regulatory_request(request);
1679
1680 return 0;
1681 }
1682
1683 /* Driver hints */
1684 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1685 {
1686 struct regulatory_request *request;
1687
1688 if (WARN_ON(!alpha2 || !wiphy))
1689 return -EINVAL;
1690
1691 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1692 if (!request)
1693 return -ENOMEM;
1694
1695 request->wiphy_idx = get_wiphy_idx(wiphy);
1696
1697 request->alpha2[0] = alpha2[0];
1698 request->alpha2[1] = alpha2[1];
1699 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1700
1701 queue_regulatory_request(request);
1702
1703 return 0;
1704 }
1705 EXPORT_SYMBOL(regulatory_hint);
1706
1707 /*
1708 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1709 * therefore cannot iterate over the rdev list here.
1710 */
1711 void regulatory_hint_11d(struct wiphy *wiphy, enum ieee80211_band band,
1712 const u8 *country_ie, u8 country_ie_len)
1713 {
1714 char alpha2[2];
1715 enum environment_cap env = ENVIRON_ANY;
1716 struct regulatory_request *request, *lr;
1717
1718 mutex_lock(&reg_mutex);
1719 lr = get_last_request();
1720
1721 if (unlikely(!lr))
1722 goto out;
1723
1724 /* IE len must be evenly divisible by 2 */
1725 if (country_ie_len & 0x01)
1726 goto out;
1727
1728 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1729 goto out;
1730
1731 alpha2[0] = country_ie[0];
1732 alpha2[1] = country_ie[1];
1733
1734 if (country_ie[2] == 'I')
1735 env = ENVIRON_INDOOR;
1736 else if (country_ie[2] == 'O')
1737 env = ENVIRON_OUTDOOR;
1738
1739 /*
1740 * We will run this only upon a successful connection on cfg80211.
1741 * We leave conflict resolution to the workqueue, where can hold
1742 * cfg80211_mutex.
1743 */
1744 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1745 lr->wiphy_idx != WIPHY_IDX_INVALID)
1746 goto out;
1747
1748 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1749 if (!request)
1750 goto out;
1751
1752 request->wiphy_idx = get_wiphy_idx(wiphy);
1753 request->alpha2[0] = alpha2[0];
1754 request->alpha2[1] = alpha2[1];
1755 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1756 request->country_ie_env = env;
1757
1758 queue_regulatory_request(request);
1759 out:
1760 mutex_unlock(&reg_mutex);
1761 }
1762
1763 static void restore_alpha2(char *alpha2, bool reset_user)
1764 {
1765 /* indicates there is no alpha2 to consider for restoration */
1766 alpha2[0] = '9';
1767 alpha2[1] = '7';
1768
1769 /* The user setting has precedence over the module parameter */
1770 if (is_user_regdom_saved()) {
1771 /* Unless we're asked to ignore it and reset it */
1772 if (reset_user) {
1773 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
1774 user_alpha2[0] = '9';
1775 user_alpha2[1] = '7';
1776
1777 /*
1778 * If we're ignoring user settings, we still need to
1779 * check the module parameter to ensure we put things
1780 * back as they were for a full restore.
1781 */
1782 if (!is_world_regdom(ieee80211_regdom)) {
1783 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1784 ieee80211_regdom[0], ieee80211_regdom[1]);
1785 alpha2[0] = ieee80211_regdom[0];
1786 alpha2[1] = ieee80211_regdom[1];
1787 }
1788 } else {
1789 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
1790 user_alpha2[0], user_alpha2[1]);
1791 alpha2[0] = user_alpha2[0];
1792 alpha2[1] = user_alpha2[1];
1793 }
1794 } else if (!is_world_regdom(ieee80211_regdom)) {
1795 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1796 ieee80211_regdom[0], ieee80211_regdom[1]);
1797 alpha2[0] = ieee80211_regdom[0];
1798 alpha2[1] = ieee80211_regdom[1];
1799 } else
1800 REG_DBG_PRINT("Restoring regulatory settings\n");
1801 }
1802
1803 static void restore_custom_reg_settings(struct wiphy *wiphy)
1804 {
1805 struct ieee80211_supported_band *sband;
1806 enum ieee80211_band band;
1807 struct ieee80211_channel *chan;
1808 int i;
1809
1810 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1811 sband = wiphy->bands[band];
1812 if (!sband)
1813 continue;
1814 for (i = 0; i < sband->n_channels; i++) {
1815 chan = &sband->channels[i];
1816 chan->flags = chan->orig_flags;
1817 chan->max_antenna_gain = chan->orig_mag;
1818 chan->max_power = chan->orig_mpwr;
1819 chan->beacon_found = false;
1820 }
1821 }
1822 }
1823
1824 /*
1825 * Restoring regulatory settings involves ingoring any
1826 * possibly stale country IE information and user regulatory
1827 * settings if so desired, this includes any beacon hints
1828 * learned as we could have traveled outside to another country
1829 * after disconnection. To restore regulatory settings we do
1830 * exactly what we did at bootup:
1831 *
1832 * - send a core regulatory hint
1833 * - send a user regulatory hint if applicable
1834 *
1835 * Device drivers that send a regulatory hint for a specific country
1836 * keep their own regulatory domain on wiphy->regd so that does does
1837 * not need to be remembered.
1838 */
1839 static void restore_regulatory_settings(bool reset_user)
1840 {
1841 char alpha2[2];
1842 char world_alpha2[2];
1843 struct reg_beacon *reg_beacon, *btmp;
1844 struct regulatory_request *reg_request, *tmp;
1845 LIST_HEAD(tmp_reg_req_list);
1846 struct cfg80211_registered_device *rdev;
1847
1848 mutex_lock(&cfg80211_mutex);
1849 mutex_lock(&reg_mutex);
1850
1851 reset_regdomains(true, cfg80211_world_regdom);
1852 restore_alpha2(alpha2, reset_user);
1853
1854 /*
1855 * If there's any pending requests we simply
1856 * stash them to a temporary pending queue and
1857 * add then after we've restored regulatory
1858 * settings.
1859 */
1860 spin_lock(&reg_requests_lock);
1861 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
1862 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
1863 continue;
1864 list_move_tail(&reg_request->list, &tmp_reg_req_list);
1865 }
1866 spin_unlock(&reg_requests_lock);
1867
1868 /* Clear beacon hints */
1869 spin_lock_bh(&reg_pending_beacons_lock);
1870 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
1871 list_del(&reg_beacon->list);
1872 kfree(reg_beacon);
1873 }
1874 spin_unlock_bh(&reg_pending_beacons_lock);
1875
1876 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
1877 list_del(&reg_beacon->list);
1878 kfree(reg_beacon);
1879 }
1880
1881 /* First restore to the basic regulatory settings */
1882 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
1883 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
1884
1885 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1886 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1887 restore_custom_reg_settings(&rdev->wiphy);
1888 }
1889
1890 regulatory_hint_core(world_alpha2);
1891
1892 /*
1893 * This restores the ieee80211_regdom module parameter
1894 * preference or the last user requested regulatory
1895 * settings, user regulatory settings takes precedence.
1896 */
1897 if (is_an_alpha2(alpha2))
1898 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
1899
1900 spin_lock(&reg_requests_lock);
1901 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
1902 spin_unlock(&reg_requests_lock);
1903
1904 mutex_unlock(&reg_mutex);
1905 mutex_unlock(&cfg80211_mutex);
1906
1907 REG_DBG_PRINT("Kicking the queue\n");
1908
1909 schedule_work(&reg_work);
1910 }
1911
1912 void regulatory_hint_disconnect(void)
1913 {
1914 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
1915 restore_regulatory_settings(false);
1916 }
1917
1918 static bool freq_is_chan_12_13_14(u16 freq)
1919 {
1920 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1921 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1922 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1923 return true;
1924 return false;
1925 }
1926
1927 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
1928 {
1929 struct reg_beacon *pending_beacon;
1930
1931 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
1932 if (beacon_chan->center_freq ==
1933 pending_beacon->chan.center_freq)
1934 return true;
1935 return false;
1936 }
1937
1938 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1939 struct ieee80211_channel *beacon_chan,
1940 gfp_t gfp)
1941 {
1942 struct reg_beacon *reg_beacon;
1943 bool processing;
1944
1945 if (beacon_chan->beacon_found ||
1946 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
1947 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1948 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
1949 return 0;
1950
1951 spin_lock_bh(&reg_pending_beacons_lock);
1952 processing = pending_reg_beacon(beacon_chan);
1953 spin_unlock_bh(&reg_pending_beacons_lock);
1954
1955 if (processing)
1956 return 0;
1957
1958 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1959 if (!reg_beacon)
1960 return -ENOMEM;
1961
1962 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
1963 beacon_chan->center_freq,
1964 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1965 wiphy_name(wiphy));
1966
1967 memcpy(&reg_beacon->chan, beacon_chan,
1968 sizeof(struct ieee80211_channel));
1969
1970 /*
1971 * Since we can be called from BH or and non-BH context
1972 * we must use spin_lock_bh()
1973 */
1974 spin_lock_bh(&reg_pending_beacons_lock);
1975 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1976 spin_unlock_bh(&reg_pending_beacons_lock);
1977
1978 schedule_work(&reg_work);
1979
1980 return 0;
1981 }
1982
1983 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1984 {
1985 unsigned int i;
1986 const struct ieee80211_reg_rule *reg_rule = NULL;
1987 const struct ieee80211_freq_range *freq_range = NULL;
1988 const struct ieee80211_power_rule *power_rule = NULL;
1989
1990 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1991
1992 for (i = 0; i < rd->n_reg_rules; i++) {
1993 reg_rule = &rd->reg_rules[i];
1994 freq_range = &reg_rule->freq_range;
1995 power_rule = &reg_rule->power_rule;
1996
1997 /*
1998 * There may not be documentation for max antenna gain
1999 * in certain regions
2000 */
2001 if (power_rule->max_antenna_gain)
2002 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2003 freq_range->start_freq_khz,
2004 freq_range->end_freq_khz,
2005 freq_range->max_bandwidth_khz,
2006 power_rule->max_antenna_gain,
2007 power_rule->max_eirp);
2008 else
2009 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2010 freq_range->start_freq_khz,
2011 freq_range->end_freq_khz,
2012 freq_range->max_bandwidth_khz,
2013 power_rule->max_eirp);
2014 }
2015 }
2016
2017 bool reg_supported_dfs_region(u8 dfs_region)
2018 {
2019 switch (dfs_region) {
2020 case NL80211_DFS_UNSET:
2021 case NL80211_DFS_FCC:
2022 case NL80211_DFS_ETSI:
2023 case NL80211_DFS_JP:
2024 return true;
2025 default:
2026 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2027 dfs_region);
2028 return false;
2029 }
2030 }
2031
2032 static void print_dfs_region(u8 dfs_region)
2033 {
2034 if (!dfs_region)
2035 return;
2036
2037 switch (dfs_region) {
2038 case NL80211_DFS_FCC:
2039 pr_info(" DFS Master region FCC");
2040 break;
2041 case NL80211_DFS_ETSI:
2042 pr_info(" DFS Master region ETSI");
2043 break;
2044 case NL80211_DFS_JP:
2045 pr_info(" DFS Master region JP");
2046 break;
2047 default:
2048 pr_info(" DFS Master region Unknown");
2049 break;
2050 }
2051 }
2052
2053 static void print_regdomain(const struct ieee80211_regdomain *rd)
2054 {
2055 struct regulatory_request *lr = get_last_request();
2056
2057 if (is_intersected_alpha2(rd->alpha2)) {
2058 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2059 struct cfg80211_registered_device *rdev;
2060 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2061 if (rdev) {
2062 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2063 rdev->country_ie_alpha2[0],
2064 rdev->country_ie_alpha2[1]);
2065 } else
2066 pr_info("Current regulatory domain intersected:\n");
2067 } else
2068 pr_info("Current regulatory domain intersected:\n");
2069 } else if (is_world_regdom(rd->alpha2)) {
2070 pr_info("World regulatory domain updated:\n");
2071 } else {
2072 if (is_unknown_alpha2(rd->alpha2))
2073 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2074 else {
2075 if (reg_request_cell_base(lr))
2076 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2077 rd->alpha2[0], rd->alpha2[1]);
2078 else
2079 pr_info("Regulatory domain changed to country: %c%c\n",
2080 rd->alpha2[0], rd->alpha2[1]);
2081 }
2082 }
2083
2084 print_dfs_region(rd->dfs_region);
2085 print_rd_rules(rd);
2086 }
2087
2088 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2089 {
2090 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2091 print_rd_rules(rd);
2092 }
2093
2094 /* Takes ownership of rd only if it doesn't fail */
2095 static int __set_regdom(const struct ieee80211_regdomain *rd)
2096 {
2097 const struct ieee80211_regdomain *regd;
2098 const struct ieee80211_regdomain *intersected_rd = NULL;
2099 struct wiphy *request_wiphy;
2100 struct regulatory_request *lr = get_last_request();
2101
2102 /* Some basic sanity checks first */
2103
2104 if (!reg_is_valid_request(rd->alpha2))
2105 return -EINVAL;
2106
2107 if (is_world_regdom(rd->alpha2)) {
2108 update_world_regdomain(rd);
2109 return 0;
2110 }
2111
2112 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2113 !is_unknown_alpha2(rd->alpha2))
2114 return -EINVAL;
2115
2116 /*
2117 * Lets only bother proceeding on the same alpha2 if the current
2118 * rd is non static (it means CRDA was present and was used last)
2119 * and the pending request came in from a country IE
2120 */
2121 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2122 /*
2123 * If someone else asked us to change the rd lets only bother
2124 * checking if the alpha2 changes if CRDA was already called
2125 */
2126 if (!regdom_changes(rd->alpha2))
2127 return -EALREADY;
2128 }
2129
2130 /*
2131 * Now lets set the regulatory domain, update all driver channels
2132 * and finally inform them of what we have done, in case they want
2133 * to review or adjust their own settings based on their own
2134 * internal EEPROM data
2135 */
2136
2137 if (!is_valid_rd(rd)) {
2138 pr_err("Invalid regulatory domain detected:\n");
2139 print_regdomain_info(rd);
2140 return -EINVAL;
2141 }
2142
2143 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2144 if (!request_wiphy &&
2145 (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2146 lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2147 schedule_delayed_work(&reg_timeout, 0);
2148 return -ENODEV;
2149 }
2150
2151 if (!lr->intersect) {
2152 if (lr->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2153 reset_regdomains(false, rd);
2154 return 0;
2155 }
2156
2157 /*
2158 * For a driver hint, lets copy the regulatory domain the
2159 * driver wanted to the wiphy to deal with conflicts
2160 */
2161
2162 /*
2163 * Userspace could have sent two replies with only
2164 * one kernel request.
2165 */
2166 if (request_wiphy->regd)
2167 return -EALREADY;
2168
2169 regd = reg_copy_regd(rd);
2170 if (IS_ERR(regd))
2171 return PTR_ERR(regd);
2172
2173 rcu_assign_pointer(request_wiphy->regd, regd);
2174 reset_regdomains(false, rd);
2175 return 0;
2176 }
2177
2178 /* Intersection requires a bit more work */
2179
2180 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2181 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2182 if (!intersected_rd)
2183 return -EINVAL;
2184
2185 /*
2186 * We can trash what CRDA provided now.
2187 * However if a driver requested this specific regulatory
2188 * domain we keep it for its private use
2189 */
2190 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2191 rcu_assign_pointer(request_wiphy->regd, rd);
2192 else
2193 kfree(rd);
2194
2195 rd = NULL;
2196
2197 reset_regdomains(false, intersected_rd);
2198
2199 return 0;
2200 }
2201
2202 return -EINVAL;
2203 }
2204
2205
2206 /*
2207 * Use this call to set the current regulatory domain. Conflicts with
2208 * multiple drivers can be ironed out later. Caller must've already
2209 * kmalloc'd the rd structure.
2210 */
2211 int set_regdom(const struct ieee80211_regdomain *rd)
2212 {
2213 struct regulatory_request *lr;
2214 int r;
2215
2216 mutex_lock(&reg_mutex);
2217 lr = get_last_request();
2218
2219 /* Note that this doesn't update the wiphys, this is done below */
2220 r = __set_regdom(rd);
2221 if (r) {
2222 if (r == -EALREADY)
2223 reg_set_request_processed();
2224
2225 kfree(rd);
2226 goto out;
2227 }
2228
2229 /* This would make this whole thing pointless */
2230 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) {
2231 r = -EINVAL;
2232 goto out;
2233 }
2234
2235 /* update all wiphys now with the new established regulatory domain */
2236 update_all_wiphy_regulatory(lr->initiator);
2237
2238 print_regdomain(get_cfg80211_regdom());
2239
2240 nl80211_send_reg_change_event(lr);
2241
2242 reg_set_request_processed();
2243
2244 out:
2245 mutex_unlock(&reg_mutex);
2246
2247 return r;
2248 }
2249
2250 #ifdef CONFIG_HOTPLUG
2251 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2252 {
2253 struct regulatory_request *lr = get_last_request();
2254
2255 if (lr && !lr->processed) {
2256 if (add_uevent_var(env, "COUNTRY=%c%c",
2257 lr->alpha2[0], lr->alpha2[1]))
2258 return -ENOMEM;
2259 }
2260
2261 return 0;
2262 }
2263 #else
2264 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2265 {
2266 return -ENODEV;
2267 }
2268 #endif /* CONFIG_HOTPLUG */
2269
2270 void wiphy_regulatory_register(struct wiphy *wiphy)
2271 {
2272 mutex_lock(&reg_mutex);
2273
2274 if (!reg_dev_ignore_cell_hint(wiphy))
2275 reg_num_devs_support_basehint++;
2276
2277 wiphy_update_regulatory(wiphy, NL80211_REGDOM_SET_BY_CORE);
2278
2279 mutex_unlock(&reg_mutex);
2280 }
2281
2282 /* Caller must hold cfg80211_mutex */
2283 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2284 {
2285 struct wiphy *request_wiphy = NULL;
2286 struct regulatory_request *lr;
2287
2288 mutex_lock(&reg_mutex);
2289 lr = get_last_request();
2290
2291 if (!reg_dev_ignore_cell_hint(wiphy))
2292 reg_num_devs_support_basehint--;
2293
2294 rcu_free_regdom(get_wiphy_regdom(wiphy));
2295 rcu_assign_pointer(wiphy->regd, NULL);
2296
2297 if (lr)
2298 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2299
2300 if (!request_wiphy || request_wiphy != wiphy)
2301 goto out;
2302
2303 lr->wiphy_idx = WIPHY_IDX_INVALID;
2304 lr->country_ie_env = ENVIRON_ANY;
2305 out:
2306 mutex_unlock(&reg_mutex);
2307 }
2308
2309 static void reg_timeout_work(struct work_struct *work)
2310 {
2311 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2312 restore_regulatory_settings(true);
2313 }
2314
2315 int __init regulatory_init(void)
2316 {
2317 int err = 0;
2318
2319 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2320 if (IS_ERR(reg_pdev))
2321 return PTR_ERR(reg_pdev);
2322
2323 reg_pdev->dev.type = &reg_device_type;
2324
2325 spin_lock_init(&reg_requests_lock);
2326 spin_lock_init(&reg_pending_beacons_lock);
2327
2328 reg_regdb_size_check();
2329
2330 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2331
2332 user_alpha2[0] = '9';
2333 user_alpha2[1] = '7';
2334
2335 /* We always try to get an update for the static regdomain */
2336 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2337 if (err) {
2338 if (err == -ENOMEM)
2339 return err;
2340 /*
2341 * N.B. kobject_uevent_env() can fail mainly for when we're out
2342 * memory which is handled and propagated appropriately above
2343 * but it can also fail during a netlink_broadcast() or during
2344 * early boot for call_usermodehelper(). For now treat these
2345 * errors as non-fatal.
2346 */
2347 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2348 }
2349
2350 /*
2351 * Finally, if the user set the module parameter treat it
2352 * as a user hint.
2353 */
2354 if (!is_world_regdom(ieee80211_regdom))
2355 regulatory_hint_user(ieee80211_regdom,
2356 NL80211_USER_REG_HINT_USER);
2357
2358 return 0;
2359 }
2360
2361 void regulatory_exit(void)
2362 {
2363 struct regulatory_request *reg_request, *tmp;
2364 struct reg_beacon *reg_beacon, *btmp;
2365
2366 cancel_work_sync(&reg_work);
2367 cancel_delayed_work_sync(&reg_timeout);
2368
2369 /* Lock to suppress warnings */
2370 mutex_lock(&reg_mutex);
2371 reset_regdomains(true, NULL);
2372 mutex_unlock(&reg_mutex);
2373
2374 dev_set_uevent_suppress(&reg_pdev->dev, true);
2375
2376 platform_device_unregister(reg_pdev);
2377
2378 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2379 list_del(&reg_beacon->list);
2380 kfree(reg_beacon);
2381 }
2382
2383 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2384 list_del(&reg_beacon->list);
2385 kfree(reg_beacon);
2386 }
2387
2388 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2389 list_del(&reg_request->list);
2390 kfree(reg_request);
2391 }
2392 }