]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/wireless/reg.c
cfg80211: Add indoor only and GO concurrent channel attributes
[mirror_ubuntu-jammy-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20
21 /**
22 * DOC: Wireless regulatory infrastructure
23 *
24 * The usual implementation is for a driver to read a device EEPROM to
25 * determine which regulatory domain it should be operating under, then
26 * looking up the allowable channels in a driver-local table and finally
27 * registering those channels in the wiphy structure.
28 *
29 * Another set of compliance enforcement is for drivers to use their
30 * own compliance limits which can be stored on the EEPROM. The host
31 * driver or firmware may ensure these are used.
32 *
33 * In addition to all this we provide an extra layer of regulatory
34 * conformance. For drivers which do not have any regulatory
35 * information CRDA provides the complete regulatory solution.
36 * For others it provides a community effort on further restrictions
37 * to enhance compliance.
38 *
39 * Note: When number of rules --> infinity we will not be able to
40 * index on alpha2 any more, instead we'll probably have to
41 * rely on some SHA1 checksum of the regdomain for example.
42 *
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
56 #include "core.h"
57 #include "reg.h"
58 #include "regdb.h"
59 #include "nl80211.h"
60
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...) \
63 printk(KERN_DEBUG pr_fmt(format), ##args)
64 #else
65 #define REG_DBG_PRINT(args...)
66 #endif
67
68 enum reg_request_treatment {
69 REG_REQ_OK,
70 REG_REQ_IGNORE,
71 REG_REQ_INTERSECT,
72 REG_REQ_ALREADY_SET,
73 };
74
75 static struct regulatory_request core_request_world = {
76 .initiator = NL80211_REGDOM_SET_BY_CORE,
77 .alpha2[0] = '0',
78 .alpha2[1] = '0',
79 .intersect = false,
80 .processed = true,
81 .country_ie_env = ENVIRON_ANY,
82 };
83
84 /*
85 * Receipt of information from last regulatory request,
86 * protected by RTNL (and can be accessed with RCU protection)
87 */
88 static struct regulatory_request __rcu *last_request =
89 (void __rcu *)&core_request_world;
90
91 /* To trigger userspace events */
92 static struct platform_device *reg_pdev;
93
94 /*
95 * Central wireless core regulatory domains, we only need two,
96 * the current one and a world regulatory domain in case we have no
97 * information to give us an alpha2.
98 * (protected by RTNL, can be read under RCU)
99 */
100 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
101
102 /*
103 * Number of devices that registered to the core
104 * that support cellular base station regulatory hints
105 * (protected by RTNL)
106 */
107 static int reg_num_devs_support_basehint;
108
109 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
110 {
111 return rtnl_dereference(cfg80211_regdomain);
112 }
113
114 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
115 {
116 return rtnl_dereference(wiphy->regd);
117 }
118
119 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
120 {
121 switch (dfs_region) {
122 case NL80211_DFS_UNSET:
123 return "unset";
124 case NL80211_DFS_FCC:
125 return "FCC";
126 case NL80211_DFS_ETSI:
127 return "ETSI";
128 case NL80211_DFS_JP:
129 return "JP";
130 }
131 return "Unknown";
132 }
133
134 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
135 {
136 const struct ieee80211_regdomain *regd = NULL;
137 const struct ieee80211_regdomain *wiphy_regd = NULL;
138
139 regd = get_cfg80211_regdom();
140 if (!wiphy)
141 goto out;
142
143 wiphy_regd = get_wiphy_regdom(wiphy);
144 if (!wiphy_regd)
145 goto out;
146
147 if (wiphy_regd->dfs_region == regd->dfs_region)
148 goto out;
149
150 REG_DBG_PRINT("%s: device specific dfs_region "
151 "(%s) disagrees with cfg80211's "
152 "central dfs_region (%s)\n",
153 dev_name(&wiphy->dev),
154 reg_dfs_region_str(wiphy_regd->dfs_region),
155 reg_dfs_region_str(regd->dfs_region));
156
157 out:
158 return regd->dfs_region;
159 }
160
161 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
162 {
163 if (!r)
164 return;
165 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
166 }
167
168 static struct regulatory_request *get_last_request(void)
169 {
170 return rcu_dereference_rtnl(last_request);
171 }
172
173 /* Used to queue up regulatory hints */
174 static LIST_HEAD(reg_requests_list);
175 static spinlock_t reg_requests_lock;
176
177 /* Used to queue up beacon hints for review */
178 static LIST_HEAD(reg_pending_beacons);
179 static spinlock_t reg_pending_beacons_lock;
180
181 /* Used to keep track of processed beacon hints */
182 static LIST_HEAD(reg_beacon_list);
183
184 struct reg_beacon {
185 struct list_head list;
186 struct ieee80211_channel chan;
187 };
188
189 static void reg_todo(struct work_struct *work);
190 static DECLARE_WORK(reg_work, reg_todo);
191
192 static void reg_timeout_work(struct work_struct *work);
193 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
194
195 /* We keep a static world regulatory domain in case of the absence of CRDA */
196 static const struct ieee80211_regdomain world_regdom = {
197 .n_reg_rules = 6,
198 .alpha2 = "00",
199 .reg_rules = {
200 /* IEEE 802.11b/g, channels 1..11 */
201 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
202 /* IEEE 802.11b/g, channels 12..13. */
203 REG_RULE(2467-10, 2472+10, 40, 6, 20,
204 NL80211_RRF_NO_IR),
205 /* IEEE 802.11 channel 14 - Only JP enables
206 * this and for 802.11b only */
207 REG_RULE(2484-10, 2484+10, 20, 6, 20,
208 NL80211_RRF_NO_IR |
209 NL80211_RRF_NO_OFDM),
210 /* IEEE 802.11a, channel 36..48 */
211 REG_RULE(5180-10, 5240+10, 160, 6, 20,
212 NL80211_RRF_NO_IR),
213
214 /* IEEE 802.11a, channel 52..64 - DFS required */
215 REG_RULE(5260-10, 5320+10, 160, 6, 20,
216 NL80211_RRF_NO_IR |
217 NL80211_RRF_DFS),
218
219 /* IEEE 802.11a, channel 100..144 - DFS required */
220 REG_RULE(5500-10, 5720+10, 160, 6, 20,
221 NL80211_RRF_NO_IR |
222 NL80211_RRF_DFS),
223
224 /* IEEE 802.11a, channel 149..165 */
225 REG_RULE(5745-10, 5825+10, 80, 6, 20,
226 NL80211_RRF_NO_IR),
227
228 /* IEEE 802.11ad (60gHz), channels 1..3 */
229 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
230 }
231 };
232
233 /* protected by RTNL */
234 static const struct ieee80211_regdomain *cfg80211_world_regdom =
235 &world_regdom;
236
237 static char *ieee80211_regdom = "00";
238 static char user_alpha2[2];
239
240 module_param(ieee80211_regdom, charp, 0444);
241 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
242
243 static void reg_free_request(struct regulatory_request *lr)
244 {
245 if (lr != &core_request_world && lr)
246 kfree_rcu(lr, rcu_head);
247 }
248
249 static void reg_update_last_request(struct regulatory_request *request)
250 {
251 struct regulatory_request *lr;
252
253 lr = get_last_request();
254 if (lr == request)
255 return;
256
257 reg_free_request(lr);
258 rcu_assign_pointer(last_request, request);
259 }
260
261 static void reset_regdomains(bool full_reset,
262 const struct ieee80211_regdomain *new_regdom)
263 {
264 const struct ieee80211_regdomain *r;
265
266 ASSERT_RTNL();
267
268 r = get_cfg80211_regdom();
269
270 /* avoid freeing static information or freeing something twice */
271 if (r == cfg80211_world_regdom)
272 r = NULL;
273 if (cfg80211_world_regdom == &world_regdom)
274 cfg80211_world_regdom = NULL;
275 if (r == &world_regdom)
276 r = NULL;
277
278 rcu_free_regdom(r);
279 rcu_free_regdom(cfg80211_world_regdom);
280
281 cfg80211_world_regdom = &world_regdom;
282 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
283
284 if (!full_reset)
285 return;
286
287 reg_update_last_request(&core_request_world);
288 }
289
290 /*
291 * Dynamic world regulatory domain requested by the wireless
292 * core upon initialization
293 */
294 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
295 {
296 struct regulatory_request *lr;
297
298 lr = get_last_request();
299
300 WARN_ON(!lr);
301
302 reset_regdomains(false, rd);
303
304 cfg80211_world_regdom = rd;
305 }
306
307 bool is_world_regdom(const char *alpha2)
308 {
309 if (!alpha2)
310 return false;
311 return alpha2[0] == '0' && alpha2[1] == '0';
312 }
313
314 static bool is_alpha2_set(const char *alpha2)
315 {
316 if (!alpha2)
317 return false;
318 return alpha2[0] && alpha2[1];
319 }
320
321 static bool is_unknown_alpha2(const char *alpha2)
322 {
323 if (!alpha2)
324 return false;
325 /*
326 * Special case where regulatory domain was built by driver
327 * but a specific alpha2 cannot be determined
328 */
329 return alpha2[0] == '9' && alpha2[1] == '9';
330 }
331
332 static bool is_intersected_alpha2(const char *alpha2)
333 {
334 if (!alpha2)
335 return false;
336 /*
337 * Special case where regulatory domain is the
338 * result of an intersection between two regulatory domain
339 * structures
340 */
341 return alpha2[0] == '9' && alpha2[1] == '8';
342 }
343
344 static bool is_an_alpha2(const char *alpha2)
345 {
346 if (!alpha2)
347 return false;
348 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
349 }
350
351 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
352 {
353 if (!alpha2_x || !alpha2_y)
354 return false;
355 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
356 }
357
358 static bool regdom_changes(const char *alpha2)
359 {
360 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
361
362 if (!r)
363 return true;
364 return !alpha2_equal(r->alpha2, alpha2);
365 }
366
367 /*
368 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
369 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
370 * has ever been issued.
371 */
372 static bool is_user_regdom_saved(void)
373 {
374 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
375 return false;
376
377 /* This would indicate a mistake on the design */
378 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
379 "Unexpected user alpha2: %c%c\n",
380 user_alpha2[0], user_alpha2[1]))
381 return false;
382
383 return true;
384 }
385
386 static const struct ieee80211_regdomain *
387 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
388 {
389 struct ieee80211_regdomain *regd;
390 int size_of_regd;
391 unsigned int i;
392
393 size_of_regd =
394 sizeof(struct ieee80211_regdomain) +
395 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
396
397 regd = kzalloc(size_of_regd, GFP_KERNEL);
398 if (!regd)
399 return ERR_PTR(-ENOMEM);
400
401 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
402
403 for (i = 0; i < src_regd->n_reg_rules; i++)
404 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
405 sizeof(struct ieee80211_reg_rule));
406
407 return regd;
408 }
409
410 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
411 struct reg_regdb_search_request {
412 char alpha2[2];
413 struct list_head list;
414 };
415
416 static LIST_HEAD(reg_regdb_search_list);
417 static DEFINE_MUTEX(reg_regdb_search_mutex);
418
419 static void reg_regdb_search(struct work_struct *work)
420 {
421 struct reg_regdb_search_request *request;
422 const struct ieee80211_regdomain *curdom, *regdom = NULL;
423 int i;
424
425 rtnl_lock();
426
427 mutex_lock(&reg_regdb_search_mutex);
428 while (!list_empty(&reg_regdb_search_list)) {
429 request = list_first_entry(&reg_regdb_search_list,
430 struct reg_regdb_search_request,
431 list);
432 list_del(&request->list);
433
434 for (i = 0; i < reg_regdb_size; i++) {
435 curdom = reg_regdb[i];
436
437 if (alpha2_equal(request->alpha2, curdom->alpha2)) {
438 regdom = reg_copy_regd(curdom);
439 break;
440 }
441 }
442
443 kfree(request);
444 }
445 mutex_unlock(&reg_regdb_search_mutex);
446
447 if (!IS_ERR_OR_NULL(regdom))
448 set_regdom(regdom);
449
450 rtnl_unlock();
451 }
452
453 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
454
455 static void reg_regdb_query(const char *alpha2)
456 {
457 struct reg_regdb_search_request *request;
458
459 if (!alpha2)
460 return;
461
462 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
463 if (!request)
464 return;
465
466 memcpy(request->alpha2, alpha2, 2);
467
468 mutex_lock(&reg_regdb_search_mutex);
469 list_add_tail(&request->list, &reg_regdb_search_list);
470 mutex_unlock(&reg_regdb_search_mutex);
471
472 schedule_work(&reg_regdb_work);
473 }
474
475 /* Feel free to add any other sanity checks here */
476 static void reg_regdb_size_check(void)
477 {
478 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
479 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
480 }
481 #else
482 static inline void reg_regdb_size_check(void) {}
483 static inline void reg_regdb_query(const char *alpha2) {}
484 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
485
486 /*
487 * This lets us keep regulatory code which is updated on a regulatory
488 * basis in userspace.
489 */
490 static int call_crda(const char *alpha2)
491 {
492 char country[12];
493 char *env[] = { country, NULL };
494
495 snprintf(country, sizeof(country), "COUNTRY=%c%c",
496 alpha2[0], alpha2[1]);
497
498 if (!is_world_regdom((char *) alpha2))
499 pr_info("Calling CRDA for country: %c%c\n",
500 alpha2[0], alpha2[1]);
501 else
502 pr_info("Calling CRDA to update world regulatory domain\n");
503
504 /* query internal regulatory database (if it exists) */
505 reg_regdb_query(alpha2);
506
507 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
508 }
509
510 static enum reg_request_treatment
511 reg_call_crda(struct regulatory_request *request)
512 {
513 if (call_crda(request->alpha2))
514 return REG_REQ_IGNORE;
515 return REG_REQ_OK;
516 }
517
518 bool reg_is_valid_request(const char *alpha2)
519 {
520 struct regulatory_request *lr = get_last_request();
521
522 if (!lr || lr->processed)
523 return false;
524
525 return alpha2_equal(lr->alpha2, alpha2);
526 }
527
528 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
529 {
530 struct regulatory_request *lr = get_last_request();
531
532 /*
533 * Follow the driver's regulatory domain, if present, unless a country
534 * IE has been processed or a user wants to help complaince further
535 */
536 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
537 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
538 wiphy->regd)
539 return get_wiphy_regdom(wiphy);
540
541 return get_cfg80211_regdom();
542 }
543
544 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
545 const struct ieee80211_reg_rule *rule)
546 {
547 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
548 const struct ieee80211_freq_range *freq_range_tmp;
549 const struct ieee80211_reg_rule *tmp;
550 u32 start_freq, end_freq, idx, no;
551
552 for (idx = 0; idx < rd->n_reg_rules; idx++)
553 if (rule == &rd->reg_rules[idx])
554 break;
555
556 if (idx == rd->n_reg_rules)
557 return 0;
558
559 /* get start_freq */
560 no = idx;
561
562 while (no) {
563 tmp = &rd->reg_rules[--no];
564 freq_range_tmp = &tmp->freq_range;
565
566 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
567 break;
568
569 freq_range = freq_range_tmp;
570 }
571
572 start_freq = freq_range->start_freq_khz;
573
574 /* get end_freq */
575 freq_range = &rule->freq_range;
576 no = idx;
577
578 while (no < rd->n_reg_rules - 1) {
579 tmp = &rd->reg_rules[++no];
580 freq_range_tmp = &tmp->freq_range;
581
582 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
583 break;
584
585 freq_range = freq_range_tmp;
586 }
587
588 end_freq = freq_range->end_freq_khz;
589
590 return end_freq - start_freq;
591 }
592
593 /* Sanity check on a regulatory rule */
594 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
595 {
596 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
597 u32 freq_diff;
598
599 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
600 return false;
601
602 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
603 return false;
604
605 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
606
607 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
608 freq_range->max_bandwidth_khz > freq_diff)
609 return false;
610
611 return true;
612 }
613
614 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
615 {
616 const struct ieee80211_reg_rule *reg_rule = NULL;
617 unsigned int i;
618
619 if (!rd->n_reg_rules)
620 return false;
621
622 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
623 return false;
624
625 for (i = 0; i < rd->n_reg_rules; i++) {
626 reg_rule = &rd->reg_rules[i];
627 if (!is_valid_reg_rule(reg_rule))
628 return false;
629 }
630
631 return true;
632 }
633
634 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
635 u32 center_freq_khz, u32 bw_khz)
636 {
637 u32 start_freq_khz, end_freq_khz;
638
639 start_freq_khz = center_freq_khz - (bw_khz/2);
640 end_freq_khz = center_freq_khz + (bw_khz/2);
641
642 if (start_freq_khz >= freq_range->start_freq_khz &&
643 end_freq_khz <= freq_range->end_freq_khz)
644 return true;
645
646 return false;
647 }
648
649 /**
650 * freq_in_rule_band - tells us if a frequency is in a frequency band
651 * @freq_range: frequency rule we want to query
652 * @freq_khz: frequency we are inquiring about
653 *
654 * This lets us know if a specific frequency rule is or is not relevant to
655 * a specific frequency's band. Bands are device specific and artificial
656 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
657 * however it is safe for now to assume that a frequency rule should not be
658 * part of a frequency's band if the start freq or end freq are off by more
659 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
660 * 60 GHz band.
661 * This resolution can be lowered and should be considered as we add
662 * regulatory rule support for other "bands".
663 **/
664 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
665 u32 freq_khz)
666 {
667 #define ONE_GHZ_IN_KHZ 1000000
668 /*
669 * From 802.11ad: directional multi-gigabit (DMG):
670 * Pertaining to operation in a frequency band containing a channel
671 * with the Channel starting frequency above 45 GHz.
672 */
673 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
674 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
675 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
676 return true;
677 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
678 return true;
679 return false;
680 #undef ONE_GHZ_IN_KHZ
681 }
682
683 /*
684 * Later on we can perhaps use the more restrictive DFS
685 * region but we don't have information for that yet so
686 * for now simply disallow conflicts.
687 */
688 static enum nl80211_dfs_regions
689 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
690 const enum nl80211_dfs_regions dfs_region2)
691 {
692 if (dfs_region1 != dfs_region2)
693 return NL80211_DFS_UNSET;
694 return dfs_region1;
695 }
696
697 /*
698 * Helper for regdom_intersect(), this does the real
699 * mathematical intersection fun
700 */
701 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
702 const struct ieee80211_regdomain *rd2,
703 const struct ieee80211_reg_rule *rule1,
704 const struct ieee80211_reg_rule *rule2,
705 struct ieee80211_reg_rule *intersected_rule)
706 {
707 const struct ieee80211_freq_range *freq_range1, *freq_range2;
708 struct ieee80211_freq_range *freq_range;
709 const struct ieee80211_power_rule *power_rule1, *power_rule2;
710 struct ieee80211_power_rule *power_rule;
711 u32 freq_diff, max_bandwidth1, max_bandwidth2;
712
713 freq_range1 = &rule1->freq_range;
714 freq_range2 = &rule2->freq_range;
715 freq_range = &intersected_rule->freq_range;
716
717 power_rule1 = &rule1->power_rule;
718 power_rule2 = &rule2->power_rule;
719 power_rule = &intersected_rule->power_rule;
720
721 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
722 freq_range2->start_freq_khz);
723 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
724 freq_range2->end_freq_khz);
725
726 max_bandwidth1 = freq_range1->max_bandwidth_khz;
727 max_bandwidth2 = freq_range2->max_bandwidth_khz;
728
729 if (rule1->flags & NL80211_RRF_AUTO_BW)
730 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
731 if (rule2->flags & NL80211_RRF_AUTO_BW)
732 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
733
734 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
735
736 intersected_rule->flags = rule1->flags | rule2->flags;
737
738 /*
739 * In case NL80211_RRF_AUTO_BW requested for both rules
740 * set AUTO_BW in intersected rule also. Next we will
741 * calculate BW correctly in handle_channel function.
742 * In other case remove AUTO_BW flag while we calculate
743 * maximum bandwidth correctly and auto calculation is
744 * not required.
745 */
746 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
747 (rule2->flags & NL80211_RRF_AUTO_BW))
748 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
749 else
750 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
751
752 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
753 if (freq_range->max_bandwidth_khz > freq_diff)
754 freq_range->max_bandwidth_khz = freq_diff;
755
756 power_rule->max_eirp = min(power_rule1->max_eirp,
757 power_rule2->max_eirp);
758 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
759 power_rule2->max_antenna_gain);
760
761 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
762 rule2->dfs_cac_ms);
763
764 if (!is_valid_reg_rule(intersected_rule))
765 return -EINVAL;
766
767 return 0;
768 }
769
770 /**
771 * regdom_intersect - do the intersection between two regulatory domains
772 * @rd1: first regulatory domain
773 * @rd2: second regulatory domain
774 *
775 * Use this function to get the intersection between two regulatory domains.
776 * Once completed we will mark the alpha2 for the rd as intersected, "98",
777 * as no one single alpha2 can represent this regulatory domain.
778 *
779 * Returns a pointer to the regulatory domain structure which will hold the
780 * resulting intersection of rules between rd1 and rd2. We will
781 * kzalloc() this structure for you.
782 */
783 static struct ieee80211_regdomain *
784 regdom_intersect(const struct ieee80211_regdomain *rd1,
785 const struct ieee80211_regdomain *rd2)
786 {
787 int r, size_of_regd;
788 unsigned int x, y;
789 unsigned int num_rules = 0, rule_idx = 0;
790 const struct ieee80211_reg_rule *rule1, *rule2;
791 struct ieee80211_reg_rule *intersected_rule;
792 struct ieee80211_regdomain *rd;
793 /* This is just a dummy holder to help us count */
794 struct ieee80211_reg_rule dummy_rule;
795
796 if (!rd1 || !rd2)
797 return NULL;
798
799 /*
800 * First we get a count of the rules we'll need, then we actually
801 * build them. This is to so we can malloc() and free() a
802 * regdomain once. The reason we use reg_rules_intersect() here
803 * is it will return -EINVAL if the rule computed makes no sense.
804 * All rules that do check out OK are valid.
805 */
806
807 for (x = 0; x < rd1->n_reg_rules; x++) {
808 rule1 = &rd1->reg_rules[x];
809 for (y = 0; y < rd2->n_reg_rules; y++) {
810 rule2 = &rd2->reg_rules[y];
811 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
812 &dummy_rule))
813 num_rules++;
814 }
815 }
816
817 if (!num_rules)
818 return NULL;
819
820 size_of_regd = sizeof(struct ieee80211_regdomain) +
821 num_rules * sizeof(struct ieee80211_reg_rule);
822
823 rd = kzalloc(size_of_regd, GFP_KERNEL);
824 if (!rd)
825 return NULL;
826
827 for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
828 rule1 = &rd1->reg_rules[x];
829 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
830 rule2 = &rd2->reg_rules[y];
831 /*
832 * This time around instead of using the stack lets
833 * write to the target rule directly saving ourselves
834 * a memcpy()
835 */
836 intersected_rule = &rd->reg_rules[rule_idx];
837 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
838 intersected_rule);
839 /*
840 * No need to memset here the intersected rule here as
841 * we're not using the stack anymore
842 */
843 if (r)
844 continue;
845 rule_idx++;
846 }
847 }
848
849 if (rule_idx != num_rules) {
850 kfree(rd);
851 return NULL;
852 }
853
854 rd->n_reg_rules = num_rules;
855 rd->alpha2[0] = '9';
856 rd->alpha2[1] = '8';
857 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
858 rd2->dfs_region);
859
860 return rd;
861 }
862
863 /*
864 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
865 * want to just have the channel structure use these
866 */
867 static u32 map_regdom_flags(u32 rd_flags)
868 {
869 u32 channel_flags = 0;
870 if (rd_flags & NL80211_RRF_NO_IR_ALL)
871 channel_flags |= IEEE80211_CHAN_NO_IR;
872 if (rd_flags & NL80211_RRF_DFS)
873 channel_flags |= IEEE80211_CHAN_RADAR;
874 if (rd_flags & NL80211_RRF_NO_OFDM)
875 channel_flags |= IEEE80211_CHAN_NO_OFDM;
876 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
877 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
878 return channel_flags;
879 }
880
881 static const struct ieee80211_reg_rule *
882 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
883 const struct ieee80211_regdomain *regd)
884 {
885 int i;
886 bool band_rule_found = false;
887 bool bw_fits = false;
888
889 if (!regd)
890 return ERR_PTR(-EINVAL);
891
892 for (i = 0; i < regd->n_reg_rules; i++) {
893 const struct ieee80211_reg_rule *rr;
894 const struct ieee80211_freq_range *fr = NULL;
895
896 rr = &regd->reg_rules[i];
897 fr = &rr->freq_range;
898
899 /*
900 * We only need to know if one frequency rule was
901 * was in center_freq's band, that's enough, so lets
902 * not overwrite it once found
903 */
904 if (!band_rule_found)
905 band_rule_found = freq_in_rule_band(fr, center_freq);
906
907 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
908
909 if (band_rule_found && bw_fits)
910 return rr;
911 }
912
913 if (!band_rule_found)
914 return ERR_PTR(-ERANGE);
915
916 return ERR_PTR(-EINVAL);
917 }
918
919 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
920 u32 center_freq)
921 {
922 const struct ieee80211_regdomain *regd;
923
924 regd = reg_get_regdomain(wiphy);
925
926 return freq_reg_info_regd(wiphy, center_freq, regd);
927 }
928 EXPORT_SYMBOL(freq_reg_info);
929
930 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
931 {
932 switch (initiator) {
933 case NL80211_REGDOM_SET_BY_CORE:
934 return "core";
935 case NL80211_REGDOM_SET_BY_USER:
936 return "user";
937 case NL80211_REGDOM_SET_BY_DRIVER:
938 return "driver";
939 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
940 return "country IE";
941 default:
942 WARN_ON(1);
943 return "bug";
944 }
945 }
946 EXPORT_SYMBOL(reg_initiator_name);
947
948 #ifdef CONFIG_CFG80211_REG_DEBUG
949 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
950 struct ieee80211_channel *chan,
951 const struct ieee80211_reg_rule *reg_rule)
952 {
953 const struct ieee80211_power_rule *power_rule;
954 const struct ieee80211_freq_range *freq_range;
955 char max_antenna_gain[32], bw[32];
956
957 power_rule = &reg_rule->power_rule;
958 freq_range = &reg_rule->freq_range;
959
960 if (!power_rule->max_antenna_gain)
961 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
962 else
963 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
964 power_rule->max_antenna_gain);
965
966 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
967 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
968 freq_range->max_bandwidth_khz,
969 reg_get_max_bandwidth(regd, reg_rule));
970 else
971 snprintf(bw, sizeof(bw), "%d KHz",
972 freq_range->max_bandwidth_khz);
973
974 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
975 chan->center_freq);
976
977 REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
978 freq_range->start_freq_khz, freq_range->end_freq_khz,
979 bw, max_antenna_gain,
980 power_rule->max_eirp);
981 }
982 #else
983 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
984 struct ieee80211_channel *chan,
985 const struct ieee80211_reg_rule *reg_rule)
986 {
987 return;
988 }
989 #endif
990
991 /*
992 * Note that right now we assume the desired channel bandwidth
993 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
994 * per channel, the primary and the extension channel).
995 */
996 static void handle_channel(struct wiphy *wiphy,
997 enum nl80211_reg_initiator initiator,
998 struct ieee80211_channel *chan)
999 {
1000 u32 flags, bw_flags = 0;
1001 const struct ieee80211_reg_rule *reg_rule = NULL;
1002 const struct ieee80211_power_rule *power_rule = NULL;
1003 const struct ieee80211_freq_range *freq_range = NULL;
1004 struct wiphy *request_wiphy = NULL;
1005 struct regulatory_request *lr = get_last_request();
1006 const struct ieee80211_regdomain *regd;
1007 u32 max_bandwidth_khz;
1008
1009 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1010
1011 flags = chan->orig_flags;
1012
1013 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1014 if (IS_ERR(reg_rule)) {
1015 /*
1016 * We will disable all channels that do not match our
1017 * received regulatory rule unless the hint is coming
1018 * from a Country IE and the Country IE had no information
1019 * about a band. The IEEE 802.11 spec allows for an AP
1020 * to send only a subset of the regulatory rules allowed,
1021 * so an AP in the US that only supports 2.4 GHz may only send
1022 * a country IE with information for the 2.4 GHz band
1023 * while 5 GHz is still supported.
1024 */
1025 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1026 PTR_ERR(reg_rule) == -ERANGE)
1027 return;
1028
1029 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1030 request_wiphy && request_wiphy == wiphy &&
1031 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1032 REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1033 chan->center_freq);
1034 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1035 chan->flags = chan->orig_flags;
1036 } else {
1037 REG_DBG_PRINT("Disabling freq %d MHz\n",
1038 chan->center_freq);
1039 chan->flags |= IEEE80211_CHAN_DISABLED;
1040 }
1041 return;
1042 }
1043
1044 regd = reg_get_regdomain(wiphy);
1045 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1046
1047 power_rule = &reg_rule->power_rule;
1048 freq_range = &reg_rule->freq_range;
1049
1050 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1051 /* Check if auto calculation requested */
1052 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1053 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1054
1055 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1056 bw_flags = IEEE80211_CHAN_NO_HT40;
1057 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1058 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1059 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1060 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1061
1062 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1063 request_wiphy && request_wiphy == wiphy &&
1064 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1065 /*
1066 * This guarantees the driver's requested regulatory domain
1067 * will always be used as a base for further regulatory
1068 * settings
1069 */
1070 chan->flags = chan->orig_flags =
1071 map_regdom_flags(reg_rule->flags) | bw_flags;
1072 chan->max_antenna_gain = chan->orig_mag =
1073 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1074 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1075 (int) MBM_TO_DBM(power_rule->max_eirp);
1076 return;
1077 }
1078
1079 chan->dfs_state = NL80211_DFS_USABLE;
1080 chan->dfs_state_entered = jiffies;
1081
1082 chan->beacon_found = false;
1083 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1084 chan->max_antenna_gain =
1085 min_t(int, chan->orig_mag,
1086 MBI_TO_DBI(power_rule->max_antenna_gain));
1087 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1088
1089 if (chan->flags & IEEE80211_CHAN_RADAR) {
1090 if (reg_rule->dfs_cac_ms)
1091 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1092 else
1093 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1094 }
1095
1096 if (chan->orig_mpwr) {
1097 /*
1098 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1099 * will always follow the passed country IE power settings.
1100 */
1101 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1102 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1103 chan->max_power = chan->max_reg_power;
1104 else
1105 chan->max_power = min(chan->orig_mpwr,
1106 chan->max_reg_power);
1107 } else
1108 chan->max_power = chan->max_reg_power;
1109 }
1110
1111 static void handle_band(struct wiphy *wiphy,
1112 enum nl80211_reg_initiator initiator,
1113 struct ieee80211_supported_band *sband)
1114 {
1115 unsigned int i;
1116
1117 if (!sband)
1118 return;
1119
1120 for (i = 0; i < sband->n_channels; i++)
1121 handle_channel(wiphy, initiator, &sband->channels[i]);
1122 }
1123
1124 static bool reg_request_cell_base(struct regulatory_request *request)
1125 {
1126 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1127 return false;
1128 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1129 }
1130
1131 bool reg_last_request_cell_base(void)
1132 {
1133 return reg_request_cell_base(get_last_request());
1134 }
1135
1136 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
1137 /* Core specific check */
1138 static enum reg_request_treatment
1139 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1140 {
1141 struct regulatory_request *lr = get_last_request();
1142
1143 if (!reg_num_devs_support_basehint)
1144 return REG_REQ_IGNORE;
1145
1146 if (reg_request_cell_base(lr) &&
1147 !regdom_changes(pending_request->alpha2))
1148 return REG_REQ_ALREADY_SET;
1149
1150 return REG_REQ_OK;
1151 }
1152
1153 /* Device specific check */
1154 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1155 {
1156 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1157 }
1158 #else
1159 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1160 {
1161 return REG_REQ_IGNORE;
1162 }
1163
1164 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1165 {
1166 return true;
1167 }
1168 #endif
1169
1170 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1171 {
1172 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1173 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1174 return true;
1175 return false;
1176 }
1177
1178 static bool ignore_reg_update(struct wiphy *wiphy,
1179 enum nl80211_reg_initiator initiator)
1180 {
1181 struct regulatory_request *lr = get_last_request();
1182
1183 if (!lr) {
1184 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1185 "since last_request is not set\n",
1186 reg_initiator_name(initiator));
1187 return true;
1188 }
1189
1190 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1191 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1192 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1193 "since the driver uses its own custom "
1194 "regulatory domain\n",
1195 reg_initiator_name(initiator));
1196 return true;
1197 }
1198
1199 /*
1200 * wiphy->regd will be set once the device has its own
1201 * desired regulatory domain set
1202 */
1203 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1204 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1205 !is_world_regdom(lr->alpha2)) {
1206 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1207 "since the driver requires its own regulatory "
1208 "domain to be set first\n",
1209 reg_initiator_name(initiator));
1210 return true;
1211 }
1212
1213 if (reg_request_cell_base(lr))
1214 return reg_dev_ignore_cell_hint(wiphy);
1215
1216 return false;
1217 }
1218
1219 static bool reg_is_world_roaming(struct wiphy *wiphy)
1220 {
1221 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1222 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1223 struct regulatory_request *lr = get_last_request();
1224
1225 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1226 return true;
1227
1228 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1229 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1230 return true;
1231
1232 return false;
1233 }
1234
1235 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1236 struct reg_beacon *reg_beacon)
1237 {
1238 struct ieee80211_supported_band *sband;
1239 struct ieee80211_channel *chan;
1240 bool channel_changed = false;
1241 struct ieee80211_channel chan_before;
1242
1243 sband = wiphy->bands[reg_beacon->chan.band];
1244 chan = &sband->channels[chan_idx];
1245
1246 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1247 return;
1248
1249 if (chan->beacon_found)
1250 return;
1251
1252 chan->beacon_found = true;
1253
1254 if (!reg_is_world_roaming(wiphy))
1255 return;
1256
1257 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1258 return;
1259
1260 chan_before.center_freq = chan->center_freq;
1261 chan_before.flags = chan->flags;
1262
1263 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1264 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1265 channel_changed = true;
1266 }
1267
1268 if (channel_changed)
1269 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1270 }
1271
1272 /*
1273 * Called when a scan on a wiphy finds a beacon on
1274 * new channel
1275 */
1276 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1277 struct reg_beacon *reg_beacon)
1278 {
1279 unsigned int i;
1280 struct ieee80211_supported_band *sband;
1281
1282 if (!wiphy->bands[reg_beacon->chan.band])
1283 return;
1284
1285 sband = wiphy->bands[reg_beacon->chan.band];
1286
1287 for (i = 0; i < sband->n_channels; i++)
1288 handle_reg_beacon(wiphy, i, reg_beacon);
1289 }
1290
1291 /*
1292 * Called upon reg changes or a new wiphy is added
1293 */
1294 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1295 {
1296 unsigned int i;
1297 struct ieee80211_supported_band *sband;
1298 struct reg_beacon *reg_beacon;
1299
1300 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1301 if (!wiphy->bands[reg_beacon->chan.band])
1302 continue;
1303 sband = wiphy->bands[reg_beacon->chan.band];
1304 for (i = 0; i < sband->n_channels; i++)
1305 handle_reg_beacon(wiphy, i, reg_beacon);
1306 }
1307 }
1308
1309 /* Reap the advantages of previously found beacons */
1310 static void reg_process_beacons(struct wiphy *wiphy)
1311 {
1312 /*
1313 * Means we are just firing up cfg80211, so no beacons would
1314 * have been processed yet.
1315 */
1316 if (!last_request)
1317 return;
1318 wiphy_update_beacon_reg(wiphy);
1319 }
1320
1321 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1322 {
1323 if (!chan)
1324 return false;
1325 if (chan->flags & IEEE80211_CHAN_DISABLED)
1326 return false;
1327 /* This would happen when regulatory rules disallow HT40 completely */
1328 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1329 return false;
1330 return true;
1331 }
1332
1333 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1334 struct ieee80211_channel *channel)
1335 {
1336 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1337 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1338 unsigned int i;
1339
1340 if (!is_ht40_allowed(channel)) {
1341 channel->flags |= IEEE80211_CHAN_NO_HT40;
1342 return;
1343 }
1344
1345 /*
1346 * We need to ensure the extension channels exist to
1347 * be able to use HT40- or HT40+, this finds them (or not)
1348 */
1349 for (i = 0; i < sband->n_channels; i++) {
1350 struct ieee80211_channel *c = &sband->channels[i];
1351
1352 if (c->center_freq == (channel->center_freq - 20))
1353 channel_before = c;
1354 if (c->center_freq == (channel->center_freq + 20))
1355 channel_after = c;
1356 }
1357
1358 /*
1359 * Please note that this assumes target bandwidth is 20 MHz,
1360 * if that ever changes we also need to change the below logic
1361 * to include that as well.
1362 */
1363 if (!is_ht40_allowed(channel_before))
1364 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1365 else
1366 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1367
1368 if (!is_ht40_allowed(channel_after))
1369 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1370 else
1371 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1372 }
1373
1374 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1375 struct ieee80211_supported_band *sband)
1376 {
1377 unsigned int i;
1378
1379 if (!sband)
1380 return;
1381
1382 for (i = 0; i < sband->n_channels; i++)
1383 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1384 }
1385
1386 static void reg_process_ht_flags(struct wiphy *wiphy)
1387 {
1388 enum ieee80211_band band;
1389
1390 if (!wiphy)
1391 return;
1392
1393 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1394 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1395 }
1396
1397 static void reg_call_notifier(struct wiphy *wiphy,
1398 struct regulatory_request *request)
1399 {
1400 if (wiphy->reg_notifier)
1401 wiphy->reg_notifier(wiphy, request);
1402 }
1403
1404 static void wiphy_update_regulatory(struct wiphy *wiphy,
1405 enum nl80211_reg_initiator initiator)
1406 {
1407 enum ieee80211_band band;
1408 struct regulatory_request *lr = get_last_request();
1409
1410 if (ignore_reg_update(wiphy, initiator)) {
1411 /*
1412 * Regulatory updates set by CORE are ignored for custom
1413 * regulatory cards. Let us notify the changes to the driver,
1414 * as some drivers used this to restore its orig_* reg domain.
1415 */
1416 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1417 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1418 reg_call_notifier(wiphy, lr);
1419 return;
1420 }
1421
1422 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1423
1424 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1425 handle_band(wiphy, initiator, wiphy->bands[band]);
1426
1427 reg_process_beacons(wiphy);
1428 reg_process_ht_flags(wiphy);
1429 reg_call_notifier(wiphy, lr);
1430 }
1431
1432 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1433 {
1434 struct cfg80211_registered_device *rdev;
1435 struct wiphy *wiphy;
1436
1437 ASSERT_RTNL();
1438
1439 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1440 wiphy = &rdev->wiphy;
1441 wiphy_update_regulatory(wiphy, initiator);
1442 }
1443 }
1444
1445 static void handle_channel_custom(struct wiphy *wiphy,
1446 struct ieee80211_channel *chan,
1447 const struct ieee80211_regdomain *regd)
1448 {
1449 u32 bw_flags = 0;
1450 const struct ieee80211_reg_rule *reg_rule = NULL;
1451 const struct ieee80211_power_rule *power_rule = NULL;
1452 const struct ieee80211_freq_range *freq_range = NULL;
1453 u32 max_bandwidth_khz;
1454
1455 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1456 regd);
1457
1458 if (IS_ERR(reg_rule)) {
1459 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1460 chan->center_freq);
1461 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1462 chan->flags = chan->orig_flags;
1463 return;
1464 }
1465
1466 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1467
1468 power_rule = &reg_rule->power_rule;
1469 freq_range = &reg_rule->freq_range;
1470
1471 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1472 /* Check if auto calculation requested */
1473 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1474 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1475
1476 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1477 bw_flags = IEEE80211_CHAN_NO_HT40;
1478 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1479 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1480 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1481 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1482
1483 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1484 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1485 chan->max_reg_power = chan->max_power =
1486 (int) MBM_TO_DBM(power_rule->max_eirp);
1487 }
1488
1489 static void handle_band_custom(struct wiphy *wiphy,
1490 struct ieee80211_supported_band *sband,
1491 const struct ieee80211_regdomain *regd)
1492 {
1493 unsigned int i;
1494
1495 if (!sband)
1496 return;
1497
1498 for (i = 0; i < sband->n_channels; i++)
1499 handle_channel_custom(wiphy, &sband->channels[i], regd);
1500 }
1501
1502 /* Used by drivers prior to wiphy registration */
1503 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1504 const struct ieee80211_regdomain *regd)
1505 {
1506 enum ieee80211_band band;
1507 unsigned int bands_set = 0;
1508
1509 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1510 "wiphy should have REGULATORY_CUSTOM_REG\n");
1511 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1512
1513 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1514 if (!wiphy->bands[band])
1515 continue;
1516 handle_band_custom(wiphy, wiphy->bands[band], regd);
1517 bands_set++;
1518 }
1519
1520 /*
1521 * no point in calling this if it won't have any effect
1522 * on your device's supported bands.
1523 */
1524 WARN_ON(!bands_set);
1525 }
1526 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1527
1528 static void reg_set_request_processed(void)
1529 {
1530 bool need_more_processing = false;
1531 struct regulatory_request *lr = get_last_request();
1532
1533 lr->processed = true;
1534
1535 spin_lock(&reg_requests_lock);
1536 if (!list_empty(&reg_requests_list))
1537 need_more_processing = true;
1538 spin_unlock(&reg_requests_lock);
1539
1540 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1541 cancel_delayed_work(&reg_timeout);
1542
1543 if (need_more_processing)
1544 schedule_work(&reg_work);
1545 }
1546
1547 /**
1548 * reg_process_hint_core - process core regulatory requests
1549 * @pending_request: a pending core regulatory request
1550 *
1551 * The wireless subsystem can use this function to process
1552 * a regulatory request issued by the regulatory core.
1553 *
1554 * Returns one of the different reg request treatment values.
1555 */
1556 static enum reg_request_treatment
1557 reg_process_hint_core(struct regulatory_request *core_request)
1558 {
1559
1560 core_request->intersect = false;
1561 core_request->processed = false;
1562
1563 reg_update_last_request(core_request);
1564
1565 return reg_call_crda(core_request);
1566 }
1567
1568 static enum reg_request_treatment
1569 __reg_process_hint_user(struct regulatory_request *user_request)
1570 {
1571 struct regulatory_request *lr = get_last_request();
1572
1573 if (reg_request_cell_base(user_request))
1574 return reg_ignore_cell_hint(user_request);
1575
1576 if (reg_request_cell_base(lr))
1577 return REG_REQ_IGNORE;
1578
1579 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1580 return REG_REQ_INTERSECT;
1581 /*
1582 * If the user knows better the user should set the regdom
1583 * to their country before the IE is picked up
1584 */
1585 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1586 lr->intersect)
1587 return REG_REQ_IGNORE;
1588 /*
1589 * Process user requests only after previous user/driver/core
1590 * requests have been processed
1591 */
1592 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1593 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1594 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1595 regdom_changes(lr->alpha2))
1596 return REG_REQ_IGNORE;
1597
1598 if (!regdom_changes(user_request->alpha2))
1599 return REG_REQ_ALREADY_SET;
1600
1601 return REG_REQ_OK;
1602 }
1603
1604 /**
1605 * reg_process_hint_user - process user regulatory requests
1606 * @user_request: a pending user regulatory request
1607 *
1608 * The wireless subsystem can use this function to process
1609 * a regulatory request initiated by userspace.
1610 *
1611 * Returns one of the different reg request treatment values.
1612 */
1613 static enum reg_request_treatment
1614 reg_process_hint_user(struct regulatory_request *user_request)
1615 {
1616 enum reg_request_treatment treatment;
1617
1618 treatment = __reg_process_hint_user(user_request);
1619 if (treatment == REG_REQ_IGNORE ||
1620 treatment == REG_REQ_ALREADY_SET) {
1621 kfree(user_request);
1622 return treatment;
1623 }
1624
1625 user_request->intersect = treatment == REG_REQ_INTERSECT;
1626 user_request->processed = false;
1627
1628 reg_update_last_request(user_request);
1629
1630 user_alpha2[0] = user_request->alpha2[0];
1631 user_alpha2[1] = user_request->alpha2[1];
1632
1633 return reg_call_crda(user_request);
1634 }
1635
1636 static enum reg_request_treatment
1637 __reg_process_hint_driver(struct regulatory_request *driver_request)
1638 {
1639 struct regulatory_request *lr = get_last_request();
1640
1641 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1642 if (regdom_changes(driver_request->alpha2))
1643 return REG_REQ_OK;
1644 return REG_REQ_ALREADY_SET;
1645 }
1646
1647 /*
1648 * This would happen if you unplug and plug your card
1649 * back in or if you add a new device for which the previously
1650 * loaded card also agrees on the regulatory domain.
1651 */
1652 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1653 !regdom_changes(driver_request->alpha2))
1654 return REG_REQ_ALREADY_SET;
1655
1656 return REG_REQ_INTERSECT;
1657 }
1658
1659 /**
1660 * reg_process_hint_driver - process driver regulatory requests
1661 * @driver_request: a pending driver regulatory request
1662 *
1663 * The wireless subsystem can use this function to process
1664 * a regulatory request issued by an 802.11 driver.
1665 *
1666 * Returns one of the different reg request treatment values.
1667 */
1668 static enum reg_request_treatment
1669 reg_process_hint_driver(struct wiphy *wiphy,
1670 struct regulatory_request *driver_request)
1671 {
1672 const struct ieee80211_regdomain *regd;
1673 enum reg_request_treatment treatment;
1674
1675 treatment = __reg_process_hint_driver(driver_request);
1676
1677 switch (treatment) {
1678 case REG_REQ_OK:
1679 break;
1680 case REG_REQ_IGNORE:
1681 kfree(driver_request);
1682 return treatment;
1683 case REG_REQ_INTERSECT:
1684 /* fall through */
1685 case REG_REQ_ALREADY_SET:
1686 regd = reg_copy_regd(get_cfg80211_regdom());
1687 if (IS_ERR(regd)) {
1688 kfree(driver_request);
1689 return REG_REQ_IGNORE;
1690 }
1691 rcu_assign_pointer(wiphy->regd, regd);
1692 }
1693
1694
1695 driver_request->intersect = treatment == REG_REQ_INTERSECT;
1696 driver_request->processed = false;
1697
1698 reg_update_last_request(driver_request);
1699
1700 /*
1701 * Since CRDA will not be called in this case as we already
1702 * have applied the requested regulatory domain before we just
1703 * inform userspace we have processed the request
1704 */
1705 if (treatment == REG_REQ_ALREADY_SET) {
1706 nl80211_send_reg_change_event(driver_request);
1707 reg_set_request_processed();
1708 return treatment;
1709 }
1710
1711 return reg_call_crda(driver_request);
1712 }
1713
1714 static enum reg_request_treatment
1715 __reg_process_hint_country_ie(struct wiphy *wiphy,
1716 struct regulatory_request *country_ie_request)
1717 {
1718 struct wiphy *last_wiphy = NULL;
1719 struct regulatory_request *lr = get_last_request();
1720
1721 if (reg_request_cell_base(lr)) {
1722 /* Trust a Cell base station over the AP's country IE */
1723 if (regdom_changes(country_ie_request->alpha2))
1724 return REG_REQ_IGNORE;
1725 return REG_REQ_ALREADY_SET;
1726 } else {
1727 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1728 return REG_REQ_IGNORE;
1729 }
1730
1731 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
1732 return -EINVAL;
1733
1734 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
1735 return REG_REQ_OK;
1736
1737 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1738
1739 if (last_wiphy != wiphy) {
1740 /*
1741 * Two cards with two APs claiming different
1742 * Country IE alpha2s. We could
1743 * intersect them, but that seems unlikely
1744 * to be correct. Reject second one for now.
1745 */
1746 if (regdom_changes(country_ie_request->alpha2))
1747 return REG_REQ_IGNORE;
1748 return REG_REQ_ALREADY_SET;
1749 }
1750 /*
1751 * Two consecutive Country IE hints on the same wiphy.
1752 * This should be picked up early by the driver/stack
1753 */
1754 if (WARN_ON(regdom_changes(country_ie_request->alpha2)))
1755 return REG_REQ_OK;
1756 return REG_REQ_ALREADY_SET;
1757 }
1758
1759 /**
1760 * reg_process_hint_country_ie - process regulatory requests from country IEs
1761 * @country_ie_request: a regulatory request from a country IE
1762 *
1763 * The wireless subsystem can use this function to process
1764 * a regulatory request issued by a country Information Element.
1765 *
1766 * Returns one of the different reg request treatment values.
1767 */
1768 static enum reg_request_treatment
1769 reg_process_hint_country_ie(struct wiphy *wiphy,
1770 struct regulatory_request *country_ie_request)
1771 {
1772 enum reg_request_treatment treatment;
1773
1774 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
1775
1776 switch (treatment) {
1777 case REG_REQ_OK:
1778 break;
1779 case REG_REQ_IGNORE:
1780 /* fall through */
1781 case REG_REQ_ALREADY_SET:
1782 kfree(country_ie_request);
1783 return treatment;
1784 case REG_REQ_INTERSECT:
1785 kfree(country_ie_request);
1786 /*
1787 * This doesn't happen yet, not sure we
1788 * ever want to support it for this case.
1789 */
1790 WARN_ONCE(1, "Unexpected intersection for country IEs");
1791 return REG_REQ_IGNORE;
1792 }
1793
1794 country_ie_request->intersect = false;
1795 country_ie_request->processed = false;
1796
1797 reg_update_last_request(country_ie_request);
1798
1799 return reg_call_crda(country_ie_request);
1800 }
1801
1802 /* This processes *all* regulatory hints */
1803 static void reg_process_hint(struct regulatory_request *reg_request)
1804 {
1805 struct wiphy *wiphy = NULL;
1806 enum reg_request_treatment treatment;
1807
1808 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1809 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1810
1811 switch (reg_request->initiator) {
1812 case NL80211_REGDOM_SET_BY_CORE:
1813 reg_process_hint_core(reg_request);
1814 return;
1815 case NL80211_REGDOM_SET_BY_USER:
1816 treatment = reg_process_hint_user(reg_request);
1817 if (treatment == REG_REQ_IGNORE ||
1818 treatment == REG_REQ_ALREADY_SET)
1819 return;
1820 queue_delayed_work(system_power_efficient_wq,
1821 &reg_timeout, msecs_to_jiffies(3142));
1822 return;
1823 case NL80211_REGDOM_SET_BY_DRIVER:
1824 if (!wiphy)
1825 goto out_free;
1826 treatment = reg_process_hint_driver(wiphy, reg_request);
1827 break;
1828 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1829 if (!wiphy)
1830 goto out_free;
1831 treatment = reg_process_hint_country_ie(wiphy, reg_request);
1832 break;
1833 default:
1834 WARN(1, "invalid initiator %d\n", reg_request->initiator);
1835 goto out_free;
1836 }
1837
1838 /* This is required so that the orig_* parameters are saved */
1839 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
1840 wiphy->regulatory_flags & REGULATORY_STRICT_REG)
1841 wiphy_update_regulatory(wiphy, reg_request->initiator);
1842
1843 return;
1844
1845 out_free:
1846 kfree(reg_request);
1847 }
1848
1849 /*
1850 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1851 * Regulatory hints come on a first come first serve basis and we
1852 * must process each one atomically.
1853 */
1854 static void reg_process_pending_hints(void)
1855 {
1856 struct regulatory_request *reg_request, *lr;
1857
1858 lr = get_last_request();
1859
1860 /* When last_request->processed becomes true this will be rescheduled */
1861 if (lr && !lr->processed) {
1862 REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n");
1863 return;
1864 }
1865
1866 spin_lock(&reg_requests_lock);
1867
1868 if (list_empty(&reg_requests_list)) {
1869 spin_unlock(&reg_requests_lock);
1870 return;
1871 }
1872
1873 reg_request = list_first_entry(&reg_requests_list,
1874 struct regulatory_request,
1875 list);
1876 list_del_init(&reg_request->list);
1877
1878 spin_unlock(&reg_requests_lock);
1879
1880 reg_process_hint(reg_request);
1881 }
1882
1883 /* Processes beacon hints -- this has nothing to do with country IEs */
1884 static void reg_process_pending_beacon_hints(void)
1885 {
1886 struct cfg80211_registered_device *rdev;
1887 struct reg_beacon *pending_beacon, *tmp;
1888
1889 /* This goes through the _pending_ beacon list */
1890 spin_lock_bh(&reg_pending_beacons_lock);
1891
1892 list_for_each_entry_safe(pending_beacon, tmp,
1893 &reg_pending_beacons, list) {
1894 list_del_init(&pending_beacon->list);
1895
1896 /* Applies the beacon hint to current wiphys */
1897 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1898 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1899
1900 /* Remembers the beacon hint for new wiphys or reg changes */
1901 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1902 }
1903
1904 spin_unlock_bh(&reg_pending_beacons_lock);
1905 }
1906
1907 static void reg_todo(struct work_struct *work)
1908 {
1909 rtnl_lock();
1910 reg_process_pending_hints();
1911 reg_process_pending_beacon_hints();
1912 rtnl_unlock();
1913 }
1914
1915 static void queue_regulatory_request(struct regulatory_request *request)
1916 {
1917 request->alpha2[0] = toupper(request->alpha2[0]);
1918 request->alpha2[1] = toupper(request->alpha2[1]);
1919
1920 spin_lock(&reg_requests_lock);
1921 list_add_tail(&request->list, &reg_requests_list);
1922 spin_unlock(&reg_requests_lock);
1923
1924 schedule_work(&reg_work);
1925 }
1926
1927 /*
1928 * Core regulatory hint -- happens during cfg80211_init()
1929 * and when we restore regulatory settings.
1930 */
1931 static int regulatory_hint_core(const char *alpha2)
1932 {
1933 struct regulatory_request *request;
1934
1935 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1936 if (!request)
1937 return -ENOMEM;
1938
1939 request->alpha2[0] = alpha2[0];
1940 request->alpha2[1] = alpha2[1];
1941 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1942
1943 queue_regulatory_request(request);
1944
1945 return 0;
1946 }
1947
1948 /* User hints */
1949 int regulatory_hint_user(const char *alpha2,
1950 enum nl80211_user_reg_hint_type user_reg_hint_type)
1951 {
1952 struct regulatory_request *request;
1953
1954 if (WARN_ON(!alpha2))
1955 return -EINVAL;
1956
1957 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1958 if (!request)
1959 return -ENOMEM;
1960
1961 request->wiphy_idx = WIPHY_IDX_INVALID;
1962 request->alpha2[0] = alpha2[0];
1963 request->alpha2[1] = alpha2[1];
1964 request->initiator = NL80211_REGDOM_SET_BY_USER;
1965 request->user_reg_hint_type = user_reg_hint_type;
1966
1967 queue_regulatory_request(request);
1968
1969 return 0;
1970 }
1971
1972 /* Driver hints */
1973 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1974 {
1975 struct regulatory_request *request;
1976
1977 if (WARN_ON(!alpha2 || !wiphy))
1978 return -EINVAL;
1979
1980 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
1981
1982 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1983 if (!request)
1984 return -ENOMEM;
1985
1986 request->wiphy_idx = get_wiphy_idx(wiphy);
1987
1988 request->alpha2[0] = alpha2[0];
1989 request->alpha2[1] = alpha2[1];
1990 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1991
1992 queue_regulatory_request(request);
1993
1994 return 0;
1995 }
1996 EXPORT_SYMBOL(regulatory_hint);
1997
1998 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
1999 const u8 *country_ie, u8 country_ie_len)
2000 {
2001 char alpha2[2];
2002 enum environment_cap env = ENVIRON_ANY;
2003 struct regulatory_request *request = NULL, *lr;
2004
2005 /* IE len must be evenly divisible by 2 */
2006 if (country_ie_len & 0x01)
2007 return;
2008
2009 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2010 return;
2011
2012 request = kzalloc(sizeof(*request), GFP_KERNEL);
2013 if (!request)
2014 return;
2015
2016 alpha2[0] = country_ie[0];
2017 alpha2[1] = country_ie[1];
2018
2019 if (country_ie[2] == 'I')
2020 env = ENVIRON_INDOOR;
2021 else if (country_ie[2] == 'O')
2022 env = ENVIRON_OUTDOOR;
2023
2024 rcu_read_lock();
2025 lr = get_last_request();
2026
2027 if (unlikely(!lr))
2028 goto out;
2029
2030 /*
2031 * We will run this only upon a successful connection on cfg80211.
2032 * We leave conflict resolution to the workqueue, where can hold
2033 * the RTNL.
2034 */
2035 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2036 lr->wiphy_idx != WIPHY_IDX_INVALID)
2037 goto out;
2038
2039 request->wiphy_idx = get_wiphy_idx(wiphy);
2040 request->alpha2[0] = alpha2[0];
2041 request->alpha2[1] = alpha2[1];
2042 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2043 request->country_ie_env = env;
2044
2045 queue_regulatory_request(request);
2046 request = NULL;
2047 out:
2048 kfree(request);
2049 rcu_read_unlock();
2050 }
2051
2052 static void restore_alpha2(char *alpha2, bool reset_user)
2053 {
2054 /* indicates there is no alpha2 to consider for restoration */
2055 alpha2[0] = '9';
2056 alpha2[1] = '7';
2057
2058 /* The user setting has precedence over the module parameter */
2059 if (is_user_regdom_saved()) {
2060 /* Unless we're asked to ignore it and reset it */
2061 if (reset_user) {
2062 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2063 user_alpha2[0] = '9';
2064 user_alpha2[1] = '7';
2065
2066 /*
2067 * If we're ignoring user settings, we still need to
2068 * check the module parameter to ensure we put things
2069 * back as they were for a full restore.
2070 */
2071 if (!is_world_regdom(ieee80211_regdom)) {
2072 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2073 ieee80211_regdom[0], ieee80211_regdom[1]);
2074 alpha2[0] = ieee80211_regdom[0];
2075 alpha2[1] = ieee80211_regdom[1];
2076 }
2077 } else {
2078 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2079 user_alpha2[0], user_alpha2[1]);
2080 alpha2[0] = user_alpha2[0];
2081 alpha2[1] = user_alpha2[1];
2082 }
2083 } else if (!is_world_regdom(ieee80211_regdom)) {
2084 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2085 ieee80211_regdom[0], ieee80211_regdom[1]);
2086 alpha2[0] = ieee80211_regdom[0];
2087 alpha2[1] = ieee80211_regdom[1];
2088 } else
2089 REG_DBG_PRINT("Restoring regulatory settings\n");
2090 }
2091
2092 static void restore_custom_reg_settings(struct wiphy *wiphy)
2093 {
2094 struct ieee80211_supported_band *sband;
2095 enum ieee80211_band band;
2096 struct ieee80211_channel *chan;
2097 int i;
2098
2099 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2100 sband = wiphy->bands[band];
2101 if (!sband)
2102 continue;
2103 for (i = 0; i < sband->n_channels; i++) {
2104 chan = &sband->channels[i];
2105 chan->flags = chan->orig_flags;
2106 chan->max_antenna_gain = chan->orig_mag;
2107 chan->max_power = chan->orig_mpwr;
2108 chan->beacon_found = false;
2109 }
2110 }
2111 }
2112
2113 /*
2114 * Restoring regulatory settings involves ingoring any
2115 * possibly stale country IE information and user regulatory
2116 * settings if so desired, this includes any beacon hints
2117 * learned as we could have traveled outside to another country
2118 * after disconnection. To restore regulatory settings we do
2119 * exactly what we did at bootup:
2120 *
2121 * - send a core regulatory hint
2122 * - send a user regulatory hint if applicable
2123 *
2124 * Device drivers that send a regulatory hint for a specific country
2125 * keep their own regulatory domain on wiphy->regd so that does does
2126 * not need to be remembered.
2127 */
2128 static void restore_regulatory_settings(bool reset_user)
2129 {
2130 char alpha2[2];
2131 char world_alpha2[2];
2132 struct reg_beacon *reg_beacon, *btmp;
2133 struct regulatory_request *reg_request, *tmp;
2134 LIST_HEAD(tmp_reg_req_list);
2135 struct cfg80211_registered_device *rdev;
2136
2137 ASSERT_RTNL();
2138
2139 reset_regdomains(true, &world_regdom);
2140 restore_alpha2(alpha2, reset_user);
2141
2142 /*
2143 * If there's any pending requests we simply
2144 * stash them to a temporary pending queue and
2145 * add then after we've restored regulatory
2146 * settings.
2147 */
2148 spin_lock(&reg_requests_lock);
2149 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2150 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
2151 continue;
2152 list_move_tail(&reg_request->list, &tmp_reg_req_list);
2153 }
2154 spin_unlock(&reg_requests_lock);
2155
2156 /* Clear beacon hints */
2157 spin_lock_bh(&reg_pending_beacons_lock);
2158 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2159 list_del(&reg_beacon->list);
2160 kfree(reg_beacon);
2161 }
2162 spin_unlock_bh(&reg_pending_beacons_lock);
2163
2164 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2165 list_del(&reg_beacon->list);
2166 kfree(reg_beacon);
2167 }
2168
2169 /* First restore to the basic regulatory settings */
2170 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2171 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2172
2173 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2174 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2175 restore_custom_reg_settings(&rdev->wiphy);
2176 }
2177
2178 regulatory_hint_core(world_alpha2);
2179
2180 /*
2181 * This restores the ieee80211_regdom module parameter
2182 * preference or the last user requested regulatory
2183 * settings, user regulatory settings takes precedence.
2184 */
2185 if (is_an_alpha2(alpha2))
2186 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2187
2188 spin_lock(&reg_requests_lock);
2189 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2190 spin_unlock(&reg_requests_lock);
2191
2192 REG_DBG_PRINT("Kicking the queue\n");
2193
2194 schedule_work(&reg_work);
2195 }
2196
2197 void regulatory_hint_disconnect(void)
2198 {
2199 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2200 restore_regulatory_settings(false);
2201 }
2202
2203 static bool freq_is_chan_12_13_14(u16 freq)
2204 {
2205 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2206 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2207 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2208 return true;
2209 return false;
2210 }
2211
2212 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2213 {
2214 struct reg_beacon *pending_beacon;
2215
2216 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2217 if (beacon_chan->center_freq ==
2218 pending_beacon->chan.center_freq)
2219 return true;
2220 return false;
2221 }
2222
2223 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2224 struct ieee80211_channel *beacon_chan,
2225 gfp_t gfp)
2226 {
2227 struct reg_beacon *reg_beacon;
2228 bool processing;
2229
2230 if (beacon_chan->beacon_found ||
2231 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2232 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2233 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2234 return 0;
2235
2236 spin_lock_bh(&reg_pending_beacons_lock);
2237 processing = pending_reg_beacon(beacon_chan);
2238 spin_unlock_bh(&reg_pending_beacons_lock);
2239
2240 if (processing)
2241 return 0;
2242
2243 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2244 if (!reg_beacon)
2245 return -ENOMEM;
2246
2247 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2248 beacon_chan->center_freq,
2249 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2250 wiphy_name(wiphy));
2251
2252 memcpy(&reg_beacon->chan, beacon_chan,
2253 sizeof(struct ieee80211_channel));
2254
2255 /*
2256 * Since we can be called from BH or and non-BH context
2257 * we must use spin_lock_bh()
2258 */
2259 spin_lock_bh(&reg_pending_beacons_lock);
2260 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2261 spin_unlock_bh(&reg_pending_beacons_lock);
2262
2263 schedule_work(&reg_work);
2264
2265 return 0;
2266 }
2267
2268 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2269 {
2270 unsigned int i;
2271 const struct ieee80211_reg_rule *reg_rule = NULL;
2272 const struct ieee80211_freq_range *freq_range = NULL;
2273 const struct ieee80211_power_rule *power_rule = NULL;
2274 char bw[32], cac_time[32];
2275
2276 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2277
2278 for (i = 0; i < rd->n_reg_rules; i++) {
2279 reg_rule = &rd->reg_rules[i];
2280 freq_range = &reg_rule->freq_range;
2281 power_rule = &reg_rule->power_rule;
2282
2283 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2284 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2285 freq_range->max_bandwidth_khz,
2286 reg_get_max_bandwidth(rd, reg_rule));
2287 else
2288 snprintf(bw, sizeof(bw), "%d KHz",
2289 freq_range->max_bandwidth_khz);
2290
2291 if (reg_rule->flags & NL80211_RRF_DFS)
2292 scnprintf(cac_time, sizeof(cac_time), "%u s",
2293 reg_rule->dfs_cac_ms/1000);
2294 else
2295 scnprintf(cac_time, sizeof(cac_time), "N/A");
2296
2297
2298 /*
2299 * There may not be documentation for max antenna gain
2300 * in certain regions
2301 */
2302 if (power_rule->max_antenna_gain)
2303 pr_info(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2304 freq_range->start_freq_khz,
2305 freq_range->end_freq_khz,
2306 bw,
2307 power_rule->max_antenna_gain,
2308 power_rule->max_eirp,
2309 cac_time);
2310 else
2311 pr_info(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2312 freq_range->start_freq_khz,
2313 freq_range->end_freq_khz,
2314 bw,
2315 power_rule->max_eirp,
2316 cac_time);
2317 }
2318 }
2319
2320 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2321 {
2322 switch (dfs_region) {
2323 case NL80211_DFS_UNSET:
2324 case NL80211_DFS_FCC:
2325 case NL80211_DFS_ETSI:
2326 case NL80211_DFS_JP:
2327 return true;
2328 default:
2329 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2330 dfs_region);
2331 return false;
2332 }
2333 }
2334
2335 static void print_regdomain(const struct ieee80211_regdomain *rd)
2336 {
2337 struct regulatory_request *lr = get_last_request();
2338
2339 if (is_intersected_alpha2(rd->alpha2)) {
2340 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2341 struct cfg80211_registered_device *rdev;
2342 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2343 if (rdev) {
2344 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2345 rdev->country_ie_alpha2[0],
2346 rdev->country_ie_alpha2[1]);
2347 } else
2348 pr_info("Current regulatory domain intersected:\n");
2349 } else
2350 pr_info("Current regulatory domain intersected:\n");
2351 } else if (is_world_regdom(rd->alpha2)) {
2352 pr_info("World regulatory domain updated:\n");
2353 } else {
2354 if (is_unknown_alpha2(rd->alpha2))
2355 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2356 else {
2357 if (reg_request_cell_base(lr))
2358 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2359 rd->alpha2[0], rd->alpha2[1]);
2360 else
2361 pr_info("Regulatory domain changed to country: %c%c\n",
2362 rd->alpha2[0], rd->alpha2[1]);
2363 }
2364 }
2365
2366 pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2367 print_rd_rules(rd);
2368 }
2369
2370 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2371 {
2372 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2373 print_rd_rules(rd);
2374 }
2375
2376 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2377 {
2378 if (!is_world_regdom(rd->alpha2))
2379 return -EINVAL;
2380 update_world_regdomain(rd);
2381 return 0;
2382 }
2383
2384 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2385 struct regulatory_request *user_request)
2386 {
2387 const struct ieee80211_regdomain *intersected_rd = NULL;
2388
2389 if (!regdom_changes(rd->alpha2))
2390 return -EALREADY;
2391
2392 if (!is_valid_rd(rd)) {
2393 pr_err("Invalid regulatory domain detected:\n");
2394 print_regdomain_info(rd);
2395 return -EINVAL;
2396 }
2397
2398 if (!user_request->intersect) {
2399 reset_regdomains(false, rd);
2400 return 0;
2401 }
2402
2403 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2404 if (!intersected_rd)
2405 return -EINVAL;
2406
2407 kfree(rd);
2408 rd = NULL;
2409 reset_regdomains(false, intersected_rd);
2410
2411 return 0;
2412 }
2413
2414 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2415 struct regulatory_request *driver_request)
2416 {
2417 const struct ieee80211_regdomain *regd;
2418 const struct ieee80211_regdomain *intersected_rd = NULL;
2419 const struct ieee80211_regdomain *tmp;
2420 struct wiphy *request_wiphy;
2421
2422 if (is_world_regdom(rd->alpha2))
2423 return -EINVAL;
2424
2425 if (!regdom_changes(rd->alpha2))
2426 return -EALREADY;
2427
2428 if (!is_valid_rd(rd)) {
2429 pr_err("Invalid regulatory domain detected:\n");
2430 print_regdomain_info(rd);
2431 return -EINVAL;
2432 }
2433
2434 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2435 if (!request_wiphy) {
2436 queue_delayed_work(system_power_efficient_wq,
2437 &reg_timeout, 0);
2438 return -ENODEV;
2439 }
2440
2441 if (!driver_request->intersect) {
2442 if (request_wiphy->regd)
2443 return -EALREADY;
2444
2445 regd = reg_copy_regd(rd);
2446 if (IS_ERR(regd))
2447 return PTR_ERR(regd);
2448
2449 rcu_assign_pointer(request_wiphy->regd, regd);
2450 reset_regdomains(false, rd);
2451 return 0;
2452 }
2453
2454 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2455 if (!intersected_rd)
2456 return -EINVAL;
2457
2458 /*
2459 * We can trash what CRDA provided now.
2460 * However if a driver requested this specific regulatory
2461 * domain we keep it for its private use
2462 */
2463 tmp = get_wiphy_regdom(request_wiphy);
2464 rcu_assign_pointer(request_wiphy->regd, rd);
2465 rcu_free_regdom(tmp);
2466
2467 rd = NULL;
2468
2469 reset_regdomains(false, intersected_rd);
2470
2471 return 0;
2472 }
2473
2474 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2475 struct regulatory_request *country_ie_request)
2476 {
2477 struct wiphy *request_wiphy;
2478
2479 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2480 !is_unknown_alpha2(rd->alpha2))
2481 return -EINVAL;
2482
2483 /*
2484 * Lets only bother proceeding on the same alpha2 if the current
2485 * rd is non static (it means CRDA was present and was used last)
2486 * and the pending request came in from a country IE
2487 */
2488
2489 if (!is_valid_rd(rd)) {
2490 pr_err("Invalid regulatory domain detected:\n");
2491 print_regdomain_info(rd);
2492 return -EINVAL;
2493 }
2494
2495 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2496 if (!request_wiphy) {
2497 queue_delayed_work(system_power_efficient_wq,
2498 &reg_timeout, 0);
2499 return -ENODEV;
2500 }
2501
2502 if (country_ie_request->intersect)
2503 return -EINVAL;
2504
2505 reset_regdomains(false, rd);
2506 return 0;
2507 }
2508
2509 /*
2510 * Use this call to set the current regulatory domain. Conflicts with
2511 * multiple drivers can be ironed out later. Caller must've already
2512 * kmalloc'd the rd structure.
2513 */
2514 int set_regdom(const struct ieee80211_regdomain *rd)
2515 {
2516 struct regulatory_request *lr;
2517 bool user_reset = false;
2518 int r;
2519
2520 if (!reg_is_valid_request(rd->alpha2)) {
2521 kfree(rd);
2522 return -EINVAL;
2523 }
2524
2525 lr = get_last_request();
2526
2527 /* Note that this doesn't update the wiphys, this is done below */
2528 switch (lr->initiator) {
2529 case NL80211_REGDOM_SET_BY_CORE:
2530 r = reg_set_rd_core(rd);
2531 break;
2532 case NL80211_REGDOM_SET_BY_USER:
2533 r = reg_set_rd_user(rd, lr);
2534 user_reset = true;
2535 break;
2536 case NL80211_REGDOM_SET_BY_DRIVER:
2537 r = reg_set_rd_driver(rd, lr);
2538 break;
2539 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2540 r = reg_set_rd_country_ie(rd, lr);
2541 break;
2542 default:
2543 WARN(1, "invalid initiator %d\n", lr->initiator);
2544 return -EINVAL;
2545 }
2546
2547 if (r) {
2548 switch (r) {
2549 case -EALREADY:
2550 reg_set_request_processed();
2551 break;
2552 default:
2553 /* Back to world regulatory in case of errors */
2554 restore_regulatory_settings(user_reset);
2555 }
2556
2557 kfree(rd);
2558 return r;
2559 }
2560
2561 /* This would make this whole thing pointless */
2562 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2563 return -EINVAL;
2564
2565 /* update all wiphys now with the new established regulatory domain */
2566 update_all_wiphy_regulatory(lr->initiator);
2567
2568 print_regdomain(get_cfg80211_regdom());
2569
2570 nl80211_send_reg_change_event(lr);
2571
2572 reg_set_request_processed();
2573
2574 return 0;
2575 }
2576
2577 void wiphy_regulatory_register(struct wiphy *wiphy)
2578 {
2579 struct regulatory_request *lr;
2580
2581 if (!reg_dev_ignore_cell_hint(wiphy))
2582 reg_num_devs_support_basehint++;
2583
2584 lr = get_last_request();
2585 wiphy_update_regulatory(wiphy, lr->initiator);
2586 }
2587
2588 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2589 {
2590 struct wiphy *request_wiphy = NULL;
2591 struct regulatory_request *lr;
2592
2593 lr = get_last_request();
2594
2595 if (!reg_dev_ignore_cell_hint(wiphy))
2596 reg_num_devs_support_basehint--;
2597
2598 rcu_free_regdom(get_wiphy_regdom(wiphy));
2599 RCU_INIT_POINTER(wiphy->regd, NULL);
2600
2601 if (lr)
2602 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2603
2604 if (!request_wiphy || request_wiphy != wiphy)
2605 return;
2606
2607 lr->wiphy_idx = WIPHY_IDX_INVALID;
2608 lr->country_ie_env = ENVIRON_ANY;
2609 }
2610
2611 static void reg_timeout_work(struct work_struct *work)
2612 {
2613 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2614 rtnl_lock();
2615 restore_regulatory_settings(true);
2616 rtnl_unlock();
2617 }
2618
2619 int __init regulatory_init(void)
2620 {
2621 int err = 0;
2622
2623 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2624 if (IS_ERR(reg_pdev))
2625 return PTR_ERR(reg_pdev);
2626
2627 spin_lock_init(&reg_requests_lock);
2628 spin_lock_init(&reg_pending_beacons_lock);
2629
2630 reg_regdb_size_check();
2631
2632 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2633
2634 user_alpha2[0] = '9';
2635 user_alpha2[1] = '7';
2636
2637 /* We always try to get an update for the static regdomain */
2638 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2639 if (err) {
2640 if (err == -ENOMEM)
2641 return err;
2642 /*
2643 * N.B. kobject_uevent_env() can fail mainly for when we're out
2644 * memory which is handled and propagated appropriately above
2645 * but it can also fail during a netlink_broadcast() or during
2646 * early boot for call_usermodehelper(). For now treat these
2647 * errors as non-fatal.
2648 */
2649 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2650 }
2651
2652 /*
2653 * Finally, if the user set the module parameter treat it
2654 * as a user hint.
2655 */
2656 if (!is_world_regdom(ieee80211_regdom))
2657 regulatory_hint_user(ieee80211_regdom,
2658 NL80211_USER_REG_HINT_USER);
2659
2660 return 0;
2661 }
2662
2663 void regulatory_exit(void)
2664 {
2665 struct regulatory_request *reg_request, *tmp;
2666 struct reg_beacon *reg_beacon, *btmp;
2667
2668 cancel_work_sync(&reg_work);
2669 cancel_delayed_work_sync(&reg_timeout);
2670
2671 /* Lock to suppress warnings */
2672 rtnl_lock();
2673 reset_regdomains(true, NULL);
2674 rtnl_unlock();
2675
2676 dev_set_uevent_suppress(&reg_pdev->dev, true);
2677
2678 platform_device_unregister(reg_pdev);
2679
2680 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2681 list_del(&reg_beacon->list);
2682 kfree(reg_beacon);
2683 }
2684
2685 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2686 list_del(&reg_beacon->list);
2687 kfree(reg_beacon);
2688 }
2689
2690 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2691 list_del(&reg_request->list);
2692 kfree(reg_request);
2693 }
2694 }