]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/wireless/reg.c
drm: fix uninitialized acquire_ctx fields (v2)
[mirror_ubuntu-bionic-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20
21 /**
22 * DOC: Wireless regulatory infrastructure
23 *
24 * The usual implementation is for a driver to read a device EEPROM to
25 * determine which regulatory domain it should be operating under, then
26 * looking up the allowable channels in a driver-local table and finally
27 * registering those channels in the wiphy structure.
28 *
29 * Another set of compliance enforcement is for drivers to use their
30 * own compliance limits which can be stored on the EEPROM. The host
31 * driver or firmware may ensure these are used.
32 *
33 * In addition to all this we provide an extra layer of regulatory
34 * conformance. For drivers which do not have any regulatory
35 * information CRDA provides the complete regulatory solution.
36 * For others it provides a community effort on further restrictions
37 * to enhance compliance.
38 *
39 * Note: When number of rules --> infinity we will not be able to
40 * index on alpha2 any more, instead we'll probably have to
41 * rely on some SHA1 checksum of the regdomain for example.
42 *
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
56 #include "core.h"
57 #include "reg.h"
58 #include "regdb.h"
59 #include "nl80211.h"
60
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...) \
63 printk(KERN_DEBUG pr_fmt(format), ##args)
64 #else
65 #define REG_DBG_PRINT(args...)
66 #endif
67
68 /**
69 * enum reg_request_treatment - regulatory request treatment
70 *
71 * @REG_REQ_OK: continue processing the regulatory request
72 * @REG_REQ_IGNORE: ignore the regulatory request
73 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
74 * be intersected with the current one.
75 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
76 * regulatory settings, and no further processing is required.
77 * @REG_REQ_USER_HINT_HANDLED: a non alpha2 user hint was handled and no
78 * further processing is required, i.e., not need to update last_request
79 * etc. This should be used for user hints that do not provide an alpha2
80 * but some other type of regulatory hint, i.e., indoor operation.
81 */
82 enum reg_request_treatment {
83 REG_REQ_OK,
84 REG_REQ_IGNORE,
85 REG_REQ_INTERSECT,
86 REG_REQ_ALREADY_SET,
87 REG_REQ_USER_HINT_HANDLED,
88 };
89
90 static struct regulatory_request core_request_world = {
91 .initiator = NL80211_REGDOM_SET_BY_CORE,
92 .alpha2[0] = '0',
93 .alpha2[1] = '0',
94 .intersect = false,
95 .processed = true,
96 .country_ie_env = ENVIRON_ANY,
97 };
98
99 /*
100 * Receipt of information from last regulatory request,
101 * protected by RTNL (and can be accessed with RCU protection)
102 */
103 static struct regulatory_request __rcu *last_request =
104 (void __rcu *)&core_request_world;
105
106 /* To trigger userspace events */
107 static struct platform_device *reg_pdev;
108
109 /*
110 * Central wireless core regulatory domains, we only need two,
111 * the current one and a world regulatory domain in case we have no
112 * information to give us an alpha2.
113 * (protected by RTNL, can be read under RCU)
114 */
115 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
116
117 /*
118 * Number of devices that registered to the core
119 * that support cellular base station regulatory hints
120 * (protected by RTNL)
121 */
122 static int reg_num_devs_support_basehint;
123
124 /*
125 * State variable indicating if the platform on which the devices
126 * are attached is operating in an indoor environment. The state variable
127 * is relevant for all registered devices.
128 * (protected by RTNL)
129 */
130 static bool reg_is_indoor;
131
132 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
133 {
134 return rtnl_dereference(cfg80211_regdomain);
135 }
136
137 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
138 {
139 return rtnl_dereference(wiphy->regd);
140 }
141
142 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
143 {
144 switch (dfs_region) {
145 case NL80211_DFS_UNSET:
146 return "unset";
147 case NL80211_DFS_FCC:
148 return "FCC";
149 case NL80211_DFS_ETSI:
150 return "ETSI";
151 case NL80211_DFS_JP:
152 return "JP";
153 }
154 return "Unknown";
155 }
156
157 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
158 {
159 const struct ieee80211_regdomain *regd = NULL;
160 const struct ieee80211_regdomain *wiphy_regd = NULL;
161
162 regd = get_cfg80211_regdom();
163 if (!wiphy)
164 goto out;
165
166 wiphy_regd = get_wiphy_regdom(wiphy);
167 if (!wiphy_regd)
168 goto out;
169
170 if (wiphy_regd->dfs_region == regd->dfs_region)
171 goto out;
172
173 REG_DBG_PRINT("%s: device specific dfs_region "
174 "(%s) disagrees with cfg80211's "
175 "central dfs_region (%s)\n",
176 dev_name(&wiphy->dev),
177 reg_dfs_region_str(wiphy_regd->dfs_region),
178 reg_dfs_region_str(regd->dfs_region));
179
180 out:
181 return regd->dfs_region;
182 }
183
184 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
185 {
186 if (!r)
187 return;
188 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
189 }
190
191 static struct regulatory_request *get_last_request(void)
192 {
193 return rcu_dereference_rtnl(last_request);
194 }
195
196 /* Used to queue up regulatory hints */
197 static LIST_HEAD(reg_requests_list);
198 static spinlock_t reg_requests_lock;
199
200 /* Used to queue up beacon hints for review */
201 static LIST_HEAD(reg_pending_beacons);
202 static spinlock_t reg_pending_beacons_lock;
203
204 /* Used to keep track of processed beacon hints */
205 static LIST_HEAD(reg_beacon_list);
206
207 struct reg_beacon {
208 struct list_head list;
209 struct ieee80211_channel chan;
210 };
211
212 static void reg_todo(struct work_struct *work);
213 static DECLARE_WORK(reg_work, reg_todo);
214
215 static void reg_timeout_work(struct work_struct *work);
216 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
217
218 /* We keep a static world regulatory domain in case of the absence of CRDA */
219 static const struct ieee80211_regdomain world_regdom = {
220 .n_reg_rules = 6,
221 .alpha2 = "00",
222 .reg_rules = {
223 /* IEEE 802.11b/g, channels 1..11 */
224 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
225 /* IEEE 802.11b/g, channels 12..13. */
226 REG_RULE(2467-10, 2472+10, 40, 6, 20,
227 NL80211_RRF_NO_IR),
228 /* IEEE 802.11 channel 14 - Only JP enables
229 * this and for 802.11b only */
230 REG_RULE(2484-10, 2484+10, 20, 6, 20,
231 NL80211_RRF_NO_IR |
232 NL80211_RRF_NO_OFDM),
233 /* IEEE 802.11a, channel 36..48 */
234 REG_RULE(5180-10, 5240+10, 160, 6, 20,
235 NL80211_RRF_NO_IR),
236
237 /* IEEE 802.11a, channel 52..64 - DFS required */
238 REG_RULE(5260-10, 5320+10, 160, 6, 20,
239 NL80211_RRF_NO_IR |
240 NL80211_RRF_DFS),
241
242 /* IEEE 802.11a, channel 100..144 - DFS required */
243 REG_RULE(5500-10, 5720+10, 160, 6, 20,
244 NL80211_RRF_NO_IR |
245 NL80211_RRF_DFS),
246
247 /* IEEE 802.11a, channel 149..165 */
248 REG_RULE(5745-10, 5825+10, 80, 6, 20,
249 NL80211_RRF_NO_IR),
250
251 /* IEEE 802.11ad (60gHz), channels 1..3 */
252 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
253 }
254 };
255
256 /* protected by RTNL */
257 static const struct ieee80211_regdomain *cfg80211_world_regdom =
258 &world_regdom;
259
260 static char *ieee80211_regdom = "00";
261 static char user_alpha2[2];
262
263 module_param(ieee80211_regdom, charp, 0444);
264 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
265
266 static void reg_free_request(struct regulatory_request *request)
267 {
268 if (request != get_last_request())
269 kfree(request);
270 }
271
272 static void reg_free_last_request(void)
273 {
274 struct regulatory_request *lr = get_last_request();
275
276 if (lr != &core_request_world && lr)
277 kfree_rcu(lr, rcu_head);
278 }
279
280 static void reg_update_last_request(struct regulatory_request *request)
281 {
282 struct regulatory_request *lr;
283
284 lr = get_last_request();
285 if (lr == request)
286 return;
287
288 reg_free_last_request();
289 rcu_assign_pointer(last_request, request);
290 }
291
292 static void reset_regdomains(bool full_reset,
293 const struct ieee80211_regdomain *new_regdom)
294 {
295 const struct ieee80211_regdomain *r;
296
297 ASSERT_RTNL();
298
299 r = get_cfg80211_regdom();
300
301 /* avoid freeing static information or freeing something twice */
302 if (r == cfg80211_world_regdom)
303 r = NULL;
304 if (cfg80211_world_regdom == &world_regdom)
305 cfg80211_world_regdom = NULL;
306 if (r == &world_regdom)
307 r = NULL;
308
309 rcu_free_regdom(r);
310 rcu_free_regdom(cfg80211_world_regdom);
311
312 cfg80211_world_regdom = &world_regdom;
313 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
314
315 if (!full_reset)
316 return;
317
318 reg_update_last_request(&core_request_world);
319 }
320
321 /*
322 * Dynamic world regulatory domain requested by the wireless
323 * core upon initialization
324 */
325 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
326 {
327 struct regulatory_request *lr;
328
329 lr = get_last_request();
330
331 WARN_ON(!lr);
332
333 reset_regdomains(false, rd);
334
335 cfg80211_world_regdom = rd;
336 }
337
338 bool is_world_regdom(const char *alpha2)
339 {
340 if (!alpha2)
341 return false;
342 return alpha2[0] == '0' && alpha2[1] == '0';
343 }
344
345 static bool is_alpha2_set(const char *alpha2)
346 {
347 if (!alpha2)
348 return false;
349 return alpha2[0] && alpha2[1];
350 }
351
352 static bool is_unknown_alpha2(const char *alpha2)
353 {
354 if (!alpha2)
355 return false;
356 /*
357 * Special case where regulatory domain was built by driver
358 * but a specific alpha2 cannot be determined
359 */
360 return alpha2[0] == '9' && alpha2[1] == '9';
361 }
362
363 static bool is_intersected_alpha2(const char *alpha2)
364 {
365 if (!alpha2)
366 return false;
367 /*
368 * Special case where regulatory domain is the
369 * result of an intersection between two regulatory domain
370 * structures
371 */
372 return alpha2[0] == '9' && alpha2[1] == '8';
373 }
374
375 static bool is_an_alpha2(const char *alpha2)
376 {
377 if (!alpha2)
378 return false;
379 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
380 }
381
382 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
383 {
384 if (!alpha2_x || !alpha2_y)
385 return false;
386 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
387 }
388
389 static bool regdom_changes(const char *alpha2)
390 {
391 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
392
393 if (!r)
394 return true;
395 return !alpha2_equal(r->alpha2, alpha2);
396 }
397
398 /*
399 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
400 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
401 * has ever been issued.
402 */
403 static bool is_user_regdom_saved(void)
404 {
405 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
406 return false;
407
408 /* This would indicate a mistake on the design */
409 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
410 "Unexpected user alpha2: %c%c\n",
411 user_alpha2[0], user_alpha2[1]))
412 return false;
413
414 return true;
415 }
416
417 static const struct ieee80211_regdomain *
418 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
419 {
420 struct ieee80211_regdomain *regd;
421 int size_of_regd;
422 unsigned int i;
423
424 size_of_regd =
425 sizeof(struct ieee80211_regdomain) +
426 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
427
428 regd = kzalloc(size_of_regd, GFP_KERNEL);
429 if (!regd)
430 return ERR_PTR(-ENOMEM);
431
432 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
433
434 for (i = 0; i < src_regd->n_reg_rules; i++)
435 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
436 sizeof(struct ieee80211_reg_rule));
437
438 return regd;
439 }
440
441 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
442 struct reg_regdb_search_request {
443 char alpha2[2];
444 struct list_head list;
445 };
446
447 static LIST_HEAD(reg_regdb_search_list);
448 static DEFINE_MUTEX(reg_regdb_search_mutex);
449
450 static void reg_regdb_search(struct work_struct *work)
451 {
452 struct reg_regdb_search_request *request;
453 const struct ieee80211_regdomain *curdom, *regdom = NULL;
454 int i;
455
456 rtnl_lock();
457
458 mutex_lock(&reg_regdb_search_mutex);
459 while (!list_empty(&reg_regdb_search_list)) {
460 request = list_first_entry(&reg_regdb_search_list,
461 struct reg_regdb_search_request,
462 list);
463 list_del(&request->list);
464
465 for (i = 0; i < reg_regdb_size; i++) {
466 curdom = reg_regdb[i];
467
468 if (alpha2_equal(request->alpha2, curdom->alpha2)) {
469 regdom = reg_copy_regd(curdom);
470 break;
471 }
472 }
473
474 kfree(request);
475 }
476 mutex_unlock(&reg_regdb_search_mutex);
477
478 if (!IS_ERR_OR_NULL(regdom))
479 set_regdom(regdom);
480
481 rtnl_unlock();
482 }
483
484 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
485
486 static void reg_regdb_query(const char *alpha2)
487 {
488 struct reg_regdb_search_request *request;
489
490 if (!alpha2)
491 return;
492
493 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
494 if (!request)
495 return;
496
497 memcpy(request->alpha2, alpha2, 2);
498
499 mutex_lock(&reg_regdb_search_mutex);
500 list_add_tail(&request->list, &reg_regdb_search_list);
501 mutex_unlock(&reg_regdb_search_mutex);
502
503 schedule_work(&reg_regdb_work);
504 }
505
506 /* Feel free to add any other sanity checks here */
507 static void reg_regdb_size_check(void)
508 {
509 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
510 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
511 }
512 #else
513 static inline void reg_regdb_size_check(void) {}
514 static inline void reg_regdb_query(const char *alpha2) {}
515 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
516
517 /*
518 * This lets us keep regulatory code which is updated on a regulatory
519 * basis in userspace.
520 */
521 static int call_crda(const char *alpha2)
522 {
523 char country[12];
524 char *env[] = { country, NULL };
525
526 snprintf(country, sizeof(country), "COUNTRY=%c%c",
527 alpha2[0], alpha2[1]);
528
529 if (!is_world_regdom((char *) alpha2))
530 pr_info("Calling CRDA for country: %c%c\n",
531 alpha2[0], alpha2[1]);
532 else
533 pr_info("Calling CRDA to update world regulatory domain\n");
534
535 /* query internal regulatory database (if it exists) */
536 reg_regdb_query(alpha2);
537
538 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
539 }
540
541 static enum reg_request_treatment
542 reg_call_crda(struct regulatory_request *request)
543 {
544 if (call_crda(request->alpha2))
545 return REG_REQ_IGNORE;
546 return REG_REQ_OK;
547 }
548
549 bool reg_is_valid_request(const char *alpha2)
550 {
551 struct regulatory_request *lr = get_last_request();
552
553 if (!lr || lr->processed)
554 return false;
555
556 return alpha2_equal(lr->alpha2, alpha2);
557 }
558
559 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
560 {
561 struct regulatory_request *lr = get_last_request();
562
563 /*
564 * Follow the driver's regulatory domain, if present, unless a country
565 * IE has been processed or a user wants to help complaince further
566 */
567 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
568 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
569 wiphy->regd)
570 return get_wiphy_regdom(wiphy);
571
572 return get_cfg80211_regdom();
573 }
574
575 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
576 const struct ieee80211_reg_rule *rule)
577 {
578 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
579 const struct ieee80211_freq_range *freq_range_tmp;
580 const struct ieee80211_reg_rule *tmp;
581 u32 start_freq, end_freq, idx, no;
582
583 for (idx = 0; idx < rd->n_reg_rules; idx++)
584 if (rule == &rd->reg_rules[idx])
585 break;
586
587 if (idx == rd->n_reg_rules)
588 return 0;
589
590 /* get start_freq */
591 no = idx;
592
593 while (no) {
594 tmp = &rd->reg_rules[--no];
595 freq_range_tmp = &tmp->freq_range;
596
597 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
598 break;
599
600 freq_range = freq_range_tmp;
601 }
602
603 start_freq = freq_range->start_freq_khz;
604
605 /* get end_freq */
606 freq_range = &rule->freq_range;
607 no = idx;
608
609 while (no < rd->n_reg_rules - 1) {
610 tmp = &rd->reg_rules[++no];
611 freq_range_tmp = &tmp->freq_range;
612
613 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
614 break;
615
616 freq_range = freq_range_tmp;
617 }
618
619 end_freq = freq_range->end_freq_khz;
620
621 return end_freq - start_freq;
622 }
623
624 /* Sanity check on a regulatory rule */
625 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
626 {
627 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
628 u32 freq_diff;
629
630 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
631 return false;
632
633 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
634 return false;
635
636 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
637
638 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
639 freq_range->max_bandwidth_khz > freq_diff)
640 return false;
641
642 return true;
643 }
644
645 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
646 {
647 const struct ieee80211_reg_rule *reg_rule = NULL;
648 unsigned int i;
649
650 if (!rd->n_reg_rules)
651 return false;
652
653 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
654 return false;
655
656 for (i = 0; i < rd->n_reg_rules; i++) {
657 reg_rule = &rd->reg_rules[i];
658 if (!is_valid_reg_rule(reg_rule))
659 return false;
660 }
661
662 return true;
663 }
664
665 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
666 u32 center_freq_khz, u32 bw_khz)
667 {
668 u32 start_freq_khz, end_freq_khz;
669
670 start_freq_khz = center_freq_khz - (bw_khz/2);
671 end_freq_khz = center_freq_khz + (bw_khz/2);
672
673 if (start_freq_khz >= freq_range->start_freq_khz &&
674 end_freq_khz <= freq_range->end_freq_khz)
675 return true;
676
677 return false;
678 }
679
680 /**
681 * freq_in_rule_band - tells us if a frequency is in a frequency band
682 * @freq_range: frequency rule we want to query
683 * @freq_khz: frequency we are inquiring about
684 *
685 * This lets us know if a specific frequency rule is or is not relevant to
686 * a specific frequency's band. Bands are device specific and artificial
687 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
688 * however it is safe for now to assume that a frequency rule should not be
689 * part of a frequency's band if the start freq or end freq are off by more
690 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
691 * 60 GHz band.
692 * This resolution can be lowered and should be considered as we add
693 * regulatory rule support for other "bands".
694 **/
695 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
696 u32 freq_khz)
697 {
698 #define ONE_GHZ_IN_KHZ 1000000
699 /*
700 * From 802.11ad: directional multi-gigabit (DMG):
701 * Pertaining to operation in a frequency band containing a channel
702 * with the Channel starting frequency above 45 GHz.
703 */
704 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
705 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
706 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
707 return true;
708 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
709 return true;
710 return false;
711 #undef ONE_GHZ_IN_KHZ
712 }
713
714 /*
715 * Later on we can perhaps use the more restrictive DFS
716 * region but we don't have information for that yet so
717 * for now simply disallow conflicts.
718 */
719 static enum nl80211_dfs_regions
720 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
721 const enum nl80211_dfs_regions dfs_region2)
722 {
723 if (dfs_region1 != dfs_region2)
724 return NL80211_DFS_UNSET;
725 return dfs_region1;
726 }
727
728 /*
729 * Helper for regdom_intersect(), this does the real
730 * mathematical intersection fun
731 */
732 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
733 const struct ieee80211_regdomain *rd2,
734 const struct ieee80211_reg_rule *rule1,
735 const struct ieee80211_reg_rule *rule2,
736 struct ieee80211_reg_rule *intersected_rule)
737 {
738 const struct ieee80211_freq_range *freq_range1, *freq_range2;
739 struct ieee80211_freq_range *freq_range;
740 const struct ieee80211_power_rule *power_rule1, *power_rule2;
741 struct ieee80211_power_rule *power_rule;
742 u32 freq_diff, max_bandwidth1, max_bandwidth2;
743
744 freq_range1 = &rule1->freq_range;
745 freq_range2 = &rule2->freq_range;
746 freq_range = &intersected_rule->freq_range;
747
748 power_rule1 = &rule1->power_rule;
749 power_rule2 = &rule2->power_rule;
750 power_rule = &intersected_rule->power_rule;
751
752 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
753 freq_range2->start_freq_khz);
754 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
755 freq_range2->end_freq_khz);
756
757 max_bandwidth1 = freq_range1->max_bandwidth_khz;
758 max_bandwidth2 = freq_range2->max_bandwidth_khz;
759
760 if (rule1->flags & NL80211_RRF_AUTO_BW)
761 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
762 if (rule2->flags & NL80211_RRF_AUTO_BW)
763 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
764
765 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
766
767 intersected_rule->flags = rule1->flags | rule2->flags;
768
769 /*
770 * In case NL80211_RRF_AUTO_BW requested for both rules
771 * set AUTO_BW in intersected rule also. Next we will
772 * calculate BW correctly in handle_channel function.
773 * In other case remove AUTO_BW flag while we calculate
774 * maximum bandwidth correctly and auto calculation is
775 * not required.
776 */
777 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
778 (rule2->flags & NL80211_RRF_AUTO_BW))
779 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
780 else
781 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
782
783 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
784 if (freq_range->max_bandwidth_khz > freq_diff)
785 freq_range->max_bandwidth_khz = freq_diff;
786
787 power_rule->max_eirp = min(power_rule1->max_eirp,
788 power_rule2->max_eirp);
789 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
790 power_rule2->max_antenna_gain);
791
792 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
793 rule2->dfs_cac_ms);
794
795 if (!is_valid_reg_rule(intersected_rule))
796 return -EINVAL;
797
798 return 0;
799 }
800
801 /**
802 * regdom_intersect - do the intersection between two regulatory domains
803 * @rd1: first regulatory domain
804 * @rd2: second regulatory domain
805 *
806 * Use this function to get the intersection between two regulatory domains.
807 * Once completed we will mark the alpha2 for the rd as intersected, "98",
808 * as no one single alpha2 can represent this regulatory domain.
809 *
810 * Returns a pointer to the regulatory domain structure which will hold the
811 * resulting intersection of rules between rd1 and rd2. We will
812 * kzalloc() this structure for you.
813 */
814 static struct ieee80211_regdomain *
815 regdom_intersect(const struct ieee80211_regdomain *rd1,
816 const struct ieee80211_regdomain *rd2)
817 {
818 int r, size_of_regd;
819 unsigned int x, y;
820 unsigned int num_rules = 0, rule_idx = 0;
821 const struct ieee80211_reg_rule *rule1, *rule2;
822 struct ieee80211_reg_rule *intersected_rule;
823 struct ieee80211_regdomain *rd;
824 /* This is just a dummy holder to help us count */
825 struct ieee80211_reg_rule dummy_rule;
826
827 if (!rd1 || !rd2)
828 return NULL;
829
830 /*
831 * First we get a count of the rules we'll need, then we actually
832 * build them. This is to so we can malloc() and free() a
833 * regdomain once. The reason we use reg_rules_intersect() here
834 * is it will return -EINVAL if the rule computed makes no sense.
835 * All rules that do check out OK are valid.
836 */
837
838 for (x = 0; x < rd1->n_reg_rules; x++) {
839 rule1 = &rd1->reg_rules[x];
840 for (y = 0; y < rd2->n_reg_rules; y++) {
841 rule2 = &rd2->reg_rules[y];
842 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
843 &dummy_rule))
844 num_rules++;
845 }
846 }
847
848 if (!num_rules)
849 return NULL;
850
851 size_of_regd = sizeof(struct ieee80211_regdomain) +
852 num_rules * sizeof(struct ieee80211_reg_rule);
853
854 rd = kzalloc(size_of_regd, GFP_KERNEL);
855 if (!rd)
856 return NULL;
857
858 for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
859 rule1 = &rd1->reg_rules[x];
860 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
861 rule2 = &rd2->reg_rules[y];
862 /*
863 * This time around instead of using the stack lets
864 * write to the target rule directly saving ourselves
865 * a memcpy()
866 */
867 intersected_rule = &rd->reg_rules[rule_idx];
868 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
869 intersected_rule);
870 /*
871 * No need to memset here the intersected rule here as
872 * we're not using the stack anymore
873 */
874 if (r)
875 continue;
876 rule_idx++;
877 }
878 }
879
880 if (rule_idx != num_rules) {
881 kfree(rd);
882 return NULL;
883 }
884
885 rd->n_reg_rules = num_rules;
886 rd->alpha2[0] = '9';
887 rd->alpha2[1] = '8';
888 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
889 rd2->dfs_region);
890
891 return rd;
892 }
893
894 /*
895 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
896 * want to just have the channel structure use these
897 */
898 static u32 map_regdom_flags(u32 rd_flags)
899 {
900 u32 channel_flags = 0;
901 if (rd_flags & NL80211_RRF_NO_IR_ALL)
902 channel_flags |= IEEE80211_CHAN_NO_IR;
903 if (rd_flags & NL80211_RRF_DFS)
904 channel_flags |= IEEE80211_CHAN_RADAR;
905 if (rd_flags & NL80211_RRF_NO_OFDM)
906 channel_flags |= IEEE80211_CHAN_NO_OFDM;
907 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
908 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
909 return channel_flags;
910 }
911
912 static const struct ieee80211_reg_rule *
913 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
914 const struct ieee80211_regdomain *regd)
915 {
916 int i;
917 bool band_rule_found = false;
918 bool bw_fits = false;
919
920 if (!regd)
921 return ERR_PTR(-EINVAL);
922
923 for (i = 0; i < regd->n_reg_rules; i++) {
924 const struct ieee80211_reg_rule *rr;
925 const struct ieee80211_freq_range *fr = NULL;
926
927 rr = &regd->reg_rules[i];
928 fr = &rr->freq_range;
929
930 /*
931 * We only need to know if one frequency rule was
932 * was in center_freq's band, that's enough, so lets
933 * not overwrite it once found
934 */
935 if (!band_rule_found)
936 band_rule_found = freq_in_rule_band(fr, center_freq);
937
938 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(5));
939
940 if (band_rule_found && bw_fits)
941 return rr;
942 }
943
944 if (!band_rule_found)
945 return ERR_PTR(-ERANGE);
946
947 return ERR_PTR(-EINVAL);
948 }
949
950 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
951 u32 center_freq)
952 {
953 const struct ieee80211_regdomain *regd;
954
955 regd = reg_get_regdomain(wiphy);
956
957 return freq_reg_info_regd(wiphy, center_freq, regd);
958 }
959 EXPORT_SYMBOL(freq_reg_info);
960
961 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
962 {
963 switch (initiator) {
964 case NL80211_REGDOM_SET_BY_CORE:
965 return "core";
966 case NL80211_REGDOM_SET_BY_USER:
967 return "user";
968 case NL80211_REGDOM_SET_BY_DRIVER:
969 return "driver";
970 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
971 return "country IE";
972 default:
973 WARN_ON(1);
974 return "bug";
975 }
976 }
977 EXPORT_SYMBOL(reg_initiator_name);
978
979 #ifdef CONFIG_CFG80211_REG_DEBUG
980 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
981 struct ieee80211_channel *chan,
982 const struct ieee80211_reg_rule *reg_rule)
983 {
984 const struct ieee80211_power_rule *power_rule;
985 const struct ieee80211_freq_range *freq_range;
986 char max_antenna_gain[32], bw[32];
987
988 power_rule = &reg_rule->power_rule;
989 freq_range = &reg_rule->freq_range;
990
991 if (!power_rule->max_antenna_gain)
992 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
993 else
994 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
995 power_rule->max_antenna_gain);
996
997 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
998 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
999 freq_range->max_bandwidth_khz,
1000 reg_get_max_bandwidth(regd, reg_rule));
1001 else
1002 snprintf(bw, sizeof(bw), "%d KHz",
1003 freq_range->max_bandwidth_khz);
1004
1005 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1006 chan->center_freq);
1007
1008 REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
1009 freq_range->start_freq_khz, freq_range->end_freq_khz,
1010 bw, max_antenna_gain,
1011 power_rule->max_eirp);
1012 }
1013 #else
1014 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1015 struct ieee80211_channel *chan,
1016 const struct ieee80211_reg_rule *reg_rule)
1017 {
1018 return;
1019 }
1020 #endif
1021
1022 /* Find an ieee80211_reg_rule such that a 5MHz channel with frequency
1023 * chan->center_freq fits there.
1024 * If there is no such reg_rule, disable the channel, otherwise set the
1025 * flags corresponding to the bandwidths allowed in the particular reg_rule
1026 */
1027 static void handle_channel(struct wiphy *wiphy,
1028 enum nl80211_reg_initiator initiator,
1029 struct ieee80211_channel *chan)
1030 {
1031 u32 flags, bw_flags = 0;
1032 const struct ieee80211_reg_rule *reg_rule = NULL;
1033 const struct ieee80211_power_rule *power_rule = NULL;
1034 const struct ieee80211_freq_range *freq_range = NULL;
1035 struct wiphy *request_wiphy = NULL;
1036 struct regulatory_request *lr = get_last_request();
1037 const struct ieee80211_regdomain *regd;
1038 u32 max_bandwidth_khz;
1039
1040 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1041
1042 flags = chan->orig_flags;
1043
1044 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1045 if (IS_ERR(reg_rule)) {
1046 /*
1047 * We will disable all channels that do not match our
1048 * received regulatory rule unless the hint is coming
1049 * from a Country IE and the Country IE had no information
1050 * about a band. The IEEE 802.11 spec allows for an AP
1051 * to send only a subset of the regulatory rules allowed,
1052 * so an AP in the US that only supports 2.4 GHz may only send
1053 * a country IE with information for the 2.4 GHz band
1054 * while 5 GHz is still supported.
1055 */
1056 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1057 PTR_ERR(reg_rule) == -ERANGE)
1058 return;
1059
1060 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1061 request_wiphy && request_wiphy == wiphy &&
1062 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1063 REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1064 chan->center_freq);
1065 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1066 chan->flags = chan->orig_flags;
1067 } else {
1068 REG_DBG_PRINT("Disabling freq %d MHz\n",
1069 chan->center_freq);
1070 chan->flags |= IEEE80211_CHAN_DISABLED;
1071 }
1072 return;
1073 }
1074
1075 regd = reg_get_regdomain(wiphy);
1076 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1077
1078 power_rule = &reg_rule->power_rule;
1079 freq_range = &reg_rule->freq_range;
1080
1081 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1082 /* Check if auto calculation requested */
1083 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1084 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1085
1086 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1087 bw_flags = IEEE80211_CHAN_NO_10MHZ;
1088 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1089 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1090 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1091 bw_flags |= IEEE80211_CHAN_NO_HT40;
1092 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1093 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1094 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1095 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1096
1097 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1098 request_wiphy && request_wiphy == wiphy &&
1099 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1100 /*
1101 * This guarantees the driver's requested regulatory domain
1102 * will always be used as a base for further regulatory
1103 * settings
1104 */
1105 chan->flags = chan->orig_flags =
1106 map_regdom_flags(reg_rule->flags) | bw_flags;
1107 chan->max_antenna_gain = chan->orig_mag =
1108 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1109 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1110 (int) MBM_TO_DBM(power_rule->max_eirp);
1111
1112 if (chan->flags & IEEE80211_CHAN_RADAR) {
1113 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1114 if (reg_rule->dfs_cac_ms)
1115 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1116 }
1117
1118 return;
1119 }
1120
1121 chan->dfs_state = NL80211_DFS_USABLE;
1122 chan->dfs_state_entered = jiffies;
1123
1124 chan->beacon_found = false;
1125 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1126 chan->max_antenna_gain =
1127 min_t(int, chan->orig_mag,
1128 MBI_TO_DBI(power_rule->max_antenna_gain));
1129 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1130
1131 if (chan->flags & IEEE80211_CHAN_RADAR) {
1132 if (reg_rule->dfs_cac_ms)
1133 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1134 else
1135 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1136 }
1137
1138 if (chan->orig_mpwr) {
1139 /*
1140 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1141 * will always follow the passed country IE power settings.
1142 */
1143 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1144 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1145 chan->max_power = chan->max_reg_power;
1146 else
1147 chan->max_power = min(chan->orig_mpwr,
1148 chan->max_reg_power);
1149 } else
1150 chan->max_power = chan->max_reg_power;
1151 }
1152
1153 static void handle_band(struct wiphy *wiphy,
1154 enum nl80211_reg_initiator initiator,
1155 struct ieee80211_supported_band *sband)
1156 {
1157 unsigned int i;
1158
1159 if (!sband)
1160 return;
1161
1162 for (i = 0; i < sband->n_channels; i++)
1163 handle_channel(wiphy, initiator, &sband->channels[i]);
1164 }
1165
1166 static bool reg_request_cell_base(struct regulatory_request *request)
1167 {
1168 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1169 return false;
1170 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1171 }
1172
1173 static bool reg_request_indoor(struct regulatory_request *request)
1174 {
1175 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1176 return false;
1177 return request->user_reg_hint_type == NL80211_USER_REG_HINT_INDOOR;
1178 }
1179
1180 bool reg_last_request_cell_base(void)
1181 {
1182 return reg_request_cell_base(get_last_request());
1183 }
1184
1185 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1186 /* Core specific check */
1187 static enum reg_request_treatment
1188 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1189 {
1190 struct regulatory_request *lr = get_last_request();
1191
1192 if (!reg_num_devs_support_basehint)
1193 return REG_REQ_IGNORE;
1194
1195 if (reg_request_cell_base(lr) &&
1196 !regdom_changes(pending_request->alpha2))
1197 return REG_REQ_ALREADY_SET;
1198
1199 return REG_REQ_OK;
1200 }
1201
1202 /* Device specific check */
1203 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1204 {
1205 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1206 }
1207 #else
1208 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1209 {
1210 return REG_REQ_IGNORE;
1211 }
1212
1213 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1214 {
1215 return true;
1216 }
1217 #endif
1218
1219 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1220 {
1221 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1222 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1223 return true;
1224 return false;
1225 }
1226
1227 static bool ignore_reg_update(struct wiphy *wiphy,
1228 enum nl80211_reg_initiator initiator)
1229 {
1230 struct regulatory_request *lr = get_last_request();
1231
1232 if (!lr) {
1233 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1234 "since last_request is not set\n",
1235 reg_initiator_name(initiator));
1236 return true;
1237 }
1238
1239 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1240 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1241 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1242 "since the driver uses its own custom "
1243 "regulatory domain\n",
1244 reg_initiator_name(initiator));
1245 return true;
1246 }
1247
1248 /*
1249 * wiphy->regd will be set once the device has its own
1250 * desired regulatory domain set
1251 */
1252 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1253 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1254 !is_world_regdom(lr->alpha2)) {
1255 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1256 "since the driver requires its own regulatory "
1257 "domain to be set first\n",
1258 reg_initiator_name(initiator));
1259 return true;
1260 }
1261
1262 if (reg_request_cell_base(lr))
1263 return reg_dev_ignore_cell_hint(wiphy);
1264
1265 return false;
1266 }
1267
1268 static bool reg_is_world_roaming(struct wiphy *wiphy)
1269 {
1270 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1271 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1272 struct regulatory_request *lr = get_last_request();
1273
1274 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1275 return true;
1276
1277 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1278 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1279 return true;
1280
1281 return false;
1282 }
1283
1284 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1285 struct reg_beacon *reg_beacon)
1286 {
1287 struct ieee80211_supported_band *sband;
1288 struct ieee80211_channel *chan;
1289 bool channel_changed = false;
1290 struct ieee80211_channel chan_before;
1291
1292 sband = wiphy->bands[reg_beacon->chan.band];
1293 chan = &sband->channels[chan_idx];
1294
1295 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1296 return;
1297
1298 if (chan->beacon_found)
1299 return;
1300
1301 chan->beacon_found = true;
1302
1303 if (!reg_is_world_roaming(wiphy))
1304 return;
1305
1306 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1307 return;
1308
1309 chan_before.center_freq = chan->center_freq;
1310 chan_before.flags = chan->flags;
1311
1312 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1313 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1314 channel_changed = true;
1315 }
1316
1317 if (channel_changed)
1318 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1319 }
1320
1321 /*
1322 * Called when a scan on a wiphy finds a beacon on
1323 * new channel
1324 */
1325 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1326 struct reg_beacon *reg_beacon)
1327 {
1328 unsigned int i;
1329 struct ieee80211_supported_band *sband;
1330
1331 if (!wiphy->bands[reg_beacon->chan.band])
1332 return;
1333
1334 sband = wiphy->bands[reg_beacon->chan.band];
1335
1336 for (i = 0; i < sband->n_channels; i++)
1337 handle_reg_beacon(wiphy, i, reg_beacon);
1338 }
1339
1340 /*
1341 * Called upon reg changes or a new wiphy is added
1342 */
1343 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1344 {
1345 unsigned int i;
1346 struct ieee80211_supported_band *sband;
1347 struct reg_beacon *reg_beacon;
1348
1349 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1350 if (!wiphy->bands[reg_beacon->chan.band])
1351 continue;
1352 sband = wiphy->bands[reg_beacon->chan.band];
1353 for (i = 0; i < sband->n_channels; i++)
1354 handle_reg_beacon(wiphy, i, reg_beacon);
1355 }
1356 }
1357
1358 /* Reap the advantages of previously found beacons */
1359 static void reg_process_beacons(struct wiphy *wiphy)
1360 {
1361 /*
1362 * Means we are just firing up cfg80211, so no beacons would
1363 * have been processed yet.
1364 */
1365 if (!last_request)
1366 return;
1367 wiphy_update_beacon_reg(wiphy);
1368 }
1369
1370 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1371 {
1372 if (!chan)
1373 return false;
1374 if (chan->flags & IEEE80211_CHAN_DISABLED)
1375 return false;
1376 /* This would happen when regulatory rules disallow HT40 completely */
1377 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1378 return false;
1379 return true;
1380 }
1381
1382 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1383 struct ieee80211_channel *channel)
1384 {
1385 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1386 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1387 unsigned int i;
1388
1389 if (!is_ht40_allowed(channel)) {
1390 channel->flags |= IEEE80211_CHAN_NO_HT40;
1391 return;
1392 }
1393
1394 /*
1395 * We need to ensure the extension channels exist to
1396 * be able to use HT40- or HT40+, this finds them (or not)
1397 */
1398 for (i = 0; i < sband->n_channels; i++) {
1399 struct ieee80211_channel *c = &sband->channels[i];
1400
1401 if (c->center_freq == (channel->center_freq - 20))
1402 channel_before = c;
1403 if (c->center_freq == (channel->center_freq + 20))
1404 channel_after = c;
1405 }
1406
1407 /*
1408 * Please note that this assumes target bandwidth is 20 MHz,
1409 * if that ever changes we also need to change the below logic
1410 * to include that as well.
1411 */
1412 if (!is_ht40_allowed(channel_before))
1413 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1414 else
1415 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1416
1417 if (!is_ht40_allowed(channel_after))
1418 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1419 else
1420 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1421 }
1422
1423 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1424 struct ieee80211_supported_band *sband)
1425 {
1426 unsigned int i;
1427
1428 if (!sband)
1429 return;
1430
1431 for (i = 0; i < sband->n_channels; i++)
1432 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1433 }
1434
1435 static void reg_process_ht_flags(struct wiphy *wiphy)
1436 {
1437 enum ieee80211_band band;
1438
1439 if (!wiphy)
1440 return;
1441
1442 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1443 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1444 }
1445
1446 static void reg_call_notifier(struct wiphy *wiphy,
1447 struct regulatory_request *request)
1448 {
1449 if (wiphy->reg_notifier)
1450 wiphy->reg_notifier(wiphy, request);
1451 }
1452
1453 static void wiphy_update_regulatory(struct wiphy *wiphy,
1454 enum nl80211_reg_initiator initiator)
1455 {
1456 enum ieee80211_band band;
1457 struct regulatory_request *lr = get_last_request();
1458
1459 if (ignore_reg_update(wiphy, initiator)) {
1460 /*
1461 * Regulatory updates set by CORE are ignored for custom
1462 * regulatory cards. Let us notify the changes to the driver,
1463 * as some drivers used this to restore its orig_* reg domain.
1464 */
1465 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1466 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1467 reg_call_notifier(wiphy, lr);
1468 return;
1469 }
1470
1471 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1472
1473 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1474 handle_band(wiphy, initiator, wiphy->bands[band]);
1475
1476 reg_process_beacons(wiphy);
1477 reg_process_ht_flags(wiphy);
1478 reg_call_notifier(wiphy, lr);
1479 }
1480
1481 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1482 {
1483 struct cfg80211_registered_device *rdev;
1484 struct wiphy *wiphy;
1485
1486 ASSERT_RTNL();
1487
1488 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1489 wiphy = &rdev->wiphy;
1490 wiphy_update_regulatory(wiphy, initiator);
1491 }
1492 }
1493
1494 static void handle_channel_custom(struct wiphy *wiphy,
1495 struct ieee80211_channel *chan,
1496 const struct ieee80211_regdomain *regd)
1497 {
1498 u32 bw_flags = 0;
1499 const struct ieee80211_reg_rule *reg_rule = NULL;
1500 const struct ieee80211_power_rule *power_rule = NULL;
1501 const struct ieee80211_freq_range *freq_range = NULL;
1502 u32 max_bandwidth_khz;
1503
1504 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1505 regd);
1506
1507 if (IS_ERR(reg_rule)) {
1508 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1509 chan->center_freq);
1510 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1511 chan->flags = chan->orig_flags;
1512 return;
1513 }
1514
1515 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1516
1517 power_rule = &reg_rule->power_rule;
1518 freq_range = &reg_rule->freq_range;
1519
1520 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1521 /* Check if auto calculation requested */
1522 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1523 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1524
1525 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1526 bw_flags = IEEE80211_CHAN_NO_10MHZ;
1527 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1528 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1529 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1530 bw_flags |= IEEE80211_CHAN_NO_HT40;
1531 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1532 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1533 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1534 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1535
1536 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1537 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1538 chan->max_reg_power = chan->max_power =
1539 (int) MBM_TO_DBM(power_rule->max_eirp);
1540 }
1541
1542 static void handle_band_custom(struct wiphy *wiphy,
1543 struct ieee80211_supported_band *sband,
1544 const struct ieee80211_regdomain *regd)
1545 {
1546 unsigned int i;
1547
1548 if (!sband)
1549 return;
1550
1551 for (i = 0; i < sband->n_channels; i++)
1552 handle_channel_custom(wiphy, &sband->channels[i], regd);
1553 }
1554
1555 /* Used by drivers prior to wiphy registration */
1556 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1557 const struct ieee80211_regdomain *regd)
1558 {
1559 enum ieee80211_band band;
1560 unsigned int bands_set = 0;
1561
1562 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1563 "wiphy should have REGULATORY_CUSTOM_REG\n");
1564 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1565
1566 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1567 if (!wiphy->bands[band])
1568 continue;
1569 handle_band_custom(wiphy, wiphy->bands[band], regd);
1570 bands_set++;
1571 }
1572
1573 /*
1574 * no point in calling this if it won't have any effect
1575 * on your device's supported bands.
1576 */
1577 WARN_ON(!bands_set);
1578 }
1579 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1580
1581 static void reg_set_request_processed(void)
1582 {
1583 bool need_more_processing = false;
1584 struct regulatory_request *lr = get_last_request();
1585
1586 lr->processed = true;
1587
1588 spin_lock(&reg_requests_lock);
1589 if (!list_empty(&reg_requests_list))
1590 need_more_processing = true;
1591 spin_unlock(&reg_requests_lock);
1592
1593 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1594 cancel_delayed_work(&reg_timeout);
1595
1596 if (need_more_processing)
1597 schedule_work(&reg_work);
1598 }
1599
1600 /**
1601 * reg_process_hint_core - process core regulatory requests
1602 * @pending_request: a pending core regulatory request
1603 *
1604 * The wireless subsystem can use this function to process
1605 * a regulatory request issued by the regulatory core.
1606 *
1607 * Returns one of the different reg request treatment values.
1608 */
1609 static enum reg_request_treatment
1610 reg_process_hint_core(struct regulatory_request *core_request)
1611 {
1612
1613 core_request->intersect = false;
1614 core_request->processed = false;
1615
1616 reg_update_last_request(core_request);
1617
1618 return reg_call_crda(core_request);
1619 }
1620
1621 static enum reg_request_treatment
1622 __reg_process_hint_user(struct regulatory_request *user_request)
1623 {
1624 struct regulatory_request *lr = get_last_request();
1625
1626 if (reg_request_indoor(user_request)) {
1627 reg_is_indoor = true;
1628 return REG_REQ_USER_HINT_HANDLED;
1629 }
1630
1631 if (reg_request_cell_base(user_request))
1632 return reg_ignore_cell_hint(user_request);
1633
1634 if (reg_request_cell_base(lr))
1635 return REG_REQ_IGNORE;
1636
1637 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1638 return REG_REQ_INTERSECT;
1639 /*
1640 * If the user knows better the user should set the regdom
1641 * to their country before the IE is picked up
1642 */
1643 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1644 lr->intersect)
1645 return REG_REQ_IGNORE;
1646 /*
1647 * Process user requests only after previous user/driver/core
1648 * requests have been processed
1649 */
1650 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1651 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1652 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1653 regdom_changes(lr->alpha2))
1654 return REG_REQ_IGNORE;
1655
1656 if (!regdom_changes(user_request->alpha2))
1657 return REG_REQ_ALREADY_SET;
1658
1659 return REG_REQ_OK;
1660 }
1661
1662 /**
1663 * reg_process_hint_user - process user regulatory requests
1664 * @user_request: a pending user regulatory request
1665 *
1666 * The wireless subsystem can use this function to process
1667 * a regulatory request initiated by userspace.
1668 *
1669 * Returns one of the different reg request treatment values.
1670 */
1671 static enum reg_request_treatment
1672 reg_process_hint_user(struct regulatory_request *user_request)
1673 {
1674 enum reg_request_treatment treatment;
1675
1676 treatment = __reg_process_hint_user(user_request);
1677 if (treatment == REG_REQ_IGNORE ||
1678 treatment == REG_REQ_ALREADY_SET ||
1679 treatment == REG_REQ_USER_HINT_HANDLED) {
1680 reg_free_request(user_request);
1681 return treatment;
1682 }
1683
1684 user_request->intersect = treatment == REG_REQ_INTERSECT;
1685 user_request->processed = false;
1686
1687 reg_update_last_request(user_request);
1688
1689 user_alpha2[0] = user_request->alpha2[0];
1690 user_alpha2[1] = user_request->alpha2[1];
1691
1692 return reg_call_crda(user_request);
1693 }
1694
1695 static enum reg_request_treatment
1696 __reg_process_hint_driver(struct regulatory_request *driver_request)
1697 {
1698 struct regulatory_request *lr = get_last_request();
1699
1700 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1701 if (regdom_changes(driver_request->alpha2))
1702 return REG_REQ_OK;
1703 return REG_REQ_ALREADY_SET;
1704 }
1705
1706 /*
1707 * This would happen if you unplug and plug your card
1708 * back in or if you add a new device for which the previously
1709 * loaded card also agrees on the regulatory domain.
1710 */
1711 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1712 !regdom_changes(driver_request->alpha2))
1713 return REG_REQ_ALREADY_SET;
1714
1715 return REG_REQ_INTERSECT;
1716 }
1717
1718 /**
1719 * reg_process_hint_driver - process driver regulatory requests
1720 * @driver_request: a pending driver regulatory request
1721 *
1722 * The wireless subsystem can use this function to process
1723 * a regulatory request issued by an 802.11 driver.
1724 *
1725 * Returns one of the different reg request treatment values.
1726 */
1727 static enum reg_request_treatment
1728 reg_process_hint_driver(struct wiphy *wiphy,
1729 struct regulatory_request *driver_request)
1730 {
1731 const struct ieee80211_regdomain *regd;
1732 enum reg_request_treatment treatment;
1733
1734 treatment = __reg_process_hint_driver(driver_request);
1735
1736 switch (treatment) {
1737 case REG_REQ_OK:
1738 break;
1739 case REG_REQ_IGNORE:
1740 case REG_REQ_USER_HINT_HANDLED:
1741 reg_free_request(driver_request);
1742 return treatment;
1743 case REG_REQ_INTERSECT:
1744 /* fall through */
1745 case REG_REQ_ALREADY_SET:
1746 regd = reg_copy_regd(get_cfg80211_regdom());
1747 if (IS_ERR(regd)) {
1748 reg_free_request(driver_request);
1749 return REG_REQ_IGNORE;
1750 }
1751 rcu_assign_pointer(wiphy->regd, regd);
1752 }
1753
1754
1755 driver_request->intersect = treatment == REG_REQ_INTERSECT;
1756 driver_request->processed = false;
1757
1758 reg_update_last_request(driver_request);
1759
1760 /*
1761 * Since CRDA will not be called in this case as we already
1762 * have applied the requested regulatory domain before we just
1763 * inform userspace we have processed the request
1764 */
1765 if (treatment == REG_REQ_ALREADY_SET) {
1766 nl80211_send_reg_change_event(driver_request);
1767 reg_set_request_processed();
1768 return treatment;
1769 }
1770
1771 return reg_call_crda(driver_request);
1772 }
1773
1774 static enum reg_request_treatment
1775 __reg_process_hint_country_ie(struct wiphy *wiphy,
1776 struct regulatory_request *country_ie_request)
1777 {
1778 struct wiphy *last_wiphy = NULL;
1779 struct regulatory_request *lr = get_last_request();
1780
1781 if (reg_request_cell_base(lr)) {
1782 /* Trust a Cell base station over the AP's country IE */
1783 if (regdom_changes(country_ie_request->alpha2))
1784 return REG_REQ_IGNORE;
1785 return REG_REQ_ALREADY_SET;
1786 } else {
1787 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1788 return REG_REQ_IGNORE;
1789 }
1790
1791 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
1792 return -EINVAL;
1793
1794 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
1795 return REG_REQ_OK;
1796
1797 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1798
1799 if (last_wiphy != wiphy) {
1800 /*
1801 * Two cards with two APs claiming different
1802 * Country IE alpha2s. We could
1803 * intersect them, but that seems unlikely
1804 * to be correct. Reject second one for now.
1805 */
1806 if (regdom_changes(country_ie_request->alpha2))
1807 return REG_REQ_IGNORE;
1808 return REG_REQ_ALREADY_SET;
1809 }
1810 /*
1811 * Two consecutive Country IE hints on the same wiphy.
1812 * This should be picked up early by the driver/stack
1813 */
1814 if (WARN_ON(regdom_changes(country_ie_request->alpha2)))
1815 return REG_REQ_OK;
1816 return REG_REQ_ALREADY_SET;
1817 }
1818
1819 /**
1820 * reg_process_hint_country_ie - process regulatory requests from country IEs
1821 * @country_ie_request: a regulatory request from a country IE
1822 *
1823 * The wireless subsystem can use this function to process
1824 * a regulatory request issued by a country Information Element.
1825 *
1826 * Returns one of the different reg request treatment values.
1827 */
1828 static enum reg_request_treatment
1829 reg_process_hint_country_ie(struct wiphy *wiphy,
1830 struct regulatory_request *country_ie_request)
1831 {
1832 enum reg_request_treatment treatment;
1833
1834 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
1835
1836 switch (treatment) {
1837 case REG_REQ_OK:
1838 break;
1839 case REG_REQ_IGNORE:
1840 case REG_REQ_USER_HINT_HANDLED:
1841 /* fall through */
1842 case REG_REQ_ALREADY_SET:
1843 reg_free_request(country_ie_request);
1844 return treatment;
1845 case REG_REQ_INTERSECT:
1846 reg_free_request(country_ie_request);
1847 /*
1848 * This doesn't happen yet, not sure we
1849 * ever want to support it for this case.
1850 */
1851 WARN_ONCE(1, "Unexpected intersection for country IEs");
1852 return REG_REQ_IGNORE;
1853 }
1854
1855 country_ie_request->intersect = false;
1856 country_ie_request->processed = false;
1857
1858 reg_update_last_request(country_ie_request);
1859
1860 return reg_call_crda(country_ie_request);
1861 }
1862
1863 /* This processes *all* regulatory hints */
1864 static void reg_process_hint(struct regulatory_request *reg_request)
1865 {
1866 struct wiphy *wiphy = NULL;
1867 enum reg_request_treatment treatment;
1868
1869 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1870 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1871
1872 switch (reg_request->initiator) {
1873 case NL80211_REGDOM_SET_BY_CORE:
1874 reg_process_hint_core(reg_request);
1875 return;
1876 case NL80211_REGDOM_SET_BY_USER:
1877 treatment = reg_process_hint_user(reg_request);
1878 if (treatment == REG_REQ_IGNORE ||
1879 treatment == REG_REQ_ALREADY_SET ||
1880 treatment == REG_REQ_USER_HINT_HANDLED)
1881 return;
1882 queue_delayed_work(system_power_efficient_wq,
1883 &reg_timeout, msecs_to_jiffies(3142));
1884 return;
1885 case NL80211_REGDOM_SET_BY_DRIVER:
1886 if (!wiphy)
1887 goto out_free;
1888 treatment = reg_process_hint_driver(wiphy, reg_request);
1889 break;
1890 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1891 if (!wiphy)
1892 goto out_free;
1893 treatment = reg_process_hint_country_ie(wiphy, reg_request);
1894 break;
1895 default:
1896 WARN(1, "invalid initiator %d\n", reg_request->initiator);
1897 goto out_free;
1898 }
1899
1900 /* This is required so that the orig_* parameters are saved */
1901 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
1902 wiphy->regulatory_flags & REGULATORY_STRICT_REG)
1903 wiphy_update_regulatory(wiphy, reg_request->initiator);
1904
1905 return;
1906
1907 out_free:
1908 reg_free_request(reg_request);
1909 }
1910
1911 /*
1912 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1913 * Regulatory hints come on a first come first serve basis and we
1914 * must process each one atomically.
1915 */
1916 static void reg_process_pending_hints(void)
1917 {
1918 struct regulatory_request *reg_request, *lr;
1919
1920 lr = get_last_request();
1921
1922 /* When last_request->processed becomes true this will be rescheduled */
1923 if (lr && !lr->processed) {
1924 reg_process_hint(lr);
1925 return;
1926 }
1927
1928 spin_lock(&reg_requests_lock);
1929
1930 if (list_empty(&reg_requests_list)) {
1931 spin_unlock(&reg_requests_lock);
1932 return;
1933 }
1934
1935 reg_request = list_first_entry(&reg_requests_list,
1936 struct regulatory_request,
1937 list);
1938 list_del_init(&reg_request->list);
1939
1940 spin_unlock(&reg_requests_lock);
1941
1942 reg_process_hint(reg_request);
1943 }
1944
1945 /* Processes beacon hints -- this has nothing to do with country IEs */
1946 static void reg_process_pending_beacon_hints(void)
1947 {
1948 struct cfg80211_registered_device *rdev;
1949 struct reg_beacon *pending_beacon, *tmp;
1950
1951 /* This goes through the _pending_ beacon list */
1952 spin_lock_bh(&reg_pending_beacons_lock);
1953
1954 list_for_each_entry_safe(pending_beacon, tmp,
1955 &reg_pending_beacons, list) {
1956 list_del_init(&pending_beacon->list);
1957
1958 /* Applies the beacon hint to current wiphys */
1959 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1960 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1961
1962 /* Remembers the beacon hint for new wiphys or reg changes */
1963 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1964 }
1965
1966 spin_unlock_bh(&reg_pending_beacons_lock);
1967 }
1968
1969 static void reg_todo(struct work_struct *work)
1970 {
1971 rtnl_lock();
1972 reg_process_pending_hints();
1973 reg_process_pending_beacon_hints();
1974 rtnl_unlock();
1975 }
1976
1977 static void queue_regulatory_request(struct regulatory_request *request)
1978 {
1979 request->alpha2[0] = toupper(request->alpha2[0]);
1980 request->alpha2[1] = toupper(request->alpha2[1]);
1981
1982 spin_lock(&reg_requests_lock);
1983 list_add_tail(&request->list, &reg_requests_list);
1984 spin_unlock(&reg_requests_lock);
1985
1986 schedule_work(&reg_work);
1987 }
1988
1989 /*
1990 * Core regulatory hint -- happens during cfg80211_init()
1991 * and when we restore regulatory settings.
1992 */
1993 static int regulatory_hint_core(const char *alpha2)
1994 {
1995 struct regulatory_request *request;
1996
1997 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1998 if (!request)
1999 return -ENOMEM;
2000
2001 request->alpha2[0] = alpha2[0];
2002 request->alpha2[1] = alpha2[1];
2003 request->initiator = NL80211_REGDOM_SET_BY_CORE;
2004
2005 queue_regulatory_request(request);
2006
2007 return 0;
2008 }
2009
2010 /* User hints */
2011 int regulatory_hint_user(const char *alpha2,
2012 enum nl80211_user_reg_hint_type user_reg_hint_type)
2013 {
2014 struct regulatory_request *request;
2015
2016 if (WARN_ON(!alpha2))
2017 return -EINVAL;
2018
2019 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2020 if (!request)
2021 return -ENOMEM;
2022
2023 request->wiphy_idx = WIPHY_IDX_INVALID;
2024 request->alpha2[0] = alpha2[0];
2025 request->alpha2[1] = alpha2[1];
2026 request->initiator = NL80211_REGDOM_SET_BY_USER;
2027 request->user_reg_hint_type = user_reg_hint_type;
2028
2029 queue_regulatory_request(request);
2030
2031 return 0;
2032 }
2033
2034 int regulatory_hint_indoor_user(void)
2035 {
2036 struct regulatory_request *request;
2037
2038 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2039 if (!request)
2040 return -ENOMEM;
2041
2042 request->wiphy_idx = WIPHY_IDX_INVALID;
2043 request->initiator = NL80211_REGDOM_SET_BY_USER;
2044 request->user_reg_hint_type = NL80211_USER_REG_HINT_INDOOR;
2045 queue_regulatory_request(request);
2046
2047 return 0;
2048 }
2049
2050 /* Driver hints */
2051 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2052 {
2053 struct regulatory_request *request;
2054
2055 if (WARN_ON(!alpha2 || !wiphy))
2056 return -EINVAL;
2057
2058 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2059
2060 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2061 if (!request)
2062 return -ENOMEM;
2063
2064 request->wiphy_idx = get_wiphy_idx(wiphy);
2065
2066 request->alpha2[0] = alpha2[0];
2067 request->alpha2[1] = alpha2[1];
2068 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2069
2070 queue_regulatory_request(request);
2071
2072 return 0;
2073 }
2074 EXPORT_SYMBOL(regulatory_hint);
2075
2076 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2077 const u8 *country_ie, u8 country_ie_len)
2078 {
2079 char alpha2[2];
2080 enum environment_cap env = ENVIRON_ANY;
2081 struct regulatory_request *request = NULL, *lr;
2082
2083 /* IE len must be evenly divisible by 2 */
2084 if (country_ie_len & 0x01)
2085 return;
2086
2087 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2088 return;
2089
2090 request = kzalloc(sizeof(*request), GFP_KERNEL);
2091 if (!request)
2092 return;
2093
2094 alpha2[0] = country_ie[0];
2095 alpha2[1] = country_ie[1];
2096
2097 if (country_ie[2] == 'I')
2098 env = ENVIRON_INDOOR;
2099 else if (country_ie[2] == 'O')
2100 env = ENVIRON_OUTDOOR;
2101
2102 rcu_read_lock();
2103 lr = get_last_request();
2104
2105 if (unlikely(!lr))
2106 goto out;
2107
2108 /*
2109 * We will run this only upon a successful connection on cfg80211.
2110 * We leave conflict resolution to the workqueue, where can hold
2111 * the RTNL.
2112 */
2113 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2114 lr->wiphy_idx != WIPHY_IDX_INVALID)
2115 goto out;
2116
2117 request->wiphy_idx = get_wiphy_idx(wiphy);
2118 request->alpha2[0] = alpha2[0];
2119 request->alpha2[1] = alpha2[1];
2120 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2121 request->country_ie_env = env;
2122
2123 queue_regulatory_request(request);
2124 request = NULL;
2125 out:
2126 kfree(request);
2127 rcu_read_unlock();
2128 }
2129
2130 static void restore_alpha2(char *alpha2, bool reset_user)
2131 {
2132 /* indicates there is no alpha2 to consider for restoration */
2133 alpha2[0] = '9';
2134 alpha2[1] = '7';
2135
2136 /* The user setting has precedence over the module parameter */
2137 if (is_user_regdom_saved()) {
2138 /* Unless we're asked to ignore it and reset it */
2139 if (reset_user) {
2140 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2141 user_alpha2[0] = '9';
2142 user_alpha2[1] = '7';
2143
2144 /*
2145 * If we're ignoring user settings, we still need to
2146 * check the module parameter to ensure we put things
2147 * back as they were for a full restore.
2148 */
2149 if (!is_world_regdom(ieee80211_regdom)) {
2150 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2151 ieee80211_regdom[0], ieee80211_regdom[1]);
2152 alpha2[0] = ieee80211_regdom[0];
2153 alpha2[1] = ieee80211_regdom[1];
2154 }
2155 } else {
2156 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2157 user_alpha2[0], user_alpha2[1]);
2158 alpha2[0] = user_alpha2[0];
2159 alpha2[1] = user_alpha2[1];
2160 }
2161 } else if (!is_world_regdom(ieee80211_regdom)) {
2162 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2163 ieee80211_regdom[0], ieee80211_regdom[1]);
2164 alpha2[0] = ieee80211_regdom[0];
2165 alpha2[1] = ieee80211_regdom[1];
2166 } else
2167 REG_DBG_PRINT("Restoring regulatory settings\n");
2168 }
2169
2170 static void restore_custom_reg_settings(struct wiphy *wiphy)
2171 {
2172 struct ieee80211_supported_band *sband;
2173 enum ieee80211_band band;
2174 struct ieee80211_channel *chan;
2175 int i;
2176
2177 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2178 sband = wiphy->bands[band];
2179 if (!sband)
2180 continue;
2181 for (i = 0; i < sband->n_channels; i++) {
2182 chan = &sband->channels[i];
2183 chan->flags = chan->orig_flags;
2184 chan->max_antenna_gain = chan->orig_mag;
2185 chan->max_power = chan->orig_mpwr;
2186 chan->beacon_found = false;
2187 }
2188 }
2189 }
2190
2191 /*
2192 * Restoring regulatory settings involves ingoring any
2193 * possibly stale country IE information and user regulatory
2194 * settings if so desired, this includes any beacon hints
2195 * learned as we could have traveled outside to another country
2196 * after disconnection. To restore regulatory settings we do
2197 * exactly what we did at bootup:
2198 *
2199 * - send a core regulatory hint
2200 * - send a user regulatory hint if applicable
2201 *
2202 * Device drivers that send a regulatory hint for a specific country
2203 * keep their own regulatory domain on wiphy->regd so that does does
2204 * not need to be remembered.
2205 */
2206 static void restore_regulatory_settings(bool reset_user)
2207 {
2208 char alpha2[2];
2209 char world_alpha2[2];
2210 struct reg_beacon *reg_beacon, *btmp;
2211 struct regulatory_request *reg_request, *tmp;
2212 LIST_HEAD(tmp_reg_req_list);
2213 struct cfg80211_registered_device *rdev;
2214
2215 ASSERT_RTNL();
2216
2217 reg_is_indoor = false;
2218
2219 reset_regdomains(true, &world_regdom);
2220 restore_alpha2(alpha2, reset_user);
2221
2222 /*
2223 * If there's any pending requests we simply
2224 * stash them to a temporary pending queue and
2225 * add then after we've restored regulatory
2226 * settings.
2227 */
2228 spin_lock(&reg_requests_lock);
2229 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2230 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
2231 continue;
2232 list_move_tail(&reg_request->list, &tmp_reg_req_list);
2233 }
2234 spin_unlock(&reg_requests_lock);
2235
2236 /* Clear beacon hints */
2237 spin_lock_bh(&reg_pending_beacons_lock);
2238 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2239 list_del(&reg_beacon->list);
2240 kfree(reg_beacon);
2241 }
2242 spin_unlock_bh(&reg_pending_beacons_lock);
2243
2244 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2245 list_del(&reg_beacon->list);
2246 kfree(reg_beacon);
2247 }
2248
2249 /* First restore to the basic regulatory settings */
2250 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2251 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2252
2253 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2254 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2255 restore_custom_reg_settings(&rdev->wiphy);
2256 }
2257
2258 regulatory_hint_core(world_alpha2);
2259
2260 /*
2261 * This restores the ieee80211_regdom module parameter
2262 * preference or the last user requested regulatory
2263 * settings, user regulatory settings takes precedence.
2264 */
2265 if (is_an_alpha2(alpha2))
2266 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2267
2268 spin_lock(&reg_requests_lock);
2269 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2270 spin_unlock(&reg_requests_lock);
2271
2272 REG_DBG_PRINT("Kicking the queue\n");
2273
2274 schedule_work(&reg_work);
2275 }
2276
2277 void regulatory_hint_disconnect(void)
2278 {
2279 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2280 restore_regulatory_settings(false);
2281 }
2282
2283 static bool freq_is_chan_12_13_14(u16 freq)
2284 {
2285 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2286 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2287 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2288 return true;
2289 return false;
2290 }
2291
2292 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2293 {
2294 struct reg_beacon *pending_beacon;
2295
2296 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2297 if (beacon_chan->center_freq ==
2298 pending_beacon->chan.center_freq)
2299 return true;
2300 return false;
2301 }
2302
2303 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2304 struct ieee80211_channel *beacon_chan,
2305 gfp_t gfp)
2306 {
2307 struct reg_beacon *reg_beacon;
2308 bool processing;
2309
2310 if (beacon_chan->beacon_found ||
2311 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2312 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2313 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2314 return 0;
2315
2316 spin_lock_bh(&reg_pending_beacons_lock);
2317 processing = pending_reg_beacon(beacon_chan);
2318 spin_unlock_bh(&reg_pending_beacons_lock);
2319
2320 if (processing)
2321 return 0;
2322
2323 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2324 if (!reg_beacon)
2325 return -ENOMEM;
2326
2327 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2328 beacon_chan->center_freq,
2329 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2330 wiphy_name(wiphy));
2331
2332 memcpy(&reg_beacon->chan, beacon_chan,
2333 sizeof(struct ieee80211_channel));
2334
2335 /*
2336 * Since we can be called from BH or and non-BH context
2337 * we must use spin_lock_bh()
2338 */
2339 spin_lock_bh(&reg_pending_beacons_lock);
2340 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2341 spin_unlock_bh(&reg_pending_beacons_lock);
2342
2343 schedule_work(&reg_work);
2344
2345 return 0;
2346 }
2347
2348 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2349 {
2350 unsigned int i;
2351 const struct ieee80211_reg_rule *reg_rule = NULL;
2352 const struct ieee80211_freq_range *freq_range = NULL;
2353 const struct ieee80211_power_rule *power_rule = NULL;
2354 char bw[32], cac_time[32];
2355
2356 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2357
2358 for (i = 0; i < rd->n_reg_rules; i++) {
2359 reg_rule = &rd->reg_rules[i];
2360 freq_range = &reg_rule->freq_range;
2361 power_rule = &reg_rule->power_rule;
2362
2363 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2364 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2365 freq_range->max_bandwidth_khz,
2366 reg_get_max_bandwidth(rd, reg_rule));
2367 else
2368 snprintf(bw, sizeof(bw), "%d KHz",
2369 freq_range->max_bandwidth_khz);
2370
2371 if (reg_rule->flags & NL80211_RRF_DFS)
2372 scnprintf(cac_time, sizeof(cac_time), "%u s",
2373 reg_rule->dfs_cac_ms/1000);
2374 else
2375 scnprintf(cac_time, sizeof(cac_time), "N/A");
2376
2377
2378 /*
2379 * There may not be documentation for max antenna gain
2380 * in certain regions
2381 */
2382 if (power_rule->max_antenna_gain)
2383 pr_info(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2384 freq_range->start_freq_khz,
2385 freq_range->end_freq_khz,
2386 bw,
2387 power_rule->max_antenna_gain,
2388 power_rule->max_eirp,
2389 cac_time);
2390 else
2391 pr_info(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2392 freq_range->start_freq_khz,
2393 freq_range->end_freq_khz,
2394 bw,
2395 power_rule->max_eirp,
2396 cac_time);
2397 }
2398 }
2399
2400 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2401 {
2402 switch (dfs_region) {
2403 case NL80211_DFS_UNSET:
2404 case NL80211_DFS_FCC:
2405 case NL80211_DFS_ETSI:
2406 case NL80211_DFS_JP:
2407 return true;
2408 default:
2409 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2410 dfs_region);
2411 return false;
2412 }
2413 }
2414
2415 static void print_regdomain(const struct ieee80211_regdomain *rd)
2416 {
2417 struct regulatory_request *lr = get_last_request();
2418
2419 if (is_intersected_alpha2(rd->alpha2)) {
2420 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2421 struct cfg80211_registered_device *rdev;
2422 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2423 if (rdev) {
2424 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2425 rdev->country_ie_alpha2[0],
2426 rdev->country_ie_alpha2[1]);
2427 } else
2428 pr_info("Current regulatory domain intersected:\n");
2429 } else
2430 pr_info("Current regulatory domain intersected:\n");
2431 } else if (is_world_regdom(rd->alpha2)) {
2432 pr_info("World regulatory domain updated:\n");
2433 } else {
2434 if (is_unknown_alpha2(rd->alpha2))
2435 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2436 else {
2437 if (reg_request_cell_base(lr))
2438 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2439 rd->alpha2[0], rd->alpha2[1]);
2440 else
2441 pr_info("Regulatory domain changed to country: %c%c\n",
2442 rd->alpha2[0], rd->alpha2[1]);
2443 }
2444 }
2445
2446 pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2447 print_rd_rules(rd);
2448 }
2449
2450 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2451 {
2452 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2453 print_rd_rules(rd);
2454 }
2455
2456 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2457 {
2458 if (!is_world_regdom(rd->alpha2))
2459 return -EINVAL;
2460 update_world_regdomain(rd);
2461 return 0;
2462 }
2463
2464 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2465 struct regulatory_request *user_request)
2466 {
2467 const struct ieee80211_regdomain *intersected_rd = NULL;
2468
2469 if (!regdom_changes(rd->alpha2))
2470 return -EALREADY;
2471
2472 if (!is_valid_rd(rd)) {
2473 pr_err("Invalid regulatory domain detected:\n");
2474 print_regdomain_info(rd);
2475 return -EINVAL;
2476 }
2477
2478 if (!user_request->intersect) {
2479 reset_regdomains(false, rd);
2480 return 0;
2481 }
2482
2483 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2484 if (!intersected_rd)
2485 return -EINVAL;
2486
2487 kfree(rd);
2488 rd = NULL;
2489 reset_regdomains(false, intersected_rd);
2490
2491 return 0;
2492 }
2493
2494 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2495 struct regulatory_request *driver_request)
2496 {
2497 const struct ieee80211_regdomain *regd;
2498 const struct ieee80211_regdomain *intersected_rd = NULL;
2499 const struct ieee80211_regdomain *tmp;
2500 struct wiphy *request_wiphy;
2501
2502 if (is_world_regdom(rd->alpha2))
2503 return -EINVAL;
2504
2505 if (!regdom_changes(rd->alpha2))
2506 return -EALREADY;
2507
2508 if (!is_valid_rd(rd)) {
2509 pr_err("Invalid regulatory domain detected:\n");
2510 print_regdomain_info(rd);
2511 return -EINVAL;
2512 }
2513
2514 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2515 if (!request_wiphy) {
2516 queue_delayed_work(system_power_efficient_wq,
2517 &reg_timeout, 0);
2518 return -ENODEV;
2519 }
2520
2521 if (!driver_request->intersect) {
2522 if (request_wiphy->regd)
2523 return -EALREADY;
2524
2525 regd = reg_copy_regd(rd);
2526 if (IS_ERR(regd))
2527 return PTR_ERR(regd);
2528
2529 rcu_assign_pointer(request_wiphy->regd, regd);
2530 reset_regdomains(false, rd);
2531 return 0;
2532 }
2533
2534 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2535 if (!intersected_rd)
2536 return -EINVAL;
2537
2538 /*
2539 * We can trash what CRDA provided now.
2540 * However if a driver requested this specific regulatory
2541 * domain we keep it for its private use
2542 */
2543 tmp = get_wiphy_regdom(request_wiphy);
2544 rcu_assign_pointer(request_wiphy->regd, rd);
2545 rcu_free_regdom(tmp);
2546
2547 rd = NULL;
2548
2549 reset_regdomains(false, intersected_rd);
2550
2551 return 0;
2552 }
2553
2554 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2555 struct regulatory_request *country_ie_request)
2556 {
2557 struct wiphy *request_wiphy;
2558
2559 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2560 !is_unknown_alpha2(rd->alpha2))
2561 return -EINVAL;
2562
2563 /*
2564 * Lets only bother proceeding on the same alpha2 if the current
2565 * rd is non static (it means CRDA was present and was used last)
2566 * and the pending request came in from a country IE
2567 */
2568
2569 if (!is_valid_rd(rd)) {
2570 pr_err("Invalid regulatory domain detected:\n");
2571 print_regdomain_info(rd);
2572 return -EINVAL;
2573 }
2574
2575 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2576 if (!request_wiphy) {
2577 queue_delayed_work(system_power_efficient_wq,
2578 &reg_timeout, 0);
2579 return -ENODEV;
2580 }
2581
2582 if (country_ie_request->intersect)
2583 return -EINVAL;
2584
2585 reset_regdomains(false, rd);
2586 return 0;
2587 }
2588
2589 /*
2590 * Use this call to set the current regulatory domain. Conflicts with
2591 * multiple drivers can be ironed out later. Caller must've already
2592 * kmalloc'd the rd structure.
2593 */
2594 int set_regdom(const struct ieee80211_regdomain *rd)
2595 {
2596 struct regulatory_request *lr;
2597 bool user_reset = false;
2598 int r;
2599
2600 if (!reg_is_valid_request(rd->alpha2)) {
2601 kfree(rd);
2602 return -EINVAL;
2603 }
2604
2605 lr = get_last_request();
2606
2607 /* Note that this doesn't update the wiphys, this is done below */
2608 switch (lr->initiator) {
2609 case NL80211_REGDOM_SET_BY_CORE:
2610 r = reg_set_rd_core(rd);
2611 break;
2612 case NL80211_REGDOM_SET_BY_USER:
2613 r = reg_set_rd_user(rd, lr);
2614 user_reset = true;
2615 break;
2616 case NL80211_REGDOM_SET_BY_DRIVER:
2617 r = reg_set_rd_driver(rd, lr);
2618 break;
2619 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2620 r = reg_set_rd_country_ie(rd, lr);
2621 break;
2622 default:
2623 WARN(1, "invalid initiator %d\n", lr->initiator);
2624 return -EINVAL;
2625 }
2626
2627 if (r) {
2628 switch (r) {
2629 case -EALREADY:
2630 reg_set_request_processed();
2631 break;
2632 default:
2633 /* Back to world regulatory in case of errors */
2634 restore_regulatory_settings(user_reset);
2635 }
2636
2637 kfree(rd);
2638 return r;
2639 }
2640
2641 /* This would make this whole thing pointless */
2642 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2643 return -EINVAL;
2644
2645 /* update all wiphys now with the new established regulatory domain */
2646 update_all_wiphy_regulatory(lr->initiator);
2647
2648 print_regdomain(get_cfg80211_regdom());
2649
2650 nl80211_send_reg_change_event(lr);
2651
2652 reg_set_request_processed();
2653
2654 return 0;
2655 }
2656
2657 void wiphy_regulatory_register(struct wiphy *wiphy)
2658 {
2659 struct regulatory_request *lr;
2660
2661 if (!reg_dev_ignore_cell_hint(wiphy))
2662 reg_num_devs_support_basehint++;
2663
2664 lr = get_last_request();
2665 wiphy_update_regulatory(wiphy, lr->initiator);
2666 }
2667
2668 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2669 {
2670 struct wiphy *request_wiphy = NULL;
2671 struct regulatory_request *lr;
2672
2673 lr = get_last_request();
2674
2675 if (!reg_dev_ignore_cell_hint(wiphy))
2676 reg_num_devs_support_basehint--;
2677
2678 rcu_free_regdom(get_wiphy_regdom(wiphy));
2679 RCU_INIT_POINTER(wiphy->regd, NULL);
2680
2681 if (lr)
2682 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2683
2684 if (!request_wiphy || request_wiphy != wiphy)
2685 return;
2686
2687 lr->wiphy_idx = WIPHY_IDX_INVALID;
2688 lr->country_ie_env = ENVIRON_ANY;
2689 }
2690
2691 static void reg_timeout_work(struct work_struct *work)
2692 {
2693 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2694 rtnl_lock();
2695 restore_regulatory_settings(true);
2696 rtnl_unlock();
2697 }
2698
2699 /*
2700 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
2701 * UNII band definitions
2702 */
2703 int cfg80211_get_unii(int freq)
2704 {
2705 /* UNII-1 */
2706 if (freq >= 5150 && freq <= 5250)
2707 return 0;
2708
2709 /* UNII-2A */
2710 if (freq > 5250 && freq <= 5350)
2711 return 1;
2712
2713 /* UNII-2B */
2714 if (freq > 5350 && freq <= 5470)
2715 return 2;
2716
2717 /* UNII-2C */
2718 if (freq > 5470 && freq <= 5725)
2719 return 3;
2720
2721 /* UNII-3 */
2722 if (freq > 5725 && freq <= 5825)
2723 return 4;
2724
2725 return -EINVAL;
2726 }
2727
2728 bool regulatory_indoor_allowed(void)
2729 {
2730 return reg_is_indoor;
2731 }
2732
2733 int __init regulatory_init(void)
2734 {
2735 int err = 0;
2736
2737 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2738 if (IS_ERR(reg_pdev))
2739 return PTR_ERR(reg_pdev);
2740
2741 spin_lock_init(&reg_requests_lock);
2742 spin_lock_init(&reg_pending_beacons_lock);
2743
2744 reg_regdb_size_check();
2745
2746 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2747
2748 user_alpha2[0] = '9';
2749 user_alpha2[1] = '7';
2750
2751 /* We always try to get an update for the static regdomain */
2752 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2753 if (err) {
2754 if (err == -ENOMEM)
2755 return err;
2756 /*
2757 * N.B. kobject_uevent_env() can fail mainly for when we're out
2758 * memory which is handled and propagated appropriately above
2759 * but it can also fail during a netlink_broadcast() or during
2760 * early boot for call_usermodehelper(). For now treat these
2761 * errors as non-fatal.
2762 */
2763 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2764 }
2765
2766 /*
2767 * Finally, if the user set the module parameter treat it
2768 * as a user hint.
2769 */
2770 if (!is_world_regdom(ieee80211_regdom))
2771 regulatory_hint_user(ieee80211_regdom,
2772 NL80211_USER_REG_HINT_USER);
2773
2774 return 0;
2775 }
2776
2777 void regulatory_exit(void)
2778 {
2779 struct regulatory_request *reg_request, *tmp;
2780 struct reg_beacon *reg_beacon, *btmp;
2781
2782 cancel_work_sync(&reg_work);
2783 cancel_delayed_work_sync(&reg_timeout);
2784
2785 /* Lock to suppress warnings */
2786 rtnl_lock();
2787 reset_regdomains(true, NULL);
2788 rtnl_unlock();
2789
2790 dev_set_uevent_suppress(&reg_pdev->dev, true);
2791
2792 platform_device_unregister(reg_pdev);
2793
2794 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2795 list_del(&reg_beacon->list);
2796 kfree(reg_beacon);
2797 }
2798
2799 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2800 list_del(&reg_beacon->list);
2801 kfree(reg_beacon);
2802 }
2803
2804 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2805 list_del(&reg_request->list);
2806 kfree(reg_request);
2807 }
2808 }