]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/wireless/reg.c
ARM - OMAP: ads7846: fix pendown debounce setting
[mirror_ubuntu-jammy-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20
21 /**
22 * DOC: Wireless regulatory infrastructure
23 *
24 * The usual implementation is for a driver to read a device EEPROM to
25 * determine which regulatory domain it should be operating under, then
26 * looking up the allowable channels in a driver-local table and finally
27 * registering those channels in the wiphy structure.
28 *
29 * Another set of compliance enforcement is for drivers to use their
30 * own compliance limits which can be stored on the EEPROM. The host
31 * driver or firmware may ensure these are used.
32 *
33 * In addition to all this we provide an extra layer of regulatory
34 * conformance. For drivers which do not have any regulatory
35 * information CRDA provides the complete regulatory solution.
36 * For others it provides a community effort on further restrictions
37 * to enhance compliance.
38 *
39 * Note: When number of rules --> infinity we will not be able to
40 * index on alpha2 any more, instead we'll probably have to
41 * rely on some SHA1 checksum of the regdomain for example.
42 *
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/random.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "regdb.h"
60 #include "nl80211.h"
61
62 #ifdef CONFIG_CFG80211_REG_DEBUG
63 #define REG_DBG_PRINT(format, args...) \
64 printk(KERN_DEBUG pr_fmt(format), ##args)
65 #else
66 #define REG_DBG_PRINT(args...)
67 #endif
68
69 static struct regulatory_request core_request_world = {
70 .initiator = NL80211_REGDOM_SET_BY_CORE,
71 .alpha2[0] = '0',
72 .alpha2[1] = '0',
73 .intersect = false,
74 .processed = true,
75 .country_ie_env = ENVIRON_ANY,
76 };
77
78 /* Receipt of information from last regulatory request */
79 static struct regulatory_request *last_request = &core_request_world;
80
81 /* To trigger userspace events */
82 static struct platform_device *reg_pdev;
83
84 static struct device_type reg_device_type = {
85 .uevent = reg_device_uevent,
86 };
87
88 /*
89 * Central wireless core regulatory domains, we only need two,
90 * the current one and a world regulatory domain in case we have no
91 * information to give us an alpha2
92 */
93 const struct ieee80211_regdomain *cfg80211_regdomain;
94
95 /*
96 * Protects static reg.c components:
97 * - cfg80211_world_regdom
98 * - cfg80211_regdom
99 * - last_request
100 * - reg_num_devs_support_basehint
101 */
102 static DEFINE_MUTEX(reg_mutex);
103
104 /*
105 * Number of devices that registered to the core
106 * that support cellular base station regulatory hints
107 */
108 static int reg_num_devs_support_basehint;
109
110 static inline void assert_reg_lock(void)
111 {
112 lockdep_assert_held(&reg_mutex);
113 }
114
115 /* Used to queue up regulatory hints */
116 static LIST_HEAD(reg_requests_list);
117 static spinlock_t reg_requests_lock;
118
119 /* Used to queue up beacon hints for review */
120 static LIST_HEAD(reg_pending_beacons);
121 static spinlock_t reg_pending_beacons_lock;
122
123 /* Used to keep track of processed beacon hints */
124 static LIST_HEAD(reg_beacon_list);
125
126 struct reg_beacon {
127 struct list_head list;
128 struct ieee80211_channel chan;
129 };
130
131 static void reg_todo(struct work_struct *work);
132 static DECLARE_WORK(reg_work, reg_todo);
133
134 static void reg_timeout_work(struct work_struct *work);
135 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
136
137 /* We keep a static world regulatory domain in case of the absence of CRDA */
138 static const struct ieee80211_regdomain world_regdom = {
139 .n_reg_rules = 6,
140 .alpha2 = "00",
141 .reg_rules = {
142 /* IEEE 802.11b/g, channels 1..11 */
143 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
144 /* IEEE 802.11b/g, channels 12..13. No HT40
145 * channel fits here. */
146 REG_RULE(2467-10, 2472+10, 20, 6, 20,
147 NL80211_RRF_PASSIVE_SCAN |
148 NL80211_RRF_NO_IBSS),
149 /* IEEE 802.11 channel 14 - Only JP enables
150 * this and for 802.11b only */
151 REG_RULE(2484-10, 2484+10, 20, 6, 20,
152 NL80211_RRF_PASSIVE_SCAN |
153 NL80211_RRF_NO_IBSS |
154 NL80211_RRF_NO_OFDM),
155 /* IEEE 802.11a, channel 36..48 */
156 REG_RULE(5180-10, 5240+10, 40, 6, 20,
157 NL80211_RRF_PASSIVE_SCAN |
158 NL80211_RRF_NO_IBSS),
159
160 /* NB: 5260 MHz - 5700 MHz requies DFS */
161
162 /* IEEE 802.11a, channel 149..165 */
163 REG_RULE(5745-10, 5825+10, 40, 6, 20,
164 NL80211_RRF_PASSIVE_SCAN |
165 NL80211_RRF_NO_IBSS),
166
167 /* IEEE 802.11ad (60gHz), channels 1..3 */
168 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
169 }
170 };
171
172 static const struct ieee80211_regdomain *cfg80211_world_regdom =
173 &world_regdom;
174
175 static char *ieee80211_regdom = "00";
176 static char user_alpha2[2];
177
178 module_param(ieee80211_regdom, charp, 0444);
179 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
180
181 static void reset_regdomains(bool full_reset)
182 {
183 /* avoid freeing static information or freeing something twice */
184 if (cfg80211_regdomain == cfg80211_world_regdom)
185 cfg80211_regdomain = NULL;
186 if (cfg80211_world_regdom == &world_regdom)
187 cfg80211_world_regdom = NULL;
188 if (cfg80211_regdomain == &world_regdom)
189 cfg80211_regdomain = NULL;
190
191 kfree(cfg80211_regdomain);
192 kfree(cfg80211_world_regdom);
193
194 cfg80211_world_regdom = &world_regdom;
195 cfg80211_regdomain = NULL;
196
197 if (!full_reset)
198 return;
199
200 if (last_request != &core_request_world)
201 kfree(last_request);
202 last_request = &core_request_world;
203 }
204
205 /*
206 * Dynamic world regulatory domain requested by the wireless
207 * core upon initialization
208 */
209 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
210 {
211 BUG_ON(!last_request);
212
213 reset_regdomains(false);
214
215 cfg80211_world_regdom = rd;
216 cfg80211_regdomain = rd;
217 }
218
219 bool is_world_regdom(const char *alpha2)
220 {
221 if (!alpha2)
222 return false;
223 if (alpha2[0] == '0' && alpha2[1] == '0')
224 return true;
225 return false;
226 }
227
228 static bool is_alpha2_set(const char *alpha2)
229 {
230 if (!alpha2)
231 return false;
232 if (alpha2[0] != 0 && alpha2[1] != 0)
233 return true;
234 return false;
235 }
236
237 static bool is_unknown_alpha2(const char *alpha2)
238 {
239 if (!alpha2)
240 return false;
241 /*
242 * Special case where regulatory domain was built by driver
243 * but a specific alpha2 cannot be determined
244 */
245 if (alpha2[0] == '9' && alpha2[1] == '9')
246 return true;
247 return false;
248 }
249
250 static bool is_intersected_alpha2(const char *alpha2)
251 {
252 if (!alpha2)
253 return false;
254 /*
255 * Special case where regulatory domain is the
256 * result of an intersection between two regulatory domain
257 * structures
258 */
259 if (alpha2[0] == '9' && alpha2[1] == '8')
260 return true;
261 return false;
262 }
263
264 static bool is_an_alpha2(const char *alpha2)
265 {
266 if (!alpha2)
267 return false;
268 if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
269 return true;
270 return false;
271 }
272
273 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
274 {
275 if (!alpha2_x || !alpha2_y)
276 return false;
277 if (alpha2_x[0] == alpha2_y[0] &&
278 alpha2_x[1] == alpha2_y[1])
279 return true;
280 return false;
281 }
282
283 static bool regdom_changes(const char *alpha2)
284 {
285 assert_cfg80211_lock();
286
287 if (!cfg80211_regdomain)
288 return true;
289 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
290 return false;
291 return true;
292 }
293
294 /*
295 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
296 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
297 * has ever been issued.
298 */
299 static bool is_user_regdom_saved(void)
300 {
301 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
302 return false;
303
304 /* This would indicate a mistake on the design */
305 if (WARN((!is_world_regdom(user_alpha2) &&
306 !is_an_alpha2(user_alpha2)),
307 "Unexpected user alpha2: %c%c\n",
308 user_alpha2[0],
309 user_alpha2[1]))
310 return false;
311
312 return true;
313 }
314
315 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
316 const struct ieee80211_regdomain *src_regd)
317 {
318 struct ieee80211_regdomain *regd;
319 int size_of_regd = 0;
320 unsigned int i;
321
322 size_of_regd = sizeof(struct ieee80211_regdomain) +
323 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
324
325 regd = kzalloc(size_of_regd, GFP_KERNEL);
326 if (!regd)
327 return -ENOMEM;
328
329 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
330
331 for (i = 0; i < src_regd->n_reg_rules; i++)
332 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
333 sizeof(struct ieee80211_reg_rule));
334
335 *dst_regd = regd;
336 return 0;
337 }
338
339 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
340 struct reg_regdb_search_request {
341 char alpha2[2];
342 struct list_head list;
343 };
344
345 static LIST_HEAD(reg_regdb_search_list);
346 static DEFINE_MUTEX(reg_regdb_search_mutex);
347
348 static void reg_regdb_search(struct work_struct *work)
349 {
350 struct reg_regdb_search_request *request;
351 const struct ieee80211_regdomain *curdom, *regdom;
352 int i, r;
353 bool set_reg = false;
354
355 mutex_lock(&cfg80211_mutex);
356
357 mutex_lock(&reg_regdb_search_mutex);
358 while (!list_empty(&reg_regdb_search_list)) {
359 request = list_first_entry(&reg_regdb_search_list,
360 struct reg_regdb_search_request,
361 list);
362 list_del(&request->list);
363
364 for (i=0; i<reg_regdb_size; i++) {
365 curdom = reg_regdb[i];
366
367 if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
368 r = reg_copy_regd(&regdom, curdom);
369 if (r)
370 break;
371 set_reg = true;
372 break;
373 }
374 }
375
376 kfree(request);
377 }
378 mutex_unlock(&reg_regdb_search_mutex);
379
380 if (set_reg)
381 set_regdom(regdom);
382
383 mutex_unlock(&cfg80211_mutex);
384 }
385
386 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
387
388 static void reg_regdb_query(const char *alpha2)
389 {
390 struct reg_regdb_search_request *request;
391
392 if (!alpha2)
393 return;
394
395 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
396 if (!request)
397 return;
398
399 memcpy(request->alpha2, alpha2, 2);
400
401 mutex_lock(&reg_regdb_search_mutex);
402 list_add_tail(&request->list, &reg_regdb_search_list);
403 mutex_unlock(&reg_regdb_search_mutex);
404
405 schedule_work(&reg_regdb_work);
406 }
407
408 /* Feel free to add any other sanity checks here */
409 static void reg_regdb_size_check(void)
410 {
411 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
412 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
413 }
414 #else
415 static inline void reg_regdb_size_check(void) {}
416 static inline void reg_regdb_query(const char *alpha2) {}
417 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
418
419 /*
420 * This lets us keep regulatory code which is updated on a regulatory
421 * basis in userspace. Country information is filled in by
422 * reg_device_uevent
423 */
424 static int call_crda(const char *alpha2)
425 {
426 if (!is_world_regdom((char *) alpha2))
427 pr_info("Calling CRDA for country: %c%c\n",
428 alpha2[0], alpha2[1]);
429 else
430 pr_info("Calling CRDA to update world regulatory domain\n");
431
432 /* query internal regulatory database (if it exists) */
433 reg_regdb_query(alpha2);
434
435 return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
436 }
437
438 /* Used by nl80211 before kmalloc'ing our regulatory domain */
439 bool reg_is_valid_request(const char *alpha2)
440 {
441 assert_cfg80211_lock();
442
443 if (!last_request)
444 return false;
445
446 return alpha2_equal(last_request->alpha2, alpha2);
447 }
448
449 /* Sanity check on a regulatory rule */
450 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
451 {
452 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
453 u32 freq_diff;
454
455 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
456 return false;
457
458 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
459 return false;
460
461 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
462
463 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
464 freq_range->max_bandwidth_khz > freq_diff)
465 return false;
466
467 return true;
468 }
469
470 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
471 {
472 const struct ieee80211_reg_rule *reg_rule = NULL;
473 unsigned int i;
474
475 if (!rd->n_reg_rules)
476 return false;
477
478 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
479 return false;
480
481 for (i = 0; i < rd->n_reg_rules; i++) {
482 reg_rule = &rd->reg_rules[i];
483 if (!is_valid_reg_rule(reg_rule))
484 return false;
485 }
486
487 return true;
488 }
489
490 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
491 u32 center_freq_khz,
492 u32 bw_khz)
493 {
494 u32 start_freq_khz, end_freq_khz;
495
496 start_freq_khz = center_freq_khz - (bw_khz/2);
497 end_freq_khz = center_freq_khz + (bw_khz/2);
498
499 if (start_freq_khz >= freq_range->start_freq_khz &&
500 end_freq_khz <= freq_range->end_freq_khz)
501 return true;
502
503 return false;
504 }
505
506 /**
507 * freq_in_rule_band - tells us if a frequency is in a frequency band
508 * @freq_range: frequency rule we want to query
509 * @freq_khz: frequency we are inquiring about
510 *
511 * This lets us know if a specific frequency rule is or is not relevant to
512 * a specific frequency's band. Bands are device specific and artificial
513 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
514 * however it is safe for now to assume that a frequency rule should not be
515 * part of a frequency's band if the start freq or end freq are off by more
516 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
517 * 60 GHz band.
518 * This resolution can be lowered and should be considered as we add
519 * regulatory rule support for other "bands".
520 **/
521 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
522 u32 freq_khz)
523 {
524 #define ONE_GHZ_IN_KHZ 1000000
525 /*
526 * From 802.11ad: directional multi-gigabit (DMG):
527 * Pertaining to operation in a frequency band containing a channel
528 * with the Channel starting frequency above 45 GHz.
529 */
530 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
531 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
532 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
533 return true;
534 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
535 return true;
536 return false;
537 #undef ONE_GHZ_IN_KHZ
538 }
539
540 /*
541 * Helper for regdom_intersect(), this does the real
542 * mathematical intersection fun
543 */
544 static int reg_rules_intersect(
545 const struct ieee80211_reg_rule *rule1,
546 const struct ieee80211_reg_rule *rule2,
547 struct ieee80211_reg_rule *intersected_rule)
548 {
549 const struct ieee80211_freq_range *freq_range1, *freq_range2;
550 struct ieee80211_freq_range *freq_range;
551 const struct ieee80211_power_rule *power_rule1, *power_rule2;
552 struct ieee80211_power_rule *power_rule;
553 u32 freq_diff;
554
555 freq_range1 = &rule1->freq_range;
556 freq_range2 = &rule2->freq_range;
557 freq_range = &intersected_rule->freq_range;
558
559 power_rule1 = &rule1->power_rule;
560 power_rule2 = &rule2->power_rule;
561 power_rule = &intersected_rule->power_rule;
562
563 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
564 freq_range2->start_freq_khz);
565 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
566 freq_range2->end_freq_khz);
567 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
568 freq_range2->max_bandwidth_khz);
569
570 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
571 if (freq_range->max_bandwidth_khz > freq_diff)
572 freq_range->max_bandwidth_khz = freq_diff;
573
574 power_rule->max_eirp = min(power_rule1->max_eirp,
575 power_rule2->max_eirp);
576 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
577 power_rule2->max_antenna_gain);
578
579 intersected_rule->flags = (rule1->flags | rule2->flags);
580
581 if (!is_valid_reg_rule(intersected_rule))
582 return -EINVAL;
583
584 return 0;
585 }
586
587 /**
588 * regdom_intersect - do the intersection between two regulatory domains
589 * @rd1: first regulatory domain
590 * @rd2: second regulatory domain
591 *
592 * Use this function to get the intersection between two regulatory domains.
593 * Once completed we will mark the alpha2 for the rd as intersected, "98",
594 * as no one single alpha2 can represent this regulatory domain.
595 *
596 * Returns a pointer to the regulatory domain structure which will hold the
597 * resulting intersection of rules between rd1 and rd2. We will
598 * kzalloc() this structure for you.
599 */
600 static struct ieee80211_regdomain *regdom_intersect(
601 const struct ieee80211_regdomain *rd1,
602 const struct ieee80211_regdomain *rd2)
603 {
604 int r, size_of_regd;
605 unsigned int x, y;
606 unsigned int num_rules = 0, rule_idx = 0;
607 const struct ieee80211_reg_rule *rule1, *rule2;
608 struct ieee80211_reg_rule *intersected_rule;
609 struct ieee80211_regdomain *rd;
610 /* This is just a dummy holder to help us count */
611 struct ieee80211_reg_rule irule;
612
613 /* Uses the stack temporarily for counter arithmetic */
614 intersected_rule = &irule;
615
616 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
617
618 if (!rd1 || !rd2)
619 return NULL;
620
621 /*
622 * First we get a count of the rules we'll need, then we actually
623 * build them. This is to so we can malloc() and free() a
624 * regdomain once. The reason we use reg_rules_intersect() here
625 * is it will return -EINVAL if the rule computed makes no sense.
626 * All rules that do check out OK are valid.
627 */
628
629 for (x = 0; x < rd1->n_reg_rules; x++) {
630 rule1 = &rd1->reg_rules[x];
631 for (y = 0; y < rd2->n_reg_rules; y++) {
632 rule2 = &rd2->reg_rules[y];
633 if (!reg_rules_intersect(rule1, rule2,
634 intersected_rule))
635 num_rules++;
636 memset(intersected_rule, 0,
637 sizeof(struct ieee80211_reg_rule));
638 }
639 }
640
641 if (!num_rules)
642 return NULL;
643
644 size_of_regd = sizeof(struct ieee80211_regdomain) +
645 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
646
647 rd = kzalloc(size_of_regd, GFP_KERNEL);
648 if (!rd)
649 return NULL;
650
651 for (x = 0; x < rd1->n_reg_rules; x++) {
652 rule1 = &rd1->reg_rules[x];
653 for (y = 0; y < rd2->n_reg_rules; y++) {
654 rule2 = &rd2->reg_rules[y];
655 /*
656 * This time around instead of using the stack lets
657 * write to the target rule directly saving ourselves
658 * a memcpy()
659 */
660 intersected_rule = &rd->reg_rules[rule_idx];
661 r = reg_rules_intersect(rule1, rule2,
662 intersected_rule);
663 /*
664 * No need to memset here the intersected rule here as
665 * we're not using the stack anymore
666 */
667 if (r)
668 continue;
669 rule_idx++;
670 }
671 }
672
673 if (rule_idx != num_rules) {
674 kfree(rd);
675 return NULL;
676 }
677
678 rd->n_reg_rules = num_rules;
679 rd->alpha2[0] = '9';
680 rd->alpha2[1] = '8';
681
682 return rd;
683 }
684
685 /*
686 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
687 * want to just have the channel structure use these
688 */
689 static u32 map_regdom_flags(u32 rd_flags)
690 {
691 u32 channel_flags = 0;
692 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
693 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
694 if (rd_flags & NL80211_RRF_NO_IBSS)
695 channel_flags |= IEEE80211_CHAN_NO_IBSS;
696 if (rd_flags & NL80211_RRF_DFS)
697 channel_flags |= IEEE80211_CHAN_RADAR;
698 if (rd_flags & NL80211_RRF_NO_OFDM)
699 channel_flags |= IEEE80211_CHAN_NO_OFDM;
700 return channel_flags;
701 }
702
703 static int freq_reg_info_regd(struct wiphy *wiphy,
704 u32 center_freq,
705 u32 desired_bw_khz,
706 const struct ieee80211_reg_rule **reg_rule,
707 const struct ieee80211_regdomain *custom_regd)
708 {
709 int i;
710 bool band_rule_found = false;
711 const struct ieee80211_regdomain *regd;
712 bool bw_fits = false;
713
714 if (!desired_bw_khz)
715 desired_bw_khz = MHZ_TO_KHZ(20);
716
717 regd = custom_regd ? custom_regd : cfg80211_regdomain;
718
719 /*
720 * Follow the driver's regulatory domain, if present, unless a country
721 * IE has been processed or a user wants to help complaince further
722 */
723 if (!custom_regd &&
724 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
725 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
726 wiphy->regd)
727 regd = wiphy->regd;
728
729 if (!regd)
730 return -EINVAL;
731
732 for (i = 0; i < regd->n_reg_rules; i++) {
733 const struct ieee80211_reg_rule *rr;
734 const struct ieee80211_freq_range *fr = NULL;
735
736 rr = &regd->reg_rules[i];
737 fr = &rr->freq_range;
738
739 /*
740 * We only need to know if one frequency rule was
741 * was in center_freq's band, that's enough, so lets
742 * not overwrite it once found
743 */
744 if (!band_rule_found)
745 band_rule_found = freq_in_rule_band(fr, center_freq);
746
747 bw_fits = reg_does_bw_fit(fr,
748 center_freq,
749 desired_bw_khz);
750
751 if (band_rule_found && bw_fits) {
752 *reg_rule = rr;
753 return 0;
754 }
755 }
756
757 if (!band_rule_found)
758 return -ERANGE;
759
760 return -EINVAL;
761 }
762
763 int freq_reg_info(struct wiphy *wiphy,
764 u32 center_freq,
765 u32 desired_bw_khz,
766 const struct ieee80211_reg_rule **reg_rule)
767 {
768 assert_cfg80211_lock();
769 return freq_reg_info_regd(wiphy,
770 center_freq,
771 desired_bw_khz,
772 reg_rule,
773 NULL);
774 }
775 EXPORT_SYMBOL(freq_reg_info);
776
777 #ifdef CONFIG_CFG80211_REG_DEBUG
778 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
779 {
780 switch (initiator) {
781 case NL80211_REGDOM_SET_BY_CORE:
782 return "Set by core";
783 case NL80211_REGDOM_SET_BY_USER:
784 return "Set by user";
785 case NL80211_REGDOM_SET_BY_DRIVER:
786 return "Set by driver";
787 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
788 return "Set by country IE";
789 default:
790 WARN_ON(1);
791 return "Set by bug";
792 }
793 }
794
795 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
796 u32 desired_bw_khz,
797 const struct ieee80211_reg_rule *reg_rule)
798 {
799 const struct ieee80211_power_rule *power_rule;
800 const struct ieee80211_freq_range *freq_range;
801 char max_antenna_gain[32];
802
803 power_rule = &reg_rule->power_rule;
804 freq_range = &reg_rule->freq_range;
805
806 if (!power_rule->max_antenna_gain)
807 snprintf(max_antenna_gain, 32, "N/A");
808 else
809 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
810
811 REG_DBG_PRINT("Updating information on frequency %d MHz "
812 "for a %d MHz width channel with regulatory rule:\n",
813 chan->center_freq,
814 KHZ_TO_MHZ(desired_bw_khz));
815
816 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
817 freq_range->start_freq_khz,
818 freq_range->end_freq_khz,
819 freq_range->max_bandwidth_khz,
820 max_antenna_gain,
821 power_rule->max_eirp);
822 }
823 #else
824 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
825 u32 desired_bw_khz,
826 const struct ieee80211_reg_rule *reg_rule)
827 {
828 return;
829 }
830 #endif
831
832 /*
833 * Note that right now we assume the desired channel bandwidth
834 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
835 * per channel, the primary and the extension channel). To support
836 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
837 * new ieee80211_channel.target_bw and re run the regulatory check
838 * on the wiphy with the target_bw specified. Then we can simply use
839 * that below for the desired_bw_khz below.
840 */
841 static void handle_channel(struct wiphy *wiphy,
842 enum nl80211_reg_initiator initiator,
843 enum ieee80211_band band,
844 unsigned int chan_idx)
845 {
846 int r;
847 u32 flags, bw_flags = 0;
848 u32 desired_bw_khz = MHZ_TO_KHZ(20);
849 const struct ieee80211_reg_rule *reg_rule = NULL;
850 const struct ieee80211_power_rule *power_rule = NULL;
851 const struct ieee80211_freq_range *freq_range = NULL;
852 struct ieee80211_supported_band *sband;
853 struct ieee80211_channel *chan;
854 struct wiphy *request_wiphy = NULL;
855
856 assert_cfg80211_lock();
857
858 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
859
860 sband = wiphy->bands[band];
861 BUG_ON(chan_idx >= sband->n_channels);
862 chan = &sband->channels[chan_idx];
863
864 flags = chan->orig_flags;
865
866 r = freq_reg_info(wiphy,
867 MHZ_TO_KHZ(chan->center_freq),
868 desired_bw_khz,
869 &reg_rule);
870
871 if (r) {
872 /*
873 * We will disable all channels that do not match our
874 * received regulatory rule unless the hint is coming
875 * from a Country IE and the Country IE had no information
876 * about a band. The IEEE 802.11 spec allows for an AP
877 * to send only a subset of the regulatory rules allowed,
878 * so an AP in the US that only supports 2.4 GHz may only send
879 * a country IE with information for the 2.4 GHz band
880 * while 5 GHz is still supported.
881 */
882 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
883 r == -ERANGE)
884 return;
885
886 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
887 chan->flags = IEEE80211_CHAN_DISABLED;
888 return;
889 }
890
891 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
892
893 power_rule = &reg_rule->power_rule;
894 freq_range = &reg_rule->freq_range;
895
896 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
897 bw_flags = IEEE80211_CHAN_NO_HT40;
898
899 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
900 request_wiphy && request_wiphy == wiphy &&
901 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
902 /*
903 * This guarantees the driver's requested regulatory domain
904 * will always be used as a base for further regulatory
905 * settings
906 */
907 chan->flags = chan->orig_flags =
908 map_regdom_flags(reg_rule->flags) | bw_flags;
909 chan->max_antenna_gain = chan->orig_mag =
910 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
911 chan->max_power = chan->orig_mpwr =
912 (int) MBM_TO_DBM(power_rule->max_eirp);
913 return;
914 }
915
916 chan->beacon_found = false;
917 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
918 chan->max_antenna_gain = min(chan->orig_mag,
919 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
920 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
921 if (chan->orig_mpwr) {
922 /*
923 * Devices that have their own custom regulatory domain
924 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
925 * passed country IE power settings.
926 */
927 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
928 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
929 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
930 chan->max_power = chan->max_reg_power;
931 else
932 chan->max_power = min(chan->orig_mpwr,
933 chan->max_reg_power);
934 } else
935 chan->max_power = chan->max_reg_power;
936 }
937
938 static void handle_band(struct wiphy *wiphy,
939 enum ieee80211_band band,
940 enum nl80211_reg_initiator initiator)
941 {
942 unsigned int i;
943 struct ieee80211_supported_band *sband;
944
945 BUG_ON(!wiphy->bands[band]);
946 sband = wiphy->bands[band];
947
948 for (i = 0; i < sband->n_channels; i++)
949 handle_channel(wiphy, initiator, band, i);
950 }
951
952 static bool reg_request_cell_base(struct regulatory_request *request)
953 {
954 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
955 return false;
956 if (request->user_reg_hint_type != NL80211_USER_REG_HINT_CELL_BASE)
957 return false;
958 return true;
959 }
960
961 bool reg_last_request_cell_base(void)
962 {
963 bool val;
964 assert_cfg80211_lock();
965
966 mutex_lock(&reg_mutex);
967 val = reg_request_cell_base(last_request);
968 mutex_unlock(&reg_mutex);
969 return val;
970 }
971
972 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
973
974 /* Core specific check */
975 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
976 {
977 if (!reg_num_devs_support_basehint)
978 return -EOPNOTSUPP;
979
980 if (reg_request_cell_base(last_request)) {
981 if (!regdom_changes(pending_request->alpha2))
982 return -EALREADY;
983 return 0;
984 }
985 return 0;
986 }
987
988 /* Device specific check */
989 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
990 {
991 if (!(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS))
992 return true;
993 return false;
994 }
995 #else
996 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
997 {
998 return -EOPNOTSUPP;
999 }
1000 static int reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1001 {
1002 return true;
1003 }
1004 #endif
1005
1006
1007 static bool ignore_reg_update(struct wiphy *wiphy,
1008 enum nl80211_reg_initiator initiator)
1009 {
1010 if (!last_request) {
1011 REG_DBG_PRINT("Ignoring regulatory request %s since "
1012 "last_request is not set\n",
1013 reg_initiator_name(initiator));
1014 return true;
1015 }
1016
1017 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1018 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
1019 REG_DBG_PRINT("Ignoring regulatory request %s "
1020 "since the driver uses its own custom "
1021 "regulatory domain\n",
1022 reg_initiator_name(initiator));
1023 return true;
1024 }
1025
1026 /*
1027 * wiphy->regd will be set once the device has its own
1028 * desired regulatory domain set
1029 */
1030 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
1031 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1032 !is_world_regdom(last_request->alpha2)) {
1033 REG_DBG_PRINT("Ignoring regulatory request %s "
1034 "since the driver requires its own regulatory "
1035 "domain to be set first\n",
1036 reg_initiator_name(initiator));
1037 return true;
1038 }
1039
1040 if (reg_request_cell_base(last_request))
1041 return reg_dev_ignore_cell_hint(wiphy);
1042
1043 return false;
1044 }
1045
1046 static void handle_reg_beacon(struct wiphy *wiphy,
1047 unsigned int chan_idx,
1048 struct reg_beacon *reg_beacon)
1049 {
1050 struct ieee80211_supported_band *sband;
1051 struct ieee80211_channel *chan;
1052 bool channel_changed = false;
1053 struct ieee80211_channel chan_before;
1054
1055 assert_cfg80211_lock();
1056
1057 sband = wiphy->bands[reg_beacon->chan.band];
1058 chan = &sband->channels[chan_idx];
1059
1060 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1061 return;
1062
1063 if (chan->beacon_found)
1064 return;
1065
1066 chan->beacon_found = true;
1067
1068 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1069 return;
1070
1071 chan_before.center_freq = chan->center_freq;
1072 chan_before.flags = chan->flags;
1073
1074 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1075 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1076 channel_changed = true;
1077 }
1078
1079 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1080 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1081 channel_changed = true;
1082 }
1083
1084 if (channel_changed)
1085 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1086 }
1087
1088 /*
1089 * Called when a scan on a wiphy finds a beacon on
1090 * new channel
1091 */
1092 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1093 struct reg_beacon *reg_beacon)
1094 {
1095 unsigned int i;
1096 struct ieee80211_supported_band *sband;
1097
1098 assert_cfg80211_lock();
1099
1100 if (!wiphy->bands[reg_beacon->chan.band])
1101 return;
1102
1103 sband = wiphy->bands[reg_beacon->chan.band];
1104
1105 for (i = 0; i < sband->n_channels; i++)
1106 handle_reg_beacon(wiphy, i, reg_beacon);
1107 }
1108
1109 /*
1110 * Called upon reg changes or a new wiphy is added
1111 */
1112 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1113 {
1114 unsigned int i;
1115 struct ieee80211_supported_band *sband;
1116 struct reg_beacon *reg_beacon;
1117
1118 assert_cfg80211_lock();
1119
1120 if (list_empty(&reg_beacon_list))
1121 return;
1122
1123 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1124 if (!wiphy->bands[reg_beacon->chan.band])
1125 continue;
1126 sband = wiphy->bands[reg_beacon->chan.band];
1127 for (i = 0; i < sband->n_channels; i++)
1128 handle_reg_beacon(wiphy, i, reg_beacon);
1129 }
1130 }
1131
1132 static bool reg_is_world_roaming(struct wiphy *wiphy)
1133 {
1134 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1135 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1136 return true;
1137 if (last_request &&
1138 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1139 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1140 return true;
1141 return false;
1142 }
1143
1144 /* Reap the advantages of previously found beacons */
1145 static void reg_process_beacons(struct wiphy *wiphy)
1146 {
1147 /*
1148 * Means we are just firing up cfg80211, so no beacons would
1149 * have been processed yet.
1150 */
1151 if (!last_request)
1152 return;
1153 if (!reg_is_world_roaming(wiphy))
1154 return;
1155 wiphy_update_beacon_reg(wiphy);
1156 }
1157
1158 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1159 {
1160 if (!chan)
1161 return true;
1162 if (chan->flags & IEEE80211_CHAN_DISABLED)
1163 return true;
1164 /* This would happen when regulatory rules disallow HT40 completely */
1165 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1166 return true;
1167 return false;
1168 }
1169
1170 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1171 enum ieee80211_band band,
1172 unsigned int chan_idx)
1173 {
1174 struct ieee80211_supported_band *sband;
1175 struct ieee80211_channel *channel;
1176 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1177 unsigned int i;
1178
1179 assert_cfg80211_lock();
1180
1181 sband = wiphy->bands[band];
1182 BUG_ON(chan_idx >= sband->n_channels);
1183 channel = &sband->channels[chan_idx];
1184
1185 if (is_ht40_not_allowed(channel)) {
1186 channel->flags |= IEEE80211_CHAN_NO_HT40;
1187 return;
1188 }
1189
1190 /*
1191 * We need to ensure the extension channels exist to
1192 * be able to use HT40- or HT40+, this finds them (or not)
1193 */
1194 for (i = 0; i < sband->n_channels; i++) {
1195 struct ieee80211_channel *c = &sband->channels[i];
1196 if (c->center_freq == (channel->center_freq - 20))
1197 channel_before = c;
1198 if (c->center_freq == (channel->center_freq + 20))
1199 channel_after = c;
1200 }
1201
1202 /*
1203 * Please note that this assumes target bandwidth is 20 MHz,
1204 * if that ever changes we also need to change the below logic
1205 * to include that as well.
1206 */
1207 if (is_ht40_not_allowed(channel_before))
1208 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1209 else
1210 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1211
1212 if (is_ht40_not_allowed(channel_after))
1213 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1214 else
1215 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1216 }
1217
1218 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1219 enum ieee80211_band band)
1220 {
1221 unsigned int i;
1222 struct ieee80211_supported_band *sband;
1223
1224 BUG_ON(!wiphy->bands[band]);
1225 sband = wiphy->bands[band];
1226
1227 for (i = 0; i < sband->n_channels; i++)
1228 reg_process_ht_flags_channel(wiphy, band, i);
1229 }
1230
1231 static void reg_process_ht_flags(struct wiphy *wiphy)
1232 {
1233 enum ieee80211_band band;
1234
1235 if (!wiphy)
1236 return;
1237
1238 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1239 if (wiphy->bands[band])
1240 reg_process_ht_flags_band(wiphy, band);
1241 }
1242
1243 }
1244
1245 static void wiphy_update_regulatory(struct wiphy *wiphy,
1246 enum nl80211_reg_initiator initiator)
1247 {
1248 enum ieee80211_band band;
1249
1250 assert_reg_lock();
1251
1252 if (ignore_reg_update(wiphy, initiator))
1253 return;
1254
1255 last_request->dfs_region = cfg80211_regdomain->dfs_region;
1256
1257 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1258 if (wiphy->bands[band])
1259 handle_band(wiphy, band, initiator);
1260 }
1261
1262 reg_process_beacons(wiphy);
1263 reg_process_ht_flags(wiphy);
1264 if (wiphy->reg_notifier)
1265 wiphy->reg_notifier(wiphy, last_request);
1266 }
1267
1268 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1269 {
1270 struct cfg80211_registered_device *rdev;
1271 struct wiphy *wiphy;
1272
1273 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1274 wiphy = &rdev->wiphy;
1275 wiphy_update_regulatory(wiphy, initiator);
1276 /*
1277 * Regulatory updates set by CORE are ignored for custom
1278 * regulatory cards. Let us notify the changes to the driver,
1279 * as some drivers used this to restore its orig_* reg domain.
1280 */
1281 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1282 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1283 wiphy->reg_notifier)
1284 wiphy->reg_notifier(wiphy, last_request);
1285 }
1286 }
1287
1288 static void handle_channel_custom(struct wiphy *wiphy,
1289 enum ieee80211_band band,
1290 unsigned int chan_idx,
1291 const struct ieee80211_regdomain *regd)
1292 {
1293 int r;
1294 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1295 u32 bw_flags = 0;
1296 const struct ieee80211_reg_rule *reg_rule = NULL;
1297 const struct ieee80211_power_rule *power_rule = NULL;
1298 const struct ieee80211_freq_range *freq_range = NULL;
1299 struct ieee80211_supported_band *sband;
1300 struct ieee80211_channel *chan;
1301
1302 assert_reg_lock();
1303
1304 sband = wiphy->bands[band];
1305 BUG_ON(chan_idx >= sband->n_channels);
1306 chan = &sband->channels[chan_idx];
1307
1308 r = freq_reg_info_regd(wiphy,
1309 MHZ_TO_KHZ(chan->center_freq),
1310 desired_bw_khz,
1311 &reg_rule,
1312 regd);
1313
1314 if (r) {
1315 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1316 "regd has no rule that fits a %d MHz "
1317 "wide channel\n",
1318 chan->center_freq,
1319 KHZ_TO_MHZ(desired_bw_khz));
1320 chan->flags = IEEE80211_CHAN_DISABLED;
1321 return;
1322 }
1323
1324 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1325
1326 power_rule = &reg_rule->power_rule;
1327 freq_range = &reg_rule->freq_range;
1328
1329 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1330 bw_flags = IEEE80211_CHAN_NO_HT40;
1331
1332 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1333 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1334 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1335 }
1336
1337 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1338 const struct ieee80211_regdomain *regd)
1339 {
1340 unsigned int i;
1341 struct ieee80211_supported_band *sband;
1342
1343 BUG_ON(!wiphy->bands[band]);
1344 sband = wiphy->bands[band];
1345
1346 for (i = 0; i < sband->n_channels; i++)
1347 handle_channel_custom(wiphy, band, i, regd);
1348 }
1349
1350 /* Used by drivers prior to wiphy registration */
1351 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1352 const struct ieee80211_regdomain *regd)
1353 {
1354 enum ieee80211_band band;
1355 unsigned int bands_set = 0;
1356
1357 mutex_lock(&reg_mutex);
1358 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1359 if (!wiphy->bands[band])
1360 continue;
1361 handle_band_custom(wiphy, band, regd);
1362 bands_set++;
1363 }
1364 mutex_unlock(&reg_mutex);
1365
1366 /*
1367 * no point in calling this if it won't have any effect
1368 * on your device's supportd bands.
1369 */
1370 WARN_ON(!bands_set);
1371 }
1372 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1373
1374 /*
1375 * Return value which can be used by ignore_request() to indicate
1376 * it has been determined we should intersect two regulatory domains
1377 */
1378 #define REG_INTERSECT 1
1379
1380 /* This has the logic which determines when a new request
1381 * should be ignored. */
1382 static int ignore_request(struct wiphy *wiphy,
1383 struct regulatory_request *pending_request)
1384 {
1385 struct wiphy *last_wiphy = NULL;
1386
1387 assert_cfg80211_lock();
1388
1389 /* All initial requests are respected */
1390 if (!last_request)
1391 return 0;
1392
1393 switch (pending_request->initiator) {
1394 case NL80211_REGDOM_SET_BY_CORE:
1395 return 0;
1396 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1397
1398 if (reg_request_cell_base(last_request)) {
1399 /* Trust a Cell base station over the AP's country IE */
1400 if (regdom_changes(pending_request->alpha2))
1401 return -EOPNOTSUPP;
1402 return -EALREADY;
1403 }
1404
1405 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1406
1407 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1408 return -EINVAL;
1409 if (last_request->initiator ==
1410 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1411 if (last_wiphy != wiphy) {
1412 /*
1413 * Two cards with two APs claiming different
1414 * Country IE alpha2s. We could
1415 * intersect them, but that seems unlikely
1416 * to be correct. Reject second one for now.
1417 */
1418 if (regdom_changes(pending_request->alpha2))
1419 return -EOPNOTSUPP;
1420 return -EALREADY;
1421 }
1422 /*
1423 * Two consecutive Country IE hints on the same wiphy.
1424 * This should be picked up early by the driver/stack
1425 */
1426 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1427 return 0;
1428 return -EALREADY;
1429 }
1430 return 0;
1431 case NL80211_REGDOM_SET_BY_DRIVER:
1432 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1433 if (regdom_changes(pending_request->alpha2))
1434 return 0;
1435 return -EALREADY;
1436 }
1437
1438 /*
1439 * This would happen if you unplug and plug your card
1440 * back in or if you add a new device for which the previously
1441 * loaded card also agrees on the regulatory domain.
1442 */
1443 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1444 !regdom_changes(pending_request->alpha2))
1445 return -EALREADY;
1446
1447 return REG_INTERSECT;
1448 case NL80211_REGDOM_SET_BY_USER:
1449 if (reg_request_cell_base(pending_request))
1450 return reg_ignore_cell_hint(pending_request);
1451
1452 if (reg_request_cell_base(last_request))
1453 return -EOPNOTSUPP;
1454
1455 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1456 return REG_INTERSECT;
1457 /*
1458 * If the user knows better the user should set the regdom
1459 * to their country before the IE is picked up
1460 */
1461 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1462 last_request->intersect)
1463 return -EOPNOTSUPP;
1464 /*
1465 * Process user requests only after previous user/driver/core
1466 * requests have been processed
1467 */
1468 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1469 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1470 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1471 if (regdom_changes(last_request->alpha2))
1472 return -EAGAIN;
1473 }
1474
1475 if (!regdom_changes(pending_request->alpha2))
1476 return -EALREADY;
1477
1478 return 0;
1479 }
1480
1481 return -EINVAL;
1482 }
1483
1484 static void reg_set_request_processed(void)
1485 {
1486 bool need_more_processing = false;
1487
1488 last_request->processed = true;
1489
1490 spin_lock(&reg_requests_lock);
1491 if (!list_empty(&reg_requests_list))
1492 need_more_processing = true;
1493 spin_unlock(&reg_requests_lock);
1494
1495 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1496 cancel_delayed_work(&reg_timeout);
1497
1498 if (need_more_processing)
1499 schedule_work(&reg_work);
1500 }
1501
1502 /**
1503 * __regulatory_hint - hint to the wireless core a regulatory domain
1504 * @wiphy: if the hint comes from country information from an AP, this
1505 * is required to be set to the wiphy that received the information
1506 * @pending_request: the regulatory request currently being processed
1507 *
1508 * The Wireless subsystem can use this function to hint to the wireless core
1509 * what it believes should be the current regulatory domain.
1510 *
1511 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1512 * already been set or other standard error codes.
1513 *
1514 * Caller must hold &cfg80211_mutex and &reg_mutex
1515 */
1516 static int __regulatory_hint(struct wiphy *wiphy,
1517 struct regulatory_request *pending_request)
1518 {
1519 bool intersect = false;
1520 int r = 0;
1521
1522 assert_cfg80211_lock();
1523
1524 r = ignore_request(wiphy, pending_request);
1525
1526 if (r == REG_INTERSECT) {
1527 if (pending_request->initiator ==
1528 NL80211_REGDOM_SET_BY_DRIVER) {
1529 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1530 if (r) {
1531 kfree(pending_request);
1532 return r;
1533 }
1534 }
1535 intersect = true;
1536 } else if (r) {
1537 /*
1538 * If the regulatory domain being requested by the
1539 * driver has already been set just copy it to the
1540 * wiphy
1541 */
1542 if (r == -EALREADY &&
1543 pending_request->initiator ==
1544 NL80211_REGDOM_SET_BY_DRIVER) {
1545 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1546 if (r) {
1547 kfree(pending_request);
1548 return r;
1549 }
1550 r = -EALREADY;
1551 goto new_request;
1552 }
1553 kfree(pending_request);
1554 return r;
1555 }
1556
1557 new_request:
1558 if (last_request != &core_request_world)
1559 kfree(last_request);
1560
1561 last_request = pending_request;
1562 last_request->intersect = intersect;
1563
1564 pending_request = NULL;
1565
1566 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1567 user_alpha2[0] = last_request->alpha2[0];
1568 user_alpha2[1] = last_request->alpha2[1];
1569 }
1570
1571 /* When r == REG_INTERSECT we do need to call CRDA */
1572 if (r < 0) {
1573 /*
1574 * Since CRDA will not be called in this case as we already
1575 * have applied the requested regulatory domain before we just
1576 * inform userspace we have processed the request
1577 */
1578 if (r == -EALREADY) {
1579 nl80211_send_reg_change_event(last_request);
1580 reg_set_request_processed();
1581 }
1582 return r;
1583 }
1584
1585 return call_crda(last_request->alpha2);
1586 }
1587
1588 /* This processes *all* regulatory hints */
1589 static void reg_process_hint(struct regulatory_request *reg_request,
1590 enum nl80211_reg_initiator reg_initiator)
1591 {
1592 int r = 0;
1593 struct wiphy *wiphy = NULL;
1594
1595 BUG_ON(!reg_request->alpha2);
1596
1597 if (wiphy_idx_valid(reg_request->wiphy_idx))
1598 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1599
1600 if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1601 !wiphy) {
1602 kfree(reg_request);
1603 return;
1604 }
1605
1606 r = __regulatory_hint(wiphy, reg_request);
1607 /* This is required so that the orig_* parameters are saved */
1608 if (r == -EALREADY && wiphy &&
1609 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1610 wiphy_update_regulatory(wiphy, reg_initiator);
1611 return;
1612 }
1613
1614 /*
1615 * We only time out user hints, given that they should be the only
1616 * source of bogus requests.
1617 */
1618 if (r != -EALREADY &&
1619 reg_initiator == NL80211_REGDOM_SET_BY_USER)
1620 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1621 }
1622
1623 /*
1624 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1625 * Regulatory hints come on a first come first serve basis and we
1626 * must process each one atomically.
1627 */
1628 static void reg_process_pending_hints(void)
1629 {
1630 struct regulatory_request *reg_request;
1631
1632 mutex_lock(&cfg80211_mutex);
1633 mutex_lock(&reg_mutex);
1634
1635 /* When last_request->processed becomes true this will be rescheduled */
1636 if (last_request && !last_request->processed) {
1637 REG_DBG_PRINT("Pending regulatory request, waiting "
1638 "for it to be processed...\n");
1639 goto out;
1640 }
1641
1642 spin_lock(&reg_requests_lock);
1643
1644 if (list_empty(&reg_requests_list)) {
1645 spin_unlock(&reg_requests_lock);
1646 goto out;
1647 }
1648
1649 reg_request = list_first_entry(&reg_requests_list,
1650 struct regulatory_request,
1651 list);
1652 list_del_init(&reg_request->list);
1653
1654 spin_unlock(&reg_requests_lock);
1655
1656 reg_process_hint(reg_request, reg_request->initiator);
1657
1658 out:
1659 mutex_unlock(&reg_mutex);
1660 mutex_unlock(&cfg80211_mutex);
1661 }
1662
1663 /* Processes beacon hints -- this has nothing to do with country IEs */
1664 static void reg_process_pending_beacon_hints(void)
1665 {
1666 struct cfg80211_registered_device *rdev;
1667 struct reg_beacon *pending_beacon, *tmp;
1668
1669 /*
1670 * No need to hold the reg_mutex here as we just touch wiphys
1671 * and do not read or access regulatory variables.
1672 */
1673 mutex_lock(&cfg80211_mutex);
1674
1675 /* This goes through the _pending_ beacon list */
1676 spin_lock_bh(&reg_pending_beacons_lock);
1677
1678 if (list_empty(&reg_pending_beacons)) {
1679 spin_unlock_bh(&reg_pending_beacons_lock);
1680 goto out;
1681 }
1682
1683 list_for_each_entry_safe(pending_beacon, tmp,
1684 &reg_pending_beacons, list) {
1685
1686 list_del_init(&pending_beacon->list);
1687
1688 /* Applies the beacon hint to current wiphys */
1689 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1690 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1691
1692 /* Remembers the beacon hint for new wiphys or reg changes */
1693 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1694 }
1695
1696 spin_unlock_bh(&reg_pending_beacons_lock);
1697 out:
1698 mutex_unlock(&cfg80211_mutex);
1699 }
1700
1701 static void reg_todo(struct work_struct *work)
1702 {
1703 reg_process_pending_hints();
1704 reg_process_pending_beacon_hints();
1705 }
1706
1707 static void queue_regulatory_request(struct regulatory_request *request)
1708 {
1709 if (isalpha(request->alpha2[0]))
1710 request->alpha2[0] = toupper(request->alpha2[0]);
1711 if (isalpha(request->alpha2[1]))
1712 request->alpha2[1] = toupper(request->alpha2[1]);
1713
1714 spin_lock(&reg_requests_lock);
1715 list_add_tail(&request->list, &reg_requests_list);
1716 spin_unlock(&reg_requests_lock);
1717
1718 schedule_work(&reg_work);
1719 }
1720
1721 /*
1722 * Core regulatory hint -- happens during cfg80211_init()
1723 * and when we restore regulatory settings.
1724 */
1725 static int regulatory_hint_core(const char *alpha2)
1726 {
1727 struct regulatory_request *request;
1728
1729 request = kzalloc(sizeof(struct regulatory_request),
1730 GFP_KERNEL);
1731 if (!request)
1732 return -ENOMEM;
1733
1734 request->alpha2[0] = alpha2[0];
1735 request->alpha2[1] = alpha2[1];
1736 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1737
1738 queue_regulatory_request(request);
1739
1740 return 0;
1741 }
1742
1743 /* User hints */
1744 int regulatory_hint_user(const char *alpha2,
1745 enum nl80211_user_reg_hint_type user_reg_hint_type)
1746 {
1747 struct regulatory_request *request;
1748
1749 BUG_ON(!alpha2);
1750
1751 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1752 if (!request)
1753 return -ENOMEM;
1754
1755 request->wiphy_idx = WIPHY_IDX_STALE;
1756 request->alpha2[0] = alpha2[0];
1757 request->alpha2[1] = alpha2[1];
1758 request->initiator = NL80211_REGDOM_SET_BY_USER;
1759 request->user_reg_hint_type = user_reg_hint_type;
1760
1761 queue_regulatory_request(request);
1762
1763 return 0;
1764 }
1765
1766 /* Driver hints */
1767 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1768 {
1769 struct regulatory_request *request;
1770
1771 BUG_ON(!alpha2);
1772 BUG_ON(!wiphy);
1773
1774 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1775 if (!request)
1776 return -ENOMEM;
1777
1778 request->wiphy_idx = get_wiphy_idx(wiphy);
1779
1780 /* Must have registered wiphy first */
1781 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1782
1783 request->alpha2[0] = alpha2[0];
1784 request->alpha2[1] = alpha2[1];
1785 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1786
1787 queue_regulatory_request(request);
1788
1789 return 0;
1790 }
1791 EXPORT_SYMBOL(regulatory_hint);
1792
1793 /*
1794 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1795 * therefore cannot iterate over the rdev list here.
1796 */
1797 void regulatory_hint_11d(struct wiphy *wiphy,
1798 enum ieee80211_band band,
1799 u8 *country_ie,
1800 u8 country_ie_len)
1801 {
1802 char alpha2[2];
1803 enum environment_cap env = ENVIRON_ANY;
1804 struct regulatory_request *request;
1805
1806 mutex_lock(&reg_mutex);
1807
1808 if (unlikely(!last_request))
1809 goto out;
1810
1811 /* IE len must be evenly divisible by 2 */
1812 if (country_ie_len & 0x01)
1813 goto out;
1814
1815 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1816 goto out;
1817
1818 alpha2[0] = country_ie[0];
1819 alpha2[1] = country_ie[1];
1820
1821 if (country_ie[2] == 'I')
1822 env = ENVIRON_INDOOR;
1823 else if (country_ie[2] == 'O')
1824 env = ENVIRON_OUTDOOR;
1825
1826 /*
1827 * We will run this only upon a successful connection on cfg80211.
1828 * We leave conflict resolution to the workqueue, where can hold
1829 * cfg80211_mutex.
1830 */
1831 if (likely(last_request->initiator ==
1832 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1833 wiphy_idx_valid(last_request->wiphy_idx)))
1834 goto out;
1835
1836 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1837 if (!request)
1838 goto out;
1839
1840 request->wiphy_idx = get_wiphy_idx(wiphy);
1841 request->alpha2[0] = alpha2[0];
1842 request->alpha2[1] = alpha2[1];
1843 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1844 request->country_ie_env = env;
1845
1846 mutex_unlock(&reg_mutex);
1847
1848 queue_regulatory_request(request);
1849
1850 return;
1851
1852 out:
1853 mutex_unlock(&reg_mutex);
1854 }
1855
1856 static void restore_alpha2(char *alpha2, bool reset_user)
1857 {
1858 /* indicates there is no alpha2 to consider for restoration */
1859 alpha2[0] = '9';
1860 alpha2[1] = '7';
1861
1862 /* The user setting has precedence over the module parameter */
1863 if (is_user_regdom_saved()) {
1864 /* Unless we're asked to ignore it and reset it */
1865 if (reset_user) {
1866 REG_DBG_PRINT("Restoring regulatory settings "
1867 "including user preference\n");
1868 user_alpha2[0] = '9';
1869 user_alpha2[1] = '7';
1870
1871 /*
1872 * If we're ignoring user settings, we still need to
1873 * check the module parameter to ensure we put things
1874 * back as they were for a full restore.
1875 */
1876 if (!is_world_regdom(ieee80211_regdom)) {
1877 REG_DBG_PRINT("Keeping preference on "
1878 "module parameter ieee80211_regdom: %c%c\n",
1879 ieee80211_regdom[0],
1880 ieee80211_regdom[1]);
1881 alpha2[0] = ieee80211_regdom[0];
1882 alpha2[1] = ieee80211_regdom[1];
1883 }
1884 } else {
1885 REG_DBG_PRINT("Restoring regulatory settings "
1886 "while preserving user preference for: %c%c\n",
1887 user_alpha2[0],
1888 user_alpha2[1]);
1889 alpha2[0] = user_alpha2[0];
1890 alpha2[1] = user_alpha2[1];
1891 }
1892 } else if (!is_world_regdom(ieee80211_regdom)) {
1893 REG_DBG_PRINT("Keeping preference on "
1894 "module parameter ieee80211_regdom: %c%c\n",
1895 ieee80211_regdom[0],
1896 ieee80211_regdom[1]);
1897 alpha2[0] = ieee80211_regdom[0];
1898 alpha2[1] = ieee80211_regdom[1];
1899 } else
1900 REG_DBG_PRINT("Restoring regulatory settings\n");
1901 }
1902
1903 static void restore_custom_reg_settings(struct wiphy *wiphy)
1904 {
1905 struct ieee80211_supported_band *sband;
1906 enum ieee80211_band band;
1907 struct ieee80211_channel *chan;
1908 int i;
1909
1910 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1911 sband = wiphy->bands[band];
1912 if (!sband)
1913 continue;
1914 for (i = 0; i < sband->n_channels; i++) {
1915 chan = &sband->channels[i];
1916 chan->flags = chan->orig_flags;
1917 chan->max_antenna_gain = chan->orig_mag;
1918 chan->max_power = chan->orig_mpwr;
1919 chan->beacon_found = false;
1920 }
1921 }
1922 }
1923
1924 /*
1925 * Restoring regulatory settings involves ingoring any
1926 * possibly stale country IE information and user regulatory
1927 * settings if so desired, this includes any beacon hints
1928 * learned as we could have traveled outside to another country
1929 * after disconnection. To restore regulatory settings we do
1930 * exactly what we did at bootup:
1931 *
1932 * - send a core regulatory hint
1933 * - send a user regulatory hint if applicable
1934 *
1935 * Device drivers that send a regulatory hint for a specific country
1936 * keep their own regulatory domain on wiphy->regd so that does does
1937 * not need to be remembered.
1938 */
1939 static void restore_regulatory_settings(bool reset_user)
1940 {
1941 char alpha2[2];
1942 char world_alpha2[2];
1943 struct reg_beacon *reg_beacon, *btmp;
1944 struct regulatory_request *reg_request, *tmp;
1945 LIST_HEAD(tmp_reg_req_list);
1946 struct cfg80211_registered_device *rdev;
1947
1948 mutex_lock(&cfg80211_mutex);
1949 mutex_lock(&reg_mutex);
1950
1951 reset_regdomains(true);
1952 restore_alpha2(alpha2, reset_user);
1953
1954 /*
1955 * If there's any pending requests we simply
1956 * stash them to a temporary pending queue and
1957 * add then after we've restored regulatory
1958 * settings.
1959 */
1960 spin_lock(&reg_requests_lock);
1961 if (!list_empty(&reg_requests_list)) {
1962 list_for_each_entry_safe(reg_request, tmp,
1963 &reg_requests_list, list) {
1964 if (reg_request->initiator !=
1965 NL80211_REGDOM_SET_BY_USER)
1966 continue;
1967 list_move_tail(&reg_request->list, &tmp_reg_req_list);
1968 }
1969 }
1970 spin_unlock(&reg_requests_lock);
1971
1972 /* Clear beacon hints */
1973 spin_lock_bh(&reg_pending_beacons_lock);
1974 if (!list_empty(&reg_pending_beacons)) {
1975 list_for_each_entry_safe(reg_beacon, btmp,
1976 &reg_pending_beacons, list) {
1977 list_del(&reg_beacon->list);
1978 kfree(reg_beacon);
1979 }
1980 }
1981 spin_unlock_bh(&reg_pending_beacons_lock);
1982
1983 if (!list_empty(&reg_beacon_list)) {
1984 list_for_each_entry_safe(reg_beacon, btmp,
1985 &reg_beacon_list, list) {
1986 list_del(&reg_beacon->list);
1987 kfree(reg_beacon);
1988 }
1989 }
1990
1991 /* First restore to the basic regulatory settings */
1992 cfg80211_regdomain = cfg80211_world_regdom;
1993 world_alpha2[0] = cfg80211_regdomain->alpha2[0];
1994 world_alpha2[1] = cfg80211_regdomain->alpha2[1];
1995
1996 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1997 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1998 restore_custom_reg_settings(&rdev->wiphy);
1999 }
2000
2001 mutex_unlock(&reg_mutex);
2002 mutex_unlock(&cfg80211_mutex);
2003
2004 regulatory_hint_core(world_alpha2);
2005
2006 /*
2007 * This restores the ieee80211_regdom module parameter
2008 * preference or the last user requested regulatory
2009 * settings, user regulatory settings takes precedence.
2010 */
2011 if (is_an_alpha2(alpha2))
2012 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2013
2014 if (list_empty(&tmp_reg_req_list))
2015 return;
2016
2017 mutex_lock(&cfg80211_mutex);
2018 mutex_lock(&reg_mutex);
2019
2020 spin_lock(&reg_requests_lock);
2021 list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
2022 REG_DBG_PRINT("Adding request for country %c%c back "
2023 "into the queue\n",
2024 reg_request->alpha2[0],
2025 reg_request->alpha2[1]);
2026 list_move_tail(&reg_request->list, &reg_requests_list);
2027 }
2028 spin_unlock(&reg_requests_lock);
2029
2030 mutex_unlock(&reg_mutex);
2031 mutex_unlock(&cfg80211_mutex);
2032
2033 REG_DBG_PRINT("Kicking the queue\n");
2034
2035 schedule_work(&reg_work);
2036 }
2037
2038 void regulatory_hint_disconnect(void)
2039 {
2040 REG_DBG_PRINT("All devices are disconnected, going to "
2041 "restore regulatory settings\n");
2042 restore_regulatory_settings(false);
2043 }
2044
2045 static bool freq_is_chan_12_13_14(u16 freq)
2046 {
2047 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2048 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2049 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2050 return true;
2051 return false;
2052 }
2053
2054 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2055 struct ieee80211_channel *beacon_chan,
2056 gfp_t gfp)
2057 {
2058 struct reg_beacon *reg_beacon;
2059
2060 if (likely((beacon_chan->beacon_found ||
2061 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
2062 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2063 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
2064 return 0;
2065
2066 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2067 if (!reg_beacon)
2068 return -ENOMEM;
2069
2070 REG_DBG_PRINT("Found new beacon on "
2071 "frequency: %d MHz (Ch %d) on %s\n",
2072 beacon_chan->center_freq,
2073 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2074 wiphy_name(wiphy));
2075
2076 memcpy(&reg_beacon->chan, beacon_chan,
2077 sizeof(struct ieee80211_channel));
2078
2079
2080 /*
2081 * Since we can be called from BH or and non-BH context
2082 * we must use spin_lock_bh()
2083 */
2084 spin_lock_bh(&reg_pending_beacons_lock);
2085 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2086 spin_unlock_bh(&reg_pending_beacons_lock);
2087
2088 schedule_work(&reg_work);
2089
2090 return 0;
2091 }
2092
2093 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2094 {
2095 unsigned int i;
2096 const struct ieee80211_reg_rule *reg_rule = NULL;
2097 const struct ieee80211_freq_range *freq_range = NULL;
2098 const struct ieee80211_power_rule *power_rule = NULL;
2099
2100 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2101
2102 for (i = 0; i < rd->n_reg_rules; i++) {
2103 reg_rule = &rd->reg_rules[i];
2104 freq_range = &reg_rule->freq_range;
2105 power_rule = &reg_rule->power_rule;
2106
2107 /*
2108 * There may not be documentation for max antenna gain
2109 * in certain regions
2110 */
2111 if (power_rule->max_antenna_gain)
2112 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2113 freq_range->start_freq_khz,
2114 freq_range->end_freq_khz,
2115 freq_range->max_bandwidth_khz,
2116 power_rule->max_antenna_gain,
2117 power_rule->max_eirp);
2118 else
2119 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2120 freq_range->start_freq_khz,
2121 freq_range->end_freq_khz,
2122 freq_range->max_bandwidth_khz,
2123 power_rule->max_eirp);
2124 }
2125 }
2126
2127 bool reg_supported_dfs_region(u8 dfs_region)
2128 {
2129 switch (dfs_region) {
2130 case NL80211_DFS_UNSET:
2131 case NL80211_DFS_FCC:
2132 case NL80211_DFS_ETSI:
2133 case NL80211_DFS_JP:
2134 return true;
2135 default:
2136 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2137 dfs_region);
2138 return false;
2139 }
2140 }
2141
2142 static void print_dfs_region(u8 dfs_region)
2143 {
2144 if (!dfs_region)
2145 return;
2146
2147 switch (dfs_region) {
2148 case NL80211_DFS_FCC:
2149 pr_info(" DFS Master region FCC");
2150 break;
2151 case NL80211_DFS_ETSI:
2152 pr_info(" DFS Master region ETSI");
2153 break;
2154 case NL80211_DFS_JP:
2155 pr_info(" DFS Master region JP");
2156 break;
2157 default:
2158 pr_info(" DFS Master region Uknown");
2159 break;
2160 }
2161 }
2162
2163 static void print_regdomain(const struct ieee80211_regdomain *rd)
2164 {
2165
2166 if (is_intersected_alpha2(rd->alpha2)) {
2167
2168 if (last_request->initiator ==
2169 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2170 struct cfg80211_registered_device *rdev;
2171 rdev = cfg80211_rdev_by_wiphy_idx(
2172 last_request->wiphy_idx);
2173 if (rdev) {
2174 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2175 rdev->country_ie_alpha2[0],
2176 rdev->country_ie_alpha2[1]);
2177 } else
2178 pr_info("Current regulatory domain intersected:\n");
2179 } else
2180 pr_info("Current regulatory domain intersected:\n");
2181 } else if (is_world_regdom(rd->alpha2))
2182 pr_info("World regulatory domain updated:\n");
2183 else {
2184 if (is_unknown_alpha2(rd->alpha2))
2185 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2186 else {
2187 if (reg_request_cell_base(last_request))
2188 pr_info("Regulatory domain changed "
2189 "to country: %c%c by Cell Station\n",
2190 rd->alpha2[0], rd->alpha2[1]);
2191 else
2192 pr_info("Regulatory domain changed "
2193 "to country: %c%c\n",
2194 rd->alpha2[0], rd->alpha2[1]);
2195 }
2196 }
2197 print_dfs_region(rd->dfs_region);
2198 print_rd_rules(rd);
2199 }
2200
2201 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2202 {
2203 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2204 print_rd_rules(rd);
2205 }
2206
2207 /* Takes ownership of rd only if it doesn't fail */
2208 static int __set_regdom(const struct ieee80211_regdomain *rd)
2209 {
2210 const struct ieee80211_regdomain *intersected_rd = NULL;
2211 struct wiphy *request_wiphy;
2212 /* Some basic sanity checks first */
2213
2214 if (is_world_regdom(rd->alpha2)) {
2215 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2216 return -EINVAL;
2217 update_world_regdomain(rd);
2218 return 0;
2219 }
2220
2221 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2222 !is_unknown_alpha2(rd->alpha2))
2223 return -EINVAL;
2224
2225 if (!last_request)
2226 return -EINVAL;
2227
2228 /*
2229 * Lets only bother proceeding on the same alpha2 if the current
2230 * rd is non static (it means CRDA was present and was used last)
2231 * and the pending request came in from a country IE
2232 */
2233 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2234 /*
2235 * If someone else asked us to change the rd lets only bother
2236 * checking if the alpha2 changes if CRDA was already called
2237 */
2238 if (!regdom_changes(rd->alpha2))
2239 return -EALREADY;
2240 }
2241
2242 /*
2243 * Now lets set the regulatory domain, update all driver channels
2244 * and finally inform them of what we have done, in case they want
2245 * to review or adjust their own settings based on their own
2246 * internal EEPROM data
2247 */
2248
2249 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2250 return -EINVAL;
2251
2252 if (!is_valid_rd(rd)) {
2253 pr_err("Invalid regulatory domain detected:\n");
2254 print_regdomain_info(rd);
2255 return -EINVAL;
2256 }
2257
2258 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2259 if (!request_wiphy &&
2260 (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2261 last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2262 schedule_delayed_work(&reg_timeout, 0);
2263 return -ENODEV;
2264 }
2265
2266 if (!last_request->intersect) {
2267 int r;
2268
2269 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2270 reset_regdomains(false);
2271 cfg80211_regdomain = rd;
2272 return 0;
2273 }
2274
2275 /*
2276 * For a driver hint, lets copy the regulatory domain the
2277 * driver wanted to the wiphy to deal with conflicts
2278 */
2279
2280 /*
2281 * Userspace could have sent two replies with only
2282 * one kernel request.
2283 */
2284 if (request_wiphy->regd)
2285 return -EALREADY;
2286
2287 r = reg_copy_regd(&request_wiphy->regd, rd);
2288 if (r)
2289 return r;
2290
2291 reset_regdomains(false);
2292 cfg80211_regdomain = rd;
2293 return 0;
2294 }
2295
2296 /* Intersection requires a bit more work */
2297
2298 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2299
2300 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2301 if (!intersected_rd)
2302 return -EINVAL;
2303
2304 /*
2305 * We can trash what CRDA provided now.
2306 * However if a driver requested this specific regulatory
2307 * domain we keep it for its private use
2308 */
2309 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2310 request_wiphy->regd = rd;
2311 else
2312 kfree(rd);
2313
2314 rd = NULL;
2315
2316 reset_regdomains(false);
2317 cfg80211_regdomain = intersected_rd;
2318
2319 return 0;
2320 }
2321
2322 return -EINVAL;
2323 }
2324
2325
2326 /*
2327 * Use this call to set the current regulatory domain. Conflicts with
2328 * multiple drivers can be ironed out later. Caller must've already
2329 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2330 */
2331 int set_regdom(const struct ieee80211_regdomain *rd)
2332 {
2333 int r;
2334
2335 assert_cfg80211_lock();
2336
2337 mutex_lock(&reg_mutex);
2338
2339 /* Note that this doesn't update the wiphys, this is done below */
2340 r = __set_regdom(rd);
2341 if (r) {
2342 if (r == -EALREADY)
2343 reg_set_request_processed();
2344
2345 kfree(rd);
2346 mutex_unlock(&reg_mutex);
2347 return r;
2348 }
2349
2350 /* This would make this whole thing pointless */
2351 if (!last_request->intersect)
2352 BUG_ON(rd != cfg80211_regdomain);
2353
2354 /* update all wiphys now with the new established regulatory domain */
2355 update_all_wiphy_regulatory(last_request->initiator);
2356
2357 print_regdomain(cfg80211_regdomain);
2358
2359 nl80211_send_reg_change_event(last_request);
2360
2361 reg_set_request_processed();
2362
2363 mutex_unlock(&reg_mutex);
2364
2365 return r;
2366 }
2367
2368 #ifdef CONFIG_HOTPLUG
2369 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2370 {
2371 if (last_request && !last_request->processed) {
2372 if (add_uevent_var(env, "COUNTRY=%c%c",
2373 last_request->alpha2[0],
2374 last_request->alpha2[1]))
2375 return -ENOMEM;
2376 }
2377
2378 return 0;
2379 }
2380 #else
2381 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2382 {
2383 return -ENODEV;
2384 }
2385 #endif /* CONFIG_HOTPLUG */
2386
2387 void wiphy_regulatory_register(struct wiphy *wiphy)
2388 {
2389 assert_cfg80211_lock();
2390
2391 mutex_lock(&reg_mutex);
2392
2393 if (!reg_dev_ignore_cell_hint(wiphy))
2394 reg_num_devs_support_basehint++;
2395
2396 wiphy_update_regulatory(wiphy, NL80211_REGDOM_SET_BY_CORE);
2397
2398 mutex_unlock(&reg_mutex);
2399 }
2400
2401 /* Caller must hold cfg80211_mutex */
2402 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2403 {
2404 struct wiphy *request_wiphy = NULL;
2405
2406 assert_cfg80211_lock();
2407
2408 mutex_lock(&reg_mutex);
2409
2410 if (!reg_dev_ignore_cell_hint(wiphy))
2411 reg_num_devs_support_basehint--;
2412
2413 kfree(wiphy->regd);
2414
2415 if (last_request)
2416 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2417
2418 if (!request_wiphy || request_wiphy != wiphy)
2419 goto out;
2420
2421 last_request->wiphy_idx = WIPHY_IDX_STALE;
2422 last_request->country_ie_env = ENVIRON_ANY;
2423 out:
2424 mutex_unlock(&reg_mutex);
2425 }
2426
2427 static void reg_timeout_work(struct work_struct *work)
2428 {
2429 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2430 "restoring regulatory settings\n");
2431 restore_regulatory_settings(true);
2432 }
2433
2434 int __init regulatory_init(void)
2435 {
2436 int err = 0;
2437
2438 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2439 if (IS_ERR(reg_pdev))
2440 return PTR_ERR(reg_pdev);
2441
2442 reg_pdev->dev.type = &reg_device_type;
2443
2444 spin_lock_init(&reg_requests_lock);
2445 spin_lock_init(&reg_pending_beacons_lock);
2446
2447 reg_regdb_size_check();
2448
2449 cfg80211_regdomain = cfg80211_world_regdom;
2450
2451 user_alpha2[0] = '9';
2452 user_alpha2[1] = '7';
2453
2454 /* We always try to get an update for the static regdomain */
2455 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2456 if (err) {
2457 if (err == -ENOMEM)
2458 return err;
2459 /*
2460 * N.B. kobject_uevent_env() can fail mainly for when we're out
2461 * memory which is handled and propagated appropriately above
2462 * but it can also fail during a netlink_broadcast() or during
2463 * early boot for call_usermodehelper(). For now treat these
2464 * errors as non-fatal.
2465 */
2466 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2467 #ifdef CONFIG_CFG80211_REG_DEBUG
2468 /* We want to find out exactly why when debugging */
2469 WARN_ON(err);
2470 #endif
2471 }
2472
2473 /*
2474 * Finally, if the user set the module parameter treat it
2475 * as a user hint.
2476 */
2477 if (!is_world_regdom(ieee80211_regdom))
2478 regulatory_hint_user(ieee80211_regdom,
2479 NL80211_USER_REG_HINT_USER);
2480
2481 return 0;
2482 }
2483
2484 void /* __init_or_exit */ regulatory_exit(void)
2485 {
2486 struct regulatory_request *reg_request, *tmp;
2487 struct reg_beacon *reg_beacon, *btmp;
2488
2489 cancel_work_sync(&reg_work);
2490 cancel_delayed_work_sync(&reg_timeout);
2491
2492 mutex_lock(&cfg80211_mutex);
2493 mutex_lock(&reg_mutex);
2494
2495 reset_regdomains(true);
2496
2497 dev_set_uevent_suppress(&reg_pdev->dev, true);
2498
2499 platform_device_unregister(reg_pdev);
2500
2501 spin_lock_bh(&reg_pending_beacons_lock);
2502 if (!list_empty(&reg_pending_beacons)) {
2503 list_for_each_entry_safe(reg_beacon, btmp,
2504 &reg_pending_beacons, list) {
2505 list_del(&reg_beacon->list);
2506 kfree(reg_beacon);
2507 }
2508 }
2509 spin_unlock_bh(&reg_pending_beacons_lock);
2510
2511 if (!list_empty(&reg_beacon_list)) {
2512 list_for_each_entry_safe(reg_beacon, btmp,
2513 &reg_beacon_list, list) {
2514 list_del(&reg_beacon->list);
2515 kfree(reg_beacon);
2516 }
2517 }
2518
2519 spin_lock(&reg_requests_lock);
2520 if (!list_empty(&reg_requests_list)) {
2521 list_for_each_entry_safe(reg_request, tmp,
2522 &reg_requests_list, list) {
2523 list_del(&reg_request->list);
2524 kfree(reg_request);
2525 }
2526 }
2527 spin_unlock(&reg_requests_lock);
2528
2529 mutex_unlock(&reg_mutex);
2530 mutex_unlock(&cfg80211_mutex);
2531 }