]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - net/wireless/reg.c
cfg80211: make wmm_rule part of the reg_rule structure
[mirror_ubuntu-eoan-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 Intel Corporation
9 *
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23
24 /**
25 * DOC: Wireless regulatory infrastructure
26 *
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
31 *
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
35 *
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
41 *
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
45 *
46 */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
69 */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73 * enum reg_request_treatment - regulatory request treatment
74 *
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
81 */
82 enum reg_request_treatment {
83 REG_REQ_OK,
84 REG_REQ_IGNORE,
85 REG_REQ_INTERSECT,
86 REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90 .initiator = NL80211_REGDOM_SET_BY_CORE,
91 .alpha2[0] = '0',
92 .alpha2[1] = '0',
93 .intersect = false,
94 .processed = true,
95 .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
101 */
102 static struct regulatory_request __rcu *last_request =
103 (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
113 */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
120 */
121 static int reg_num_devs_support_basehint;
122
123 /*
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
127 */
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user);
135
136 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
137 {
138 return rcu_dereference_rtnl(cfg80211_regdomain);
139 }
140
141 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
142 {
143 return rcu_dereference_rtnl(wiphy->regd);
144 }
145
146 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
147 {
148 switch (dfs_region) {
149 case NL80211_DFS_UNSET:
150 return "unset";
151 case NL80211_DFS_FCC:
152 return "FCC";
153 case NL80211_DFS_ETSI:
154 return "ETSI";
155 case NL80211_DFS_JP:
156 return "JP";
157 }
158 return "Unknown";
159 }
160
161 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
162 {
163 const struct ieee80211_regdomain *regd = NULL;
164 const struct ieee80211_regdomain *wiphy_regd = NULL;
165
166 regd = get_cfg80211_regdom();
167 if (!wiphy)
168 goto out;
169
170 wiphy_regd = get_wiphy_regdom(wiphy);
171 if (!wiphy_regd)
172 goto out;
173
174 if (wiphy_regd->dfs_region == regd->dfs_region)
175 goto out;
176
177 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
178 dev_name(&wiphy->dev),
179 reg_dfs_region_str(wiphy_regd->dfs_region),
180 reg_dfs_region_str(regd->dfs_region));
181
182 out:
183 return regd->dfs_region;
184 }
185
186 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
187 {
188 if (!r)
189 return;
190 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
191 }
192
193 static struct regulatory_request *get_last_request(void)
194 {
195 return rcu_dereference_rtnl(last_request);
196 }
197
198 /* Used to queue up regulatory hints */
199 static LIST_HEAD(reg_requests_list);
200 static spinlock_t reg_requests_lock;
201
202 /* Used to queue up beacon hints for review */
203 static LIST_HEAD(reg_pending_beacons);
204 static spinlock_t reg_pending_beacons_lock;
205
206 /* Used to keep track of processed beacon hints */
207 static LIST_HEAD(reg_beacon_list);
208
209 struct reg_beacon {
210 struct list_head list;
211 struct ieee80211_channel chan;
212 };
213
214 static void reg_check_chans_work(struct work_struct *work);
215 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
216
217 static void reg_todo(struct work_struct *work);
218 static DECLARE_WORK(reg_work, reg_todo);
219
220 /* We keep a static world regulatory domain in case of the absence of CRDA */
221 static const struct ieee80211_regdomain world_regdom = {
222 .n_reg_rules = 8,
223 .alpha2 = "00",
224 .reg_rules = {
225 /* IEEE 802.11b/g, channels 1..11 */
226 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
227 /* IEEE 802.11b/g, channels 12..13. */
228 REG_RULE(2467-10, 2472+10, 20, 6, 20,
229 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
230 /* IEEE 802.11 channel 14 - Only JP enables
231 * this and for 802.11b only */
232 REG_RULE(2484-10, 2484+10, 20, 6, 20,
233 NL80211_RRF_NO_IR |
234 NL80211_RRF_NO_OFDM),
235 /* IEEE 802.11a, channel 36..48 */
236 REG_RULE(5180-10, 5240+10, 80, 6, 20,
237 NL80211_RRF_NO_IR |
238 NL80211_RRF_AUTO_BW),
239
240 /* IEEE 802.11a, channel 52..64 - DFS required */
241 REG_RULE(5260-10, 5320+10, 80, 6, 20,
242 NL80211_RRF_NO_IR |
243 NL80211_RRF_AUTO_BW |
244 NL80211_RRF_DFS),
245
246 /* IEEE 802.11a, channel 100..144 - DFS required */
247 REG_RULE(5500-10, 5720+10, 160, 6, 20,
248 NL80211_RRF_NO_IR |
249 NL80211_RRF_DFS),
250
251 /* IEEE 802.11a, channel 149..165 */
252 REG_RULE(5745-10, 5825+10, 80, 6, 20,
253 NL80211_RRF_NO_IR),
254
255 /* IEEE 802.11ad (60GHz), channels 1..3 */
256 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
257 }
258 };
259
260 /* protected by RTNL */
261 static const struct ieee80211_regdomain *cfg80211_world_regdom =
262 &world_regdom;
263
264 static char *ieee80211_regdom = "00";
265 static char user_alpha2[2];
266
267 module_param(ieee80211_regdom, charp, 0444);
268 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
269
270 static void reg_free_request(struct regulatory_request *request)
271 {
272 if (request == &core_request_world)
273 return;
274
275 if (request != get_last_request())
276 kfree(request);
277 }
278
279 static void reg_free_last_request(void)
280 {
281 struct regulatory_request *lr = get_last_request();
282
283 if (lr != &core_request_world && lr)
284 kfree_rcu(lr, rcu_head);
285 }
286
287 static void reg_update_last_request(struct regulatory_request *request)
288 {
289 struct regulatory_request *lr;
290
291 lr = get_last_request();
292 if (lr == request)
293 return;
294
295 reg_free_last_request();
296 rcu_assign_pointer(last_request, request);
297 }
298
299 static void reset_regdomains(bool full_reset,
300 const struct ieee80211_regdomain *new_regdom)
301 {
302 const struct ieee80211_regdomain *r;
303
304 ASSERT_RTNL();
305
306 r = get_cfg80211_regdom();
307
308 /* avoid freeing static information or freeing something twice */
309 if (r == cfg80211_world_regdom)
310 r = NULL;
311 if (cfg80211_world_regdom == &world_regdom)
312 cfg80211_world_regdom = NULL;
313 if (r == &world_regdom)
314 r = NULL;
315
316 rcu_free_regdom(r);
317 rcu_free_regdom(cfg80211_world_regdom);
318
319 cfg80211_world_regdom = &world_regdom;
320 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
321
322 if (!full_reset)
323 return;
324
325 reg_update_last_request(&core_request_world);
326 }
327
328 /*
329 * Dynamic world regulatory domain requested by the wireless
330 * core upon initialization
331 */
332 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
333 {
334 struct regulatory_request *lr;
335
336 lr = get_last_request();
337
338 WARN_ON(!lr);
339
340 reset_regdomains(false, rd);
341
342 cfg80211_world_regdom = rd;
343 }
344
345 bool is_world_regdom(const char *alpha2)
346 {
347 if (!alpha2)
348 return false;
349 return alpha2[0] == '0' && alpha2[1] == '0';
350 }
351
352 static bool is_alpha2_set(const char *alpha2)
353 {
354 if (!alpha2)
355 return false;
356 return alpha2[0] && alpha2[1];
357 }
358
359 static bool is_unknown_alpha2(const char *alpha2)
360 {
361 if (!alpha2)
362 return false;
363 /*
364 * Special case where regulatory domain was built by driver
365 * but a specific alpha2 cannot be determined
366 */
367 return alpha2[0] == '9' && alpha2[1] == '9';
368 }
369
370 static bool is_intersected_alpha2(const char *alpha2)
371 {
372 if (!alpha2)
373 return false;
374 /*
375 * Special case where regulatory domain is the
376 * result of an intersection between two regulatory domain
377 * structures
378 */
379 return alpha2[0] == '9' && alpha2[1] == '8';
380 }
381
382 static bool is_an_alpha2(const char *alpha2)
383 {
384 if (!alpha2)
385 return false;
386 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
387 }
388
389 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
390 {
391 if (!alpha2_x || !alpha2_y)
392 return false;
393 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
394 }
395
396 static bool regdom_changes(const char *alpha2)
397 {
398 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
399
400 if (!r)
401 return true;
402 return !alpha2_equal(r->alpha2, alpha2);
403 }
404
405 /*
406 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
407 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
408 * has ever been issued.
409 */
410 static bool is_user_regdom_saved(void)
411 {
412 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
413 return false;
414
415 /* This would indicate a mistake on the design */
416 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
417 "Unexpected user alpha2: %c%c\n",
418 user_alpha2[0], user_alpha2[1]))
419 return false;
420
421 return true;
422 }
423
424 static const struct ieee80211_regdomain *
425 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
426 {
427 struct ieee80211_regdomain *regd;
428 int size_of_regd;
429 unsigned int i;
430
431 size_of_regd =
432 sizeof(struct ieee80211_regdomain) +
433 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
434
435 regd = kzalloc(size_of_regd, GFP_KERNEL);
436 if (!regd)
437 return ERR_PTR(-ENOMEM);
438
439 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
440
441 for (i = 0; i < src_regd->n_reg_rules; i++)
442 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
443 sizeof(struct ieee80211_reg_rule));
444
445 return regd;
446 }
447
448 struct reg_regdb_apply_request {
449 struct list_head list;
450 const struct ieee80211_regdomain *regdom;
451 };
452
453 static LIST_HEAD(reg_regdb_apply_list);
454 static DEFINE_MUTEX(reg_regdb_apply_mutex);
455
456 static void reg_regdb_apply(struct work_struct *work)
457 {
458 struct reg_regdb_apply_request *request;
459
460 rtnl_lock();
461
462 mutex_lock(&reg_regdb_apply_mutex);
463 while (!list_empty(&reg_regdb_apply_list)) {
464 request = list_first_entry(&reg_regdb_apply_list,
465 struct reg_regdb_apply_request,
466 list);
467 list_del(&request->list);
468
469 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
470 kfree(request);
471 }
472 mutex_unlock(&reg_regdb_apply_mutex);
473
474 rtnl_unlock();
475 }
476
477 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
478
479 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
480 {
481 struct reg_regdb_apply_request *request;
482
483 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
484 if (!request) {
485 kfree(regdom);
486 return -ENOMEM;
487 }
488
489 request->regdom = regdom;
490
491 mutex_lock(&reg_regdb_apply_mutex);
492 list_add_tail(&request->list, &reg_regdb_apply_list);
493 mutex_unlock(&reg_regdb_apply_mutex);
494
495 schedule_work(&reg_regdb_work);
496 return 0;
497 }
498
499 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
500 /* Max number of consecutive attempts to communicate with CRDA */
501 #define REG_MAX_CRDA_TIMEOUTS 10
502
503 static u32 reg_crda_timeouts;
504
505 static void crda_timeout_work(struct work_struct *work);
506 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
507
508 static void crda_timeout_work(struct work_struct *work)
509 {
510 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
511 rtnl_lock();
512 reg_crda_timeouts++;
513 restore_regulatory_settings(true);
514 rtnl_unlock();
515 }
516
517 static void cancel_crda_timeout(void)
518 {
519 cancel_delayed_work(&crda_timeout);
520 }
521
522 static void cancel_crda_timeout_sync(void)
523 {
524 cancel_delayed_work_sync(&crda_timeout);
525 }
526
527 static void reset_crda_timeouts(void)
528 {
529 reg_crda_timeouts = 0;
530 }
531
532 /*
533 * This lets us keep regulatory code which is updated on a regulatory
534 * basis in userspace.
535 */
536 static int call_crda(const char *alpha2)
537 {
538 char country[12];
539 char *env[] = { country, NULL };
540 int ret;
541
542 snprintf(country, sizeof(country), "COUNTRY=%c%c",
543 alpha2[0], alpha2[1]);
544
545 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
546 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
547 return -EINVAL;
548 }
549
550 if (!is_world_regdom((char *) alpha2))
551 pr_debug("Calling CRDA for country: %c%c\n",
552 alpha2[0], alpha2[1]);
553 else
554 pr_debug("Calling CRDA to update world regulatory domain\n");
555
556 ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
557 if (ret)
558 return ret;
559
560 queue_delayed_work(system_power_efficient_wq,
561 &crda_timeout, msecs_to_jiffies(3142));
562 return 0;
563 }
564 #else
565 static inline void cancel_crda_timeout(void) {}
566 static inline void cancel_crda_timeout_sync(void) {}
567 static inline void reset_crda_timeouts(void) {}
568 static inline int call_crda(const char *alpha2)
569 {
570 return -ENODATA;
571 }
572 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
573
574 /* code to directly load a firmware database through request_firmware */
575 static const struct fwdb_header *regdb;
576
577 struct fwdb_country {
578 u8 alpha2[2];
579 __be16 coll_ptr;
580 /* this struct cannot be extended */
581 } __packed __aligned(4);
582
583 struct fwdb_collection {
584 u8 len;
585 u8 n_rules;
586 u8 dfs_region;
587 /* no optional data yet */
588 /* aligned to 2, then followed by __be16 array of rule pointers */
589 } __packed __aligned(4);
590
591 enum fwdb_flags {
592 FWDB_FLAG_NO_OFDM = BIT(0),
593 FWDB_FLAG_NO_OUTDOOR = BIT(1),
594 FWDB_FLAG_DFS = BIT(2),
595 FWDB_FLAG_NO_IR = BIT(3),
596 FWDB_FLAG_AUTO_BW = BIT(4),
597 };
598
599 struct fwdb_wmm_ac {
600 u8 ecw;
601 u8 aifsn;
602 __be16 cot;
603 } __packed;
604
605 struct fwdb_wmm_rule {
606 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
607 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
608 } __packed;
609
610 struct fwdb_rule {
611 u8 len;
612 u8 flags;
613 __be16 max_eirp;
614 __be32 start, end, max_bw;
615 /* start of optional data */
616 __be16 cac_timeout;
617 __be16 wmm_ptr;
618 } __packed __aligned(4);
619
620 #define FWDB_MAGIC 0x52474442
621 #define FWDB_VERSION 20
622
623 struct fwdb_header {
624 __be32 magic;
625 __be32 version;
626 struct fwdb_country country[];
627 } __packed __aligned(4);
628
629 static int ecw2cw(int ecw)
630 {
631 return (1 << ecw) - 1;
632 }
633
634 static bool valid_wmm(struct fwdb_wmm_rule *rule)
635 {
636 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
637 int i;
638
639 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
640 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
641 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
642 u8 aifsn = ac[i].aifsn;
643
644 if (cw_min >= cw_max)
645 return false;
646
647 if (aifsn < 1)
648 return false;
649 }
650
651 return true;
652 }
653
654 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
655 {
656 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
657
658 if ((u8 *)rule + sizeof(rule->len) > data + size)
659 return false;
660
661 /* mandatory fields */
662 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
663 return false;
664 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
665 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
666 struct fwdb_wmm_rule *wmm;
667
668 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
669 return false;
670
671 wmm = (void *)(data + wmm_ptr);
672
673 if (!valid_wmm(wmm))
674 return false;
675 }
676 return true;
677 }
678
679 static bool valid_country(const u8 *data, unsigned int size,
680 const struct fwdb_country *country)
681 {
682 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
683 struct fwdb_collection *coll = (void *)(data + ptr);
684 __be16 *rules_ptr;
685 unsigned int i;
686
687 /* make sure we can read len/n_rules */
688 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
689 return false;
690
691 /* make sure base struct and all rules fit */
692 if ((u8 *)coll + ALIGN(coll->len, 2) +
693 (coll->n_rules * 2) > data + size)
694 return false;
695
696 /* mandatory fields must exist */
697 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
698 return false;
699
700 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
701
702 for (i = 0; i < coll->n_rules; i++) {
703 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
704
705 if (!valid_rule(data, size, rule_ptr))
706 return false;
707 }
708
709 return true;
710 }
711
712 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
713 static struct key *builtin_regdb_keys;
714
715 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
716 {
717 const u8 *end = p + buflen;
718 size_t plen;
719 key_ref_t key;
720
721 while (p < end) {
722 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
723 * than 256 bytes in size.
724 */
725 if (end - p < 4)
726 goto dodgy_cert;
727 if (p[0] != 0x30 &&
728 p[1] != 0x82)
729 goto dodgy_cert;
730 plen = (p[2] << 8) | p[3];
731 plen += 4;
732 if (plen > end - p)
733 goto dodgy_cert;
734
735 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
736 "asymmetric", NULL, p, plen,
737 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
738 KEY_USR_VIEW | KEY_USR_READ),
739 KEY_ALLOC_NOT_IN_QUOTA |
740 KEY_ALLOC_BUILT_IN |
741 KEY_ALLOC_BYPASS_RESTRICTION);
742 if (IS_ERR(key)) {
743 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
744 PTR_ERR(key));
745 } else {
746 pr_notice("Loaded X.509 cert '%s'\n",
747 key_ref_to_ptr(key)->description);
748 key_ref_put(key);
749 }
750 p += plen;
751 }
752
753 return;
754
755 dodgy_cert:
756 pr_err("Problem parsing in-kernel X.509 certificate list\n");
757 }
758
759 static int __init load_builtin_regdb_keys(void)
760 {
761 builtin_regdb_keys =
762 keyring_alloc(".builtin_regdb_keys",
763 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
764 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
765 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
766 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
767 if (IS_ERR(builtin_regdb_keys))
768 return PTR_ERR(builtin_regdb_keys);
769
770 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
771
772 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
773 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
774 #endif
775 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
776 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
777 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
778 #endif
779
780 return 0;
781 }
782
783 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
784 {
785 const struct firmware *sig;
786 bool result;
787
788 if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
789 return false;
790
791 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
792 builtin_regdb_keys,
793 VERIFYING_UNSPECIFIED_SIGNATURE,
794 NULL, NULL) == 0;
795
796 release_firmware(sig);
797
798 return result;
799 }
800
801 static void free_regdb_keyring(void)
802 {
803 key_put(builtin_regdb_keys);
804 }
805 #else
806 static int load_builtin_regdb_keys(void)
807 {
808 return 0;
809 }
810
811 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
812 {
813 return true;
814 }
815
816 static void free_regdb_keyring(void)
817 {
818 }
819 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
820
821 static bool valid_regdb(const u8 *data, unsigned int size)
822 {
823 const struct fwdb_header *hdr = (void *)data;
824 const struct fwdb_country *country;
825
826 if (size < sizeof(*hdr))
827 return false;
828
829 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
830 return false;
831
832 if (hdr->version != cpu_to_be32(FWDB_VERSION))
833 return false;
834
835 if (!regdb_has_valid_signature(data, size))
836 return false;
837
838 country = &hdr->country[0];
839 while ((u8 *)(country + 1) <= data + size) {
840 if (!country->coll_ptr)
841 break;
842 if (!valid_country(data, size, country))
843 return false;
844 country++;
845 }
846
847 return true;
848 }
849
850 static void set_wmm_rule(struct ieee80211_reg_rule *rrule,
851 struct fwdb_wmm_rule *wmm)
852 {
853 struct ieee80211_wmm_rule *rule = &rrule->wmm_rule;
854 unsigned int i;
855
856 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
857 rule->client[i].cw_min =
858 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
859 rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
860 rule->client[i].aifsn = wmm->client[i].aifsn;
861 rule->client[i].cot = 1000 * be16_to_cpu(wmm->client[i].cot);
862 rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
863 rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
864 rule->ap[i].aifsn = wmm->ap[i].aifsn;
865 rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
866 }
867
868 rrule->has_wmm = true;
869 }
870
871 static int __regdb_query_wmm(const struct fwdb_header *db,
872 const struct fwdb_country *country, int freq,
873 struct ieee80211_reg_rule *rule)
874 {
875 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
876 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
877 int i;
878
879 for (i = 0; i < coll->n_rules; i++) {
880 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
881 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
882 struct fwdb_rule *rrule = (void *)((u8 *)db + rule_ptr);
883 struct fwdb_wmm_rule *wmm;
884 unsigned int wmm_ptr;
885
886 if (rrule->len < offsetofend(struct fwdb_rule, wmm_ptr))
887 continue;
888
889 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rrule->start)) &&
890 freq <= KHZ_TO_MHZ(be32_to_cpu(rrule->end))) {
891 wmm_ptr = be16_to_cpu(rrule->wmm_ptr) << 2;
892 wmm = (void *)((u8 *)db + wmm_ptr);
893 set_wmm_rule(rule, wmm);
894 return 0;
895 }
896 }
897
898 return -ENODATA;
899 }
900
901 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
902 {
903 const struct fwdb_header *hdr = regdb;
904 const struct fwdb_country *country;
905
906 if (!regdb)
907 return -ENODATA;
908
909 if (IS_ERR(regdb))
910 return PTR_ERR(regdb);
911
912 country = &hdr->country[0];
913 while (country->coll_ptr) {
914 if (alpha2_equal(alpha2, country->alpha2))
915 return __regdb_query_wmm(regdb, country, freq, rule);
916
917 country++;
918 }
919
920 return -ENODATA;
921 }
922 EXPORT_SYMBOL(reg_query_regdb_wmm);
923
924 static int regdb_query_country(const struct fwdb_header *db,
925 const struct fwdb_country *country)
926 {
927 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
928 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
929 struct ieee80211_regdomain *regdom;
930 unsigned int size_of_regd, i;
931
932 size_of_regd = sizeof(struct ieee80211_regdomain) +
933 coll->n_rules * sizeof(struct ieee80211_reg_rule);
934
935 regdom = kzalloc(size_of_regd, GFP_KERNEL);
936 if (!regdom)
937 return -ENOMEM;
938
939 regdom->n_reg_rules = coll->n_rules;
940 regdom->alpha2[0] = country->alpha2[0];
941 regdom->alpha2[1] = country->alpha2[1];
942 regdom->dfs_region = coll->dfs_region;
943
944 for (i = 0; i < regdom->n_reg_rules; i++) {
945 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
946 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
947 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
948 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
949
950 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
951 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
952 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
953
954 rrule->power_rule.max_antenna_gain = 0;
955 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
956
957 rrule->flags = 0;
958 if (rule->flags & FWDB_FLAG_NO_OFDM)
959 rrule->flags |= NL80211_RRF_NO_OFDM;
960 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
961 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
962 if (rule->flags & FWDB_FLAG_DFS)
963 rrule->flags |= NL80211_RRF_DFS;
964 if (rule->flags & FWDB_FLAG_NO_IR)
965 rrule->flags |= NL80211_RRF_NO_IR;
966 if (rule->flags & FWDB_FLAG_AUTO_BW)
967 rrule->flags |= NL80211_RRF_AUTO_BW;
968
969 rrule->dfs_cac_ms = 0;
970
971 /* handle optional data */
972 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
973 rrule->dfs_cac_ms =
974 1000 * be16_to_cpu(rule->cac_timeout);
975 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
976 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
977 struct fwdb_wmm_rule *wmm = (void *)((u8 *)db + wmm_ptr);
978
979 set_wmm_rule(rrule, wmm);
980 }
981 }
982
983 return reg_schedule_apply(regdom);
984 }
985
986 static int query_regdb(const char *alpha2)
987 {
988 const struct fwdb_header *hdr = regdb;
989 const struct fwdb_country *country;
990
991 ASSERT_RTNL();
992
993 if (IS_ERR(regdb))
994 return PTR_ERR(regdb);
995
996 country = &hdr->country[0];
997 while (country->coll_ptr) {
998 if (alpha2_equal(alpha2, country->alpha2))
999 return regdb_query_country(regdb, country);
1000 country++;
1001 }
1002
1003 return -ENODATA;
1004 }
1005
1006 static void regdb_fw_cb(const struct firmware *fw, void *context)
1007 {
1008 int set_error = 0;
1009 bool restore = true;
1010 void *db;
1011
1012 if (!fw) {
1013 pr_info("failed to load regulatory.db\n");
1014 set_error = -ENODATA;
1015 } else if (!valid_regdb(fw->data, fw->size)) {
1016 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1017 set_error = -EINVAL;
1018 }
1019
1020 rtnl_lock();
1021 if (WARN_ON(regdb && !IS_ERR(regdb))) {
1022 /* just restore and free new db */
1023 } else if (set_error) {
1024 regdb = ERR_PTR(set_error);
1025 } else if (fw) {
1026 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1027 if (db) {
1028 regdb = db;
1029 restore = context && query_regdb(context);
1030 } else {
1031 restore = true;
1032 }
1033 }
1034
1035 if (restore)
1036 restore_regulatory_settings(true);
1037
1038 rtnl_unlock();
1039
1040 kfree(context);
1041
1042 release_firmware(fw);
1043 }
1044
1045 static int query_regdb_file(const char *alpha2)
1046 {
1047 ASSERT_RTNL();
1048
1049 if (regdb)
1050 return query_regdb(alpha2);
1051
1052 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1053 if (!alpha2)
1054 return -ENOMEM;
1055
1056 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1057 &reg_pdev->dev, GFP_KERNEL,
1058 (void *)alpha2, regdb_fw_cb);
1059 }
1060
1061 int reg_reload_regdb(void)
1062 {
1063 const struct firmware *fw;
1064 void *db;
1065 int err;
1066
1067 err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1068 if (err)
1069 return err;
1070
1071 if (!valid_regdb(fw->data, fw->size)) {
1072 err = -ENODATA;
1073 goto out;
1074 }
1075
1076 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1077 if (!db) {
1078 err = -ENOMEM;
1079 goto out;
1080 }
1081
1082 rtnl_lock();
1083 if (!IS_ERR_OR_NULL(regdb))
1084 kfree(regdb);
1085 regdb = db;
1086 rtnl_unlock();
1087
1088 out:
1089 release_firmware(fw);
1090 return err;
1091 }
1092
1093 static bool reg_query_database(struct regulatory_request *request)
1094 {
1095 if (query_regdb_file(request->alpha2) == 0)
1096 return true;
1097
1098 if (call_crda(request->alpha2) == 0)
1099 return true;
1100
1101 return false;
1102 }
1103
1104 bool reg_is_valid_request(const char *alpha2)
1105 {
1106 struct regulatory_request *lr = get_last_request();
1107
1108 if (!lr || lr->processed)
1109 return false;
1110
1111 return alpha2_equal(lr->alpha2, alpha2);
1112 }
1113
1114 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1115 {
1116 struct regulatory_request *lr = get_last_request();
1117
1118 /*
1119 * Follow the driver's regulatory domain, if present, unless a country
1120 * IE has been processed or a user wants to help complaince further
1121 */
1122 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1123 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1124 wiphy->regd)
1125 return get_wiphy_regdom(wiphy);
1126
1127 return get_cfg80211_regdom();
1128 }
1129
1130 static unsigned int
1131 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1132 const struct ieee80211_reg_rule *rule)
1133 {
1134 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1135 const struct ieee80211_freq_range *freq_range_tmp;
1136 const struct ieee80211_reg_rule *tmp;
1137 u32 start_freq, end_freq, idx, no;
1138
1139 for (idx = 0; idx < rd->n_reg_rules; idx++)
1140 if (rule == &rd->reg_rules[idx])
1141 break;
1142
1143 if (idx == rd->n_reg_rules)
1144 return 0;
1145
1146 /* get start_freq */
1147 no = idx;
1148
1149 while (no) {
1150 tmp = &rd->reg_rules[--no];
1151 freq_range_tmp = &tmp->freq_range;
1152
1153 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1154 break;
1155
1156 freq_range = freq_range_tmp;
1157 }
1158
1159 start_freq = freq_range->start_freq_khz;
1160
1161 /* get end_freq */
1162 freq_range = &rule->freq_range;
1163 no = idx;
1164
1165 while (no < rd->n_reg_rules - 1) {
1166 tmp = &rd->reg_rules[++no];
1167 freq_range_tmp = &tmp->freq_range;
1168
1169 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1170 break;
1171
1172 freq_range = freq_range_tmp;
1173 }
1174
1175 end_freq = freq_range->end_freq_khz;
1176
1177 return end_freq - start_freq;
1178 }
1179
1180 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1181 const struct ieee80211_reg_rule *rule)
1182 {
1183 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1184
1185 if (rule->flags & NL80211_RRF_NO_160MHZ)
1186 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1187 if (rule->flags & NL80211_RRF_NO_80MHZ)
1188 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1189
1190 /*
1191 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1192 * are not allowed.
1193 */
1194 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1195 rule->flags & NL80211_RRF_NO_HT40PLUS)
1196 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1197
1198 return bw;
1199 }
1200
1201 /* Sanity check on a regulatory rule */
1202 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1203 {
1204 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1205 u32 freq_diff;
1206
1207 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1208 return false;
1209
1210 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1211 return false;
1212
1213 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1214
1215 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1216 freq_range->max_bandwidth_khz > freq_diff)
1217 return false;
1218
1219 return true;
1220 }
1221
1222 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1223 {
1224 const struct ieee80211_reg_rule *reg_rule = NULL;
1225 unsigned int i;
1226
1227 if (!rd->n_reg_rules)
1228 return false;
1229
1230 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1231 return false;
1232
1233 for (i = 0; i < rd->n_reg_rules; i++) {
1234 reg_rule = &rd->reg_rules[i];
1235 if (!is_valid_reg_rule(reg_rule))
1236 return false;
1237 }
1238
1239 return true;
1240 }
1241
1242 /**
1243 * freq_in_rule_band - tells us if a frequency is in a frequency band
1244 * @freq_range: frequency rule we want to query
1245 * @freq_khz: frequency we are inquiring about
1246 *
1247 * This lets us know if a specific frequency rule is or is not relevant to
1248 * a specific frequency's band. Bands are device specific and artificial
1249 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1250 * however it is safe for now to assume that a frequency rule should not be
1251 * part of a frequency's band if the start freq or end freq are off by more
1252 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
1253 * 60 GHz band.
1254 * This resolution can be lowered and should be considered as we add
1255 * regulatory rule support for other "bands".
1256 **/
1257 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1258 u32 freq_khz)
1259 {
1260 #define ONE_GHZ_IN_KHZ 1000000
1261 /*
1262 * From 802.11ad: directional multi-gigabit (DMG):
1263 * Pertaining to operation in a frequency band containing a channel
1264 * with the Channel starting frequency above 45 GHz.
1265 */
1266 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1267 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1268 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1269 return true;
1270 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1271 return true;
1272 return false;
1273 #undef ONE_GHZ_IN_KHZ
1274 }
1275
1276 /*
1277 * Later on we can perhaps use the more restrictive DFS
1278 * region but we don't have information for that yet so
1279 * for now simply disallow conflicts.
1280 */
1281 static enum nl80211_dfs_regions
1282 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1283 const enum nl80211_dfs_regions dfs_region2)
1284 {
1285 if (dfs_region1 != dfs_region2)
1286 return NL80211_DFS_UNSET;
1287 return dfs_region1;
1288 }
1289
1290 /*
1291 * Helper for regdom_intersect(), this does the real
1292 * mathematical intersection fun
1293 */
1294 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1295 const struct ieee80211_regdomain *rd2,
1296 const struct ieee80211_reg_rule *rule1,
1297 const struct ieee80211_reg_rule *rule2,
1298 struct ieee80211_reg_rule *intersected_rule)
1299 {
1300 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1301 struct ieee80211_freq_range *freq_range;
1302 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1303 struct ieee80211_power_rule *power_rule;
1304 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1305
1306 freq_range1 = &rule1->freq_range;
1307 freq_range2 = &rule2->freq_range;
1308 freq_range = &intersected_rule->freq_range;
1309
1310 power_rule1 = &rule1->power_rule;
1311 power_rule2 = &rule2->power_rule;
1312 power_rule = &intersected_rule->power_rule;
1313
1314 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1315 freq_range2->start_freq_khz);
1316 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1317 freq_range2->end_freq_khz);
1318
1319 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1320 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1321
1322 if (rule1->flags & NL80211_RRF_AUTO_BW)
1323 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1324 if (rule2->flags & NL80211_RRF_AUTO_BW)
1325 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1326
1327 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1328
1329 intersected_rule->flags = rule1->flags | rule2->flags;
1330
1331 /*
1332 * In case NL80211_RRF_AUTO_BW requested for both rules
1333 * set AUTO_BW in intersected rule also. Next we will
1334 * calculate BW correctly in handle_channel function.
1335 * In other case remove AUTO_BW flag while we calculate
1336 * maximum bandwidth correctly and auto calculation is
1337 * not required.
1338 */
1339 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1340 (rule2->flags & NL80211_RRF_AUTO_BW))
1341 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1342 else
1343 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1344
1345 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1346 if (freq_range->max_bandwidth_khz > freq_diff)
1347 freq_range->max_bandwidth_khz = freq_diff;
1348
1349 power_rule->max_eirp = min(power_rule1->max_eirp,
1350 power_rule2->max_eirp);
1351 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1352 power_rule2->max_antenna_gain);
1353
1354 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1355 rule2->dfs_cac_ms);
1356
1357 if (!is_valid_reg_rule(intersected_rule))
1358 return -EINVAL;
1359
1360 return 0;
1361 }
1362
1363 /* check whether old rule contains new rule */
1364 static bool rule_contains(struct ieee80211_reg_rule *r1,
1365 struct ieee80211_reg_rule *r2)
1366 {
1367 /* for simplicity, currently consider only same flags */
1368 if (r1->flags != r2->flags)
1369 return false;
1370
1371 /* verify r1 is more restrictive */
1372 if ((r1->power_rule.max_antenna_gain >
1373 r2->power_rule.max_antenna_gain) ||
1374 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1375 return false;
1376
1377 /* make sure r2's range is contained within r1 */
1378 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1379 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1380 return false;
1381
1382 /* and finally verify that r1.max_bw >= r2.max_bw */
1383 if (r1->freq_range.max_bandwidth_khz <
1384 r2->freq_range.max_bandwidth_khz)
1385 return false;
1386
1387 return true;
1388 }
1389
1390 /* add or extend current rules. do nothing if rule is already contained */
1391 static void add_rule(struct ieee80211_reg_rule *rule,
1392 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1393 {
1394 struct ieee80211_reg_rule *tmp_rule;
1395 int i;
1396
1397 for (i = 0; i < *n_rules; i++) {
1398 tmp_rule = &reg_rules[i];
1399 /* rule is already contained - do nothing */
1400 if (rule_contains(tmp_rule, rule))
1401 return;
1402
1403 /* extend rule if possible */
1404 if (rule_contains(rule, tmp_rule)) {
1405 memcpy(tmp_rule, rule, sizeof(*rule));
1406 return;
1407 }
1408 }
1409
1410 memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1411 (*n_rules)++;
1412 }
1413
1414 /**
1415 * regdom_intersect - do the intersection between two regulatory domains
1416 * @rd1: first regulatory domain
1417 * @rd2: second regulatory domain
1418 *
1419 * Use this function to get the intersection between two regulatory domains.
1420 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1421 * as no one single alpha2 can represent this regulatory domain.
1422 *
1423 * Returns a pointer to the regulatory domain structure which will hold the
1424 * resulting intersection of rules between rd1 and rd2. We will
1425 * kzalloc() this structure for you.
1426 */
1427 static struct ieee80211_regdomain *
1428 regdom_intersect(const struct ieee80211_regdomain *rd1,
1429 const struct ieee80211_regdomain *rd2)
1430 {
1431 int r, size_of_regd;
1432 unsigned int x, y;
1433 unsigned int num_rules = 0;
1434 const struct ieee80211_reg_rule *rule1, *rule2;
1435 struct ieee80211_reg_rule intersected_rule;
1436 struct ieee80211_regdomain *rd;
1437
1438 if (!rd1 || !rd2)
1439 return NULL;
1440
1441 /*
1442 * First we get a count of the rules we'll need, then we actually
1443 * build them. This is to so we can malloc() and free() a
1444 * regdomain once. The reason we use reg_rules_intersect() here
1445 * is it will return -EINVAL if the rule computed makes no sense.
1446 * All rules that do check out OK are valid.
1447 */
1448
1449 for (x = 0; x < rd1->n_reg_rules; x++) {
1450 rule1 = &rd1->reg_rules[x];
1451 for (y = 0; y < rd2->n_reg_rules; y++) {
1452 rule2 = &rd2->reg_rules[y];
1453 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1454 &intersected_rule))
1455 num_rules++;
1456 }
1457 }
1458
1459 if (!num_rules)
1460 return NULL;
1461
1462 size_of_regd = sizeof(struct ieee80211_regdomain) +
1463 num_rules * sizeof(struct ieee80211_reg_rule);
1464
1465 rd = kzalloc(size_of_regd, GFP_KERNEL);
1466 if (!rd)
1467 return NULL;
1468
1469 for (x = 0; x < rd1->n_reg_rules; x++) {
1470 rule1 = &rd1->reg_rules[x];
1471 for (y = 0; y < rd2->n_reg_rules; y++) {
1472 rule2 = &rd2->reg_rules[y];
1473 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1474 &intersected_rule);
1475 /*
1476 * No need to memset here the intersected rule here as
1477 * we're not using the stack anymore
1478 */
1479 if (r)
1480 continue;
1481
1482 add_rule(&intersected_rule, rd->reg_rules,
1483 &rd->n_reg_rules);
1484 }
1485 }
1486
1487 rd->alpha2[0] = '9';
1488 rd->alpha2[1] = '8';
1489 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1490 rd2->dfs_region);
1491
1492 return rd;
1493 }
1494
1495 /*
1496 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1497 * want to just have the channel structure use these
1498 */
1499 static u32 map_regdom_flags(u32 rd_flags)
1500 {
1501 u32 channel_flags = 0;
1502 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1503 channel_flags |= IEEE80211_CHAN_NO_IR;
1504 if (rd_flags & NL80211_RRF_DFS)
1505 channel_flags |= IEEE80211_CHAN_RADAR;
1506 if (rd_flags & NL80211_RRF_NO_OFDM)
1507 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1508 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1509 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1510 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1511 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1512 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1513 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1514 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1515 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1516 if (rd_flags & NL80211_RRF_NO_80MHZ)
1517 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1518 if (rd_flags & NL80211_RRF_NO_160MHZ)
1519 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1520 return channel_flags;
1521 }
1522
1523 static const struct ieee80211_reg_rule *
1524 freq_reg_info_regd(u32 center_freq,
1525 const struct ieee80211_regdomain *regd, u32 bw)
1526 {
1527 int i;
1528 bool band_rule_found = false;
1529 bool bw_fits = false;
1530
1531 if (!regd)
1532 return ERR_PTR(-EINVAL);
1533
1534 for (i = 0; i < regd->n_reg_rules; i++) {
1535 const struct ieee80211_reg_rule *rr;
1536 const struct ieee80211_freq_range *fr = NULL;
1537
1538 rr = &regd->reg_rules[i];
1539 fr = &rr->freq_range;
1540
1541 /*
1542 * We only need to know if one frequency rule was
1543 * was in center_freq's band, that's enough, so lets
1544 * not overwrite it once found
1545 */
1546 if (!band_rule_found)
1547 band_rule_found = freq_in_rule_band(fr, center_freq);
1548
1549 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1550
1551 if (band_rule_found && bw_fits)
1552 return rr;
1553 }
1554
1555 if (!band_rule_found)
1556 return ERR_PTR(-ERANGE);
1557
1558 return ERR_PTR(-EINVAL);
1559 }
1560
1561 static const struct ieee80211_reg_rule *
1562 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1563 {
1564 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1565 const struct ieee80211_reg_rule *reg_rule = NULL;
1566 u32 bw;
1567
1568 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1569 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1570 if (!IS_ERR(reg_rule))
1571 return reg_rule;
1572 }
1573
1574 return reg_rule;
1575 }
1576
1577 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1578 u32 center_freq)
1579 {
1580 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1581 }
1582 EXPORT_SYMBOL(freq_reg_info);
1583
1584 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1585 {
1586 switch (initiator) {
1587 case NL80211_REGDOM_SET_BY_CORE:
1588 return "core";
1589 case NL80211_REGDOM_SET_BY_USER:
1590 return "user";
1591 case NL80211_REGDOM_SET_BY_DRIVER:
1592 return "driver";
1593 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1594 return "country element";
1595 default:
1596 WARN_ON(1);
1597 return "bug";
1598 }
1599 }
1600 EXPORT_SYMBOL(reg_initiator_name);
1601
1602 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1603 const struct ieee80211_reg_rule *reg_rule,
1604 const struct ieee80211_channel *chan)
1605 {
1606 const struct ieee80211_freq_range *freq_range = NULL;
1607 u32 max_bandwidth_khz, bw_flags = 0;
1608
1609 freq_range = &reg_rule->freq_range;
1610
1611 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1612 /* Check if auto calculation requested */
1613 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1614 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1615
1616 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1617 if (!cfg80211_does_bw_fit_range(freq_range,
1618 MHZ_TO_KHZ(chan->center_freq),
1619 MHZ_TO_KHZ(10)))
1620 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1621 if (!cfg80211_does_bw_fit_range(freq_range,
1622 MHZ_TO_KHZ(chan->center_freq),
1623 MHZ_TO_KHZ(20)))
1624 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1625
1626 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1627 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1628 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1629 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1630 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1631 bw_flags |= IEEE80211_CHAN_NO_HT40;
1632 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1633 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1634 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1635 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1636 return bw_flags;
1637 }
1638
1639 /*
1640 * Note that right now we assume the desired channel bandwidth
1641 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1642 * per channel, the primary and the extension channel).
1643 */
1644 static void handle_channel(struct wiphy *wiphy,
1645 enum nl80211_reg_initiator initiator,
1646 struct ieee80211_channel *chan)
1647 {
1648 u32 flags, bw_flags = 0;
1649 const struct ieee80211_reg_rule *reg_rule = NULL;
1650 const struct ieee80211_power_rule *power_rule = NULL;
1651 struct wiphy *request_wiphy = NULL;
1652 struct regulatory_request *lr = get_last_request();
1653 const struct ieee80211_regdomain *regd;
1654
1655 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1656
1657 flags = chan->orig_flags;
1658
1659 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1660 if (IS_ERR(reg_rule)) {
1661 /*
1662 * We will disable all channels that do not match our
1663 * received regulatory rule unless the hint is coming
1664 * from a Country IE and the Country IE had no information
1665 * about a band. The IEEE 802.11 spec allows for an AP
1666 * to send only a subset of the regulatory rules allowed,
1667 * so an AP in the US that only supports 2.4 GHz may only send
1668 * a country IE with information for the 2.4 GHz band
1669 * while 5 GHz is still supported.
1670 */
1671 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1672 PTR_ERR(reg_rule) == -ERANGE)
1673 return;
1674
1675 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1676 request_wiphy && request_wiphy == wiphy &&
1677 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1678 pr_debug("Disabling freq %d MHz for good\n",
1679 chan->center_freq);
1680 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1681 chan->flags = chan->orig_flags;
1682 } else {
1683 pr_debug("Disabling freq %d MHz\n",
1684 chan->center_freq);
1685 chan->flags |= IEEE80211_CHAN_DISABLED;
1686 }
1687 return;
1688 }
1689
1690 regd = reg_get_regdomain(wiphy);
1691
1692 power_rule = &reg_rule->power_rule;
1693 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1694
1695 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1696 request_wiphy && request_wiphy == wiphy &&
1697 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1698 /*
1699 * This guarantees the driver's requested regulatory domain
1700 * will always be used as a base for further regulatory
1701 * settings
1702 */
1703 chan->flags = chan->orig_flags =
1704 map_regdom_flags(reg_rule->flags) | bw_flags;
1705 chan->max_antenna_gain = chan->orig_mag =
1706 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1707 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1708 (int) MBM_TO_DBM(power_rule->max_eirp);
1709
1710 if (chan->flags & IEEE80211_CHAN_RADAR) {
1711 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1712 if (reg_rule->dfs_cac_ms)
1713 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1714 }
1715
1716 return;
1717 }
1718
1719 chan->dfs_state = NL80211_DFS_USABLE;
1720 chan->dfs_state_entered = jiffies;
1721
1722 chan->beacon_found = false;
1723 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1724 chan->max_antenna_gain =
1725 min_t(int, chan->orig_mag,
1726 MBI_TO_DBI(power_rule->max_antenna_gain));
1727 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1728
1729 if (chan->flags & IEEE80211_CHAN_RADAR) {
1730 if (reg_rule->dfs_cac_ms)
1731 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1732 else
1733 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1734 }
1735
1736 if (chan->orig_mpwr) {
1737 /*
1738 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1739 * will always follow the passed country IE power settings.
1740 */
1741 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1742 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1743 chan->max_power = chan->max_reg_power;
1744 else
1745 chan->max_power = min(chan->orig_mpwr,
1746 chan->max_reg_power);
1747 } else
1748 chan->max_power = chan->max_reg_power;
1749 }
1750
1751 static void handle_band(struct wiphy *wiphy,
1752 enum nl80211_reg_initiator initiator,
1753 struct ieee80211_supported_band *sband)
1754 {
1755 unsigned int i;
1756
1757 if (!sband)
1758 return;
1759
1760 for (i = 0; i < sband->n_channels; i++)
1761 handle_channel(wiphy, initiator, &sband->channels[i]);
1762 }
1763
1764 static bool reg_request_cell_base(struct regulatory_request *request)
1765 {
1766 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1767 return false;
1768 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1769 }
1770
1771 bool reg_last_request_cell_base(void)
1772 {
1773 return reg_request_cell_base(get_last_request());
1774 }
1775
1776 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1777 /* Core specific check */
1778 static enum reg_request_treatment
1779 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1780 {
1781 struct regulatory_request *lr = get_last_request();
1782
1783 if (!reg_num_devs_support_basehint)
1784 return REG_REQ_IGNORE;
1785
1786 if (reg_request_cell_base(lr) &&
1787 !regdom_changes(pending_request->alpha2))
1788 return REG_REQ_ALREADY_SET;
1789
1790 return REG_REQ_OK;
1791 }
1792
1793 /* Device specific check */
1794 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1795 {
1796 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1797 }
1798 #else
1799 static enum reg_request_treatment
1800 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1801 {
1802 return REG_REQ_IGNORE;
1803 }
1804
1805 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1806 {
1807 return true;
1808 }
1809 #endif
1810
1811 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1812 {
1813 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1814 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1815 return true;
1816 return false;
1817 }
1818
1819 static bool ignore_reg_update(struct wiphy *wiphy,
1820 enum nl80211_reg_initiator initiator)
1821 {
1822 struct regulatory_request *lr = get_last_request();
1823
1824 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1825 return true;
1826
1827 if (!lr) {
1828 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1829 reg_initiator_name(initiator));
1830 return true;
1831 }
1832
1833 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1834 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1835 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1836 reg_initiator_name(initiator));
1837 return true;
1838 }
1839
1840 /*
1841 * wiphy->regd will be set once the device has its own
1842 * desired regulatory domain set
1843 */
1844 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1845 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1846 !is_world_regdom(lr->alpha2)) {
1847 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1848 reg_initiator_name(initiator));
1849 return true;
1850 }
1851
1852 if (reg_request_cell_base(lr))
1853 return reg_dev_ignore_cell_hint(wiphy);
1854
1855 return false;
1856 }
1857
1858 static bool reg_is_world_roaming(struct wiphy *wiphy)
1859 {
1860 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1861 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1862 struct regulatory_request *lr = get_last_request();
1863
1864 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1865 return true;
1866
1867 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1868 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1869 return true;
1870
1871 return false;
1872 }
1873
1874 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1875 struct reg_beacon *reg_beacon)
1876 {
1877 struct ieee80211_supported_band *sband;
1878 struct ieee80211_channel *chan;
1879 bool channel_changed = false;
1880 struct ieee80211_channel chan_before;
1881
1882 sband = wiphy->bands[reg_beacon->chan.band];
1883 chan = &sband->channels[chan_idx];
1884
1885 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1886 return;
1887
1888 if (chan->beacon_found)
1889 return;
1890
1891 chan->beacon_found = true;
1892
1893 if (!reg_is_world_roaming(wiphy))
1894 return;
1895
1896 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1897 return;
1898
1899 chan_before = *chan;
1900
1901 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1902 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1903 channel_changed = true;
1904 }
1905
1906 if (channel_changed)
1907 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1908 }
1909
1910 /*
1911 * Called when a scan on a wiphy finds a beacon on
1912 * new channel
1913 */
1914 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1915 struct reg_beacon *reg_beacon)
1916 {
1917 unsigned int i;
1918 struct ieee80211_supported_band *sband;
1919
1920 if (!wiphy->bands[reg_beacon->chan.band])
1921 return;
1922
1923 sband = wiphy->bands[reg_beacon->chan.band];
1924
1925 for (i = 0; i < sband->n_channels; i++)
1926 handle_reg_beacon(wiphy, i, reg_beacon);
1927 }
1928
1929 /*
1930 * Called upon reg changes or a new wiphy is added
1931 */
1932 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1933 {
1934 unsigned int i;
1935 struct ieee80211_supported_band *sband;
1936 struct reg_beacon *reg_beacon;
1937
1938 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1939 if (!wiphy->bands[reg_beacon->chan.band])
1940 continue;
1941 sband = wiphy->bands[reg_beacon->chan.band];
1942 for (i = 0; i < sband->n_channels; i++)
1943 handle_reg_beacon(wiphy, i, reg_beacon);
1944 }
1945 }
1946
1947 /* Reap the advantages of previously found beacons */
1948 static void reg_process_beacons(struct wiphy *wiphy)
1949 {
1950 /*
1951 * Means we are just firing up cfg80211, so no beacons would
1952 * have been processed yet.
1953 */
1954 if (!last_request)
1955 return;
1956 wiphy_update_beacon_reg(wiphy);
1957 }
1958
1959 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1960 {
1961 if (!chan)
1962 return false;
1963 if (chan->flags & IEEE80211_CHAN_DISABLED)
1964 return false;
1965 /* This would happen when regulatory rules disallow HT40 completely */
1966 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1967 return false;
1968 return true;
1969 }
1970
1971 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1972 struct ieee80211_channel *channel)
1973 {
1974 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1975 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1976 const struct ieee80211_regdomain *regd;
1977 unsigned int i;
1978 u32 flags;
1979
1980 if (!is_ht40_allowed(channel)) {
1981 channel->flags |= IEEE80211_CHAN_NO_HT40;
1982 return;
1983 }
1984
1985 /*
1986 * We need to ensure the extension channels exist to
1987 * be able to use HT40- or HT40+, this finds them (or not)
1988 */
1989 for (i = 0; i < sband->n_channels; i++) {
1990 struct ieee80211_channel *c = &sband->channels[i];
1991
1992 if (c->center_freq == (channel->center_freq - 20))
1993 channel_before = c;
1994 if (c->center_freq == (channel->center_freq + 20))
1995 channel_after = c;
1996 }
1997
1998 flags = 0;
1999 regd = get_wiphy_regdom(wiphy);
2000 if (regd) {
2001 const struct ieee80211_reg_rule *reg_rule =
2002 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2003 regd, MHZ_TO_KHZ(20));
2004
2005 if (!IS_ERR(reg_rule))
2006 flags = reg_rule->flags;
2007 }
2008
2009 /*
2010 * Please note that this assumes target bandwidth is 20 MHz,
2011 * if that ever changes we also need to change the below logic
2012 * to include that as well.
2013 */
2014 if (!is_ht40_allowed(channel_before) ||
2015 flags & NL80211_RRF_NO_HT40MINUS)
2016 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2017 else
2018 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2019
2020 if (!is_ht40_allowed(channel_after) ||
2021 flags & NL80211_RRF_NO_HT40PLUS)
2022 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2023 else
2024 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2025 }
2026
2027 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2028 struct ieee80211_supported_band *sband)
2029 {
2030 unsigned int i;
2031
2032 if (!sband)
2033 return;
2034
2035 for (i = 0; i < sband->n_channels; i++)
2036 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2037 }
2038
2039 static void reg_process_ht_flags(struct wiphy *wiphy)
2040 {
2041 enum nl80211_band band;
2042
2043 if (!wiphy)
2044 return;
2045
2046 for (band = 0; band < NUM_NL80211_BANDS; band++)
2047 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2048 }
2049
2050 static void reg_call_notifier(struct wiphy *wiphy,
2051 struct regulatory_request *request)
2052 {
2053 if (wiphy->reg_notifier)
2054 wiphy->reg_notifier(wiphy, request);
2055 }
2056
2057 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2058 {
2059 struct cfg80211_chan_def chandef;
2060 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2061 enum nl80211_iftype iftype;
2062
2063 wdev_lock(wdev);
2064 iftype = wdev->iftype;
2065
2066 /* make sure the interface is active */
2067 if (!wdev->netdev || !netif_running(wdev->netdev))
2068 goto wdev_inactive_unlock;
2069
2070 switch (iftype) {
2071 case NL80211_IFTYPE_AP:
2072 case NL80211_IFTYPE_P2P_GO:
2073 if (!wdev->beacon_interval)
2074 goto wdev_inactive_unlock;
2075 chandef = wdev->chandef;
2076 break;
2077 case NL80211_IFTYPE_ADHOC:
2078 if (!wdev->ssid_len)
2079 goto wdev_inactive_unlock;
2080 chandef = wdev->chandef;
2081 break;
2082 case NL80211_IFTYPE_STATION:
2083 case NL80211_IFTYPE_P2P_CLIENT:
2084 if (!wdev->current_bss ||
2085 !wdev->current_bss->pub.channel)
2086 goto wdev_inactive_unlock;
2087
2088 if (!rdev->ops->get_channel ||
2089 rdev_get_channel(rdev, wdev, &chandef))
2090 cfg80211_chandef_create(&chandef,
2091 wdev->current_bss->pub.channel,
2092 NL80211_CHAN_NO_HT);
2093 break;
2094 case NL80211_IFTYPE_MONITOR:
2095 case NL80211_IFTYPE_AP_VLAN:
2096 case NL80211_IFTYPE_P2P_DEVICE:
2097 /* no enforcement required */
2098 break;
2099 default:
2100 /* others not implemented for now */
2101 WARN_ON(1);
2102 break;
2103 }
2104
2105 wdev_unlock(wdev);
2106
2107 switch (iftype) {
2108 case NL80211_IFTYPE_AP:
2109 case NL80211_IFTYPE_P2P_GO:
2110 case NL80211_IFTYPE_ADHOC:
2111 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2112 case NL80211_IFTYPE_STATION:
2113 case NL80211_IFTYPE_P2P_CLIENT:
2114 return cfg80211_chandef_usable(wiphy, &chandef,
2115 IEEE80211_CHAN_DISABLED);
2116 default:
2117 break;
2118 }
2119
2120 return true;
2121
2122 wdev_inactive_unlock:
2123 wdev_unlock(wdev);
2124 return true;
2125 }
2126
2127 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2128 {
2129 struct wireless_dev *wdev;
2130 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2131
2132 ASSERT_RTNL();
2133
2134 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2135 if (!reg_wdev_chan_valid(wiphy, wdev))
2136 cfg80211_leave(rdev, wdev);
2137 }
2138
2139 static void reg_check_chans_work(struct work_struct *work)
2140 {
2141 struct cfg80211_registered_device *rdev;
2142
2143 pr_debug("Verifying active interfaces after reg change\n");
2144 rtnl_lock();
2145
2146 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2147 if (!(rdev->wiphy.regulatory_flags &
2148 REGULATORY_IGNORE_STALE_KICKOFF))
2149 reg_leave_invalid_chans(&rdev->wiphy);
2150
2151 rtnl_unlock();
2152 }
2153
2154 static void reg_check_channels(void)
2155 {
2156 /*
2157 * Give usermode a chance to do something nicer (move to another
2158 * channel, orderly disconnection), before forcing a disconnection.
2159 */
2160 mod_delayed_work(system_power_efficient_wq,
2161 &reg_check_chans,
2162 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2163 }
2164
2165 static void wiphy_update_regulatory(struct wiphy *wiphy,
2166 enum nl80211_reg_initiator initiator)
2167 {
2168 enum nl80211_band band;
2169 struct regulatory_request *lr = get_last_request();
2170
2171 if (ignore_reg_update(wiphy, initiator)) {
2172 /*
2173 * Regulatory updates set by CORE are ignored for custom
2174 * regulatory cards. Let us notify the changes to the driver,
2175 * as some drivers used this to restore its orig_* reg domain.
2176 */
2177 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2178 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2179 !(wiphy->regulatory_flags &
2180 REGULATORY_WIPHY_SELF_MANAGED))
2181 reg_call_notifier(wiphy, lr);
2182 return;
2183 }
2184
2185 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2186
2187 for (band = 0; band < NUM_NL80211_BANDS; band++)
2188 handle_band(wiphy, initiator, wiphy->bands[band]);
2189
2190 reg_process_beacons(wiphy);
2191 reg_process_ht_flags(wiphy);
2192 reg_call_notifier(wiphy, lr);
2193 }
2194
2195 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2196 {
2197 struct cfg80211_registered_device *rdev;
2198 struct wiphy *wiphy;
2199
2200 ASSERT_RTNL();
2201
2202 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2203 wiphy = &rdev->wiphy;
2204 wiphy_update_regulatory(wiphy, initiator);
2205 }
2206
2207 reg_check_channels();
2208 }
2209
2210 static void handle_channel_custom(struct wiphy *wiphy,
2211 struct ieee80211_channel *chan,
2212 const struct ieee80211_regdomain *regd)
2213 {
2214 u32 bw_flags = 0;
2215 const struct ieee80211_reg_rule *reg_rule = NULL;
2216 const struct ieee80211_power_rule *power_rule = NULL;
2217 u32 bw;
2218
2219 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
2220 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
2221 regd, bw);
2222 if (!IS_ERR(reg_rule))
2223 break;
2224 }
2225
2226 if (IS_ERR(reg_rule)) {
2227 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2228 chan->center_freq);
2229 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2230 chan->flags |= IEEE80211_CHAN_DISABLED;
2231 } else {
2232 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2233 chan->flags = chan->orig_flags;
2234 }
2235 return;
2236 }
2237
2238 power_rule = &reg_rule->power_rule;
2239 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2240
2241 chan->dfs_state_entered = jiffies;
2242 chan->dfs_state = NL80211_DFS_USABLE;
2243
2244 chan->beacon_found = false;
2245
2246 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2247 chan->flags = chan->orig_flags | bw_flags |
2248 map_regdom_flags(reg_rule->flags);
2249 else
2250 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2251
2252 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2253 chan->max_reg_power = chan->max_power =
2254 (int) MBM_TO_DBM(power_rule->max_eirp);
2255
2256 if (chan->flags & IEEE80211_CHAN_RADAR) {
2257 if (reg_rule->dfs_cac_ms)
2258 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2259 else
2260 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2261 }
2262
2263 chan->max_power = chan->max_reg_power;
2264 }
2265
2266 static void handle_band_custom(struct wiphy *wiphy,
2267 struct ieee80211_supported_band *sband,
2268 const struct ieee80211_regdomain *regd)
2269 {
2270 unsigned int i;
2271
2272 if (!sband)
2273 return;
2274
2275 for (i = 0; i < sband->n_channels; i++)
2276 handle_channel_custom(wiphy, &sband->channels[i], regd);
2277 }
2278
2279 /* Used by drivers prior to wiphy registration */
2280 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2281 const struct ieee80211_regdomain *regd)
2282 {
2283 enum nl80211_band band;
2284 unsigned int bands_set = 0;
2285
2286 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2287 "wiphy should have REGULATORY_CUSTOM_REG\n");
2288 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2289
2290 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2291 if (!wiphy->bands[band])
2292 continue;
2293 handle_band_custom(wiphy, wiphy->bands[band], regd);
2294 bands_set++;
2295 }
2296
2297 /*
2298 * no point in calling this if it won't have any effect
2299 * on your device's supported bands.
2300 */
2301 WARN_ON(!bands_set);
2302 }
2303 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2304
2305 static void reg_set_request_processed(void)
2306 {
2307 bool need_more_processing = false;
2308 struct regulatory_request *lr = get_last_request();
2309
2310 lr->processed = true;
2311
2312 spin_lock(&reg_requests_lock);
2313 if (!list_empty(&reg_requests_list))
2314 need_more_processing = true;
2315 spin_unlock(&reg_requests_lock);
2316
2317 cancel_crda_timeout();
2318
2319 if (need_more_processing)
2320 schedule_work(&reg_work);
2321 }
2322
2323 /**
2324 * reg_process_hint_core - process core regulatory requests
2325 * @pending_request: a pending core regulatory request
2326 *
2327 * The wireless subsystem can use this function to process
2328 * a regulatory request issued by the regulatory core.
2329 */
2330 static enum reg_request_treatment
2331 reg_process_hint_core(struct regulatory_request *core_request)
2332 {
2333 if (reg_query_database(core_request)) {
2334 core_request->intersect = false;
2335 core_request->processed = false;
2336 reg_update_last_request(core_request);
2337 return REG_REQ_OK;
2338 }
2339
2340 return REG_REQ_IGNORE;
2341 }
2342
2343 static enum reg_request_treatment
2344 __reg_process_hint_user(struct regulatory_request *user_request)
2345 {
2346 struct regulatory_request *lr = get_last_request();
2347
2348 if (reg_request_cell_base(user_request))
2349 return reg_ignore_cell_hint(user_request);
2350
2351 if (reg_request_cell_base(lr))
2352 return REG_REQ_IGNORE;
2353
2354 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2355 return REG_REQ_INTERSECT;
2356 /*
2357 * If the user knows better the user should set the regdom
2358 * to their country before the IE is picked up
2359 */
2360 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2361 lr->intersect)
2362 return REG_REQ_IGNORE;
2363 /*
2364 * Process user requests only after previous user/driver/core
2365 * requests have been processed
2366 */
2367 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2368 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2369 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2370 regdom_changes(lr->alpha2))
2371 return REG_REQ_IGNORE;
2372
2373 if (!regdom_changes(user_request->alpha2))
2374 return REG_REQ_ALREADY_SET;
2375
2376 return REG_REQ_OK;
2377 }
2378
2379 /**
2380 * reg_process_hint_user - process user regulatory requests
2381 * @user_request: a pending user regulatory request
2382 *
2383 * The wireless subsystem can use this function to process
2384 * a regulatory request initiated by userspace.
2385 */
2386 static enum reg_request_treatment
2387 reg_process_hint_user(struct regulatory_request *user_request)
2388 {
2389 enum reg_request_treatment treatment;
2390
2391 treatment = __reg_process_hint_user(user_request);
2392 if (treatment == REG_REQ_IGNORE ||
2393 treatment == REG_REQ_ALREADY_SET)
2394 return REG_REQ_IGNORE;
2395
2396 user_request->intersect = treatment == REG_REQ_INTERSECT;
2397 user_request->processed = false;
2398
2399 if (reg_query_database(user_request)) {
2400 reg_update_last_request(user_request);
2401 user_alpha2[0] = user_request->alpha2[0];
2402 user_alpha2[1] = user_request->alpha2[1];
2403 return REG_REQ_OK;
2404 }
2405
2406 return REG_REQ_IGNORE;
2407 }
2408
2409 static enum reg_request_treatment
2410 __reg_process_hint_driver(struct regulatory_request *driver_request)
2411 {
2412 struct regulatory_request *lr = get_last_request();
2413
2414 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2415 if (regdom_changes(driver_request->alpha2))
2416 return REG_REQ_OK;
2417 return REG_REQ_ALREADY_SET;
2418 }
2419
2420 /*
2421 * This would happen if you unplug and plug your card
2422 * back in or if you add a new device for which the previously
2423 * loaded card also agrees on the regulatory domain.
2424 */
2425 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2426 !regdom_changes(driver_request->alpha2))
2427 return REG_REQ_ALREADY_SET;
2428
2429 return REG_REQ_INTERSECT;
2430 }
2431
2432 /**
2433 * reg_process_hint_driver - process driver regulatory requests
2434 * @driver_request: a pending driver regulatory request
2435 *
2436 * The wireless subsystem can use this function to process
2437 * a regulatory request issued by an 802.11 driver.
2438 *
2439 * Returns one of the different reg request treatment values.
2440 */
2441 static enum reg_request_treatment
2442 reg_process_hint_driver(struct wiphy *wiphy,
2443 struct regulatory_request *driver_request)
2444 {
2445 const struct ieee80211_regdomain *regd, *tmp;
2446 enum reg_request_treatment treatment;
2447
2448 treatment = __reg_process_hint_driver(driver_request);
2449
2450 switch (treatment) {
2451 case REG_REQ_OK:
2452 break;
2453 case REG_REQ_IGNORE:
2454 return REG_REQ_IGNORE;
2455 case REG_REQ_INTERSECT:
2456 case REG_REQ_ALREADY_SET:
2457 regd = reg_copy_regd(get_cfg80211_regdom());
2458 if (IS_ERR(regd))
2459 return REG_REQ_IGNORE;
2460
2461 tmp = get_wiphy_regdom(wiphy);
2462 rcu_assign_pointer(wiphy->regd, regd);
2463 rcu_free_regdom(tmp);
2464 }
2465
2466
2467 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2468 driver_request->processed = false;
2469
2470 /*
2471 * Since CRDA will not be called in this case as we already
2472 * have applied the requested regulatory domain before we just
2473 * inform userspace we have processed the request
2474 */
2475 if (treatment == REG_REQ_ALREADY_SET) {
2476 nl80211_send_reg_change_event(driver_request);
2477 reg_update_last_request(driver_request);
2478 reg_set_request_processed();
2479 return REG_REQ_ALREADY_SET;
2480 }
2481
2482 if (reg_query_database(driver_request)) {
2483 reg_update_last_request(driver_request);
2484 return REG_REQ_OK;
2485 }
2486
2487 return REG_REQ_IGNORE;
2488 }
2489
2490 static enum reg_request_treatment
2491 __reg_process_hint_country_ie(struct wiphy *wiphy,
2492 struct regulatory_request *country_ie_request)
2493 {
2494 struct wiphy *last_wiphy = NULL;
2495 struct regulatory_request *lr = get_last_request();
2496
2497 if (reg_request_cell_base(lr)) {
2498 /* Trust a Cell base station over the AP's country IE */
2499 if (regdom_changes(country_ie_request->alpha2))
2500 return REG_REQ_IGNORE;
2501 return REG_REQ_ALREADY_SET;
2502 } else {
2503 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2504 return REG_REQ_IGNORE;
2505 }
2506
2507 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2508 return -EINVAL;
2509
2510 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2511 return REG_REQ_OK;
2512
2513 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2514
2515 if (last_wiphy != wiphy) {
2516 /*
2517 * Two cards with two APs claiming different
2518 * Country IE alpha2s. We could
2519 * intersect them, but that seems unlikely
2520 * to be correct. Reject second one for now.
2521 */
2522 if (regdom_changes(country_ie_request->alpha2))
2523 return REG_REQ_IGNORE;
2524 return REG_REQ_ALREADY_SET;
2525 }
2526
2527 if (regdom_changes(country_ie_request->alpha2))
2528 return REG_REQ_OK;
2529 return REG_REQ_ALREADY_SET;
2530 }
2531
2532 /**
2533 * reg_process_hint_country_ie - process regulatory requests from country IEs
2534 * @country_ie_request: a regulatory request from a country IE
2535 *
2536 * The wireless subsystem can use this function to process
2537 * a regulatory request issued by a country Information Element.
2538 *
2539 * Returns one of the different reg request treatment values.
2540 */
2541 static enum reg_request_treatment
2542 reg_process_hint_country_ie(struct wiphy *wiphy,
2543 struct regulatory_request *country_ie_request)
2544 {
2545 enum reg_request_treatment treatment;
2546
2547 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2548
2549 switch (treatment) {
2550 case REG_REQ_OK:
2551 break;
2552 case REG_REQ_IGNORE:
2553 return REG_REQ_IGNORE;
2554 case REG_REQ_ALREADY_SET:
2555 reg_free_request(country_ie_request);
2556 return REG_REQ_ALREADY_SET;
2557 case REG_REQ_INTERSECT:
2558 /*
2559 * This doesn't happen yet, not sure we
2560 * ever want to support it for this case.
2561 */
2562 WARN_ONCE(1, "Unexpected intersection for country elements");
2563 return REG_REQ_IGNORE;
2564 }
2565
2566 country_ie_request->intersect = false;
2567 country_ie_request->processed = false;
2568
2569 if (reg_query_database(country_ie_request)) {
2570 reg_update_last_request(country_ie_request);
2571 return REG_REQ_OK;
2572 }
2573
2574 return REG_REQ_IGNORE;
2575 }
2576
2577 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2578 {
2579 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2580 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2581 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2582 bool dfs_domain_same;
2583
2584 rcu_read_lock();
2585
2586 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2587 wiphy1_regd = rcu_dereference(wiphy1->regd);
2588 if (!wiphy1_regd)
2589 wiphy1_regd = cfg80211_regd;
2590
2591 wiphy2_regd = rcu_dereference(wiphy2->regd);
2592 if (!wiphy2_regd)
2593 wiphy2_regd = cfg80211_regd;
2594
2595 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2596
2597 rcu_read_unlock();
2598
2599 return dfs_domain_same;
2600 }
2601
2602 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2603 struct ieee80211_channel *src_chan)
2604 {
2605 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2606 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2607 return;
2608
2609 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2610 src_chan->flags & IEEE80211_CHAN_DISABLED)
2611 return;
2612
2613 if (src_chan->center_freq == dst_chan->center_freq &&
2614 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2615 dst_chan->dfs_state = src_chan->dfs_state;
2616 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2617 }
2618 }
2619
2620 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2621 struct wiphy *src_wiphy)
2622 {
2623 struct ieee80211_supported_band *src_sband, *dst_sband;
2624 struct ieee80211_channel *src_chan, *dst_chan;
2625 int i, j, band;
2626
2627 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2628 return;
2629
2630 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2631 dst_sband = dst_wiphy->bands[band];
2632 src_sband = src_wiphy->bands[band];
2633 if (!dst_sband || !src_sband)
2634 continue;
2635
2636 for (i = 0; i < dst_sband->n_channels; i++) {
2637 dst_chan = &dst_sband->channels[i];
2638 for (j = 0; j < src_sband->n_channels; j++) {
2639 src_chan = &src_sband->channels[j];
2640 reg_copy_dfs_chan_state(dst_chan, src_chan);
2641 }
2642 }
2643 }
2644 }
2645
2646 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2647 {
2648 struct cfg80211_registered_device *rdev;
2649
2650 ASSERT_RTNL();
2651
2652 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2653 if (wiphy == &rdev->wiphy)
2654 continue;
2655 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2656 }
2657 }
2658
2659 /* This processes *all* regulatory hints */
2660 static void reg_process_hint(struct regulatory_request *reg_request)
2661 {
2662 struct wiphy *wiphy = NULL;
2663 enum reg_request_treatment treatment;
2664
2665 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2666 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2667
2668 switch (reg_request->initiator) {
2669 case NL80211_REGDOM_SET_BY_CORE:
2670 treatment = reg_process_hint_core(reg_request);
2671 break;
2672 case NL80211_REGDOM_SET_BY_USER:
2673 treatment = reg_process_hint_user(reg_request);
2674 break;
2675 case NL80211_REGDOM_SET_BY_DRIVER:
2676 if (!wiphy)
2677 goto out_free;
2678 treatment = reg_process_hint_driver(wiphy, reg_request);
2679 break;
2680 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2681 if (!wiphy)
2682 goto out_free;
2683 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2684 break;
2685 default:
2686 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2687 goto out_free;
2688 }
2689
2690 if (treatment == REG_REQ_IGNORE)
2691 goto out_free;
2692
2693 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2694 "unexpected treatment value %d\n", treatment);
2695
2696 /* This is required so that the orig_* parameters are saved.
2697 * NOTE: treatment must be set for any case that reaches here!
2698 */
2699 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2700 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2701 wiphy_update_regulatory(wiphy, reg_request->initiator);
2702 wiphy_all_share_dfs_chan_state(wiphy);
2703 reg_check_channels();
2704 }
2705
2706 return;
2707
2708 out_free:
2709 reg_free_request(reg_request);
2710 }
2711
2712 static void notify_self_managed_wiphys(struct regulatory_request *request)
2713 {
2714 struct cfg80211_registered_device *rdev;
2715 struct wiphy *wiphy;
2716
2717 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2718 wiphy = &rdev->wiphy;
2719 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
2720 request->initiator == NL80211_REGDOM_SET_BY_USER &&
2721 request->user_reg_hint_type ==
2722 NL80211_USER_REG_HINT_CELL_BASE)
2723 reg_call_notifier(wiphy, request);
2724 }
2725 }
2726
2727 /*
2728 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2729 * Regulatory hints come on a first come first serve basis and we
2730 * must process each one atomically.
2731 */
2732 static void reg_process_pending_hints(void)
2733 {
2734 struct regulatory_request *reg_request, *lr;
2735
2736 lr = get_last_request();
2737
2738 /* When last_request->processed becomes true this will be rescheduled */
2739 if (lr && !lr->processed) {
2740 reg_process_hint(lr);
2741 return;
2742 }
2743
2744 spin_lock(&reg_requests_lock);
2745
2746 if (list_empty(&reg_requests_list)) {
2747 spin_unlock(&reg_requests_lock);
2748 return;
2749 }
2750
2751 reg_request = list_first_entry(&reg_requests_list,
2752 struct regulatory_request,
2753 list);
2754 list_del_init(&reg_request->list);
2755
2756 spin_unlock(&reg_requests_lock);
2757
2758 notify_self_managed_wiphys(reg_request);
2759
2760 reg_process_hint(reg_request);
2761
2762 lr = get_last_request();
2763
2764 spin_lock(&reg_requests_lock);
2765 if (!list_empty(&reg_requests_list) && lr && lr->processed)
2766 schedule_work(&reg_work);
2767 spin_unlock(&reg_requests_lock);
2768 }
2769
2770 /* Processes beacon hints -- this has nothing to do with country IEs */
2771 static void reg_process_pending_beacon_hints(void)
2772 {
2773 struct cfg80211_registered_device *rdev;
2774 struct reg_beacon *pending_beacon, *tmp;
2775
2776 /* This goes through the _pending_ beacon list */
2777 spin_lock_bh(&reg_pending_beacons_lock);
2778
2779 list_for_each_entry_safe(pending_beacon, tmp,
2780 &reg_pending_beacons, list) {
2781 list_del_init(&pending_beacon->list);
2782
2783 /* Applies the beacon hint to current wiphys */
2784 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2785 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2786
2787 /* Remembers the beacon hint for new wiphys or reg changes */
2788 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2789 }
2790
2791 spin_unlock_bh(&reg_pending_beacons_lock);
2792 }
2793
2794 static void reg_process_self_managed_hints(void)
2795 {
2796 struct cfg80211_registered_device *rdev;
2797 struct wiphy *wiphy;
2798 const struct ieee80211_regdomain *tmp;
2799 const struct ieee80211_regdomain *regd;
2800 enum nl80211_band band;
2801 struct regulatory_request request = {};
2802
2803 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2804 wiphy = &rdev->wiphy;
2805
2806 spin_lock(&reg_requests_lock);
2807 regd = rdev->requested_regd;
2808 rdev->requested_regd = NULL;
2809 spin_unlock(&reg_requests_lock);
2810
2811 if (regd == NULL)
2812 continue;
2813
2814 tmp = get_wiphy_regdom(wiphy);
2815 rcu_assign_pointer(wiphy->regd, regd);
2816 rcu_free_regdom(tmp);
2817
2818 for (band = 0; band < NUM_NL80211_BANDS; band++)
2819 handle_band_custom(wiphy, wiphy->bands[band], regd);
2820
2821 reg_process_ht_flags(wiphy);
2822
2823 request.wiphy_idx = get_wiphy_idx(wiphy);
2824 request.alpha2[0] = regd->alpha2[0];
2825 request.alpha2[1] = regd->alpha2[1];
2826 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2827
2828 nl80211_send_wiphy_reg_change_event(&request);
2829 }
2830
2831 reg_check_channels();
2832 }
2833
2834 static void reg_todo(struct work_struct *work)
2835 {
2836 rtnl_lock();
2837 reg_process_pending_hints();
2838 reg_process_pending_beacon_hints();
2839 reg_process_self_managed_hints();
2840 rtnl_unlock();
2841 }
2842
2843 static void queue_regulatory_request(struct regulatory_request *request)
2844 {
2845 request->alpha2[0] = toupper(request->alpha2[0]);
2846 request->alpha2[1] = toupper(request->alpha2[1]);
2847
2848 spin_lock(&reg_requests_lock);
2849 list_add_tail(&request->list, &reg_requests_list);
2850 spin_unlock(&reg_requests_lock);
2851
2852 schedule_work(&reg_work);
2853 }
2854
2855 /*
2856 * Core regulatory hint -- happens during cfg80211_init()
2857 * and when we restore regulatory settings.
2858 */
2859 static int regulatory_hint_core(const char *alpha2)
2860 {
2861 struct regulatory_request *request;
2862
2863 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2864 if (!request)
2865 return -ENOMEM;
2866
2867 request->alpha2[0] = alpha2[0];
2868 request->alpha2[1] = alpha2[1];
2869 request->initiator = NL80211_REGDOM_SET_BY_CORE;
2870
2871 queue_regulatory_request(request);
2872
2873 return 0;
2874 }
2875
2876 /* User hints */
2877 int regulatory_hint_user(const char *alpha2,
2878 enum nl80211_user_reg_hint_type user_reg_hint_type)
2879 {
2880 struct regulatory_request *request;
2881
2882 if (WARN_ON(!alpha2))
2883 return -EINVAL;
2884
2885 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2886 if (!request)
2887 return -ENOMEM;
2888
2889 request->wiphy_idx = WIPHY_IDX_INVALID;
2890 request->alpha2[0] = alpha2[0];
2891 request->alpha2[1] = alpha2[1];
2892 request->initiator = NL80211_REGDOM_SET_BY_USER;
2893 request->user_reg_hint_type = user_reg_hint_type;
2894
2895 /* Allow calling CRDA again */
2896 reset_crda_timeouts();
2897
2898 queue_regulatory_request(request);
2899
2900 return 0;
2901 }
2902
2903 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2904 {
2905 spin_lock(&reg_indoor_lock);
2906
2907 /* It is possible that more than one user space process is trying to
2908 * configure the indoor setting. To handle such cases, clear the indoor
2909 * setting in case that some process does not think that the device
2910 * is operating in an indoor environment. In addition, if a user space
2911 * process indicates that it is controlling the indoor setting, save its
2912 * portid, i.e., make it the owner.
2913 */
2914 reg_is_indoor = is_indoor;
2915 if (reg_is_indoor) {
2916 if (!reg_is_indoor_portid)
2917 reg_is_indoor_portid = portid;
2918 } else {
2919 reg_is_indoor_portid = 0;
2920 }
2921
2922 spin_unlock(&reg_indoor_lock);
2923
2924 if (!is_indoor)
2925 reg_check_channels();
2926
2927 return 0;
2928 }
2929
2930 void regulatory_netlink_notify(u32 portid)
2931 {
2932 spin_lock(&reg_indoor_lock);
2933
2934 if (reg_is_indoor_portid != portid) {
2935 spin_unlock(&reg_indoor_lock);
2936 return;
2937 }
2938
2939 reg_is_indoor = false;
2940 reg_is_indoor_portid = 0;
2941
2942 spin_unlock(&reg_indoor_lock);
2943
2944 reg_check_channels();
2945 }
2946
2947 /* Driver hints */
2948 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2949 {
2950 struct regulatory_request *request;
2951
2952 if (WARN_ON(!alpha2 || !wiphy))
2953 return -EINVAL;
2954
2955 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2956
2957 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2958 if (!request)
2959 return -ENOMEM;
2960
2961 request->wiphy_idx = get_wiphy_idx(wiphy);
2962
2963 request->alpha2[0] = alpha2[0];
2964 request->alpha2[1] = alpha2[1];
2965 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2966
2967 /* Allow calling CRDA again */
2968 reset_crda_timeouts();
2969
2970 queue_regulatory_request(request);
2971
2972 return 0;
2973 }
2974 EXPORT_SYMBOL(regulatory_hint);
2975
2976 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
2977 const u8 *country_ie, u8 country_ie_len)
2978 {
2979 char alpha2[2];
2980 enum environment_cap env = ENVIRON_ANY;
2981 struct regulatory_request *request = NULL, *lr;
2982
2983 /* IE len must be evenly divisible by 2 */
2984 if (country_ie_len & 0x01)
2985 return;
2986
2987 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2988 return;
2989
2990 request = kzalloc(sizeof(*request), GFP_KERNEL);
2991 if (!request)
2992 return;
2993
2994 alpha2[0] = country_ie[0];
2995 alpha2[1] = country_ie[1];
2996
2997 if (country_ie[2] == 'I')
2998 env = ENVIRON_INDOOR;
2999 else if (country_ie[2] == 'O')
3000 env = ENVIRON_OUTDOOR;
3001
3002 rcu_read_lock();
3003 lr = get_last_request();
3004
3005 if (unlikely(!lr))
3006 goto out;
3007
3008 /*
3009 * We will run this only upon a successful connection on cfg80211.
3010 * We leave conflict resolution to the workqueue, where can hold
3011 * the RTNL.
3012 */
3013 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3014 lr->wiphy_idx != WIPHY_IDX_INVALID)
3015 goto out;
3016
3017 request->wiphy_idx = get_wiphy_idx(wiphy);
3018 request->alpha2[0] = alpha2[0];
3019 request->alpha2[1] = alpha2[1];
3020 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3021 request->country_ie_env = env;
3022
3023 /* Allow calling CRDA again */
3024 reset_crda_timeouts();
3025
3026 queue_regulatory_request(request);
3027 request = NULL;
3028 out:
3029 kfree(request);
3030 rcu_read_unlock();
3031 }
3032
3033 static void restore_alpha2(char *alpha2, bool reset_user)
3034 {
3035 /* indicates there is no alpha2 to consider for restoration */
3036 alpha2[0] = '9';
3037 alpha2[1] = '7';
3038
3039 /* The user setting has precedence over the module parameter */
3040 if (is_user_regdom_saved()) {
3041 /* Unless we're asked to ignore it and reset it */
3042 if (reset_user) {
3043 pr_debug("Restoring regulatory settings including user preference\n");
3044 user_alpha2[0] = '9';
3045 user_alpha2[1] = '7';
3046
3047 /*
3048 * If we're ignoring user settings, we still need to
3049 * check the module parameter to ensure we put things
3050 * back as they were for a full restore.
3051 */
3052 if (!is_world_regdom(ieee80211_regdom)) {
3053 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3054 ieee80211_regdom[0], ieee80211_regdom[1]);
3055 alpha2[0] = ieee80211_regdom[0];
3056 alpha2[1] = ieee80211_regdom[1];
3057 }
3058 } else {
3059 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3060 user_alpha2[0], user_alpha2[1]);
3061 alpha2[0] = user_alpha2[0];
3062 alpha2[1] = user_alpha2[1];
3063 }
3064 } else if (!is_world_regdom(ieee80211_regdom)) {
3065 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3066 ieee80211_regdom[0], ieee80211_regdom[1]);
3067 alpha2[0] = ieee80211_regdom[0];
3068 alpha2[1] = ieee80211_regdom[1];
3069 } else
3070 pr_debug("Restoring regulatory settings\n");
3071 }
3072
3073 static void restore_custom_reg_settings(struct wiphy *wiphy)
3074 {
3075 struct ieee80211_supported_band *sband;
3076 enum nl80211_band band;
3077 struct ieee80211_channel *chan;
3078 int i;
3079
3080 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3081 sband = wiphy->bands[band];
3082 if (!sband)
3083 continue;
3084 for (i = 0; i < sband->n_channels; i++) {
3085 chan = &sband->channels[i];
3086 chan->flags = chan->orig_flags;
3087 chan->max_antenna_gain = chan->orig_mag;
3088 chan->max_power = chan->orig_mpwr;
3089 chan->beacon_found = false;
3090 }
3091 }
3092 }
3093
3094 /*
3095 * Restoring regulatory settings involves ingoring any
3096 * possibly stale country IE information and user regulatory
3097 * settings if so desired, this includes any beacon hints
3098 * learned as we could have traveled outside to another country
3099 * after disconnection. To restore regulatory settings we do
3100 * exactly what we did at bootup:
3101 *
3102 * - send a core regulatory hint
3103 * - send a user regulatory hint if applicable
3104 *
3105 * Device drivers that send a regulatory hint for a specific country
3106 * keep their own regulatory domain on wiphy->regd so that does does
3107 * not need to be remembered.
3108 */
3109 static void restore_regulatory_settings(bool reset_user)
3110 {
3111 char alpha2[2];
3112 char world_alpha2[2];
3113 struct reg_beacon *reg_beacon, *btmp;
3114 LIST_HEAD(tmp_reg_req_list);
3115 struct cfg80211_registered_device *rdev;
3116
3117 ASSERT_RTNL();
3118
3119 /*
3120 * Clear the indoor setting in case that it is not controlled by user
3121 * space, as otherwise there is no guarantee that the device is still
3122 * operating in an indoor environment.
3123 */
3124 spin_lock(&reg_indoor_lock);
3125 if (reg_is_indoor && !reg_is_indoor_portid) {
3126 reg_is_indoor = false;
3127 reg_check_channels();
3128 }
3129 spin_unlock(&reg_indoor_lock);
3130
3131 reset_regdomains(true, &world_regdom);
3132 restore_alpha2(alpha2, reset_user);
3133
3134 /*
3135 * If there's any pending requests we simply
3136 * stash them to a temporary pending queue and
3137 * add then after we've restored regulatory
3138 * settings.
3139 */
3140 spin_lock(&reg_requests_lock);
3141 list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3142 spin_unlock(&reg_requests_lock);
3143
3144 /* Clear beacon hints */
3145 spin_lock_bh(&reg_pending_beacons_lock);
3146 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3147 list_del(&reg_beacon->list);
3148 kfree(reg_beacon);
3149 }
3150 spin_unlock_bh(&reg_pending_beacons_lock);
3151
3152 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3153 list_del(&reg_beacon->list);
3154 kfree(reg_beacon);
3155 }
3156
3157 /* First restore to the basic regulatory settings */
3158 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3159 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3160
3161 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3162 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3163 continue;
3164 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3165 restore_custom_reg_settings(&rdev->wiphy);
3166 }
3167
3168 regulatory_hint_core(world_alpha2);
3169
3170 /*
3171 * This restores the ieee80211_regdom module parameter
3172 * preference or the last user requested regulatory
3173 * settings, user regulatory settings takes precedence.
3174 */
3175 if (is_an_alpha2(alpha2))
3176 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3177
3178 spin_lock(&reg_requests_lock);
3179 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3180 spin_unlock(&reg_requests_lock);
3181
3182 pr_debug("Kicking the queue\n");
3183
3184 schedule_work(&reg_work);
3185 }
3186
3187 void regulatory_hint_disconnect(void)
3188 {
3189 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3190 restore_regulatory_settings(false);
3191 }
3192
3193 static bool freq_is_chan_12_13_14(u16 freq)
3194 {
3195 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3196 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3197 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3198 return true;
3199 return false;
3200 }
3201
3202 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3203 {
3204 struct reg_beacon *pending_beacon;
3205
3206 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3207 if (beacon_chan->center_freq ==
3208 pending_beacon->chan.center_freq)
3209 return true;
3210 return false;
3211 }
3212
3213 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3214 struct ieee80211_channel *beacon_chan,
3215 gfp_t gfp)
3216 {
3217 struct reg_beacon *reg_beacon;
3218 bool processing;
3219
3220 if (beacon_chan->beacon_found ||
3221 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3222 (beacon_chan->band == NL80211_BAND_2GHZ &&
3223 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3224 return 0;
3225
3226 spin_lock_bh(&reg_pending_beacons_lock);
3227 processing = pending_reg_beacon(beacon_chan);
3228 spin_unlock_bh(&reg_pending_beacons_lock);
3229
3230 if (processing)
3231 return 0;
3232
3233 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3234 if (!reg_beacon)
3235 return -ENOMEM;
3236
3237 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3238 beacon_chan->center_freq,
3239 ieee80211_frequency_to_channel(beacon_chan->center_freq),
3240 wiphy_name(wiphy));
3241
3242 memcpy(&reg_beacon->chan, beacon_chan,
3243 sizeof(struct ieee80211_channel));
3244
3245 /*
3246 * Since we can be called from BH or and non-BH context
3247 * we must use spin_lock_bh()
3248 */
3249 spin_lock_bh(&reg_pending_beacons_lock);
3250 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3251 spin_unlock_bh(&reg_pending_beacons_lock);
3252
3253 schedule_work(&reg_work);
3254
3255 return 0;
3256 }
3257
3258 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3259 {
3260 unsigned int i;
3261 const struct ieee80211_reg_rule *reg_rule = NULL;
3262 const struct ieee80211_freq_range *freq_range = NULL;
3263 const struct ieee80211_power_rule *power_rule = NULL;
3264 char bw[32], cac_time[32];
3265
3266 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3267
3268 for (i = 0; i < rd->n_reg_rules; i++) {
3269 reg_rule = &rd->reg_rules[i];
3270 freq_range = &reg_rule->freq_range;
3271 power_rule = &reg_rule->power_rule;
3272
3273 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3274 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3275 freq_range->max_bandwidth_khz,
3276 reg_get_max_bandwidth(rd, reg_rule));
3277 else
3278 snprintf(bw, sizeof(bw), "%d KHz",
3279 freq_range->max_bandwidth_khz);
3280
3281 if (reg_rule->flags & NL80211_RRF_DFS)
3282 scnprintf(cac_time, sizeof(cac_time), "%u s",
3283 reg_rule->dfs_cac_ms/1000);
3284 else
3285 scnprintf(cac_time, sizeof(cac_time), "N/A");
3286
3287
3288 /*
3289 * There may not be documentation for max antenna gain
3290 * in certain regions
3291 */
3292 if (power_rule->max_antenna_gain)
3293 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3294 freq_range->start_freq_khz,
3295 freq_range->end_freq_khz,
3296 bw,
3297 power_rule->max_antenna_gain,
3298 power_rule->max_eirp,
3299 cac_time);
3300 else
3301 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3302 freq_range->start_freq_khz,
3303 freq_range->end_freq_khz,
3304 bw,
3305 power_rule->max_eirp,
3306 cac_time);
3307 }
3308 }
3309
3310 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3311 {
3312 switch (dfs_region) {
3313 case NL80211_DFS_UNSET:
3314 case NL80211_DFS_FCC:
3315 case NL80211_DFS_ETSI:
3316 case NL80211_DFS_JP:
3317 return true;
3318 default:
3319 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3320 return false;
3321 }
3322 }
3323
3324 static void print_regdomain(const struct ieee80211_regdomain *rd)
3325 {
3326 struct regulatory_request *lr = get_last_request();
3327
3328 if (is_intersected_alpha2(rd->alpha2)) {
3329 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3330 struct cfg80211_registered_device *rdev;
3331 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3332 if (rdev) {
3333 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3334 rdev->country_ie_alpha2[0],
3335 rdev->country_ie_alpha2[1]);
3336 } else
3337 pr_debug("Current regulatory domain intersected:\n");
3338 } else
3339 pr_debug("Current regulatory domain intersected:\n");
3340 } else if (is_world_regdom(rd->alpha2)) {
3341 pr_debug("World regulatory domain updated:\n");
3342 } else {
3343 if (is_unknown_alpha2(rd->alpha2))
3344 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3345 else {
3346 if (reg_request_cell_base(lr))
3347 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3348 rd->alpha2[0], rd->alpha2[1]);
3349 else
3350 pr_debug("Regulatory domain changed to country: %c%c\n",
3351 rd->alpha2[0], rd->alpha2[1]);
3352 }
3353 }
3354
3355 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3356 print_rd_rules(rd);
3357 }
3358
3359 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3360 {
3361 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3362 print_rd_rules(rd);
3363 }
3364
3365 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3366 {
3367 if (!is_world_regdom(rd->alpha2))
3368 return -EINVAL;
3369 update_world_regdomain(rd);
3370 return 0;
3371 }
3372
3373 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3374 struct regulatory_request *user_request)
3375 {
3376 const struct ieee80211_regdomain *intersected_rd = NULL;
3377
3378 if (!regdom_changes(rd->alpha2))
3379 return -EALREADY;
3380
3381 if (!is_valid_rd(rd)) {
3382 pr_err("Invalid regulatory domain detected: %c%c\n",
3383 rd->alpha2[0], rd->alpha2[1]);
3384 print_regdomain_info(rd);
3385 return -EINVAL;
3386 }
3387
3388 if (!user_request->intersect) {
3389 reset_regdomains(false, rd);
3390 return 0;
3391 }
3392
3393 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3394 if (!intersected_rd)
3395 return -EINVAL;
3396
3397 kfree(rd);
3398 rd = NULL;
3399 reset_regdomains(false, intersected_rd);
3400
3401 return 0;
3402 }
3403
3404 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3405 struct regulatory_request *driver_request)
3406 {
3407 const struct ieee80211_regdomain *regd;
3408 const struct ieee80211_regdomain *intersected_rd = NULL;
3409 const struct ieee80211_regdomain *tmp;
3410 struct wiphy *request_wiphy;
3411
3412 if (is_world_regdom(rd->alpha2))
3413 return -EINVAL;
3414
3415 if (!regdom_changes(rd->alpha2))
3416 return -EALREADY;
3417
3418 if (!is_valid_rd(rd)) {
3419 pr_err("Invalid regulatory domain detected: %c%c\n",
3420 rd->alpha2[0], rd->alpha2[1]);
3421 print_regdomain_info(rd);
3422 return -EINVAL;
3423 }
3424
3425 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3426 if (!request_wiphy)
3427 return -ENODEV;
3428
3429 if (!driver_request->intersect) {
3430 if (request_wiphy->regd)
3431 return -EALREADY;
3432
3433 regd = reg_copy_regd(rd);
3434 if (IS_ERR(regd))
3435 return PTR_ERR(regd);
3436
3437 rcu_assign_pointer(request_wiphy->regd, regd);
3438 reset_regdomains(false, rd);
3439 return 0;
3440 }
3441
3442 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3443 if (!intersected_rd)
3444 return -EINVAL;
3445
3446 /*
3447 * We can trash what CRDA provided now.
3448 * However if a driver requested this specific regulatory
3449 * domain we keep it for its private use
3450 */
3451 tmp = get_wiphy_regdom(request_wiphy);
3452 rcu_assign_pointer(request_wiphy->regd, rd);
3453 rcu_free_regdom(tmp);
3454
3455 rd = NULL;
3456
3457 reset_regdomains(false, intersected_rd);
3458
3459 return 0;
3460 }
3461
3462 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3463 struct regulatory_request *country_ie_request)
3464 {
3465 struct wiphy *request_wiphy;
3466
3467 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3468 !is_unknown_alpha2(rd->alpha2))
3469 return -EINVAL;
3470
3471 /*
3472 * Lets only bother proceeding on the same alpha2 if the current
3473 * rd is non static (it means CRDA was present and was used last)
3474 * and the pending request came in from a country IE
3475 */
3476
3477 if (!is_valid_rd(rd)) {
3478 pr_err("Invalid regulatory domain detected: %c%c\n",
3479 rd->alpha2[0], rd->alpha2[1]);
3480 print_regdomain_info(rd);
3481 return -EINVAL;
3482 }
3483
3484 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3485 if (!request_wiphy)
3486 return -ENODEV;
3487
3488 if (country_ie_request->intersect)
3489 return -EINVAL;
3490
3491 reset_regdomains(false, rd);
3492 return 0;
3493 }
3494
3495 /*
3496 * Use this call to set the current regulatory domain. Conflicts with
3497 * multiple drivers can be ironed out later. Caller must've already
3498 * kmalloc'd the rd structure.
3499 */
3500 int set_regdom(const struct ieee80211_regdomain *rd,
3501 enum ieee80211_regd_source regd_src)
3502 {
3503 struct regulatory_request *lr;
3504 bool user_reset = false;
3505 int r;
3506
3507 if (!reg_is_valid_request(rd->alpha2)) {
3508 kfree(rd);
3509 return -EINVAL;
3510 }
3511
3512 if (regd_src == REGD_SOURCE_CRDA)
3513 reset_crda_timeouts();
3514
3515 lr = get_last_request();
3516
3517 /* Note that this doesn't update the wiphys, this is done below */
3518 switch (lr->initiator) {
3519 case NL80211_REGDOM_SET_BY_CORE:
3520 r = reg_set_rd_core(rd);
3521 break;
3522 case NL80211_REGDOM_SET_BY_USER:
3523 r = reg_set_rd_user(rd, lr);
3524 user_reset = true;
3525 break;
3526 case NL80211_REGDOM_SET_BY_DRIVER:
3527 r = reg_set_rd_driver(rd, lr);
3528 break;
3529 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3530 r = reg_set_rd_country_ie(rd, lr);
3531 break;
3532 default:
3533 WARN(1, "invalid initiator %d\n", lr->initiator);
3534 kfree(rd);
3535 return -EINVAL;
3536 }
3537
3538 if (r) {
3539 switch (r) {
3540 case -EALREADY:
3541 reg_set_request_processed();
3542 break;
3543 default:
3544 /* Back to world regulatory in case of errors */
3545 restore_regulatory_settings(user_reset);
3546 }
3547
3548 kfree(rd);
3549 return r;
3550 }
3551
3552 /* This would make this whole thing pointless */
3553 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3554 return -EINVAL;
3555
3556 /* update all wiphys now with the new established regulatory domain */
3557 update_all_wiphy_regulatory(lr->initiator);
3558
3559 print_regdomain(get_cfg80211_regdom());
3560
3561 nl80211_send_reg_change_event(lr);
3562
3563 reg_set_request_processed();
3564
3565 return 0;
3566 }
3567
3568 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3569 struct ieee80211_regdomain *rd)
3570 {
3571 const struct ieee80211_regdomain *regd;
3572 const struct ieee80211_regdomain *prev_regd;
3573 struct cfg80211_registered_device *rdev;
3574
3575 if (WARN_ON(!wiphy || !rd))
3576 return -EINVAL;
3577
3578 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3579 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3580 return -EPERM;
3581
3582 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3583 print_regdomain_info(rd);
3584 return -EINVAL;
3585 }
3586
3587 regd = reg_copy_regd(rd);
3588 if (IS_ERR(regd))
3589 return PTR_ERR(regd);
3590
3591 rdev = wiphy_to_rdev(wiphy);
3592
3593 spin_lock(&reg_requests_lock);
3594 prev_regd = rdev->requested_regd;
3595 rdev->requested_regd = regd;
3596 spin_unlock(&reg_requests_lock);
3597
3598 kfree(prev_regd);
3599 return 0;
3600 }
3601
3602 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3603 struct ieee80211_regdomain *rd)
3604 {
3605 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3606
3607 if (ret)
3608 return ret;
3609
3610 schedule_work(&reg_work);
3611 return 0;
3612 }
3613 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3614
3615 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3616 struct ieee80211_regdomain *rd)
3617 {
3618 int ret;
3619
3620 ASSERT_RTNL();
3621
3622 ret = __regulatory_set_wiphy_regd(wiphy, rd);
3623 if (ret)
3624 return ret;
3625
3626 /* process the request immediately */
3627 reg_process_self_managed_hints();
3628 return 0;
3629 }
3630 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3631
3632 void wiphy_regulatory_register(struct wiphy *wiphy)
3633 {
3634 struct regulatory_request *lr = get_last_request();
3635
3636 /* self-managed devices ignore beacon hints and country IE */
3637 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3638 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3639 REGULATORY_COUNTRY_IE_IGNORE;
3640
3641 /*
3642 * The last request may have been received before this
3643 * registration call. Call the driver notifier if
3644 * initiator is USER and user type is CELL_BASE.
3645 */
3646 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
3647 lr->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE)
3648 reg_call_notifier(wiphy, lr);
3649 }
3650
3651 if (!reg_dev_ignore_cell_hint(wiphy))
3652 reg_num_devs_support_basehint++;
3653
3654 wiphy_update_regulatory(wiphy, lr->initiator);
3655 wiphy_all_share_dfs_chan_state(wiphy);
3656 }
3657
3658 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3659 {
3660 struct wiphy *request_wiphy = NULL;
3661 struct regulatory_request *lr;
3662
3663 lr = get_last_request();
3664
3665 if (!reg_dev_ignore_cell_hint(wiphy))
3666 reg_num_devs_support_basehint--;
3667
3668 rcu_free_regdom(get_wiphy_regdom(wiphy));
3669 RCU_INIT_POINTER(wiphy->regd, NULL);
3670
3671 if (lr)
3672 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3673
3674 if (!request_wiphy || request_wiphy != wiphy)
3675 return;
3676
3677 lr->wiphy_idx = WIPHY_IDX_INVALID;
3678 lr->country_ie_env = ENVIRON_ANY;
3679 }
3680
3681 /*
3682 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3683 * UNII band definitions
3684 */
3685 int cfg80211_get_unii(int freq)
3686 {
3687 /* UNII-1 */
3688 if (freq >= 5150 && freq <= 5250)
3689 return 0;
3690
3691 /* UNII-2A */
3692 if (freq > 5250 && freq <= 5350)
3693 return 1;
3694
3695 /* UNII-2B */
3696 if (freq > 5350 && freq <= 5470)
3697 return 2;
3698
3699 /* UNII-2C */
3700 if (freq > 5470 && freq <= 5725)
3701 return 3;
3702
3703 /* UNII-3 */
3704 if (freq > 5725 && freq <= 5825)
3705 return 4;
3706
3707 return -EINVAL;
3708 }
3709
3710 bool regulatory_indoor_allowed(void)
3711 {
3712 return reg_is_indoor;
3713 }
3714
3715 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3716 {
3717 const struct ieee80211_regdomain *regd = NULL;
3718 const struct ieee80211_regdomain *wiphy_regd = NULL;
3719 bool pre_cac_allowed = false;
3720
3721 rcu_read_lock();
3722
3723 regd = rcu_dereference(cfg80211_regdomain);
3724 wiphy_regd = rcu_dereference(wiphy->regd);
3725 if (!wiphy_regd) {
3726 if (regd->dfs_region == NL80211_DFS_ETSI)
3727 pre_cac_allowed = true;
3728
3729 rcu_read_unlock();
3730
3731 return pre_cac_allowed;
3732 }
3733
3734 if (regd->dfs_region == wiphy_regd->dfs_region &&
3735 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3736 pre_cac_allowed = true;
3737
3738 rcu_read_unlock();
3739
3740 return pre_cac_allowed;
3741 }
3742
3743 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3744 struct cfg80211_chan_def *chandef,
3745 enum nl80211_dfs_state dfs_state,
3746 enum nl80211_radar_event event)
3747 {
3748 struct cfg80211_registered_device *rdev;
3749
3750 ASSERT_RTNL();
3751
3752 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3753 return;
3754
3755 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3756 if (wiphy == &rdev->wiphy)
3757 continue;
3758
3759 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3760 continue;
3761
3762 if (!ieee80211_get_channel(&rdev->wiphy,
3763 chandef->chan->center_freq))
3764 continue;
3765
3766 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3767
3768 if (event == NL80211_RADAR_DETECTED ||
3769 event == NL80211_RADAR_CAC_FINISHED)
3770 cfg80211_sched_dfs_chan_update(rdev);
3771
3772 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3773 }
3774 }
3775
3776 static int __init regulatory_init_db(void)
3777 {
3778 int err;
3779
3780 err = load_builtin_regdb_keys();
3781 if (err)
3782 return err;
3783
3784 /* We always try to get an update for the static regdomain */
3785 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3786 if (err) {
3787 if (err == -ENOMEM) {
3788 platform_device_unregister(reg_pdev);
3789 return err;
3790 }
3791 /*
3792 * N.B. kobject_uevent_env() can fail mainly for when we're out
3793 * memory which is handled and propagated appropriately above
3794 * but it can also fail during a netlink_broadcast() or during
3795 * early boot for call_usermodehelper(). For now treat these
3796 * errors as non-fatal.
3797 */
3798 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3799 }
3800
3801 /*
3802 * Finally, if the user set the module parameter treat it
3803 * as a user hint.
3804 */
3805 if (!is_world_regdom(ieee80211_regdom))
3806 regulatory_hint_user(ieee80211_regdom,
3807 NL80211_USER_REG_HINT_USER);
3808
3809 return 0;
3810 }
3811 #ifndef MODULE
3812 late_initcall(regulatory_init_db);
3813 #endif
3814
3815 int __init regulatory_init(void)
3816 {
3817 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3818 if (IS_ERR(reg_pdev))
3819 return PTR_ERR(reg_pdev);
3820
3821 spin_lock_init(&reg_requests_lock);
3822 spin_lock_init(&reg_pending_beacons_lock);
3823 spin_lock_init(&reg_indoor_lock);
3824
3825 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3826
3827 user_alpha2[0] = '9';
3828 user_alpha2[1] = '7';
3829
3830 #ifdef MODULE
3831 return regulatory_init_db();
3832 #else
3833 return 0;
3834 #endif
3835 }
3836
3837 void regulatory_exit(void)
3838 {
3839 struct regulatory_request *reg_request, *tmp;
3840 struct reg_beacon *reg_beacon, *btmp;
3841
3842 cancel_work_sync(&reg_work);
3843 cancel_crda_timeout_sync();
3844 cancel_delayed_work_sync(&reg_check_chans);
3845
3846 /* Lock to suppress warnings */
3847 rtnl_lock();
3848 reset_regdomains(true, NULL);
3849 rtnl_unlock();
3850
3851 dev_set_uevent_suppress(&reg_pdev->dev, true);
3852
3853 platform_device_unregister(reg_pdev);
3854
3855 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3856 list_del(&reg_beacon->list);
3857 kfree(reg_beacon);
3858 }
3859
3860 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3861 list_del(&reg_beacon->list);
3862 kfree(reg_beacon);
3863 }
3864
3865 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3866 list_del(&reg_request->list);
3867 kfree(reg_request);
3868 }
3869
3870 if (!IS_ERR_OR_NULL(regdb))
3871 kfree(regdb);
3872
3873 free_regdb_keyring();
3874 }