]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/wireless/reg.c
cfg80211: explicitly initialize some fields in custom reg path
[mirror_ubuntu-bionic-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 *
8 * Permission to use, copy, modify, and/or distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21
22 /**
23 * DOC: Wireless regulatory infrastructure
24 *
25 * The usual implementation is for a driver to read a device EEPROM to
26 * determine which regulatory domain it should be operating under, then
27 * looking up the allowable channels in a driver-local table and finally
28 * registering those channels in the wiphy structure.
29 *
30 * Another set of compliance enforcement is for drivers to use their
31 * own compliance limits which can be stored on the EEPROM. The host
32 * driver or firmware may ensure these are used.
33 *
34 * In addition to all this we provide an extra layer of regulatory
35 * conformance. For drivers which do not have any regulatory
36 * information CRDA provides the complete regulatory solution.
37 * For others it provides a community effort on further restrictions
38 * to enhance compliance.
39 *
40 * Note: When number of rules --> infinity we will not be able to
41 * index on alpha2 any more, instead we'll probably have to
42 * rely on some SHA1 checksum of the regdomain for example.
43 *
44 */
45
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "regdb.h"
60 #include "nl80211.h"
61
62 #ifdef CONFIG_CFG80211_REG_DEBUG
63 #define REG_DBG_PRINT(format, args...) \
64 printk(KERN_DEBUG pr_fmt(format), ##args)
65 #else
66 #define REG_DBG_PRINT(args...)
67 #endif
68
69 /**
70 * enum reg_request_treatment - regulatory request treatment
71 *
72 * @REG_REQ_OK: continue processing the regulatory request
73 * @REG_REQ_IGNORE: ignore the regulatory request
74 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
75 * be intersected with the current one.
76 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
77 * regulatory settings, and no further processing is required.
78 * @REG_REQ_USER_HINT_HANDLED: a non alpha2 user hint was handled and no
79 * further processing is required, i.e., not need to update last_request
80 * etc. This should be used for user hints that do not provide an alpha2
81 * but some other type of regulatory hint, i.e., indoor operation.
82 */
83 enum reg_request_treatment {
84 REG_REQ_OK,
85 REG_REQ_IGNORE,
86 REG_REQ_INTERSECT,
87 REG_REQ_ALREADY_SET,
88 REG_REQ_USER_HINT_HANDLED,
89 };
90
91 static struct regulatory_request core_request_world = {
92 .initiator = NL80211_REGDOM_SET_BY_CORE,
93 .alpha2[0] = '0',
94 .alpha2[1] = '0',
95 .intersect = false,
96 .processed = true,
97 .country_ie_env = ENVIRON_ANY,
98 };
99
100 /*
101 * Receipt of information from last regulatory request,
102 * protected by RTNL (and can be accessed with RCU protection)
103 */
104 static struct regulatory_request __rcu *last_request =
105 (void __rcu *)&core_request_world;
106
107 /* To trigger userspace events */
108 static struct platform_device *reg_pdev;
109
110 /*
111 * Central wireless core regulatory domains, we only need two,
112 * the current one and a world regulatory domain in case we have no
113 * information to give us an alpha2.
114 * (protected by RTNL, can be read under RCU)
115 */
116 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
117
118 /*
119 * Number of devices that registered to the core
120 * that support cellular base station regulatory hints
121 * (protected by RTNL)
122 */
123 static int reg_num_devs_support_basehint;
124
125 /*
126 * State variable indicating if the platform on which the devices
127 * are attached is operating in an indoor environment. The state variable
128 * is relevant for all registered devices.
129 * (protected by RTNL)
130 */
131 static bool reg_is_indoor;
132
133 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
134 {
135 return rtnl_dereference(cfg80211_regdomain);
136 }
137
138 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
139 {
140 return rtnl_dereference(wiphy->regd);
141 }
142
143 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
144 {
145 switch (dfs_region) {
146 case NL80211_DFS_UNSET:
147 return "unset";
148 case NL80211_DFS_FCC:
149 return "FCC";
150 case NL80211_DFS_ETSI:
151 return "ETSI";
152 case NL80211_DFS_JP:
153 return "JP";
154 }
155 return "Unknown";
156 }
157
158 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
159 {
160 const struct ieee80211_regdomain *regd = NULL;
161 const struct ieee80211_regdomain *wiphy_regd = NULL;
162
163 regd = get_cfg80211_regdom();
164 if (!wiphy)
165 goto out;
166
167 wiphy_regd = get_wiphy_regdom(wiphy);
168 if (!wiphy_regd)
169 goto out;
170
171 if (wiphy_regd->dfs_region == regd->dfs_region)
172 goto out;
173
174 REG_DBG_PRINT("%s: device specific dfs_region "
175 "(%s) disagrees with cfg80211's "
176 "central dfs_region (%s)\n",
177 dev_name(&wiphy->dev),
178 reg_dfs_region_str(wiphy_regd->dfs_region),
179 reg_dfs_region_str(regd->dfs_region));
180
181 out:
182 return regd->dfs_region;
183 }
184
185 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
186 {
187 if (!r)
188 return;
189 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
190 }
191
192 static struct regulatory_request *get_last_request(void)
193 {
194 return rcu_dereference_rtnl(last_request);
195 }
196
197 /* Used to queue up regulatory hints */
198 static LIST_HEAD(reg_requests_list);
199 static spinlock_t reg_requests_lock;
200
201 /* Used to queue up beacon hints for review */
202 static LIST_HEAD(reg_pending_beacons);
203 static spinlock_t reg_pending_beacons_lock;
204
205 /* Used to keep track of processed beacon hints */
206 static LIST_HEAD(reg_beacon_list);
207
208 struct reg_beacon {
209 struct list_head list;
210 struct ieee80211_channel chan;
211 };
212
213 static void reg_todo(struct work_struct *work);
214 static DECLARE_WORK(reg_work, reg_todo);
215
216 static void reg_timeout_work(struct work_struct *work);
217 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
218
219 /* We keep a static world regulatory domain in case of the absence of CRDA */
220 static const struct ieee80211_regdomain world_regdom = {
221 .n_reg_rules = 6,
222 .alpha2 = "00",
223 .reg_rules = {
224 /* IEEE 802.11b/g, channels 1..11 */
225 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
226 /* IEEE 802.11b/g, channels 12..13. */
227 REG_RULE(2467-10, 2472+10, 40, 6, 20,
228 NL80211_RRF_NO_IR),
229 /* IEEE 802.11 channel 14 - Only JP enables
230 * this and for 802.11b only */
231 REG_RULE(2484-10, 2484+10, 20, 6, 20,
232 NL80211_RRF_NO_IR |
233 NL80211_RRF_NO_OFDM),
234 /* IEEE 802.11a, channel 36..48 */
235 REG_RULE(5180-10, 5240+10, 160, 6, 20,
236 NL80211_RRF_NO_IR),
237
238 /* IEEE 802.11a, channel 52..64 - DFS required */
239 REG_RULE(5260-10, 5320+10, 160, 6, 20,
240 NL80211_RRF_NO_IR |
241 NL80211_RRF_DFS),
242
243 /* IEEE 802.11a, channel 100..144 - DFS required */
244 REG_RULE(5500-10, 5720+10, 160, 6, 20,
245 NL80211_RRF_NO_IR |
246 NL80211_RRF_DFS),
247
248 /* IEEE 802.11a, channel 149..165 */
249 REG_RULE(5745-10, 5825+10, 80, 6, 20,
250 NL80211_RRF_NO_IR),
251
252 /* IEEE 802.11ad (60gHz), channels 1..3 */
253 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
254 }
255 };
256
257 /* protected by RTNL */
258 static const struct ieee80211_regdomain *cfg80211_world_regdom =
259 &world_regdom;
260
261 static char *ieee80211_regdom = "00";
262 static char user_alpha2[2];
263
264 module_param(ieee80211_regdom, charp, 0444);
265 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
266
267 static void reg_free_request(struct regulatory_request *request)
268 {
269 if (request != get_last_request())
270 kfree(request);
271 }
272
273 static void reg_free_last_request(void)
274 {
275 struct regulatory_request *lr = get_last_request();
276
277 if (lr != &core_request_world && lr)
278 kfree_rcu(lr, rcu_head);
279 }
280
281 static void reg_update_last_request(struct regulatory_request *request)
282 {
283 struct regulatory_request *lr;
284
285 lr = get_last_request();
286 if (lr == request)
287 return;
288
289 reg_free_last_request();
290 rcu_assign_pointer(last_request, request);
291 }
292
293 static void reset_regdomains(bool full_reset,
294 const struct ieee80211_regdomain *new_regdom)
295 {
296 const struct ieee80211_regdomain *r;
297
298 ASSERT_RTNL();
299
300 r = get_cfg80211_regdom();
301
302 /* avoid freeing static information or freeing something twice */
303 if (r == cfg80211_world_regdom)
304 r = NULL;
305 if (cfg80211_world_regdom == &world_regdom)
306 cfg80211_world_regdom = NULL;
307 if (r == &world_regdom)
308 r = NULL;
309
310 rcu_free_regdom(r);
311 rcu_free_regdom(cfg80211_world_regdom);
312
313 cfg80211_world_regdom = &world_regdom;
314 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
315
316 if (!full_reset)
317 return;
318
319 reg_update_last_request(&core_request_world);
320 }
321
322 /*
323 * Dynamic world regulatory domain requested by the wireless
324 * core upon initialization
325 */
326 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
327 {
328 struct regulatory_request *lr;
329
330 lr = get_last_request();
331
332 WARN_ON(!lr);
333
334 reset_regdomains(false, rd);
335
336 cfg80211_world_regdom = rd;
337 }
338
339 bool is_world_regdom(const char *alpha2)
340 {
341 if (!alpha2)
342 return false;
343 return alpha2[0] == '0' && alpha2[1] == '0';
344 }
345
346 static bool is_alpha2_set(const char *alpha2)
347 {
348 if (!alpha2)
349 return false;
350 return alpha2[0] && alpha2[1];
351 }
352
353 static bool is_unknown_alpha2(const char *alpha2)
354 {
355 if (!alpha2)
356 return false;
357 /*
358 * Special case where regulatory domain was built by driver
359 * but a specific alpha2 cannot be determined
360 */
361 return alpha2[0] == '9' && alpha2[1] == '9';
362 }
363
364 static bool is_intersected_alpha2(const char *alpha2)
365 {
366 if (!alpha2)
367 return false;
368 /*
369 * Special case where regulatory domain is the
370 * result of an intersection between two regulatory domain
371 * structures
372 */
373 return alpha2[0] == '9' && alpha2[1] == '8';
374 }
375
376 static bool is_an_alpha2(const char *alpha2)
377 {
378 if (!alpha2)
379 return false;
380 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
381 }
382
383 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
384 {
385 if (!alpha2_x || !alpha2_y)
386 return false;
387 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
388 }
389
390 static bool regdom_changes(const char *alpha2)
391 {
392 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
393
394 if (!r)
395 return true;
396 return !alpha2_equal(r->alpha2, alpha2);
397 }
398
399 /*
400 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
401 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
402 * has ever been issued.
403 */
404 static bool is_user_regdom_saved(void)
405 {
406 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
407 return false;
408
409 /* This would indicate a mistake on the design */
410 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
411 "Unexpected user alpha2: %c%c\n",
412 user_alpha2[0], user_alpha2[1]))
413 return false;
414
415 return true;
416 }
417
418 static const struct ieee80211_regdomain *
419 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
420 {
421 struct ieee80211_regdomain *regd;
422 int size_of_regd;
423 unsigned int i;
424
425 size_of_regd =
426 sizeof(struct ieee80211_regdomain) +
427 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
428
429 regd = kzalloc(size_of_regd, GFP_KERNEL);
430 if (!regd)
431 return ERR_PTR(-ENOMEM);
432
433 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
434
435 for (i = 0; i < src_regd->n_reg_rules; i++)
436 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
437 sizeof(struct ieee80211_reg_rule));
438
439 return regd;
440 }
441
442 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
443 struct reg_regdb_search_request {
444 char alpha2[2];
445 struct list_head list;
446 };
447
448 static LIST_HEAD(reg_regdb_search_list);
449 static DEFINE_MUTEX(reg_regdb_search_mutex);
450
451 static void reg_regdb_search(struct work_struct *work)
452 {
453 struct reg_regdb_search_request *request;
454 const struct ieee80211_regdomain *curdom, *regdom = NULL;
455 int i;
456
457 rtnl_lock();
458
459 mutex_lock(&reg_regdb_search_mutex);
460 while (!list_empty(&reg_regdb_search_list)) {
461 request = list_first_entry(&reg_regdb_search_list,
462 struct reg_regdb_search_request,
463 list);
464 list_del(&request->list);
465
466 for (i = 0; i < reg_regdb_size; i++) {
467 curdom = reg_regdb[i];
468
469 if (alpha2_equal(request->alpha2, curdom->alpha2)) {
470 regdom = reg_copy_regd(curdom);
471 break;
472 }
473 }
474
475 kfree(request);
476 }
477 mutex_unlock(&reg_regdb_search_mutex);
478
479 if (!IS_ERR_OR_NULL(regdom))
480 set_regdom(regdom);
481
482 rtnl_unlock();
483 }
484
485 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
486
487 static void reg_regdb_query(const char *alpha2)
488 {
489 struct reg_regdb_search_request *request;
490
491 if (!alpha2)
492 return;
493
494 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
495 if (!request)
496 return;
497
498 memcpy(request->alpha2, alpha2, 2);
499
500 mutex_lock(&reg_regdb_search_mutex);
501 list_add_tail(&request->list, &reg_regdb_search_list);
502 mutex_unlock(&reg_regdb_search_mutex);
503
504 schedule_work(&reg_regdb_work);
505 }
506
507 /* Feel free to add any other sanity checks here */
508 static void reg_regdb_size_check(void)
509 {
510 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
511 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
512 }
513 #else
514 static inline void reg_regdb_size_check(void) {}
515 static inline void reg_regdb_query(const char *alpha2) {}
516 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
517
518 /*
519 * This lets us keep regulatory code which is updated on a regulatory
520 * basis in userspace.
521 */
522 static int call_crda(const char *alpha2)
523 {
524 char country[12];
525 char *env[] = { country, NULL };
526
527 snprintf(country, sizeof(country), "COUNTRY=%c%c",
528 alpha2[0], alpha2[1]);
529
530 if (!is_world_regdom((char *) alpha2))
531 pr_info("Calling CRDA for country: %c%c\n",
532 alpha2[0], alpha2[1]);
533 else
534 pr_info("Calling CRDA to update world regulatory domain\n");
535
536 /* query internal regulatory database (if it exists) */
537 reg_regdb_query(alpha2);
538
539 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
540 }
541
542 static enum reg_request_treatment
543 reg_call_crda(struct regulatory_request *request)
544 {
545 if (call_crda(request->alpha2))
546 return REG_REQ_IGNORE;
547 return REG_REQ_OK;
548 }
549
550 bool reg_is_valid_request(const char *alpha2)
551 {
552 struct regulatory_request *lr = get_last_request();
553
554 if (!lr || lr->processed)
555 return false;
556
557 return alpha2_equal(lr->alpha2, alpha2);
558 }
559
560 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
561 {
562 struct regulatory_request *lr = get_last_request();
563
564 /*
565 * Follow the driver's regulatory domain, if present, unless a country
566 * IE has been processed or a user wants to help complaince further
567 */
568 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
569 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
570 wiphy->regd)
571 return get_wiphy_regdom(wiphy);
572
573 return get_cfg80211_regdom();
574 }
575
576 static unsigned int
577 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
578 const struct ieee80211_reg_rule *rule)
579 {
580 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
581 const struct ieee80211_freq_range *freq_range_tmp;
582 const struct ieee80211_reg_rule *tmp;
583 u32 start_freq, end_freq, idx, no;
584
585 for (idx = 0; idx < rd->n_reg_rules; idx++)
586 if (rule == &rd->reg_rules[idx])
587 break;
588
589 if (idx == rd->n_reg_rules)
590 return 0;
591
592 /* get start_freq */
593 no = idx;
594
595 while (no) {
596 tmp = &rd->reg_rules[--no];
597 freq_range_tmp = &tmp->freq_range;
598
599 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
600 break;
601
602 freq_range = freq_range_tmp;
603 }
604
605 start_freq = freq_range->start_freq_khz;
606
607 /* get end_freq */
608 freq_range = &rule->freq_range;
609 no = idx;
610
611 while (no < rd->n_reg_rules - 1) {
612 tmp = &rd->reg_rules[++no];
613 freq_range_tmp = &tmp->freq_range;
614
615 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
616 break;
617
618 freq_range = freq_range_tmp;
619 }
620
621 end_freq = freq_range->end_freq_khz;
622
623 return end_freq - start_freq;
624 }
625
626 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
627 const struct ieee80211_reg_rule *rule)
628 {
629 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
630
631 if (rule->flags & NL80211_RRF_NO_160MHZ)
632 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
633 if (rule->flags & NL80211_RRF_NO_80MHZ)
634 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
635
636 /*
637 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
638 * are not allowed.
639 */
640 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
641 rule->flags & NL80211_RRF_NO_HT40PLUS)
642 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
643
644 return bw;
645 }
646
647 /* Sanity check on a regulatory rule */
648 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
649 {
650 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
651 u32 freq_diff;
652
653 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
654 return false;
655
656 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
657 return false;
658
659 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
660
661 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
662 freq_range->max_bandwidth_khz > freq_diff)
663 return false;
664
665 return true;
666 }
667
668 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
669 {
670 const struct ieee80211_reg_rule *reg_rule = NULL;
671 unsigned int i;
672
673 if (!rd->n_reg_rules)
674 return false;
675
676 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
677 return false;
678
679 for (i = 0; i < rd->n_reg_rules; i++) {
680 reg_rule = &rd->reg_rules[i];
681 if (!is_valid_reg_rule(reg_rule))
682 return false;
683 }
684
685 return true;
686 }
687
688 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
689 u32 center_freq_khz, u32 bw_khz)
690 {
691 u32 start_freq_khz, end_freq_khz;
692
693 start_freq_khz = center_freq_khz - (bw_khz/2);
694 end_freq_khz = center_freq_khz + (bw_khz/2);
695
696 if (start_freq_khz >= freq_range->start_freq_khz &&
697 end_freq_khz <= freq_range->end_freq_khz)
698 return true;
699
700 return false;
701 }
702
703 /**
704 * freq_in_rule_band - tells us if a frequency is in a frequency band
705 * @freq_range: frequency rule we want to query
706 * @freq_khz: frequency we are inquiring about
707 *
708 * This lets us know if a specific frequency rule is or is not relevant to
709 * a specific frequency's band. Bands are device specific and artificial
710 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
711 * however it is safe for now to assume that a frequency rule should not be
712 * part of a frequency's band if the start freq or end freq are off by more
713 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
714 * 60 GHz band.
715 * This resolution can be lowered and should be considered as we add
716 * regulatory rule support for other "bands".
717 **/
718 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
719 u32 freq_khz)
720 {
721 #define ONE_GHZ_IN_KHZ 1000000
722 /*
723 * From 802.11ad: directional multi-gigabit (DMG):
724 * Pertaining to operation in a frequency band containing a channel
725 * with the Channel starting frequency above 45 GHz.
726 */
727 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
728 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
729 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
730 return true;
731 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
732 return true;
733 return false;
734 #undef ONE_GHZ_IN_KHZ
735 }
736
737 /*
738 * Later on we can perhaps use the more restrictive DFS
739 * region but we don't have information for that yet so
740 * for now simply disallow conflicts.
741 */
742 static enum nl80211_dfs_regions
743 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
744 const enum nl80211_dfs_regions dfs_region2)
745 {
746 if (dfs_region1 != dfs_region2)
747 return NL80211_DFS_UNSET;
748 return dfs_region1;
749 }
750
751 /*
752 * Helper for regdom_intersect(), this does the real
753 * mathematical intersection fun
754 */
755 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
756 const struct ieee80211_regdomain *rd2,
757 const struct ieee80211_reg_rule *rule1,
758 const struct ieee80211_reg_rule *rule2,
759 struct ieee80211_reg_rule *intersected_rule)
760 {
761 const struct ieee80211_freq_range *freq_range1, *freq_range2;
762 struct ieee80211_freq_range *freq_range;
763 const struct ieee80211_power_rule *power_rule1, *power_rule2;
764 struct ieee80211_power_rule *power_rule;
765 u32 freq_diff, max_bandwidth1, max_bandwidth2;
766
767 freq_range1 = &rule1->freq_range;
768 freq_range2 = &rule2->freq_range;
769 freq_range = &intersected_rule->freq_range;
770
771 power_rule1 = &rule1->power_rule;
772 power_rule2 = &rule2->power_rule;
773 power_rule = &intersected_rule->power_rule;
774
775 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
776 freq_range2->start_freq_khz);
777 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
778 freq_range2->end_freq_khz);
779
780 max_bandwidth1 = freq_range1->max_bandwidth_khz;
781 max_bandwidth2 = freq_range2->max_bandwidth_khz;
782
783 if (rule1->flags & NL80211_RRF_AUTO_BW)
784 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
785 if (rule2->flags & NL80211_RRF_AUTO_BW)
786 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
787
788 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
789
790 intersected_rule->flags = rule1->flags | rule2->flags;
791
792 /*
793 * In case NL80211_RRF_AUTO_BW requested for both rules
794 * set AUTO_BW in intersected rule also. Next we will
795 * calculate BW correctly in handle_channel function.
796 * In other case remove AUTO_BW flag while we calculate
797 * maximum bandwidth correctly and auto calculation is
798 * not required.
799 */
800 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
801 (rule2->flags & NL80211_RRF_AUTO_BW))
802 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
803 else
804 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
805
806 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
807 if (freq_range->max_bandwidth_khz > freq_diff)
808 freq_range->max_bandwidth_khz = freq_diff;
809
810 power_rule->max_eirp = min(power_rule1->max_eirp,
811 power_rule2->max_eirp);
812 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
813 power_rule2->max_antenna_gain);
814
815 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
816 rule2->dfs_cac_ms);
817
818 if (!is_valid_reg_rule(intersected_rule))
819 return -EINVAL;
820
821 return 0;
822 }
823
824 /* check whether old rule contains new rule */
825 static bool rule_contains(struct ieee80211_reg_rule *r1,
826 struct ieee80211_reg_rule *r2)
827 {
828 /* for simplicity, currently consider only same flags */
829 if (r1->flags != r2->flags)
830 return false;
831
832 /* verify r1 is more restrictive */
833 if ((r1->power_rule.max_antenna_gain >
834 r2->power_rule.max_antenna_gain) ||
835 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
836 return false;
837
838 /* make sure r2's range is contained within r1 */
839 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
840 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
841 return false;
842
843 /* and finally verify that r1.max_bw >= r2.max_bw */
844 if (r1->freq_range.max_bandwidth_khz <
845 r2->freq_range.max_bandwidth_khz)
846 return false;
847
848 return true;
849 }
850
851 /* add or extend current rules. do nothing if rule is already contained */
852 static void add_rule(struct ieee80211_reg_rule *rule,
853 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
854 {
855 struct ieee80211_reg_rule *tmp_rule;
856 int i;
857
858 for (i = 0; i < *n_rules; i++) {
859 tmp_rule = &reg_rules[i];
860 /* rule is already contained - do nothing */
861 if (rule_contains(tmp_rule, rule))
862 return;
863
864 /* extend rule if possible */
865 if (rule_contains(rule, tmp_rule)) {
866 memcpy(tmp_rule, rule, sizeof(*rule));
867 return;
868 }
869 }
870
871 memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
872 (*n_rules)++;
873 }
874
875 /**
876 * regdom_intersect - do the intersection between two regulatory domains
877 * @rd1: first regulatory domain
878 * @rd2: second regulatory domain
879 *
880 * Use this function to get the intersection between two regulatory domains.
881 * Once completed we will mark the alpha2 for the rd as intersected, "98",
882 * as no one single alpha2 can represent this regulatory domain.
883 *
884 * Returns a pointer to the regulatory domain structure which will hold the
885 * resulting intersection of rules between rd1 and rd2. We will
886 * kzalloc() this structure for you.
887 */
888 static struct ieee80211_regdomain *
889 regdom_intersect(const struct ieee80211_regdomain *rd1,
890 const struct ieee80211_regdomain *rd2)
891 {
892 int r, size_of_regd;
893 unsigned int x, y;
894 unsigned int num_rules = 0;
895 const struct ieee80211_reg_rule *rule1, *rule2;
896 struct ieee80211_reg_rule intersected_rule;
897 struct ieee80211_regdomain *rd;
898
899 if (!rd1 || !rd2)
900 return NULL;
901
902 /*
903 * First we get a count of the rules we'll need, then we actually
904 * build them. This is to so we can malloc() and free() a
905 * regdomain once. The reason we use reg_rules_intersect() here
906 * is it will return -EINVAL if the rule computed makes no sense.
907 * All rules that do check out OK are valid.
908 */
909
910 for (x = 0; x < rd1->n_reg_rules; x++) {
911 rule1 = &rd1->reg_rules[x];
912 for (y = 0; y < rd2->n_reg_rules; y++) {
913 rule2 = &rd2->reg_rules[y];
914 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
915 &intersected_rule))
916 num_rules++;
917 }
918 }
919
920 if (!num_rules)
921 return NULL;
922
923 size_of_regd = sizeof(struct ieee80211_regdomain) +
924 num_rules * sizeof(struct ieee80211_reg_rule);
925
926 rd = kzalloc(size_of_regd, GFP_KERNEL);
927 if (!rd)
928 return NULL;
929
930 for (x = 0; x < rd1->n_reg_rules; x++) {
931 rule1 = &rd1->reg_rules[x];
932 for (y = 0; y < rd2->n_reg_rules; y++) {
933 rule2 = &rd2->reg_rules[y];
934 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
935 &intersected_rule);
936 /*
937 * No need to memset here the intersected rule here as
938 * we're not using the stack anymore
939 */
940 if (r)
941 continue;
942
943 add_rule(&intersected_rule, rd->reg_rules,
944 &rd->n_reg_rules);
945 }
946 }
947
948 rd->alpha2[0] = '9';
949 rd->alpha2[1] = '8';
950 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
951 rd2->dfs_region);
952
953 return rd;
954 }
955
956 /*
957 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
958 * want to just have the channel structure use these
959 */
960 static u32 map_regdom_flags(u32 rd_flags)
961 {
962 u32 channel_flags = 0;
963 if (rd_flags & NL80211_RRF_NO_IR_ALL)
964 channel_flags |= IEEE80211_CHAN_NO_IR;
965 if (rd_flags & NL80211_RRF_DFS)
966 channel_flags |= IEEE80211_CHAN_RADAR;
967 if (rd_flags & NL80211_RRF_NO_OFDM)
968 channel_flags |= IEEE80211_CHAN_NO_OFDM;
969 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
970 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
971 if (rd_flags & NL80211_RRF_GO_CONCURRENT)
972 channel_flags |= IEEE80211_CHAN_GO_CONCURRENT;
973 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
974 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
975 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
976 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
977 if (rd_flags & NL80211_RRF_NO_80MHZ)
978 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
979 if (rd_flags & NL80211_RRF_NO_160MHZ)
980 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
981 return channel_flags;
982 }
983
984 static const struct ieee80211_reg_rule *
985 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
986 const struct ieee80211_regdomain *regd)
987 {
988 int i;
989 bool band_rule_found = false;
990 bool bw_fits = false;
991
992 if (!regd)
993 return ERR_PTR(-EINVAL);
994
995 for (i = 0; i < regd->n_reg_rules; i++) {
996 const struct ieee80211_reg_rule *rr;
997 const struct ieee80211_freq_range *fr = NULL;
998
999 rr = &regd->reg_rules[i];
1000 fr = &rr->freq_range;
1001
1002 /*
1003 * We only need to know if one frequency rule was
1004 * was in center_freq's band, that's enough, so lets
1005 * not overwrite it once found
1006 */
1007 if (!band_rule_found)
1008 band_rule_found = freq_in_rule_band(fr, center_freq);
1009
1010 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
1011
1012 if (band_rule_found && bw_fits)
1013 return rr;
1014 }
1015
1016 if (!band_rule_found)
1017 return ERR_PTR(-ERANGE);
1018
1019 return ERR_PTR(-EINVAL);
1020 }
1021
1022 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1023 u32 center_freq)
1024 {
1025 const struct ieee80211_regdomain *regd;
1026
1027 regd = reg_get_regdomain(wiphy);
1028
1029 return freq_reg_info_regd(wiphy, center_freq, regd);
1030 }
1031 EXPORT_SYMBOL(freq_reg_info);
1032
1033 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1034 {
1035 switch (initiator) {
1036 case NL80211_REGDOM_SET_BY_CORE:
1037 return "core";
1038 case NL80211_REGDOM_SET_BY_USER:
1039 return "user";
1040 case NL80211_REGDOM_SET_BY_DRIVER:
1041 return "driver";
1042 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1043 return "country IE";
1044 default:
1045 WARN_ON(1);
1046 return "bug";
1047 }
1048 }
1049 EXPORT_SYMBOL(reg_initiator_name);
1050
1051 #ifdef CONFIG_CFG80211_REG_DEBUG
1052 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1053 struct ieee80211_channel *chan,
1054 const struct ieee80211_reg_rule *reg_rule)
1055 {
1056 const struct ieee80211_power_rule *power_rule;
1057 const struct ieee80211_freq_range *freq_range;
1058 char max_antenna_gain[32], bw[32];
1059
1060 power_rule = &reg_rule->power_rule;
1061 freq_range = &reg_rule->freq_range;
1062
1063 if (!power_rule->max_antenna_gain)
1064 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1065 else
1066 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
1067 power_rule->max_antenna_gain);
1068
1069 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1070 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1071 freq_range->max_bandwidth_khz,
1072 reg_get_max_bandwidth(regd, reg_rule));
1073 else
1074 snprintf(bw, sizeof(bw), "%d KHz",
1075 freq_range->max_bandwidth_khz);
1076
1077 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1078 chan->center_freq);
1079
1080 REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
1081 freq_range->start_freq_khz, freq_range->end_freq_khz,
1082 bw, max_antenna_gain,
1083 power_rule->max_eirp);
1084 }
1085 #else
1086 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1087 struct ieee80211_channel *chan,
1088 const struct ieee80211_reg_rule *reg_rule)
1089 {
1090 return;
1091 }
1092 #endif
1093
1094 /*
1095 * Note that right now we assume the desired channel bandwidth
1096 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1097 * per channel, the primary and the extension channel).
1098 */
1099 static void handle_channel(struct wiphy *wiphy,
1100 enum nl80211_reg_initiator initiator,
1101 struct ieee80211_channel *chan)
1102 {
1103 u32 flags, bw_flags = 0;
1104 const struct ieee80211_reg_rule *reg_rule = NULL;
1105 const struct ieee80211_power_rule *power_rule = NULL;
1106 const struct ieee80211_freq_range *freq_range = NULL;
1107 struct wiphy *request_wiphy = NULL;
1108 struct regulatory_request *lr = get_last_request();
1109 const struct ieee80211_regdomain *regd;
1110 u32 max_bandwidth_khz;
1111
1112 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1113
1114 flags = chan->orig_flags;
1115
1116 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1117 if (IS_ERR(reg_rule)) {
1118 /*
1119 * We will disable all channels that do not match our
1120 * received regulatory rule unless the hint is coming
1121 * from a Country IE and the Country IE had no information
1122 * about a band. The IEEE 802.11 spec allows for an AP
1123 * to send only a subset of the regulatory rules allowed,
1124 * so an AP in the US that only supports 2.4 GHz may only send
1125 * a country IE with information for the 2.4 GHz band
1126 * while 5 GHz is still supported.
1127 */
1128 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1129 PTR_ERR(reg_rule) == -ERANGE)
1130 return;
1131
1132 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1133 request_wiphy && request_wiphy == wiphy &&
1134 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1135 REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1136 chan->center_freq);
1137 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1138 chan->flags = chan->orig_flags;
1139 } else {
1140 REG_DBG_PRINT("Disabling freq %d MHz\n",
1141 chan->center_freq);
1142 chan->flags |= IEEE80211_CHAN_DISABLED;
1143 }
1144 return;
1145 }
1146
1147 regd = reg_get_regdomain(wiphy);
1148 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1149
1150 power_rule = &reg_rule->power_rule;
1151 freq_range = &reg_rule->freq_range;
1152
1153 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1154 /* Check if auto calculation requested */
1155 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1156 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1157
1158 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1159 bw_flags = IEEE80211_CHAN_NO_HT40;
1160 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1161 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1162 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1163 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1164
1165 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1166 request_wiphy && request_wiphy == wiphy &&
1167 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1168 /*
1169 * This guarantees the driver's requested regulatory domain
1170 * will always be used as a base for further regulatory
1171 * settings
1172 */
1173 chan->flags = chan->orig_flags =
1174 map_regdom_flags(reg_rule->flags) | bw_flags;
1175 chan->max_antenna_gain = chan->orig_mag =
1176 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1177 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1178 (int) MBM_TO_DBM(power_rule->max_eirp);
1179
1180 if (chan->flags & IEEE80211_CHAN_RADAR) {
1181 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1182 if (reg_rule->dfs_cac_ms)
1183 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1184 }
1185
1186 return;
1187 }
1188
1189 chan->dfs_state = NL80211_DFS_USABLE;
1190 chan->dfs_state_entered = jiffies;
1191
1192 chan->beacon_found = false;
1193 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1194 chan->max_antenna_gain =
1195 min_t(int, chan->orig_mag,
1196 MBI_TO_DBI(power_rule->max_antenna_gain));
1197 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1198
1199 if (chan->flags & IEEE80211_CHAN_RADAR) {
1200 if (reg_rule->dfs_cac_ms)
1201 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1202 else
1203 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1204 }
1205
1206 if (chan->orig_mpwr) {
1207 /*
1208 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1209 * will always follow the passed country IE power settings.
1210 */
1211 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1212 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1213 chan->max_power = chan->max_reg_power;
1214 else
1215 chan->max_power = min(chan->orig_mpwr,
1216 chan->max_reg_power);
1217 } else
1218 chan->max_power = chan->max_reg_power;
1219 }
1220
1221 static void handle_band(struct wiphy *wiphy,
1222 enum nl80211_reg_initiator initiator,
1223 struct ieee80211_supported_band *sband)
1224 {
1225 unsigned int i;
1226
1227 if (!sband)
1228 return;
1229
1230 for (i = 0; i < sband->n_channels; i++)
1231 handle_channel(wiphy, initiator, &sband->channels[i]);
1232 }
1233
1234 static bool reg_request_cell_base(struct regulatory_request *request)
1235 {
1236 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1237 return false;
1238 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1239 }
1240
1241 static bool reg_request_indoor(struct regulatory_request *request)
1242 {
1243 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1244 return false;
1245 return request->user_reg_hint_type == NL80211_USER_REG_HINT_INDOOR;
1246 }
1247
1248 bool reg_last_request_cell_base(void)
1249 {
1250 return reg_request_cell_base(get_last_request());
1251 }
1252
1253 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1254 /* Core specific check */
1255 static enum reg_request_treatment
1256 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1257 {
1258 struct regulatory_request *lr = get_last_request();
1259
1260 if (!reg_num_devs_support_basehint)
1261 return REG_REQ_IGNORE;
1262
1263 if (reg_request_cell_base(lr) &&
1264 !regdom_changes(pending_request->alpha2))
1265 return REG_REQ_ALREADY_SET;
1266
1267 return REG_REQ_OK;
1268 }
1269
1270 /* Device specific check */
1271 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1272 {
1273 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1274 }
1275 #else
1276 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1277 {
1278 return REG_REQ_IGNORE;
1279 }
1280
1281 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1282 {
1283 return true;
1284 }
1285 #endif
1286
1287 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1288 {
1289 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1290 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1291 return true;
1292 return false;
1293 }
1294
1295 static bool ignore_reg_update(struct wiphy *wiphy,
1296 enum nl80211_reg_initiator initiator)
1297 {
1298 struct regulatory_request *lr = get_last_request();
1299
1300 if (!lr) {
1301 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1302 "since last_request is not set\n",
1303 reg_initiator_name(initiator));
1304 return true;
1305 }
1306
1307 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1308 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1309 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1310 "since the driver uses its own custom "
1311 "regulatory domain\n",
1312 reg_initiator_name(initiator));
1313 return true;
1314 }
1315
1316 /*
1317 * wiphy->regd will be set once the device has its own
1318 * desired regulatory domain set
1319 */
1320 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1321 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1322 !is_world_regdom(lr->alpha2)) {
1323 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1324 "since the driver requires its own regulatory "
1325 "domain to be set first\n",
1326 reg_initiator_name(initiator));
1327 return true;
1328 }
1329
1330 if (reg_request_cell_base(lr))
1331 return reg_dev_ignore_cell_hint(wiphy);
1332
1333 return false;
1334 }
1335
1336 static bool reg_is_world_roaming(struct wiphy *wiphy)
1337 {
1338 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1339 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1340 struct regulatory_request *lr = get_last_request();
1341
1342 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1343 return true;
1344
1345 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1346 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1347 return true;
1348
1349 return false;
1350 }
1351
1352 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1353 struct reg_beacon *reg_beacon)
1354 {
1355 struct ieee80211_supported_band *sband;
1356 struct ieee80211_channel *chan;
1357 bool channel_changed = false;
1358 struct ieee80211_channel chan_before;
1359
1360 sband = wiphy->bands[reg_beacon->chan.band];
1361 chan = &sband->channels[chan_idx];
1362
1363 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1364 return;
1365
1366 if (chan->beacon_found)
1367 return;
1368
1369 chan->beacon_found = true;
1370
1371 if (!reg_is_world_roaming(wiphy))
1372 return;
1373
1374 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1375 return;
1376
1377 chan_before.center_freq = chan->center_freq;
1378 chan_before.flags = chan->flags;
1379
1380 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1381 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1382 channel_changed = true;
1383 }
1384
1385 if (channel_changed)
1386 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1387 }
1388
1389 /*
1390 * Called when a scan on a wiphy finds a beacon on
1391 * new channel
1392 */
1393 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1394 struct reg_beacon *reg_beacon)
1395 {
1396 unsigned int i;
1397 struct ieee80211_supported_band *sband;
1398
1399 if (!wiphy->bands[reg_beacon->chan.band])
1400 return;
1401
1402 sband = wiphy->bands[reg_beacon->chan.band];
1403
1404 for (i = 0; i < sband->n_channels; i++)
1405 handle_reg_beacon(wiphy, i, reg_beacon);
1406 }
1407
1408 /*
1409 * Called upon reg changes or a new wiphy is added
1410 */
1411 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1412 {
1413 unsigned int i;
1414 struct ieee80211_supported_band *sband;
1415 struct reg_beacon *reg_beacon;
1416
1417 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1418 if (!wiphy->bands[reg_beacon->chan.band])
1419 continue;
1420 sband = wiphy->bands[reg_beacon->chan.band];
1421 for (i = 0; i < sband->n_channels; i++)
1422 handle_reg_beacon(wiphy, i, reg_beacon);
1423 }
1424 }
1425
1426 /* Reap the advantages of previously found beacons */
1427 static void reg_process_beacons(struct wiphy *wiphy)
1428 {
1429 /*
1430 * Means we are just firing up cfg80211, so no beacons would
1431 * have been processed yet.
1432 */
1433 if (!last_request)
1434 return;
1435 wiphy_update_beacon_reg(wiphy);
1436 }
1437
1438 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1439 {
1440 if (!chan)
1441 return false;
1442 if (chan->flags & IEEE80211_CHAN_DISABLED)
1443 return false;
1444 /* This would happen when regulatory rules disallow HT40 completely */
1445 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1446 return false;
1447 return true;
1448 }
1449
1450 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1451 struct ieee80211_channel *channel)
1452 {
1453 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1454 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1455 unsigned int i;
1456
1457 if (!is_ht40_allowed(channel)) {
1458 channel->flags |= IEEE80211_CHAN_NO_HT40;
1459 return;
1460 }
1461
1462 /*
1463 * We need to ensure the extension channels exist to
1464 * be able to use HT40- or HT40+, this finds them (or not)
1465 */
1466 for (i = 0; i < sband->n_channels; i++) {
1467 struct ieee80211_channel *c = &sband->channels[i];
1468
1469 if (c->center_freq == (channel->center_freq - 20))
1470 channel_before = c;
1471 if (c->center_freq == (channel->center_freq + 20))
1472 channel_after = c;
1473 }
1474
1475 /*
1476 * Please note that this assumes target bandwidth is 20 MHz,
1477 * if that ever changes we also need to change the below logic
1478 * to include that as well.
1479 */
1480 if (!is_ht40_allowed(channel_before))
1481 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1482 else
1483 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1484
1485 if (!is_ht40_allowed(channel_after))
1486 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1487 else
1488 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1489 }
1490
1491 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1492 struct ieee80211_supported_band *sband)
1493 {
1494 unsigned int i;
1495
1496 if (!sband)
1497 return;
1498
1499 for (i = 0; i < sband->n_channels; i++)
1500 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1501 }
1502
1503 static void reg_process_ht_flags(struct wiphy *wiphy)
1504 {
1505 enum ieee80211_band band;
1506
1507 if (!wiphy)
1508 return;
1509
1510 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1511 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1512 }
1513
1514 static void reg_call_notifier(struct wiphy *wiphy,
1515 struct regulatory_request *request)
1516 {
1517 if (wiphy->reg_notifier)
1518 wiphy->reg_notifier(wiphy, request);
1519 }
1520
1521 static void wiphy_update_regulatory(struct wiphy *wiphy,
1522 enum nl80211_reg_initiator initiator)
1523 {
1524 enum ieee80211_band band;
1525 struct regulatory_request *lr = get_last_request();
1526
1527 if (ignore_reg_update(wiphy, initiator)) {
1528 /*
1529 * Regulatory updates set by CORE are ignored for custom
1530 * regulatory cards. Let us notify the changes to the driver,
1531 * as some drivers used this to restore its orig_* reg domain.
1532 */
1533 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1534 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1535 reg_call_notifier(wiphy, lr);
1536 return;
1537 }
1538
1539 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1540
1541 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1542 handle_band(wiphy, initiator, wiphy->bands[band]);
1543
1544 reg_process_beacons(wiphy);
1545 reg_process_ht_flags(wiphy);
1546 reg_call_notifier(wiphy, lr);
1547 }
1548
1549 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1550 {
1551 struct cfg80211_registered_device *rdev;
1552 struct wiphy *wiphy;
1553
1554 ASSERT_RTNL();
1555
1556 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1557 wiphy = &rdev->wiphy;
1558 wiphy_update_regulatory(wiphy, initiator);
1559 }
1560 }
1561
1562 static void handle_channel_custom(struct wiphy *wiphy,
1563 struct ieee80211_channel *chan,
1564 const struct ieee80211_regdomain *regd)
1565 {
1566 u32 bw_flags = 0;
1567 const struct ieee80211_reg_rule *reg_rule = NULL;
1568 const struct ieee80211_power_rule *power_rule = NULL;
1569 const struct ieee80211_freq_range *freq_range = NULL;
1570 u32 max_bandwidth_khz;
1571
1572 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1573 regd);
1574
1575 if (IS_ERR(reg_rule)) {
1576 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1577 chan->center_freq);
1578 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1579 chan->flags = chan->orig_flags;
1580 return;
1581 }
1582
1583 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1584
1585 power_rule = &reg_rule->power_rule;
1586 freq_range = &reg_rule->freq_range;
1587
1588 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1589 /* Check if auto calculation requested */
1590 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1591 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1592
1593 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1594 bw_flags = IEEE80211_CHAN_NO_HT40;
1595 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1596 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1597 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1598 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1599
1600 chan->dfs_state_entered = jiffies;
1601 chan->dfs_state = NL80211_DFS_USABLE;
1602
1603 chan->beacon_found = false;
1604 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1605 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1606 chan->max_reg_power = chan->max_power =
1607 (int) MBM_TO_DBM(power_rule->max_eirp);
1608
1609 if (chan->flags & IEEE80211_CHAN_RADAR) {
1610 if (reg_rule->dfs_cac_ms)
1611 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1612 else
1613 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1614 }
1615
1616 chan->max_power = chan->max_reg_power;
1617 }
1618
1619 static void handle_band_custom(struct wiphy *wiphy,
1620 struct ieee80211_supported_band *sband,
1621 const struct ieee80211_regdomain *regd)
1622 {
1623 unsigned int i;
1624
1625 if (!sband)
1626 return;
1627
1628 for (i = 0; i < sband->n_channels; i++)
1629 handle_channel_custom(wiphy, &sband->channels[i], regd);
1630 }
1631
1632 /* Used by drivers prior to wiphy registration */
1633 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1634 const struct ieee80211_regdomain *regd)
1635 {
1636 enum ieee80211_band band;
1637 unsigned int bands_set = 0;
1638
1639 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1640 "wiphy should have REGULATORY_CUSTOM_REG\n");
1641 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1642
1643 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1644 if (!wiphy->bands[band])
1645 continue;
1646 handle_band_custom(wiphy, wiphy->bands[band], regd);
1647 bands_set++;
1648 }
1649
1650 /*
1651 * no point in calling this if it won't have any effect
1652 * on your device's supported bands.
1653 */
1654 WARN_ON(!bands_set);
1655 }
1656 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1657
1658 static void reg_set_request_processed(void)
1659 {
1660 bool need_more_processing = false;
1661 struct regulatory_request *lr = get_last_request();
1662
1663 lr->processed = true;
1664
1665 spin_lock(&reg_requests_lock);
1666 if (!list_empty(&reg_requests_list))
1667 need_more_processing = true;
1668 spin_unlock(&reg_requests_lock);
1669
1670 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1671 cancel_delayed_work(&reg_timeout);
1672
1673 if (need_more_processing)
1674 schedule_work(&reg_work);
1675 }
1676
1677 /**
1678 * reg_process_hint_core - process core regulatory requests
1679 * @pending_request: a pending core regulatory request
1680 *
1681 * The wireless subsystem can use this function to process
1682 * a regulatory request issued by the regulatory core.
1683 *
1684 * Returns one of the different reg request treatment values.
1685 */
1686 static enum reg_request_treatment
1687 reg_process_hint_core(struct regulatory_request *core_request)
1688 {
1689
1690 core_request->intersect = false;
1691 core_request->processed = false;
1692
1693 reg_update_last_request(core_request);
1694
1695 return reg_call_crda(core_request);
1696 }
1697
1698 static enum reg_request_treatment
1699 __reg_process_hint_user(struct regulatory_request *user_request)
1700 {
1701 struct regulatory_request *lr = get_last_request();
1702
1703 if (reg_request_indoor(user_request)) {
1704 reg_is_indoor = true;
1705 return REG_REQ_USER_HINT_HANDLED;
1706 }
1707
1708 if (reg_request_cell_base(user_request))
1709 return reg_ignore_cell_hint(user_request);
1710
1711 if (reg_request_cell_base(lr))
1712 return REG_REQ_IGNORE;
1713
1714 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1715 return REG_REQ_INTERSECT;
1716 /*
1717 * If the user knows better the user should set the regdom
1718 * to their country before the IE is picked up
1719 */
1720 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1721 lr->intersect)
1722 return REG_REQ_IGNORE;
1723 /*
1724 * Process user requests only after previous user/driver/core
1725 * requests have been processed
1726 */
1727 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1728 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1729 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1730 regdom_changes(lr->alpha2))
1731 return REG_REQ_IGNORE;
1732
1733 if (!regdom_changes(user_request->alpha2))
1734 return REG_REQ_ALREADY_SET;
1735
1736 return REG_REQ_OK;
1737 }
1738
1739 /**
1740 * reg_process_hint_user - process user regulatory requests
1741 * @user_request: a pending user regulatory request
1742 *
1743 * The wireless subsystem can use this function to process
1744 * a regulatory request initiated by userspace.
1745 *
1746 * Returns one of the different reg request treatment values.
1747 */
1748 static enum reg_request_treatment
1749 reg_process_hint_user(struct regulatory_request *user_request)
1750 {
1751 enum reg_request_treatment treatment;
1752
1753 treatment = __reg_process_hint_user(user_request);
1754 if (treatment == REG_REQ_IGNORE ||
1755 treatment == REG_REQ_ALREADY_SET ||
1756 treatment == REG_REQ_USER_HINT_HANDLED) {
1757 reg_free_request(user_request);
1758 return treatment;
1759 }
1760
1761 user_request->intersect = treatment == REG_REQ_INTERSECT;
1762 user_request->processed = false;
1763
1764 reg_update_last_request(user_request);
1765
1766 user_alpha2[0] = user_request->alpha2[0];
1767 user_alpha2[1] = user_request->alpha2[1];
1768
1769 return reg_call_crda(user_request);
1770 }
1771
1772 static enum reg_request_treatment
1773 __reg_process_hint_driver(struct regulatory_request *driver_request)
1774 {
1775 struct regulatory_request *lr = get_last_request();
1776
1777 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1778 if (regdom_changes(driver_request->alpha2))
1779 return REG_REQ_OK;
1780 return REG_REQ_ALREADY_SET;
1781 }
1782
1783 /*
1784 * This would happen if you unplug and plug your card
1785 * back in or if you add a new device for which the previously
1786 * loaded card also agrees on the regulatory domain.
1787 */
1788 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1789 !regdom_changes(driver_request->alpha2))
1790 return REG_REQ_ALREADY_SET;
1791
1792 return REG_REQ_INTERSECT;
1793 }
1794
1795 /**
1796 * reg_process_hint_driver - process driver regulatory requests
1797 * @driver_request: a pending driver regulatory request
1798 *
1799 * The wireless subsystem can use this function to process
1800 * a regulatory request issued by an 802.11 driver.
1801 *
1802 * Returns one of the different reg request treatment values.
1803 */
1804 static enum reg_request_treatment
1805 reg_process_hint_driver(struct wiphy *wiphy,
1806 struct regulatory_request *driver_request)
1807 {
1808 const struct ieee80211_regdomain *regd;
1809 enum reg_request_treatment treatment;
1810
1811 treatment = __reg_process_hint_driver(driver_request);
1812
1813 switch (treatment) {
1814 case REG_REQ_OK:
1815 break;
1816 case REG_REQ_IGNORE:
1817 case REG_REQ_USER_HINT_HANDLED:
1818 reg_free_request(driver_request);
1819 return treatment;
1820 case REG_REQ_INTERSECT:
1821 /* fall through */
1822 case REG_REQ_ALREADY_SET:
1823 regd = reg_copy_regd(get_cfg80211_regdom());
1824 if (IS_ERR(regd)) {
1825 reg_free_request(driver_request);
1826 return REG_REQ_IGNORE;
1827 }
1828 rcu_assign_pointer(wiphy->regd, regd);
1829 }
1830
1831
1832 driver_request->intersect = treatment == REG_REQ_INTERSECT;
1833 driver_request->processed = false;
1834
1835 reg_update_last_request(driver_request);
1836
1837 /*
1838 * Since CRDA will not be called in this case as we already
1839 * have applied the requested regulatory domain before we just
1840 * inform userspace we have processed the request
1841 */
1842 if (treatment == REG_REQ_ALREADY_SET) {
1843 nl80211_send_reg_change_event(driver_request);
1844 reg_set_request_processed();
1845 return treatment;
1846 }
1847
1848 return reg_call_crda(driver_request);
1849 }
1850
1851 static enum reg_request_treatment
1852 __reg_process_hint_country_ie(struct wiphy *wiphy,
1853 struct regulatory_request *country_ie_request)
1854 {
1855 struct wiphy *last_wiphy = NULL;
1856 struct regulatory_request *lr = get_last_request();
1857
1858 if (reg_request_cell_base(lr)) {
1859 /* Trust a Cell base station over the AP's country IE */
1860 if (regdom_changes(country_ie_request->alpha2))
1861 return REG_REQ_IGNORE;
1862 return REG_REQ_ALREADY_SET;
1863 } else {
1864 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1865 return REG_REQ_IGNORE;
1866 }
1867
1868 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
1869 return -EINVAL;
1870
1871 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
1872 return REG_REQ_OK;
1873
1874 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1875
1876 if (last_wiphy != wiphy) {
1877 /*
1878 * Two cards with two APs claiming different
1879 * Country IE alpha2s. We could
1880 * intersect them, but that seems unlikely
1881 * to be correct. Reject second one for now.
1882 */
1883 if (regdom_changes(country_ie_request->alpha2))
1884 return REG_REQ_IGNORE;
1885 return REG_REQ_ALREADY_SET;
1886 }
1887 /*
1888 * Two consecutive Country IE hints on the same wiphy.
1889 * This should be picked up early by the driver/stack
1890 */
1891 if (WARN_ON(regdom_changes(country_ie_request->alpha2)))
1892 return REG_REQ_OK;
1893 return REG_REQ_ALREADY_SET;
1894 }
1895
1896 /**
1897 * reg_process_hint_country_ie - process regulatory requests from country IEs
1898 * @country_ie_request: a regulatory request from a country IE
1899 *
1900 * The wireless subsystem can use this function to process
1901 * a regulatory request issued by a country Information Element.
1902 *
1903 * Returns one of the different reg request treatment values.
1904 */
1905 static enum reg_request_treatment
1906 reg_process_hint_country_ie(struct wiphy *wiphy,
1907 struct regulatory_request *country_ie_request)
1908 {
1909 enum reg_request_treatment treatment;
1910
1911 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
1912
1913 switch (treatment) {
1914 case REG_REQ_OK:
1915 break;
1916 case REG_REQ_IGNORE:
1917 case REG_REQ_USER_HINT_HANDLED:
1918 /* fall through */
1919 case REG_REQ_ALREADY_SET:
1920 reg_free_request(country_ie_request);
1921 return treatment;
1922 case REG_REQ_INTERSECT:
1923 reg_free_request(country_ie_request);
1924 /*
1925 * This doesn't happen yet, not sure we
1926 * ever want to support it for this case.
1927 */
1928 WARN_ONCE(1, "Unexpected intersection for country IEs");
1929 return REG_REQ_IGNORE;
1930 }
1931
1932 country_ie_request->intersect = false;
1933 country_ie_request->processed = false;
1934
1935 reg_update_last_request(country_ie_request);
1936
1937 return reg_call_crda(country_ie_request);
1938 }
1939
1940 /* This processes *all* regulatory hints */
1941 static void reg_process_hint(struct regulatory_request *reg_request)
1942 {
1943 struct wiphy *wiphy = NULL;
1944 enum reg_request_treatment treatment;
1945
1946 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1947 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1948
1949 switch (reg_request->initiator) {
1950 case NL80211_REGDOM_SET_BY_CORE:
1951 reg_process_hint_core(reg_request);
1952 return;
1953 case NL80211_REGDOM_SET_BY_USER:
1954 treatment = reg_process_hint_user(reg_request);
1955 if (treatment == REG_REQ_IGNORE ||
1956 treatment == REG_REQ_ALREADY_SET ||
1957 treatment == REG_REQ_USER_HINT_HANDLED)
1958 return;
1959 queue_delayed_work(system_power_efficient_wq,
1960 &reg_timeout, msecs_to_jiffies(3142));
1961 return;
1962 case NL80211_REGDOM_SET_BY_DRIVER:
1963 if (!wiphy)
1964 goto out_free;
1965 treatment = reg_process_hint_driver(wiphy, reg_request);
1966 break;
1967 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1968 if (!wiphy)
1969 goto out_free;
1970 treatment = reg_process_hint_country_ie(wiphy, reg_request);
1971 break;
1972 default:
1973 WARN(1, "invalid initiator %d\n", reg_request->initiator);
1974 goto out_free;
1975 }
1976
1977 /* This is required so that the orig_* parameters are saved */
1978 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
1979 wiphy->regulatory_flags & REGULATORY_STRICT_REG)
1980 wiphy_update_regulatory(wiphy, reg_request->initiator);
1981
1982 return;
1983
1984 out_free:
1985 reg_free_request(reg_request);
1986 }
1987
1988 /*
1989 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1990 * Regulatory hints come on a first come first serve basis and we
1991 * must process each one atomically.
1992 */
1993 static void reg_process_pending_hints(void)
1994 {
1995 struct regulatory_request *reg_request, *lr;
1996
1997 lr = get_last_request();
1998
1999 /* When last_request->processed becomes true this will be rescheduled */
2000 if (lr && !lr->processed) {
2001 reg_process_hint(lr);
2002 return;
2003 }
2004
2005 spin_lock(&reg_requests_lock);
2006
2007 if (list_empty(&reg_requests_list)) {
2008 spin_unlock(&reg_requests_lock);
2009 return;
2010 }
2011
2012 reg_request = list_first_entry(&reg_requests_list,
2013 struct regulatory_request,
2014 list);
2015 list_del_init(&reg_request->list);
2016
2017 spin_unlock(&reg_requests_lock);
2018
2019 reg_process_hint(reg_request);
2020 }
2021
2022 /* Processes beacon hints -- this has nothing to do with country IEs */
2023 static void reg_process_pending_beacon_hints(void)
2024 {
2025 struct cfg80211_registered_device *rdev;
2026 struct reg_beacon *pending_beacon, *tmp;
2027
2028 /* This goes through the _pending_ beacon list */
2029 spin_lock_bh(&reg_pending_beacons_lock);
2030
2031 list_for_each_entry_safe(pending_beacon, tmp,
2032 &reg_pending_beacons, list) {
2033 list_del_init(&pending_beacon->list);
2034
2035 /* Applies the beacon hint to current wiphys */
2036 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2037 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2038
2039 /* Remembers the beacon hint for new wiphys or reg changes */
2040 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2041 }
2042
2043 spin_unlock_bh(&reg_pending_beacons_lock);
2044 }
2045
2046 static void reg_todo(struct work_struct *work)
2047 {
2048 rtnl_lock();
2049 reg_process_pending_hints();
2050 reg_process_pending_beacon_hints();
2051 rtnl_unlock();
2052 }
2053
2054 static void queue_regulatory_request(struct regulatory_request *request)
2055 {
2056 request->alpha2[0] = toupper(request->alpha2[0]);
2057 request->alpha2[1] = toupper(request->alpha2[1]);
2058
2059 spin_lock(&reg_requests_lock);
2060 list_add_tail(&request->list, &reg_requests_list);
2061 spin_unlock(&reg_requests_lock);
2062
2063 schedule_work(&reg_work);
2064 }
2065
2066 /*
2067 * Core regulatory hint -- happens during cfg80211_init()
2068 * and when we restore regulatory settings.
2069 */
2070 static int regulatory_hint_core(const char *alpha2)
2071 {
2072 struct regulatory_request *request;
2073
2074 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2075 if (!request)
2076 return -ENOMEM;
2077
2078 request->alpha2[0] = alpha2[0];
2079 request->alpha2[1] = alpha2[1];
2080 request->initiator = NL80211_REGDOM_SET_BY_CORE;
2081
2082 queue_regulatory_request(request);
2083
2084 return 0;
2085 }
2086
2087 /* User hints */
2088 int regulatory_hint_user(const char *alpha2,
2089 enum nl80211_user_reg_hint_type user_reg_hint_type)
2090 {
2091 struct regulatory_request *request;
2092
2093 if (WARN_ON(!alpha2))
2094 return -EINVAL;
2095
2096 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2097 if (!request)
2098 return -ENOMEM;
2099
2100 request->wiphy_idx = WIPHY_IDX_INVALID;
2101 request->alpha2[0] = alpha2[0];
2102 request->alpha2[1] = alpha2[1];
2103 request->initiator = NL80211_REGDOM_SET_BY_USER;
2104 request->user_reg_hint_type = user_reg_hint_type;
2105
2106 queue_regulatory_request(request);
2107
2108 return 0;
2109 }
2110
2111 int regulatory_hint_indoor_user(void)
2112 {
2113 struct regulatory_request *request;
2114
2115 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2116 if (!request)
2117 return -ENOMEM;
2118
2119 request->wiphy_idx = WIPHY_IDX_INVALID;
2120 request->initiator = NL80211_REGDOM_SET_BY_USER;
2121 request->user_reg_hint_type = NL80211_USER_REG_HINT_INDOOR;
2122 queue_regulatory_request(request);
2123
2124 return 0;
2125 }
2126
2127 /* Driver hints */
2128 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2129 {
2130 struct regulatory_request *request;
2131
2132 if (WARN_ON(!alpha2 || !wiphy))
2133 return -EINVAL;
2134
2135 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2136
2137 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2138 if (!request)
2139 return -ENOMEM;
2140
2141 request->wiphy_idx = get_wiphy_idx(wiphy);
2142
2143 request->alpha2[0] = alpha2[0];
2144 request->alpha2[1] = alpha2[1];
2145 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2146
2147 queue_regulatory_request(request);
2148
2149 return 0;
2150 }
2151 EXPORT_SYMBOL(regulatory_hint);
2152
2153 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2154 const u8 *country_ie, u8 country_ie_len)
2155 {
2156 char alpha2[2];
2157 enum environment_cap env = ENVIRON_ANY;
2158 struct regulatory_request *request = NULL, *lr;
2159
2160 /* IE len must be evenly divisible by 2 */
2161 if (country_ie_len & 0x01)
2162 return;
2163
2164 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2165 return;
2166
2167 request = kzalloc(sizeof(*request), GFP_KERNEL);
2168 if (!request)
2169 return;
2170
2171 alpha2[0] = country_ie[0];
2172 alpha2[1] = country_ie[1];
2173
2174 if (country_ie[2] == 'I')
2175 env = ENVIRON_INDOOR;
2176 else if (country_ie[2] == 'O')
2177 env = ENVIRON_OUTDOOR;
2178
2179 rcu_read_lock();
2180 lr = get_last_request();
2181
2182 if (unlikely(!lr))
2183 goto out;
2184
2185 /*
2186 * We will run this only upon a successful connection on cfg80211.
2187 * We leave conflict resolution to the workqueue, where can hold
2188 * the RTNL.
2189 */
2190 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2191 lr->wiphy_idx != WIPHY_IDX_INVALID)
2192 goto out;
2193
2194 request->wiphy_idx = get_wiphy_idx(wiphy);
2195 request->alpha2[0] = alpha2[0];
2196 request->alpha2[1] = alpha2[1];
2197 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2198 request->country_ie_env = env;
2199
2200 queue_regulatory_request(request);
2201 request = NULL;
2202 out:
2203 kfree(request);
2204 rcu_read_unlock();
2205 }
2206
2207 static void restore_alpha2(char *alpha2, bool reset_user)
2208 {
2209 /* indicates there is no alpha2 to consider for restoration */
2210 alpha2[0] = '9';
2211 alpha2[1] = '7';
2212
2213 /* The user setting has precedence over the module parameter */
2214 if (is_user_regdom_saved()) {
2215 /* Unless we're asked to ignore it and reset it */
2216 if (reset_user) {
2217 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2218 user_alpha2[0] = '9';
2219 user_alpha2[1] = '7';
2220
2221 /*
2222 * If we're ignoring user settings, we still need to
2223 * check the module parameter to ensure we put things
2224 * back as they were for a full restore.
2225 */
2226 if (!is_world_regdom(ieee80211_regdom)) {
2227 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2228 ieee80211_regdom[0], ieee80211_regdom[1]);
2229 alpha2[0] = ieee80211_regdom[0];
2230 alpha2[1] = ieee80211_regdom[1];
2231 }
2232 } else {
2233 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2234 user_alpha2[0], user_alpha2[1]);
2235 alpha2[0] = user_alpha2[0];
2236 alpha2[1] = user_alpha2[1];
2237 }
2238 } else if (!is_world_regdom(ieee80211_regdom)) {
2239 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2240 ieee80211_regdom[0], ieee80211_regdom[1]);
2241 alpha2[0] = ieee80211_regdom[0];
2242 alpha2[1] = ieee80211_regdom[1];
2243 } else
2244 REG_DBG_PRINT("Restoring regulatory settings\n");
2245 }
2246
2247 static void restore_custom_reg_settings(struct wiphy *wiphy)
2248 {
2249 struct ieee80211_supported_band *sband;
2250 enum ieee80211_band band;
2251 struct ieee80211_channel *chan;
2252 int i;
2253
2254 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2255 sband = wiphy->bands[band];
2256 if (!sband)
2257 continue;
2258 for (i = 0; i < sband->n_channels; i++) {
2259 chan = &sband->channels[i];
2260 chan->flags = chan->orig_flags;
2261 chan->max_antenna_gain = chan->orig_mag;
2262 chan->max_power = chan->orig_mpwr;
2263 chan->beacon_found = false;
2264 }
2265 }
2266 }
2267
2268 /*
2269 * Restoring regulatory settings involves ingoring any
2270 * possibly stale country IE information and user regulatory
2271 * settings if so desired, this includes any beacon hints
2272 * learned as we could have traveled outside to another country
2273 * after disconnection. To restore regulatory settings we do
2274 * exactly what we did at bootup:
2275 *
2276 * - send a core regulatory hint
2277 * - send a user regulatory hint if applicable
2278 *
2279 * Device drivers that send a regulatory hint for a specific country
2280 * keep their own regulatory domain on wiphy->regd so that does does
2281 * not need to be remembered.
2282 */
2283 static void restore_regulatory_settings(bool reset_user)
2284 {
2285 char alpha2[2];
2286 char world_alpha2[2];
2287 struct reg_beacon *reg_beacon, *btmp;
2288 struct regulatory_request *reg_request, *tmp;
2289 LIST_HEAD(tmp_reg_req_list);
2290 struct cfg80211_registered_device *rdev;
2291
2292 ASSERT_RTNL();
2293
2294 reg_is_indoor = false;
2295
2296 reset_regdomains(true, &world_regdom);
2297 restore_alpha2(alpha2, reset_user);
2298
2299 /*
2300 * If there's any pending requests we simply
2301 * stash them to a temporary pending queue and
2302 * add then after we've restored regulatory
2303 * settings.
2304 */
2305 spin_lock(&reg_requests_lock);
2306 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2307 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
2308 continue;
2309 list_move_tail(&reg_request->list, &tmp_reg_req_list);
2310 }
2311 spin_unlock(&reg_requests_lock);
2312
2313 /* Clear beacon hints */
2314 spin_lock_bh(&reg_pending_beacons_lock);
2315 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2316 list_del(&reg_beacon->list);
2317 kfree(reg_beacon);
2318 }
2319 spin_unlock_bh(&reg_pending_beacons_lock);
2320
2321 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2322 list_del(&reg_beacon->list);
2323 kfree(reg_beacon);
2324 }
2325
2326 /* First restore to the basic regulatory settings */
2327 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2328 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2329
2330 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2331 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2332 restore_custom_reg_settings(&rdev->wiphy);
2333 }
2334
2335 regulatory_hint_core(world_alpha2);
2336
2337 /*
2338 * This restores the ieee80211_regdom module parameter
2339 * preference or the last user requested regulatory
2340 * settings, user regulatory settings takes precedence.
2341 */
2342 if (is_an_alpha2(alpha2))
2343 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2344
2345 spin_lock(&reg_requests_lock);
2346 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2347 spin_unlock(&reg_requests_lock);
2348
2349 REG_DBG_PRINT("Kicking the queue\n");
2350
2351 schedule_work(&reg_work);
2352 }
2353
2354 void regulatory_hint_disconnect(void)
2355 {
2356 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2357 restore_regulatory_settings(false);
2358 }
2359
2360 static bool freq_is_chan_12_13_14(u16 freq)
2361 {
2362 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2363 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2364 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2365 return true;
2366 return false;
2367 }
2368
2369 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2370 {
2371 struct reg_beacon *pending_beacon;
2372
2373 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2374 if (beacon_chan->center_freq ==
2375 pending_beacon->chan.center_freq)
2376 return true;
2377 return false;
2378 }
2379
2380 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2381 struct ieee80211_channel *beacon_chan,
2382 gfp_t gfp)
2383 {
2384 struct reg_beacon *reg_beacon;
2385 bool processing;
2386
2387 if (beacon_chan->beacon_found ||
2388 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2389 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2390 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2391 return 0;
2392
2393 spin_lock_bh(&reg_pending_beacons_lock);
2394 processing = pending_reg_beacon(beacon_chan);
2395 spin_unlock_bh(&reg_pending_beacons_lock);
2396
2397 if (processing)
2398 return 0;
2399
2400 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2401 if (!reg_beacon)
2402 return -ENOMEM;
2403
2404 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2405 beacon_chan->center_freq,
2406 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2407 wiphy_name(wiphy));
2408
2409 memcpy(&reg_beacon->chan, beacon_chan,
2410 sizeof(struct ieee80211_channel));
2411
2412 /*
2413 * Since we can be called from BH or and non-BH context
2414 * we must use spin_lock_bh()
2415 */
2416 spin_lock_bh(&reg_pending_beacons_lock);
2417 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2418 spin_unlock_bh(&reg_pending_beacons_lock);
2419
2420 schedule_work(&reg_work);
2421
2422 return 0;
2423 }
2424
2425 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2426 {
2427 unsigned int i;
2428 const struct ieee80211_reg_rule *reg_rule = NULL;
2429 const struct ieee80211_freq_range *freq_range = NULL;
2430 const struct ieee80211_power_rule *power_rule = NULL;
2431 char bw[32], cac_time[32];
2432
2433 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2434
2435 for (i = 0; i < rd->n_reg_rules; i++) {
2436 reg_rule = &rd->reg_rules[i];
2437 freq_range = &reg_rule->freq_range;
2438 power_rule = &reg_rule->power_rule;
2439
2440 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2441 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2442 freq_range->max_bandwidth_khz,
2443 reg_get_max_bandwidth(rd, reg_rule));
2444 else
2445 snprintf(bw, sizeof(bw), "%d KHz",
2446 freq_range->max_bandwidth_khz);
2447
2448 if (reg_rule->flags & NL80211_RRF_DFS)
2449 scnprintf(cac_time, sizeof(cac_time), "%u s",
2450 reg_rule->dfs_cac_ms/1000);
2451 else
2452 scnprintf(cac_time, sizeof(cac_time), "N/A");
2453
2454
2455 /*
2456 * There may not be documentation for max antenna gain
2457 * in certain regions
2458 */
2459 if (power_rule->max_antenna_gain)
2460 pr_info(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2461 freq_range->start_freq_khz,
2462 freq_range->end_freq_khz,
2463 bw,
2464 power_rule->max_antenna_gain,
2465 power_rule->max_eirp,
2466 cac_time);
2467 else
2468 pr_info(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2469 freq_range->start_freq_khz,
2470 freq_range->end_freq_khz,
2471 bw,
2472 power_rule->max_eirp,
2473 cac_time);
2474 }
2475 }
2476
2477 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2478 {
2479 switch (dfs_region) {
2480 case NL80211_DFS_UNSET:
2481 case NL80211_DFS_FCC:
2482 case NL80211_DFS_ETSI:
2483 case NL80211_DFS_JP:
2484 return true;
2485 default:
2486 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2487 dfs_region);
2488 return false;
2489 }
2490 }
2491
2492 static void print_regdomain(const struct ieee80211_regdomain *rd)
2493 {
2494 struct regulatory_request *lr = get_last_request();
2495
2496 if (is_intersected_alpha2(rd->alpha2)) {
2497 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2498 struct cfg80211_registered_device *rdev;
2499 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2500 if (rdev) {
2501 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2502 rdev->country_ie_alpha2[0],
2503 rdev->country_ie_alpha2[1]);
2504 } else
2505 pr_info("Current regulatory domain intersected:\n");
2506 } else
2507 pr_info("Current regulatory domain intersected:\n");
2508 } else if (is_world_regdom(rd->alpha2)) {
2509 pr_info("World regulatory domain updated:\n");
2510 } else {
2511 if (is_unknown_alpha2(rd->alpha2))
2512 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2513 else {
2514 if (reg_request_cell_base(lr))
2515 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2516 rd->alpha2[0], rd->alpha2[1]);
2517 else
2518 pr_info("Regulatory domain changed to country: %c%c\n",
2519 rd->alpha2[0], rd->alpha2[1]);
2520 }
2521 }
2522
2523 pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2524 print_rd_rules(rd);
2525 }
2526
2527 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2528 {
2529 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2530 print_rd_rules(rd);
2531 }
2532
2533 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2534 {
2535 if (!is_world_regdom(rd->alpha2))
2536 return -EINVAL;
2537 update_world_regdomain(rd);
2538 return 0;
2539 }
2540
2541 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2542 struct regulatory_request *user_request)
2543 {
2544 const struct ieee80211_regdomain *intersected_rd = NULL;
2545
2546 if (!regdom_changes(rd->alpha2))
2547 return -EALREADY;
2548
2549 if (!is_valid_rd(rd)) {
2550 pr_err("Invalid regulatory domain detected:\n");
2551 print_regdomain_info(rd);
2552 return -EINVAL;
2553 }
2554
2555 if (!user_request->intersect) {
2556 reset_regdomains(false, rd);
2557 return 0;
2558 }
2559
2560 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2561 if (!intersected_rd)
2562 return -EINVAL;
2563
2564 kfree(rd);
2565 rd = NULL;
2566 reset_regdomains(false, intersected_rd);
2567
2568 return 0;
2569 }
2570
2571 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2572 struct regulatory_request *driver_request)
2573 {
2574 const struct ieee80211_regdomain *regd;
2575 const struct ieee80211_regdomain *intersected_rd = NULL;
2576 const struct ieee80211_regdomain *tmp;
2577 struct wiphy *request_wiphy;
2578
2579 if (is_world_regdom(rd->alpha2))
2580 return -EINVAL;
2581
2582 if (!regdom_changes(rd->alpha2))
2583 return -EALREADY;
2584
2585 if (!is_valid_rd(rd)) {
2586 pr_err("Invalid regulatory domain detected:\n");
2587 print_regdomain_info(rd);
2588 return -EINVAL;
2589 }
2590
2591 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2592 if (!request_wiphy) {
2593 queue_delayed_work(system_power_efficient_wq,
2594 &reg_timeout, 0);
2595 return -ENODEV;
2596 }
2597
2598 if (!driver_request->intersect) {
2599 if (request_wiphy->regd)
2600 return -EALREADY;
2601
2602 regd = reg_copy_regd(rd);
2603 if (IS_ERR(regd))
2604 return PTR_ERR(regd);
2605
2606 rcu_assign_pointer(request_wiphy->regd, regd);
2607 reset_regdomains(false, rd);
2608 return 0;
2609 }
2610
2611 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2612 if (!intersected_rd)
2613 return -EINVAL;
2614
2615 /*
2616 * We can trash what CRDA provided now.
2617 * However if a driver requested this specific regulatory
2618 * domain we keep it for its private use
2619 */
2620 tmp = get_wiphy_regdom(request_wiphy);
2621 rcu_assign_pointer(request_wiphy->regd, rd);
2622 rcu_free_regdom(tmp);
2623
2624 rd = NULL;
2625
2626 reset_regdomains(false, intersected_rd);
2627
2628 return 0;
2629 }
2630
2631 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2632 struct regulatory_request *country_ie_request)
2633 {
2634 struct wiphy *request_wiphy;
2635
2636 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2637 !is_unknown_alpha2(rd->alpha2))
2638 return -EINVAL;
2639
2640 /*
2641 * Lets only bother proceeding on the same alpha2 if the current
2642 * rd is non static (it means CRDA was present and was used last)
2643 * and the pending request came in from a country IE
2644 */
2645
2646 if (!is_valid_rd(rd)) {
2647 pr_err("Invalid regulatory domain detected:\n");
2648 print_regdomain_info(rd);
2649 return -EINVAL;
2650 }
2651
2652 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2653 if (!request_wiphy) {
2654 queue_delayed_work(system_power_efficient_wq,
2655 &reg_timeout, 0);
2656 return -ENODEV;
2657 }
2658
2659 if (country_ie_request->intersect)
2660 return -EINVAL;
2661
2662 reset_regdomains(false, rd);
2663 return 0;
2664 }
2665
2666 /*
2667 * Use this call to set the current regulatory domain. Conflicts with
2668 * multiple drivers can be ironed out later. Caller must've already
2669 * kmalloc'd the rd structure.
2670 */
2671 int set_regdom(const struct ieee80211_regdomain *rd)
2672 {
2673 struct regulatory_request *lr;
2674 bool user_reset = false;
2675 int r;
2676
2677 if (!reg_is_valid_request(rd->alpha2)) {
2678 kfree(rd);
2679 return -EINVAL;
2680 }
2681
2682 lr = get_last_request();
2683
2684 /* Note that this doesn't update the wiphys, this is done below */
2685 switch (lr->initiator) {
2686 case NL80211_REGDOM_SET_BY_CORE:
2687 r = reg_set_rd_core(rd);
2688 break;
2689 case NL80211_REGDOM_SET_BY_USER:
2690 r = reg_set_rd_user(rd, lr);
2691 user_reset = true;
2692 break;
2693 case NL80211_REGDOM_SET_BY_DRIVER:
2694 r = reg_set_rd_driver(rd, lr);
2695 break;
2696 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2697 r = reg_set_rd_country_ie(rd, lr);
2698 break;
2699 default:
2700 WARN(1, "invalid initiator %d\n", lr->initiator);
2701 return -EINVAL;
2702 }
2703
2704 if (r) {
2705 switch (r) {
2706 case -EALREADY:
2707 reg_set_request_processed();
2708 break;
2709 default:
2710 /* Back to world regulatory in case of errors */
2711 restore_regulatory_settings(user_reset);
2712 }
2713
2714 kfree(rd);
2715 return r;
2716 }
2717
2718 /* This would make this whole thing pointless */
2719 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2720 return -EINVAL;
2721
2722 /* update all wiphys now with the new established regulatory domain */
2723 update_all_wiphy_regulatory(lr->initiator);
2724
2725 print_regdomain(get_cfg80211_regdom());
2726
2727 nl80211_send_reg_change_event(lr);
2728
2729 reg_set_request_processed();
2730
2731 return 0;
2732 }
2733
2734 void wiphy_regulatory_register(struct wiphy *wiphy)
2735 {
2736 struct regulatory_request *lr;
2737
2738 if (!reg_dev_ignore_cell_hint(wiphy))
2739 reg_num_devs_support_basehint++;
2740
2741 lr = get_last_request();
2742 wiphy_update_regulatory(wiphy, lr->initiator);
2743 }
2744
2745 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2746 {
2747 struct wiphy *request_wiphy = NULL;
2748 struct regulatory_request *lr;
2749
2750 lr = get_last_request();
2751
2752 if (!reg_dev_ignore_cell_hint(wiphy))
2753 reg_num_devs_support_basehint--;
2754
2755 rcu_free_regdom(get_wiphy_regdom(wiphy));
2756 RCU_INIT_POINTER(wiphy->regd, NULL);
2757
2758 if (lr)
2759 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2760
2761 if (!request_wiphy || request_wiphy != wiphy)
2762 return;
2763
2764 lr->wiphy_idx = WIPHY_IDX_INVALID;
2765 lr->country_ie_env = ENVIRON_ANY;
2766 }
2767
2768 static void reg_timeout_work(struct work_struct *work)
2769 {
2770 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2771 rtnl_lock();
2772 restore_regulatory_settings(true);
2773 rtnl_unlock();
2774 }
2775
2776 /*
2777 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
2778 * UNII band definitions
2779 */
2780 int cfg80211_get_unii(int freq)
2781 {
2782 /* UNII-1 */
2783 if (freq >= 5150 && freq <= 5250)
2784 return 0;
2785
2786 /* UNII-2A */
2787 if (freq > 5250 && freq <= 5350)
2788 return 1;
2789
2790 /* UNII-2B */
2791 if (freq > 5350 && freq <= 5470)
2792 return 2;
2793
2794 /* UNII-2C */
2795 if (freq > 5470 && freq <= 5725)
2796 return 3;
2797
2798 /* UNII-3 */
2799 if (freq > 5725 && freq <= 5825)
2800 return 4;
2801
2802 return -EINVAL;
2803 }
2804
2805 bool regulatory_indoor_allowed(void)
2806 {
2807 return reg_is_indoor;
2808 }
2809
2810 int __init regulatory_init(void)
2811 {
2812 int err = 0;
2813
2814 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2815 if (IS_ERR(reg_pdev))
2816 return PTR_ERR(reg_pdev);
2817
2818 spin_lock_init(&reg_requests_lock);
2819 spin_lock_init(&reg_pending_beacons_lock);
2820
2821 reg_regdb_size_check();
2822
2823 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2824
2825 user_alpha2[0] = '9';
2826 user_alpha2[1] = '7';
2827
2828 /* We always try to get an update for the static regdomain */
2829 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2830 if (err) {
2831 if (err == -ENOMEM)
2832 return err;
2833 /*
2834 * N.B. kobject_uevent_env() can fail mainly for when we're out
2835 * memory which is handled and propagated appropriately above
2836 * but it can also fail during a netlink_broadcast() or during
2837 * early boot for call_usermodehelper(). For now treat these
2838 * errors as non-fatal.
2839 */
2840 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2841 }
2842
2843 /*
2844 * Finally, if the user set the module parameter treat it
2845 * as a user hint.
2846 */
2847 if (!is_world_regdom(ieee80211_regdom))
2848 regulatory_hint_user(ieee80211_regdom,
2849 NL80211_USER_REG_HINT_USER);
2850
2851 return 0;
2852 }
2853
2854 void regulatory_exit(void)
2855 {
2856 struct regulatory_request *reg_request, *tmp;
2857 struct reg_beacon *reg_beacon, *btmp;
2858
2859 cancel_work_sync(&reg_work);
2860 cancel_delayed_work_sync(&reg_timeout);
2861
2862 /* Lock to suppress warnings */
2863 rtnl_lock();
2864 reset_regdomains(true, NULL);
2865 rtnl_unlock();
2866
2867 dev_set_uevent_suppress(&reg_pdev->dev, true);
2868
2869 platform_device_unregister(reg_pdev);
2870
2871 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2872 list_del(&reg_beacon->list);
2873 kfree(reg_beacon);
2874 }
2875
2876 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2877 list_del(&reg_beacon->list);
2878 kfree(reg_beacon);
2879 }
2880
2881 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2882 list_del(&reg_request->list);
2883 kfree(reg_request);
2884 }
2885 }