]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/wireless/reg.c
regulatory: remove BUG_ON
[mirror_ubuntu-bionic-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20
21 /**
22 * DOC: Wireless regulatory infrastructure
23 *
24 * The usual implementation is for a driver to read a device EEPROM to
25 * determine which regulatory domain it should be operating under, then
26 * looking up the allowable channels in a driver-local table and finally
27 * registering those channels in the wiphy structure.
28 *
29 * Another set of compliance enforcement is for drivers to use their
30 * own compliance limits which can be stored on the EEPROM. The host
31 * driver or firmware may ensure these are used.
32 *
33 * In addition to all this we provide an extra layer of regulatory
34 * conformance. For drivers which do not have any regulatory
35 * information CRDA provides the complete regulatory solution.
36 * For others it provides a community effort on further restrictions
37 * to enhance compliance.
38 *
39 * Note: When number of rules --> infinity we will not be able to
40 * index on alpha2 any more, instead we'll probably have to
41 * rely on some SHA1 checksum of the regdomain for example.
42 *
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
56 #include "core.h"
57 #include "reg.h"
58 #include "regdb.h"
59 #include "nl80211.h"
60
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...) \
63 printk(KERN_DEBUG pr_fmt(format), ##args)
64 #else
65 #define REG_DBG_PRINT(args...)
66 #endif
67
68 enum reg_request_treatment {
69 REG_REQ_OK,
70 REG_REQ_IGNORE,
71 REG_REQ_INTERSECT,
72 REG_REQ_ALREADY_SET,
73 };
74
75 static struct regulatory_request core_request_world = {
76 .initiator = NL80211_REGDOM_SET_BY_CORE,
77 .alpha2[0] = '0',
78 .alpha2[1] = '0',
79 .intersect = false,
80 .processed = true,
81 .country_ie_env = ENVIRON_ANY,
82 };
83
84 /* Receipt of information from last regulatory request */
85 static struct regulatory_request *last_request = &core_request_world;
86
87 /* To trigger userspace events */
88 static struct platform_device *reg_pdev;
89
90 static struct device_type reg_device_type = {
91 .uevent = reg_device_uevent,
92 };
93
94 /*
95 * Central wireless core regulatory domains, we only need two,
96 * the current one and a world regulatory domain in case we have no
97 * information to give us an alpha2
98 */
99 const struct ieee80211_regdomain *cfg80211_regdomain;
100
101 /*
102 * Protects static reg.c components:
103 * - cfg80211_world_regdom
104 * - cfg80211_regdom
105 * - last_request
106 * - reg_num_devs_support_basehint
107 */
108 static DEFINE_MUTEX(reg_mutex);
109
110 /*
111 * Number of devices that registered to the core
112 * that support cellular base station regulatory hints
113 */
114 static int reg_num_devs_support_basehint;
115
116 static inline void assert_reg_lock(void)
117 {
118 lockdep_assert_held(&reg_mutex);
119 }
120
121 /* Used to queue up regulatory hints */
122 static LIST_HEAD(reg_requests_list);
123 static spinlock_t reg_requests_lock;
124
125 /* Used to queue up beacon hints for review */
126 static LIST_HEAD(reg_pending_beacons);
127 static spinlock_t reg_pending_beacons_lock;
128
129 /* Used to keep track of processed beacon hints */
130 static LIST_HEAD(reg_beacon_list);
131
132 struct reg_beacon {
133 struct list_head list;
134 struct ieee80211_channel chan;
135 };
136
137 static void reg_todo(struct work_struct *work);
138 static DECLARE_WORK(reg_work, reg_todo);
139
140 static void reg_timeout_work(struct work_struct *work);
141 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
142
143 /* We keep a static world regulatory domain in case of the absence of CRDA */
144 static const struct ieee80211_regdomain world_regdom = {
145 .n_reg_rules = 6,
146 .alpha2 = "00",
147 .reg_rules = {
148 /* IEEE 802.11b/g, channels 1..11 */
149 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
150 /* IEEE 802.11b/g, channels 12..13. */
151 REG_RULE(2467-10, 2472+10, 40, 6, 20,
152 NL80211_RRF_PASSIVE_SCAN |
153 NL80211_RRF_NO_IBSS),
154 /* IEEE 802.11 channel 14 - Only JP enables
155 * this and for 802.11b only */
156 REG_RULE(2484-10, 2484+10, 20, 6, 20,
157 NL80211_RRF_PASSIVE_SCAN |
158 NL80211_RRF_NO_IBSS |
159 NL80211_RRF_NO_OFDM),
160 /* IEEE 802.11a, channel 36..48 */
161 REG_RULE(5180-10, 5240+10, 40, 6, 20,
162 NL80211_RRF_PASSIVE_SCAN |
163 NL80211_RRF_NO_IBSS),
164
165 /* NB: 5260 MHz - 5700 MHz requies DFS */
166
167 /* IEEE 802.11a, channel 149..165 */
168 REG_RULE(5745-10, 5825+10, 40, 6, 20,
169 NL80211_RRF_PASSIVE_SCAN |
170 NL80211_RRF_NO_IBSS),
171
172 /* IEEE 802.11ad (60gHz), channels 1..3 */
173 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
174 }
175 };
176
177 static const struct ieee80211_regdomain *cfg80211_world_regdom =
178 &world_regdom;
179
180 static char *ieee80211_regdom = "00";
181 static char user_alpha2[2];
182
183 module_param(ieee80211_regdom, charp, 0444);
184 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
185
186 static void reset_regdomains(bool full_reset)
187 {
188 /* avoid freeing static information or freeing something twice */
189 if (cfg80211_regdomain == cfg80211_world_regdom)
190 cfg80211_regdomain = NULL;
191 if (cfg80211_world_regdom == &world_regdom)
192 cfg80211_world_regdom = NULL;
193 if (cfg80211_regdomain == &world_regdom)
194 cfg80211_regdomain = NULL;
195
196 kfree(cfg80211_regdomain);
197 kfree(cfg80211_world_regdom);
198
199 cfg80211_world_regdom = &world_regdom;
200 cfg80211_regdomain = NULL;
201
202 if (!full_reset)
203 return;
204
205 if (last_request != &core_request_world)
206 kfree(last_request);
207 last_request = &core_request_world;
208 }
209
210 /*
211 * Dynamic world regulatory domain requested by the wireless
212 * core upon initialization
213 */
214 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
215 {
216 WARN_ON(!last_request);
217
218 reset_regdomains(false);
219
220 cfg80211_world_regdom = rd;
221 cfg80211_regdomain = rd;
222 }
223
224 bool is_world_regdom(const char *alpha2)
225 {
226 if (!alpha2)
227 return false;
228 return alpha2[0] == '0' && alpha2[1] == '0';
229 }
230
231 static bool is_alpha2_set(const char *alpha2)
232 {
233 if (!alpha2)
234 return false;
235 return alpha2[0] && alpha2[1];
236 }
237
238 static bool is_unknown_alpha2(const char *alpha2)
239 {
240 if (!alpha2)
241 return false;
242 /*
243 * Special case where regulatory domain was built by driver
244 * but a specific alpha2 cannot be determined
245 */
246 return alpha2[0] == '9' && alpha2[1] == '9';
247 }
248
249 static bool is_intersected_alpha2(const char *alpha2)
250 {
251 if (!alpha2)
252 return false;
253 /*
254 * Special case where regulatory domain is the
255 * result of an intersection between two regulatory domain
256 * structures
257 */
258 return alpha2[0] == '9' && alpha2[1] == '8';
259 }
260
261 static bool is_an_alpha2(const char *alpha2)
262 {
263 if (!alpha2)
264 return false;
265 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
266 }
267
268 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
269 {
270 if (!alpha2_x || !alpha2_y)
271 return false;
272 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
273 }
274
275 static bool regdom_changes(const char *alpha2)
276 {
277 assert_cfg80211_lock();
278
279 if (!cfg80211_regdomain)
280 return true;
281 return !alpha2_equal(cfg80211_regdomain->alpha2, alpha2);
282 }
283
284 /*
285 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
286 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
287 * has ever been issued.
288 */
289 static bool is_user_regdom_saved(void)
290 {
291 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
292 return false;
293
294 /* This would indicate a mistake on the design */
295 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
296 "Unexpected user alpha2: %c%c\n",
297 user_alpha2[0], user_alpha2[1]))
298 return false;
299
300 return true;
301 }
302
303 static const struct ieee80211_regdomain *
304 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
305 {
306 struct ieee80211_regdomain *regd;
307 int size_of_regd;
308 unsigned int i;
309
310 size_of_regd =
311 sizeof(struct ieee80211_regdomain) +
312 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
313
314 regd = kzalloc(size_of_regd, GFP_KERNEL);
315 if (!regd)
316 return ERR_PTR(-ENOMEM);
317
318 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
319
320 for (i = 0; i < src_regd->n_reg_rules; i++)
321 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
322 sizeof(struct ieee80211_reg_rule));
323
324 return regd;
325 }
326
327 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
328 struct reg_regdb_search_request {
329 char alpha2[2];
330 struct list_head list;
331 };
332
333 static LIST_HEAD(reg_regdb_search_list);
334 static DEFINE_MUTEX(reg_regdb_search_mutex);
335
336 static void reg_regdb_search(struct work_struct *work)
337 {
338 struct reg_regdb_search_request *request;
339 const struct ieee80211_regdomain *curdom, *regdom = NULL;
340 int i;
341
342 mutex_lock(&cfg80211_mutex);
343
344 mutex_lock(&reg_regdb_search_mutex);
345 while (!list_empty(&reg_regdb_search_list)) {
346 request = list_first_entry(&reg_regdb_search_list,
347 struct reg_regdb_search_request,
348 list);
349 list_del(&request->list);
350
351 for (i = 0; i < reg_regdb_size; i++) {
352 curdom = reg_regdb[i];
353
354 if (alpha2_equal(request->alpha2, curdom->alpha2)) {
355 regdom = reg_copy_regd(curdom);
356 break;
357 }
358 }
359
360 kfree(request);
361 }
362 mutex_unlock(&reg_regdb_search_mutex);
363
364 if (!IS_ERR_OR_NULL(regdom))
365 set_regdom(regdom);
366
367 mutex_unlock(&cfg80211_mutex);
368 }
369
370 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
371
372 static void reg_regdb_query(const char *alpha2)
373 {
374 struct reg_regdb_search_request *request;
375
376 if (!alpha2)
377 return;
378
379 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
380 if (!request)
381 return;
382
383 memcpy(request->alpha2, alpha2, 2);
384
385 mutex_lock(&reg_regdb_search_mutex);
386 list_add_tail(&request->list, &reg_regdb_search_list);
387 mutex_unlock(&reg_regdb_search_mutex);
388
389 schedule_work(&reg_regdb_work);
390 }
391
392 /* Feel free to add any other sanity checks here */
393 static void reg_regdb_size_check(void)
394 {
395 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
396 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
397 }
398 #else
399 static inline void reg_regdb_size_check(void) {}
400 static inline void reg_regdb_query(const char *alpha2) {}
401 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
402
403 /*
404 * This lets us keep regulatory code which is updated on a regulatory
405 * basis in userspace. Country information is filled in by
406 * reg_device_uevent
407 */
408 static int call_crda(const char *alpha2)
409 {
410 if (!is_world_regdom((char *) alpha2))
411 pr_info("Calling CRDA for country: %c%c\n",
412 alpha2[0], alpha2[1]);
413 else
414 pr_info("Calling CRDA to update world regulatory domain\n");
415
416 /* query internal regulatory database (if it exists) */
417 reg_regdb_query(alpha2);
418
419 return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
420 }
421
422 /* Used by nl80211 before kmalloc'ing our regulatory domain */
423 bool reg_is_valid_request(const char *alpha2)
424 {
425 assert_cfg80211_lock();
426
427 if (!last_request)
428 return false;
429
430 return alpha2_equal(last_request->alpha2, alpha2);
431 }
432
433 /* Sanity check on a regulatory rule */
434 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
435 {
436 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
437 u32 freq_diff;
438
439 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
440 return false;
441
442 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
443 return false;
444
445 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
446
447 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
448 freq_range->max_bandwidth_khz > freq_diff)
449 return false;
450
451 return true;
452 }
453
454 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
455 {
456 const struct ieee80211_reg_rule *reg_rule = NULL;
457 unsigned int i;
458
459 if (!rd->n_reg_rules)
460 return false;
461
462 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
463 return false;
464
465 for (i = 0; i < rd->n_reg_rules; i++) {
466 reg_rule = &rd->reg_rules[i];
467 if (!is_valid_reg_rule(reg_rule))
468 return false;
469 }
470
471 return true;
472 }
473
474 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
475 u32 center_freq_khz,
476 u32 bw_khz)
477 {
478 u32 start_freq_khz, end_freq_khz;
479
480 start_freq_khz = center_freq_khz - (bw_khz/2);
481 end_freq_khz = center_freq_khz + (bw_khz/2);
482
483 if (start_freq_khz >= freq_range->start_freq_khz &&
484 end_freq_khz <= freq_range->end_freq_khz)
485 return true;
486
487 return false;
488 }
489
490 /**
491 * freq_in_rule_band - tells us if a frequency is in a frequency band
492 * @freq_range: frequency rule we want to query
493 * @freq_khz: frequency we are inquiring about
494 *
495 * This lets us know if a specific frequency rule is or is not relevant to
496 * a specific frequency's band. Bands are device specific and artificial
497 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
498 * however it is safe for now to assume that a frequency rule should not be
499 * part of a frequency's band if the start freq or end freq are off by more
500 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
501 * 60 GHz band.
502 * This resolution can be lowered and should be considered as we add
503 * regulatory rule support for other "bands".
504 **/
505 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
506 u32 freq_khz)
507 {
508 #define ONE_GHZ_IN_KHZ 1000000
509 /*
510 * From 802.11ad: directional multi-gigabit (DMG):
511 * Pertaining to operation in a frequency band containing a channel
512 * with the Channel starting frequency above 45 GHz.
513 */
514 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
515 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
516 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
517 return true;
518 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
519 return true;
520 return false;
521 #undef ONE_GHZ_IN_KHZ
522 }
523
524 /*
525 * Helper for regdom_intersect(), this does the real
526 * mathematical intersection fun
527 */
528 static int reg_rules_intersect(const struct ieee80211_reg_rule *rule1,
529 const struct ieee80211_reg_rule *rule2,
530 struct ieee80211_reg_rule *intersected_rule)
531 {
532 const struct ieee80211_freq_range *freq_range1, *freq_range2;
533 struct ieee80211_freq_range *freq_range;
534 const struct ieee80211_power_rule *power_rule1, *power_rule2;
535 struct ieee80211_power_rule *power_rule;
536 u32 freq_diff;
537
538 freq_range1 = &rule1->freq_range;
539 freq_range2 = &rule2->freq_range;
540 freq_range = &intersected_rule->freq_range;
541
542 power_rule1 = &rule1->power_rule;
543 power_rule2 = &rule2->power_rule;
544 power_rule = &intersected_rule->power_rule;
545
546 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
547 freq_range2->start_freq_khz);
548 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
549 freq_range2->end_freq_khz);
550 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
551 freq_range2->max_bandwidth_khz);
552
553 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
554 if (freq_range->max_bandwidth_khz > freq_diff)
555 freq_range->max_bandwidth_khz = freq_diff;
556
557 power_rule->max_eirp = min(power_rule1->max_eirp,
558 power_rule2->max_eirp);
559 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
560 power_rule2->max_antenna_gain);
561
562 intersected_rule->flags = rule1->flags | rule2->flags;
563
564 if (!is_valid_reg_rule(intersected_rule))
565 return -EINVAL;
566
567 return 0;
568 }
569
570 /**
571 * regdom_intersect - do the intersection between two regulatory domains
572 * @rd1: first regulatory domain
573 * @rd2: second regulatory domain
574 *
575 * Use this function to get the intersection between two regulatory domains.
576 * Once completed we will mark the alpha2 for the rd as intersected, "98",
577 * as no one single alpha2 can represent this regulatory domain.
578 *
579 * Returns a pointer to the regulatory domain structure which will hold the
580 * resulting intersection of rules between rd1 and rd2. We will
581 * kzalloc() this structure for you.
582 */
583 static struct ieee80211_regdomain *
584 regdom_intersect(const struct ieee80211_regdomain *rd1,
585 const struct ieee80211_regdomain *rd2)
586 {
587 int r, size_of_regd;
588 unsigned int x, y;
589 unsigned int num_rules = 0, rule_idx = 0;
590 const struct ieee80211_reg_rule *rule1, *rule2;
591 struct ieee80211_reg_rule *intersected_rule;
592 struct ieee80211_regdomain *rd;
593 /* This is just a dummy holder to help us count */
594 struct ieee80211_reg_rule dummy_rule;
595
596 if (!rd1 || !rd2)
597 return NULL;
598
599 /*
600 * First we get a count of the rules we'll need, then we actually
601 * build them. This is to so we can malloc() and free() a
602 * regdomain once. The reason we use reg_rules_intersect() here
603 * is it will return -EINVAL if the rule computed makes no sense.
604 * All rules that do check out OK are valid.
605 */
606
607 for (x = 0; x < rd1->n_reg_rules; x++) {
608 rule1 = &rd1->reg_rules[x];
609 for (y = 0; y < rd2->n_reg_rules; y++) {
610 rule2 = &rd2->reg_rules[y];
611 if (!reg_rules_intersect(rule1, rule2, &dummy_rule))
612 num_rules++;
613 }
614 }
615
616 if (!num_rules)
617 return NULL;
618
619 size_of_regd = sizeof(struct ieee80211_regdomain) +
620 num_rules * sizeof(struct ieee80211_reg_rule);
621
622 rd = kzalloc(size_of_regd, GFP_KERNEL);
623 if (!rd)
624 return NULL;
625
626 for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
627 rule1 = &rd1->reg_rules[x];
628 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
629 rule2 = &rd2->reg_rules[y];
630 /*
631 * This time around instead of using the stack lets
632 * write to the target rule directly saving ourselves
633 * a memcpy()
634 */
635 intersected_rule = &rd->reg_rules[rule_idx];
636 r = reg_rules_intersect(rule1, rule2, intersected_rule);
637 /*
638 * No need to memset here the intersected rule here as
639 * we're not using the stack anymore
640 */
641 if (r)
642 continue;
643 rule_idx++;
644 }
645 }
646
647 if (rule_idx != num_rules) {
648 kfree(rd);
649 return NULL;
650 }
651
652 rd->n_reg_rules = num_rules;
653 rd->alpha2[0] = '9';
654 rd->alpha2[1] = '8';
655
656 return rd;
657 }
658
659 /*
660 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
661 * want to just have the channel structure use these
662 */
663 static u32 map_regdom_flags(u32 rd_flags)
664 {
665 u32 channel_flags = 0;
666 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
667 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
668 if (rd_flags & NL80211_RRF_NO_IBSS)
669 channel_flags |= IEEE80211_CHAN_NO_IBSS;
670 if (rd_flags & NL80211_RRF_DFS)
671 channel_flags |= IEEE80211_CHAN_RADAR;
672 if (rd_flags & NL80211_RRF_NO_OFDM)
673 channel_flags |= IEEE80211_CHAN_NO_OFDM;
674 return channel_flags;
675 }
676
677 static int freq_reg_info_regd(struct wiphy *wiphy,
678 u32 center_freq,
679 u32 desired_bw_khz,
680 const struct ieee80211_reg_rule **reg_rule,
681 const struct ieee80211_regdomain *custom_regd)
682 {
683 int i;
684 bool band_rule_found = false;
685 const struct ieee80211_regdomain *regd;
686 bool bw_fits = false;
687
688 if (!desired_bw_khz)
689 desired_bw_khz = MHZ_TO_KHZ(20);
690
691 regd = custom_regd ? custom_regd : cfg80211_regdomain;
692
693 /*
694 * Follow the driver's regulatory domain, if present, unless a country
695 * IE has been processed or a user wants to help complaince further
696 */
697 if (!custom_regd &&
698 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
699 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
700 wiphy->regd)
701 regd = wiphy->regd;
702
703 if (!regd)
704 return -EINVAL;
705
706 for (i = 0; i < regd->n_reg_rules; i++) {
707 const struct ieee80211_reg_rule *rr;
708 const struct ieee80211_freq_range *fr = NULL;
709
710 rr = &regd->reg_rules[i];
711 fr = &rr->freq_range;
712
713 /*
714 * We only need to know if one frequency rule was
715 * was in center_freq's band, that's enough, so lets
716 * not overwrite it once found
717 */
718 if (!band_rule_found)
719 band_rule_found = freq_in_rule_band(fr, center_freq);
720
721 bw_fits = reg_does_bw_fit(fr, center_freq, desired_bw_khz);
722
723 if (band_rule_found && bw_fits) {
724 *reg_rule = rr;
725 return 0;
726 }
727 }
728
729 if (!band_rule_found)
730 return -ERANGE;
731
732 return -EINVAL;
733 }
734
735 int freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 desired_bw_khz,
736 const struct ieee80211_reg_rule **reg_rule)
737 {
738 assert_cfg80211_lock();
739
740 return freq_reg_info_regd(wiphy, center_freq, desired_bw_khz,
741 reg_rule, NULL);
742 }
743 EXPORT_SYMBOL(freq_reg_info);
744
745 #ifdef CONFIG_CFG80211_REG_DEBUG
746 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
747 {
748 switch (initiator) {
749 case NL80211_REGDOM_SET_BY_CORE:
750 return "Set by core";
751 case NL80211_REGDOM_SET_BY_USER:
752 return "Set by user";
753 case NL80211_REGDOM_SET_BY_DRIVER:
754 return "Set by driver";
755 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
756 return "Set by country IE";
757 default:
758 WARN_ON(1);
759 return "Set by bug";
760 }
761 }
762
763 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
764 u32 desired_bw_khz,
765 const struct ieee80211_reg_rule *reg_rule)
766 {
767 const struct ieee80211_power_rule *power_rule;
768 const struct ieee80211_freq_range *freq_range;
769 char max_antenna_gain[32];
770
771 power_rule = &reg_rule->power_rule;
772 freq_range = &reg_rule->freq_range;
773
774 if (!power_rule->max_antenna_gain)
775 snprintf(max_antenna_gain, 32, "N/A");
776 else
777 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
778
779 REG_DBG_PRINT("Updating information on frequency %d MHz for a %d MHz width channel with regulatory rule:\n",
780 chan->center_freq, KHZ_TO_MHZ(desired_bw_khz));
781
782 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
783 freq_range->start_freq_khz, freq_range->end_freq_khz,
784 freq_range->max_bandwidth_khz, max_antenna_gain,
785 power_rule->max_eirp);
786 }
787 #else
788 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
789 u32 desired_bw_khz,
790 const struct ieee80211_reg_rule *reg_rule)
791 {
792 return;
793 }
794 #endif
795
796 /*
797 * Note that right now we assume the desired channel bandwidth
798 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
799 * per channel, the primary and the extension channel). To support
800 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
801 * new ieee80211_channel.target_bw and re run the regulatory check
802 * on the wiphy with the target_bw specified. Then we can simply use
803 * that below for the desired_bw_khz below.
804 */
805 static void handle_channel(struct wiphy *wiphy,
806 enum nl80211_reg_initiator initiator,
807 struct ieee80211_channel *chan)
808 {
809 int r;
810 u32 flags, bw_flags = 0;
811 u32 desired_bw_khz = MHZ_TO_KHZ(20);
812 const struct ieee80211_reg_rule *reg_rule = NULL;
813 const struct ieee80211_power_rule *power_rule = NULL;
814 const struct ieee80211_freq_range *freq_range = NULL;
815 struct wiphy *request_wiphy = NULL;
816
817 assert_cfg80211_lock();
818
819 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
820
821 flags = chan->orig_flags;
822
823 r = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq),
824 desired_bw_khz, &reg_rule);
825 if (r) {
826 /*
827 * We will disable all channels that do not match our
828 * received regulatory rule unless the hint is coming
829 * from a Country IE and the Country IE had no information
830 * about a band. The IEEE 802.11 spec allows for an AP
831 * to send only a subset of the regulatory rules allowed,
832 * so an AP in the US that only supports 2.4 GHz may only send
833 * a country IE with information for the 2.4 GHz band
834 * while 5 GHz is still supported.
835 */
836 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
837 r == -ERANGE)
838 return;
839
840 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
841 chan->flags = IEEE80211_CHAN_DISABLED;
842 return;
843 }
844
845 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
846
847 power_rule = &reg_rule->power_rule;
848 freq_range = &reg_rule->freq_range;
849
850 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
851 bw_flags = IEEE80211_CHAN_NO_HT40;
852
853 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
854 request_wiphy && request_wiphy == wiphy &&
855 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
856 /*
857 * This guarantees the driver's requested regulatory domain
858 * will always be used as a base for further regulatory
859 * settings
860 */
861 chan->flags = chan->orig_flags =
862 map_regdom_flags(reg_rule->flags) | bw_flags;
863 chan->max_antenna_gain = chan->orig_mag =
864 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
865 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
866 (int) MBM_TO_DBM(power_rule->max_eirp);
867 return;
868 }
869
870 chan->beacon_found = false;
871 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
872 chan->max_antenna_gain =
873 min_t(int, chan->orig_mag,
874 MBI_TO_DBI(power_rule->max_antenna_gain));
875 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
876 if (chan->orig_mpwr) {
877 /*
878 * Devices that have their own custom regulatory domain
879 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
880 * passed country IE power settings.
881 */
882 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
883 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
884 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
885 chan->max_power = chan->max_reg_power;
886 else
887 chan->max_power = min(chan->orig_mpwr,
888 chan->max_reg_power);
889 } else
890 chan->max_power = chan->max_reg_power;
891 }
892
893 static void handle_band(struct wiphy *wiphy,
894 enum nl80211_reg_initiator initiator,
895 struct ieee80211_supported_band *sband)
896 {
897 unsigned int i;
898
899 if (!sband)
900 return;
901
902 for (i = 0; i < sband->n_channels; i++)
903 handle_channel(wiphy, initiator, &sband->channels[i]);
904 }
905
906 static bool reg_request_cell_base(struct regulatory_request *request)
907 {
908 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
909 return false;
910 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
911 }
912
913 bool reg_last_request_cell_base(void)
914 {
915 bool val;
916
917 assert_cfg80211_lock();
918
919 mutex_lock(&reg_mutex);
920 val = reg_request_cell_base(last_request);
921 mutex_unlock(&reg_mutex);
922
923 return val;
924 }
925
926 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
927 /* Core specific check */
928 static enum reg_request_treatment
929 reg_ignore_cell_hint(struct regulatory_request *pending_request)
930 {
931 if (!reg_num_devs_support_basehint)
932 return REG_REQ_IGNORE;
933
934 if (reg_request_cell_base(last_request) &&
935 !regdom_changes(pending_request->alpha2))
936 return REG_REQ_ALREADY_SET;
937
938 return REG_REQ_OK;
939 }
940
941 /* Device specific check */
942 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
943 {
944 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
945 }
946 #else
947 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
948 {
949 return REG_REQ_IGNORE;
950 }
951
952 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
953 {
954 return true;
955 }
956 #endif
957
958
959 static bool ignore_reg_update(struct wiphy *wiphy,
960 enum nl80211_reg_initiator initiator)
961 {
962 if (!last_request) {
963 REG_DBG_PRINT("Ignoring regulatory request %s since last_request is not set\n",
964 reg_initiator_name(initiator));
965 return true;
966 }
967
968 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
969 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
970 REG_DBG_PRINT("Ignoring regulatory request %s since the driver uses its own custom regulatory domain\n",
971 reg_initiator_name(initiator));
972 return true;
973 }
974
975 /*
976 * wiphy->regd will be set once the device has its own
977 * desired regulatory domain set
978 */
979 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
980 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
981 !is_world_regdom(last_request->alpha2)) {
982 REG_DBG_PRINT("Ignoring regulatory request %s since the driver requires its own regulatory domain to be set first\n",
983 reg_initiator_name(initiator));
984 return true;
985 }
986
987 if (reg_request_cell_base(last_request))
988 return reg_dev_ignore_cell_hint(wiphy);
989
990 return false;
991 }
992
993 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
994 struct reg_beacon *reg_beacon)
995 {
996 struct ieee80211_supported_band *sband;
997 struct ieee80211_channel *chan;
998 bool channel_changed = false;
999 struct ieee80211_channel chan_before;
1000
1001 assert_cfg80211_lock();
1002
1003 sband = wiphy->bands[reg_beacon->chan.band];
1004 chan = &sband->channels[chan_idx];
1005
1006 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1007 return;
1008
1009 if (chan->beacon_found)
1010 return;
1011
1012 chan->beacon_found = true;
1013
1014 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1015 return;
1016
1017 chan_before.center_freq = chan->center_freq;
1018 chan_before.flags = chan->flags;
1019
1020 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1021 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1022 channel_changed = true;
1023 }
1024
1025 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1026 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1027 channel_changed = true;
1028 }
1029
1030 if (channel_changed)
1031 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1032 }
1033
1034 /*
1035 * Called when a scan on a wiphy finds a beacon on
1036 * new channel
1037 */
1038 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1039 struct reg_beacon *reg_beacon)
1040 {
1041 unsigned int i;
1042 struct ieee80211_supported_band *sband;
1043
1044 assert_cfg80211_lock();
1045
1046 if (!wiphy->bands[reg_beacon->chan.band])
1047 return;
1048
1049 sband = wiphy->bands[reg_beacon->chan.band];
1050
1051 for (i = 0; i < sband->n_channels; i++)
1052 handle_reg_beacon(wiphy, i, reg_beacon);
1053 }
1054
1055 /*
1056 * Called upon reg changes or a new wiphy is added
1057 */
1058 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1059 {
1060 unsigned int i;
1061 struct ieee80211_supported_band *sband;
1062 struct reg_beacon *reg_beacon;
1063
1064 assert_cfg80211_lock();
1065
1066 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1067 if (!wiphy->bands[reg_beacon->chan.band])
1068 continue;
1069 sband = wiphy->bands[reg_beacon->chan.band];
1070 for (i = 0; i < sband->n_channels; i++)
1071 handle_reg_beacon(wiphy, i, reg_beacon);
1072 }
1073 }
1074
1075 static bool reg_is_world_roaming(struct wiphy *wiphy)
1076 {
1077 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1078 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1079 return true;
1080 if (last_request &&
1081 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1082 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1083 return true;
1084 return false;
1085 }
1086
1087 /* Reap the advantages of previously found beacons */
1088 static void reg_process_beacons(struct wiphy *wiphy)
1089 {
1090 /*
1091 * Means we are just firing up cfg80211, so no beacons would
1092 * have been processed yet.
1093 */
1094 if (!last_request)
1095 return;
1096 if (!reg_is_world_roaming(wiphy))
1097 return;
1098 wiphy_update_beacon_reg(wiphy);
1099 }
1100
1101 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1102 {
1103 if (!chan)
1104 return false;
1105 if (chan->flags & IEEE80211_CHAN_DISABLED)
1106 return false;
1107 /* This would happen when regulatory rules disallow HT40 completely */
1108 return !(chan->flags & IEEE80211_CHAN_NO_HT40);
1109 }
1110
1111 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1112 struct ieee80211_channel *channel)
1113 {
1114 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1115 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1116 unsigned int i;
1117
1118 assert_cfg80211_lock();
1119
1120 if (!is_ht40_allowed(channel)) {
1121 channel->flags |= IEEE80211_CHAN_NO_HT40;
1122 return;
1123 }
1124
1125 /*
1126 * We need to ensure the extension channels exist to
1127 * be able to use HT40- or HT40+, this finds them (or not)
1128 */
1129 for (i = 0; i < sband->n_channels; i++) {
1130 struct ieee80211_channel *c = &sband->channels[i];
1131
1132 if (c->center_freq == (channel->center_freq - 20))
1133 channel_before = c;
1134 if (c->center_freq == (channel->center_freq + 20))
1135 channel_after = c;
1136 }
1137
1138 /*
1139 * Please note that this assumes target bandwidth is 20 MHz,
1140 * if that ever changes we also need to change the below logic
1141 * to include that as well.
1142 */
1143 if (!is_ht40_allowed(channel_before))
1144 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1145 else
1146 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1147
1148 if (!is_ht40_allowed(channel_after))
1149 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1150 else
1151 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1152 }
1153
1154 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1155 struct ieee80211_supported_band *sband)
1156 {
1157 unsigned int i;
1158
1159 if (!sband)
1160 return;
1161
1162 for (i = 0; i < sband->n_channels; i++)
1163 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1164 }
1165
1166 static void reg_process_ht_flags(struct wiphy *wiphy)
1167 {
1168 enum ieee80211_band band;
1169
1170 if (!wiphy)
1171 return;
1172
1173 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1174 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1175 }
1176
1177 static void wiphy_update_regulatory(struct wiphy *wiphy,
1178 enum nl80211_reg_initiator initiator)
1179 {
1180 enum ieee80211_band band;
1181
1182 assert_reg_lock();
1183
1184 if (ignore_reg_update(wiphy, initiator))
1185 return;
1186
1187 last_request->dfs_region = cfg80211_regdomain->dfs_region;
1188
1189 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1190 handle_band(wiphy, initiator, wiphy->bands[band]);
1191
1192 reg_process_beacons(wiphy);
1193 reg_process_ht_flags(wiphy);
1194
1195 if (wiphy->reg_notifier)
1196 wiphy->reg_notifier(wiphy, last_request);
1197 }
1198
1199 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1200 {
1201 struct cfg80211_registered_device *rdev;
1202 struct wiphy *wiphy;
1203
1204 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1205 wiphy = &rdev->wiphy;
1206 wiphy_update_regulatory(wiphy, initiator);
1207 /*
1208 * Regulatory updates set by CORE are ignored for custom
1209 * regulatory cards. Let us notify the changes to the driver,
1210 * as some drivers used this to restore its orig_* reg domain.
1211 */
1212 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1213 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1214 wiphy->reg_notifier)
1215 wiphy->reg_notifier(wiphy, last_request);
1216 }
1217 }
1218
1219 static void handle_channel_custom(struct wiphy *wiphy,
1220 struct ieee80211_channel *chan,
1221 const struct ieee80211_regdomain *regd)
1222 {
1223 int r;
1224 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1225 u32 bw_flags = 0;
1226 const struct ieee80211_reg_rule *reg_rule = NULL;
1227 const struct ieee80211_power_rule *power_rule = NULL;
1228 const struct ieee80211_freq_range *freq_range = NULL;
1229
1230 assert_reg_lock();
1231
1232 r = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1233 desired_bw_khz, &reg_rule, regd);
1234
1235 if (r) {
1236 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits a %d MHz wide channel\n",
1237 chan->center_freq, KHZ_TO_MHZ(desired_bw_khz));
1238 chan->flags = IEEE80211_CHAN_DISABLED;
1239 return;
1240 }
1241
1242 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1243
1244 power_rule = &reg_rule->power_rule;
1245 freq_range = &reg_rule->freq_range;
1246
1247 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1248 bw_flags = IEEE80211_CHAN_NO_HT40;
1249
1250 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1251 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1252 chan->max_reg_power = chan->max_power =
1253 (int) MBM_TO_DBM(power_rule->max_eirp);
1254 }
1255
1256 static void handle_band_custom(struct wiphy *wiphy,
1257 struct ieee80211_supported_band *sband,
1258 const struct ieee80211_regdomain *regd)
1259 {
1260 unsigned int i;
1261
1262 if (!sband)
1263 return;
1264
1265 for (i = 0; i < sband->n_channels; i++)
1266 handle_channel_custom(wiphy, &sband->channels[i], regd);
1267 }
1268
1269 /* Used by drivers prior to wiphy registration */
1270 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1271 const struct ieee80211_regdomain *regd)
1272 {
1273 enum ieee80211_band band;
1274 unsigned int bands_set = 0;
1275
1276 mutex_lock(&reg_mutex);
1277 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1278 if (!wiphy->bands[band])
1279 continue;
1280 handle_band_custom(wiphy, wiphy->bands[band], regd);
1281 bands_set++;
1282 }
1283 mutex_unlock(&reg_mutex);
1284
1285 /*
1286 * no point in calling this if it won't have any effect
1287 * on your device's supported bands.
1288 */
1289 WARN_ON(!bands_set);
1290 }
1291 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1292
1293 /* This has the logic which determines when a new request
1294 * should be ignored. */
1295 static enum reg_request_treatment
1296 get_reg_request_treatment(struct wiphy *wiphy,
1297 struct regulatory_request *pending_request)
1298 {
1299 struct wiphy *last_wiphy = NULL;
1300
1301 assert_cfg80211_lock();
1302
1303 /* All initial requests are respected */
1304 if (!last_request)
1305 return REG_REQ_OK;
1306
1307 switch (pending_request->initiator) {
1308 case NL80211_REGDOM_SET_BY_CORE:
1309 return REG_REQ_OK;
1310 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1311 if (reg_request_cell_base(last_request)) {
1312 /* Trust a Cell base station over the AP's country IE */
1313 if (regdom_changes(pending_request->alpha2))
1314 return REG_REQ_IGNORE;
1315 return REG_REQ_ALREADY_SET;
1316 }
1317
1318 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1319
1320 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1321 return -EINVAL;
1322 if (last_request->initiator ==
1323 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1324 if (last_wiphy != wiphy) {
1325 /*
1326 * Two cards with two APs claiming different
1327 * Country IE alpha2s. We could
1328 * intersect them, but that seems unlikely
1329 * to be correct. Reject second one for now.
1330 */
1331 if (regdom_changes(pending_request->alpha2))
1332 return REG_REQ_IGNORE;
1333 return REG_REQ_ALREADY_SET;
1334 }
1335 /*
1336 * Two consecutive Country IE hints on the same wiphy.
1337 * This should be picked up early by the driver/stack
1338 */
1339 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1340 return REG_REQ_OK;
1341 return REG_REQ_ALREADY_SET;
1342 }
1343 return 0;
1344 case NL80211_REGDOM_SET_BY_DRIVER:
1345 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1346 if (regdom_changes(pending_request->alpha2))
1347 return REG_REQ_OK;
1348 return REG_REQ_ALREADY_SET;
1349 }
1350
1351 /*
1352 * This would happen if you unplug and plug your card
1353 * back in or if you add a new device for which the previously
1354 * loaded card also agrees on the regulatory domain.
1355 */
1356 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1357 !regdom_changes(pending_request->alpha2))
1358 return REG_REQ_ALREADY_SET;
1359
1360 return REG_REQ_INTERSECT;
1361 case NL80211_REGDOM_SET_BY_USER:
1362 if (reg_request_cell_base(pending_request))
1363 return reg_ignore_cell_hint(pending_request);
1364
1365 if (reg_request_cell_base(last_request))
1366 return REG_REQ_IGNORE;
1367
1368 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1369 return REG_REQ_INTERSECT;
1370 /*
1371 * If the user knows better the user should set the regdom
1372 * to their country before the IE is picked up
1373 */
1374 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1375 last_request->intersect)
1376 return REG_REQ_IGNORE;
1377 /*
1378 * Process user requests only after previous user/driver/core
1379 * requests have been processed
1380 */
1381 if ((last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1382 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1383 last_request->initiator == NL80211_REGDOM_SET_BY_USER) &&
1384 regdom_changes(last_request->alpha2))
1385 return REG_REQ_IGNORE;
1386
1387 if (!regdom_changes(pending_request->alpha2))
1388 return REG_REQ_ALREADY_SET;
1389
1390 return REG_REQ_OK;
1391 }
1392
1393 return REG_REQ_IGNORE;
1394 }
1395
1396 static void reg_set_request_processed(void)
1397 {
1398 bool need_more_processing = false;
1399
1400 last_request->processed = true;
1401
1402 spin_lock(&reg_requests_lock);
1403 if (!list_empty(&reg_requests_list))
1404 need_more_processing = true;
1405 spin_unlock(&reg_requests_lock);
1406
1407 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1408 cancel_delayed_work(&reg_timeout);
1409
1410 if (need_more_processing)
1411 schedule_work(&reg_work);
1412 }
1413
1414 /**
1415 * __regulatory_hint - hint to the wireless core a regulatory domain
1416 * @wiphy: if the hint comes from country information from an AP, this
1417 * is required to be set to the wiphy that received the information
1418 * @pending_request: the regulatory request currently being processed
1419 *
1420 * The Wireless subsystem can use this function to hint to the wireless core
1421 * what it believes should be the current regulatory domain.
1422 *
1423 * Returns one of the different reg request treatment values.
1424 *
1425 * Caller must hold &cfg80211_mutex and &reg_mutex
1426 */
1427 static enum reg_request_treatment
1428 __regulatory_hint(struct wiphy *wiphy,
1429 struct regulatory_request *pending_request)
1430 {
1431 const struct ieee80211_regdomain *regd;
1432 bool intersect = false;
1433 enum reg_request_treatment treatment;
1434
1435 assert_cfg80211_lock();
1436
1437 treatment = get_reg_request_treatment(wiphy, pending_request);
1438
1439 switch (treatment) {
1440 case REG_REQ_INTERSECT:
1441 if (pending_request->initiator ==
1442 NL80211_REGDOM_SET_BY_DRIVER) {
1443 regd = reg_copy_regd(cfg80211_regdomain);
1444 if (IS_ERR(regd)) {
1445 kfree(pending_request);
1446 return PTR_ERR(regd);
1447 }
1448 wiphy->regd = regd;
1449 }
1450 intersect = true;
1451 break;
1452 case REG_REQ_OK:
1453 break;
1454 default:
1455 /*
1456 * If the regulatory domain being requested by the
1457 * driver has already been set just copy it to the
1458 * wiphy
1459 */
1460 if (treatment == REG_REQ_ALREADY_SET &&
1461 pending_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) {
1462 regd = reg_copy_regd(cfg80211_regdomain);
1463 if (IS_ERR(regd)) {
1464 kfree(pending_request);
1465 return REG_REQ_IGNORE;
1466 }
1467 treatment = REG_REQ_ALREADY_SET;
1468 wiphy->regd = regd;
1469 goto new_request;
1470 }
1471 kfree(pending_request);
1472 return treatment;
1473 }
1474
1475 new_request:
1476 if (last_request != &core_request_world)
1477 kfree(last_request);
1478
1479 last_request = pending_request;
1480 last_request->intersect = intersect;
1481
1482 pending_request = NULL;
1483
1484 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1485 user_alpha2[0] = last_request->alpha2[0];
1486 user_alpha2[1] = last_request->alpha2[1];
1487 }
1488
1489 /* When r == REG_REQ_INTERSECT we do need to call CRDA */
1490 if (treatment != REG_REQ_OK && treatment != REG_REQ_INTERSECT) {
1491 /*
1492 * Since CRDA will not be called in this case as we already
1493 * have applied the requested regulatory domain before we just
1494 * inform userspace we have processed the request
1495 */
1496 if (treatment == REG_REQ_ALREADY_SET) {
1497 nl80211_send_reg_change_event(last_request);
1498 reg_set_request_processed();
1499 }
1500 return treatment;
1501 }
1502
1503 if (call_crda(last_request->alpha2))
1504 return REG_REQ_IGNORE;
1505 return REG_REQ_OK;
1506 }
1507
1508 /* This processes *all* regulatory hints */
1509 static void reg_process_hint(struct regulatory_request *reg_request,
1510 enum nl80211_reg_initiator reg_initiator)
1511 {
1512 struct wiphy *wiphy = NULL;
1513
1514 if (WARN_ON(!reg_request->alpha2))
1515 return;
1516
1517 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1518 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1519
1520 if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER && !wiphy) {
1521 kfree(reg_request);
1522 return;
1523 }
1524
1525 switch (__regulatory_hint(wiphy, reg_request)) {
1526 case REG_REQ_ALREADY_SET:
1527 /* This is required so that the orig_* parameters are saved */
1528 if (wiphy && wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1529 wiphy_update_regulatory(wiphy, reg_initiator);
1530 break;
1531 default:
1532 if (reg_initiator == NL80211_REGDOM_SET_BY_USER)
1533 schedule_delayed_work(&reg_timeout,
1534 msecs_to_jiffies(3142));
1535 break;
1536 }
1537 }
1538
1539 /*
1540 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1541 * Regulatory hints come on a first come first serve basis and we
1542 * must process each one atomically.
1543 */
1544 static void reg_process_pending_hints(void)
1545 {
1546 struct regulatory_request *reg_request;
1547
1548 mutex_lock(&cfg80211_mutex);
1549 mutex_lock(&reg_mutex);
1550
1551 /* When last_request->processed becomes true this will be rescheduled */
1552 if (last_request && !last_request->processed) {
1553 REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n");
1554 goto out;
1555 }
1556
1557 spin_lock(&reg_requests_lock);
1558
1559 if (list_empty(&reg_requests_list)) {
1560 spin_unlock(&reg_requests_lock);
1561 goto out;
1562 }
1563
1564 reg_request = list_first_entry(&reg_requests_list,
1565 struct regulatory_request,
1566 list);
1567 list_del_init(&reg_request->list);
1568
1569 spin_unlock(&reg_requests_lock);
1570
1571 reg_process_hint(reg_request, reg_request->initiator);
1572
1573 out:
1574 mutex_unlock(&reg_mutex);
1575 mutex_unlock(&cfg80211_mutex);
1576 }
1577
1578 /* Processes beacon hints -- this has nothing to do with country IEs */
1579 static void reg_process_pending_beacon_hints(void)
1580 {
1581 struct cfg80211_registered_device *rdev;
1582 struct reg_beacon *pending_beacon, *tmp;
1583
1584 /*
1585 * No need to hold the reg_mutex here as we just touch wiphys
1586 * and do not read or access regulatory variables.
1587 */
1588 mutex_lock(&cfg80211_mutex);
1589
1590 /* This goes through the _pending_ beacon list */
1591 spin_lock_bh(&reg_pending_beacons_lock);
1592
1593 list_for_each_entry_safe(pending_beacon, tmp,
1594 &reg_pending_beacons, list) {
1595 list_del_init(&pending_beacon->list);
1596
1597 /* Applies the beacon hint to current wiphys */
1598 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1599 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1600
1601 /* Remembers the beacon hint for new wiphys or reg changes */
1602 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1603 }
1604
1605 spin_unlock_bh(&reg_pending_beacons_lock);
1606 mutex_unlock(&cfg80211_mutex);
1607 }
1608
1609 static void reg_todo(struct work_struct *work)
1610 {
1611 reg_process_pending_hints();
1612 reg_process_pending_beacon_hints();
1613 }
1614
1615 static void queue_regulatory_request(struct regulatory_request *request)
1616 {
1617 if (isalpha(request->alpha2[0]))
1618 request->alpha2[0] = toupper(request->alpha2[0]);
1619 if (isalpha(request->alpha2[1]))
1620 request->alpha2[1] = toupper(request->alpha2[1]);
1621
1622 spin_lock(&reg_requests_lock);
1623 list_add_tail(&request->list, &reg_requests_list);
1624 spin_unlock(&reg_requests_lock);
1625
1626 schedule_work(&reg_work);
1627 }
1628
1629 /*
1630 * Core regulatory hint -- happens during cfg80211_init()
1631 * and when we restore regulatory settings.
1632 */
1633 static int regulatory_hint_core(const char *alpha2)
1634 {
1635 struct regulatory_request *request;
1636
1637 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1638 if (!request)
1639 return -ENOMEM;
1640
1641 request->alpha2[0] = alpha2[0];
1642 request->alpha2[1] = alpha2[1];
1643 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1644
1645 queue_regulatory_request(request);
1646
1647 return 0;
1648 }
1649
1650 /* User hints */
1651 int regulatory_hint_user(const char *alpha2,
1652 enum nl80211_user_reg_hint_type user_reg_hint_type)
1653 {
1654 struct regulatory_request *request;
1655
1656 if (WARN_ON(!alpha2))
1657 return -EINVAL;
1658
1659 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1660 if (!request)
1661 return -ENOMEM;
1662
1663 request->wiphy_idx = WIPHY_IDX_INVALID;
1664 request->alpha2[0] = alpha2[0];
1665 request->alpha2[1] = alpha2[1];
1666 request->initiator = NL80211_REGDOM_SET_BY_USER;
1667 request->user_reg_hint_type = user_reg_hint_type;
1668
1669 queue_regulatory_request(request);
1670
1671 return 0;
1672 }
1673
1674 /* Driver hints */
1675 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1676 {
1677 struct regulatory_request *request;
1678
1679 if (WARN_ON(!alpha2 || !wiphy))
1680 return -EINVAL;
1681
1682 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1683 if (!request)
1684 return -ENOMEM;
1685
1686 request->wiphy_idx = get_wiphy_idx(wiphy);
1687
1688 request->alpha2[0] = alpha2[0];
1689 request->alpha2[1] = alpha2[1];
1690 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1691
1692 queue_regulatory_request(request);
1693
1694 return 0;
1695 }
1696 EXPORT_SYMBOL(regulatory_hint);
1697
1698 /*
1699 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1700 * therefore cannot iterate over the rdev list here.
1701 */
1702 void regulatory_hint_11d(struct wiphy *wiphy, enum ieee80211_band band,
1703 const u8 *country_ie, u8 country_ie_len)
1704 {
1705 char alpha2[2];
1706 enum environment_cap env = ENVIRON_ANY;
1707 struct regulatory_request *request;
1708
1709 mutex_lock(&reg_mutex);
1710
1711 if (unlikely(!last_request))
1712 goto out;
1713
1714 /* IE len must be evenly divisible by 2 */
1715 if (country_ie_len & 0x01)
1716 goto out;
1717
1718 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1719 goto out;
1720
1721 alpha2[0] = country_ie[0];
1722 alpha2[1] = country_ie[1];
1723
1724 if (country_ie[2] == 'I')
1725 env = ENVIRON_INDOOR;
1726 else if (country_ie[2] == 'O')
1727 env = ENVIRON_OUTDOOR;
1728
1729 /*
1730 * We will run this only upon a successful connection on cfg80211.
1731 * We leave conflict resolution to the workqueue, where can hold
1732 * cfg80211_mutex.
1733 */
1734 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1735 last_request->wiphy_idx != WIPHY_IDX_INVALID)
1736 goto out;
1737
1738 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1739 if (!request)
1740 goto out;
1741
1742 request->wiphy_idx = get_wiphy_idx(wiphy);
1743 request->alpha2[0] = alpha2[0];
1744 request->alpha2[1] = alpha2[1];
1745 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1746 request->country_ie_env = env;
1747
1748 queue_regulatory_request(request);
1749 out:
1750 mutex_unlock(&reg_mutex);
1751 }
1752
1753 static void restore_alpha2(char *alpha2, bool reset_user)
1754 {
1755 /* indicates there is no alpha2 to consider for restoration */
1756 alpha2[0] = '9';
1757 alpha2[1] = '7';
1758
1759 /* The user setting has precedence over the module parameter */
1760 if (is_user_regdom_saved()) {
1761 /* Unless we're asked to ignore it and reset it */
1762 if (reset_user) {
1763 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
1764 user_alpha2[0] = '9';
1765 user_alpha2[1] = '7';
1766
1767 /*
1768 * If we're ignoring user settings, we still need to
1769 * check the module parameter to ensure we put things
1770 * back as they were for a full restore.
1771 */
1772 if (!is_world_regdom(ieee80211_regdom)) {
1773 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1774 ieee80211_regdom[0], ieee80211_regdom[1]);
1775 alpha2[0] = ieee80211_regdom[0];
1776 alpha2[1] = ieee80211_regdom[1];
1777 }
1778 } else {
1779 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
1780 user_alpha2[0], user_alpha2[1]);
1781 alpha2[0] = user_alpha2[0];
1782 alpha2[1] = user_alpha2[1];
1783 }
1784 } else if (!is_world_regdom(ieee80211_regdom)) {
1785 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1786 ieee80211_regdom[0], ieee80211_regdom[1]);
1787 alpha2[0] = ieee80211_regdom[0];
1788 alpha2[1] = ieee80211_regdom[1];
1789 } else
1790 REG_DBG_PRINT("Restoring regulatory settings\n");
1791 }
1792
1793 static void restore_custom_reg_settings(struct wiphy *wiphy)
1794 {
1795 struct ieee80211_supported_band *sband;
1796 enum ieee80211_band band;
1797 struct ieee80211_channel *chan;
1798 int i;
1799
1800 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1801 sband = wiphy->bands[band];
1802 if (!sband)
1803 continue;
1804 for (i = 0; i < sband->n_channels; i++) {
1805 chan = &sband->channels[i];
1806 chan->flags = chan->orig_flags;
1807 chan->max_antenna_gain = chan->orig_mag;
1808 chan->max_power = chan->orig_mpwr;
1809 chan->beacon_found = false;
1810 }
1811 }
1812 }
1813
1814 /*
1815 * Restoring regulatory settings involves ingoring any
1816 * possibly stale country IE information and user regulatory
1817 * settings if so desired, this includes any beacon hints
1818 * learned as we could have traveled outside to another country
1819 * after disconnection. To restore regulatory settings we do
1820 * exactly what we did at bootup:
1821 *
1822 * - send a core regulatory hint
1823 * - send a user regulatory hint if applicable
1824 *
1825 * Device drivers that send a regulatory hint for a specific country
1826 * keep their own regulatory domain on wiphy->regd so that does does
1827 * not need to be remembered.
1828 */
1829 static void restore_regulatory_settings(bool reset_user)
1830 {
1831 char alpha2[2];
1832 char world_alpha2[2];
1833 struct reg_beacon *reg_beacon, *btmp;
1834 struct regulatory_request *reg_request, *tmp;
1835 LIST_HEAD(tmp_reg_req_list);
1836 struct cfg80211_registered_device *rdev;
1837
1838 mutex_lock(&cfg80211_mutex);
1839 mutex_lock(&reg_mutex);
1840
1841 reset_regdomains(true);
1842 restore_alpha2(alpha2, reset_user);
1843
1844 /*
1845 * If there's any pending requests we simply
1846 * stash them to a temporary pending queue and
1847 * add then after we've restored regulatory
1848 * settings.
1849 */
1850 spin_lock(&reg_requests_lock);
1851 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
1852 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
1853 continue;
1854 list_move_tail(&reg_request->list, &tmp_reg_req_list);
1855 }
1856 spin_unlock(&reg_requests_lock);
1857
1858 /* Clear beacon hints */
1859 spin_lock_bh(&reg_pending_beacons_lock);
1860 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
1861 list_del(&reg_beacon->list);
1862 kfree(reg_beacon);
1863 }
1864 spin_unlock_bh(&reg_pending_beacons_lock);
1865
1866 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
1867 list_del(&reg_beacon->list);
1868 kfree(reg_beacon);
1869 }
1870
1871 /* First restore to the basic regulatory settings */
1872 cfg80211_regdomain = cfg80211_world_regdom;
1873 world_alpha2[0] = cfg80211_regdomain->alpha2[0];
1874 world_alpha2[1] = cfg80211_regdomain->alpha2[1];
1875
1876 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1877 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1878 restore_custom_reg_settings(&rdev->wiphy);
1879 }
1880
1881 mutex_unlock(&reg_mutex);
1882 mutex_unlock(&cfg80211_mutex);
1883
1884 regulatory_hint_core(world_alpha2);
1885
1886 /*
1887 * This restores the ieee80211_regdom module parameter
1888 * preference or the last user requested regulatory
1889 * settings, user regulatory settings takes precedence.
1890 */
1891 if (is_an_alpha2(alpha2))
1892 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
1893
1894 if (list_empty(&tmp_reg_req_list))
1895 return;
1896
1897 mutex_lock(&cfg80211_mutex);
1898 mutex_lock(&reg_mutex);
1899
1900 spin_lock(&reg_requests_lock);
1901 list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1902 REG_DBG_PRINT("Adding request for country %c%c back into the queue\n",
1903 reg_request->alpha2[0], reg_request->alpha2[1]);
1904 list_move_tail(&reg_request->list, &reg_requests_list);
1905 }
1906 spin_unlock(&reg_requests_lock);
1907
1908 mutex_unlock(&reg_mutex);
1909 mutex_unlock(&cfg80211_mutex);
1910
1911 REG_DBG_PRINT("Kicking the queue\n");
1912
1913 schedule_work(&reg_work);
1914 }
1915
1916 void regulatory_hint_disconnect(void)
1917 {
1918 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
1919 restore_regulatory_settings(false);
1920 }
1921
1922 static bool freq_is_chan_12_13_14(u16 freq)
1923 {
1924 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1925 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1926 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1927 return true;
1928 return false;
1929 }
1930
1931 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1932 struct ieee80211_channel *beacon_chan,
1933 gfp_t gfp)
1934 {
1935 struct reg_beacon *reg_beacon;
1936
1937 if (beacon_chan->beacon_found ||
1938 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
1939 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1940 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
1941 return 0;
1942
1943 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1944 if (!reg_beacon)
1945 return -ENOMEM;
1946
1947 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
1948 beacon_chan->center_freq,
1949 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1950 wiphy_name(wiphy));
1951
1952 memcpy(&reg_beacon->chan, beacon_chan,
1953 sizeof(struct ieee80211_channel));
1954
1955 /*
1956 * Since we can be called from BH or and non-BH context
1957 * we must use spin_lock_bh()
1958 */
1959 spin_lock_bh(&reg_pending_beacons_lock);
1960 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1961 spin_unlock_bh(&reg_pending_beacons_lock);
1962
1963 schedule_work(&reg_work);
1964
1965 return 0;
1966 }
1967
1968 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1969 {
1970 unsigned int i;
1971 const struct ieee80211_reg_rule *reg_rule = NULL;
1972 const struct ieee80211_freq_range *freq_range = NULL;
1973 const struct ieee80211_power_rule *power_rule = NULL;
1974
1975 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1976
1977 for (i = 0; i < rd->n_reg_rules; i++) {
1978 reg_rule = &rd->reg_rules[i];
1979 freq_range = &reg_rule->freq_range;
1980 power_rule = &reg_rule->power_rule;
1981
1982 /*
1983 * There may not be documentation for max antenna gain
1984 * in certain regions
1985 */
1986 if (power_rule->max_antenna_gain)
1987 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1988 freq_range->start_freq_khz,
1989 freq_range->end_freq_khz,
1990 freq_range->max_bandwidth_khz,
1991 power_rule->max_antenna_gain,
1992 power_rule->max_eirp);
1993 else
1994 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1995 freq_range->start_freq_khz,
1996 freq_range->end_freq_khz,
1997 freq_range->max_bandwidth_khz,
1998 power_rule->max_eirp);
1999 }
2000 }
2001
2002 bool reg_supported_dfs_region(u8 dfs_region)
2003 {
2004 switch (dfs_region) {
2005 case NL80211_DFS_UNSET:
2006 case NL80211_DFS_FCC:
2007 case NL80211_DFS_ETSI:
2008 case NL80211_DFS_JP:
2009 return true;
2010 default:
2011 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2012 dfs_region);
2013 return false;
2014 }
2015 }
2016
2017 static void print_dfs_region(u8 dfs_region)
2018 {
2019 if (!dfs_region)
2020 return;
2021
2022 switch (dfs_region) {
2023 case NL80211_DFS_FCC:
2024 pr_info(" DFS Master region FCC");
2025 break;
2026 case NL80211_DFS_ETSI:
2027 pr_info(" DFS Master region ETSI");
2028 break;
2029 case NL80211_DFS_JP:
2030 pr_info(" DFS Master region JP");
2031 break;
2032 default:
2033 pr_info(" DFS Master region Unknown");
2034 break;
2035 }
2036 }
2037
2038 static void print_regdomain(const struct ieee80211_regdomain *rd)
2039 {
2040
2041 if (is_intersected_alpha2(rd->alpha2)) {
2042 if (last_request->initiator ==
2043 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2044 struct cfg80211_registered_device *rdev;
2045 rdev = cfg80211_rdev_by_wiphy_idx(
2046 last_request->wiphy_idx);
2047 if (rdev) {
2048 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2049 rdev->country_ie_alpha2[0],
2050 rdev->country_ie_alpha2[1]);
2051 } else
2052 pr_info("Current regulatory domain intersected:\n");
2053 } else
2054 pr_info("Current regulatory domain intersected:\n");
2055 } else if (is_world_regdom(rd->alpha2)) {
2056 pr_info("World regulatory domain updated:\n");
2057 } else {
2058 if (is_unknown_alpha2(rd->alpha2))
2059 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2060 else {
2061 if (reg_request_cell_base(last_request))
2062 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2063 rd->alpha2[0], rd->alpha2[1]);
2064 else
2065 pr_info("Regulatory domain changed to country: %c%c\n",
2066 rd->alpha2[0], rd->alpha2[1]);
2067 }
2068 }
2069
2070 print_dfs_region(rd->dfs_region);
2071 print_rd_rules(rd);
2072 }
2073
2074 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2075 {
2076 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2077 print_rd_rules(rd);
2078 }
2079
2080 /* Takes ownership of rd only if it doesn't fail */
2081 static int __set_regdom(const struct ieee80211_regdomain *rd)
2082 {
2083 const struct ieee80211_regdomain *regd;
2084 const struct ieee80211_regdomain *intersected_rd = NULL;
2085 struct wiphy *request_wiphy;
2086 /* Some basic sanity checks first */
2087
2088 if (is_world_regdom(rd->alpha2)) {
2089 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2090 return -EINVAL;
2091 update_world_regdomain(rd);
2092 return 0;
2093 }
2094
2095 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2096 !is_unknown_alpha2(rd->alpha2))
2097 return -EINVAL;
2098
2099 if (!last_request)
2100 return -EINVAL;
2101
2102 /*
2103 * Lets only bother proceeding on the same alpha2 if the current
2104 * rd is non static (it means CRDA was present and was used last)
2105 * and the pending request came in from a country IE
2106 */
2107 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2108 /*
2109 * If someone else asked us to change the rd lets only bother
2110 * checking if the alpha2 changes if CRDA was already called
2111 */
2112 if (!regdom_changes(rd->alpha2))
2113 return -EALREADY;
2114 }
2115
2116 /*
2117 * Now lets set the regulatory domain, update all driver channels
2118 * and finally inform them of what we have done, in case they want
2119 * to review or adjust their own settings based on their own
2120 * internal EEPROM data
2121 */
2122
2123 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2124 return -EINVAL;
2125
2126 if (!is_valid_rd(rd)) {
2127 pr_err("Invalid regulatory domain detected:\n");
2128 print_regdomain_info(rd);
2129 return -EINVAL;
2130 }
2131
2132 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2133 if (!request_wiphy &&
2134 (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2135 last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2136 schedule_delayed_work(&reg_timeout, 0);
2137 return -ENODEV;
2138 }
2139
2140 if (!last_request->intersect) {
2141 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2142 reset_regdomains(false);
2143 cfg80211_regdomain = rd;
2144 return 0;
2145 }
2146
2147 /*
2148 * For a driver hint, lets copy the regulatory domain the
2149 * driver wanted to the wiphy to deal with conflicts
2150 */
2151
2152 /*
2153 * Userspace could have sent two replies with only
2154 * one kernel request.
2155 */
2156 if (request_wiphy->regd)
2157 return -EALREADY;
2158
2159 regd = reg_copy_regd(rd);
2160 if (IS_ERR(regd))
2161 return PTR_ERR(regd);
2162
2163 request_wiphy->regd = regd;
2164 reset_regdomains(false);
2165 cfg80211_regdomain = rd;
2166 return 0;
2167 }
2168
2169 /* Intersection requires a bit more work */
2170
2171 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2172 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2173 if (!intersected_rd)
2174 return -EINVAL;
2175
2176 /*
2177 * We can trash what CRDA provided now.
2178 * However if a driver requested this specific regulatory
2179 * domain we keep it for its private use
2180 */
2181 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2182 request_wiphy->regd = rd;
2183 else
2184 kfree(rd);
2185
2186 rd = NULL;
2187
2188 reset_regdomains(false);
2189 cfg80211_regdomain = intersected_rd;
2190
2191 return 0;
2192 }
2193
2194 return -EINVAL;
2195 }
2196
2197
2198 /*
2199 * Use this call to set the current regulatory domain. Conflicts with
2200 * multiple drivers can be ironed out later. Caller must've already
2201 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2202 */
2203 int set_regdom(const struct ieee80211_regdomain *rd)
2204 {
2205 int r;
2206
2207 assert_cfg80211_lock();
2208
2209 mutex_lock(&reg_mutex);
2210
2211 /* Note that this doesn't update the wiphys, this is done below */
2212 r = __set_regdom(rd);
2213 if (r) {
2214 if (r == -EALREADY)
2215 reg_set_request_processed();
2216
2217 kfree(rd);
2218 goto out;
2219 }
2220
2221 /* This would make this whole thing pointless */
2222 if (WARN_ON(!last_request->intersect && rd != cfg80211_regdomain)) {
2223 r = -EINVAL;
2224 goto out;
2225 }
2226
2227 /* update all wiphys now with the new established regulatory domain */
2228 update_all_wiphy_regulatory(last_request->initiator);
2229
2230 print_regdomain(cfg80211_regdomain);
2231
2232 nl80211_send_reg_change_event(last_request);
2233
2234 reg_set_request_processed();
2235
2236 out:
2237 mutex_unlock(&reg_mutex);
2238
2239 return r;
2240 }
2241
2242 #ifdef CONFIG_HOTPLUG
2243 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2244 {
2245 if (last_request && !last_request->processed) {
2246 if (add_uevent_var(env, "COUNTRY=%c%c",
2247 last_request->alpha2[0],
2248 last_request->alpha2[1]))
2249 return -ENOMEM;
2250 }
2251
2252 return 0;
2253 }
2254 #else
2255 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2256 {
2257 return -ENODEV;
2258 }
2259 #endif /* CONFIG_HOTPLUG */
2260
2261 void wiphy_regulatory_register(struct wiphy *wiphy)
2262 {
2263 assert_cfg80211_lock();
2264
2265 mutex_lock(&reg_mutex);
2266
2267 if (!reg_dev_ignore_cell_hint(wiphy))
2268 reg_num_devs_support_basehint++;
2269
2270 wiphy_update_regulatory(wiphy, NL80211_REGDOM_SET_BY_CORE);
2271
2272 mutex_unlock(&reg_mutex);
2273 }
2274
2275 /* Caller must hold cfg80211_mutex */
2276 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2277 {
2278 struct wiphy *request_wiphy = NULL;
2279
2280 assert_cfg80211_lock();
2281
2282 mutex_lock(&reg_mutex);
2283
2284 if (!reg_dev_ignore_cell_hint(wiphy))
2285 reg_num_devs_support_basehint--;
2286
2287 kfree(wiphy->regd);
2288
2289 if (last_request)
2290 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2291
2292 if (!request_wiphy || request_wiphy != wiphy)
2293 goto out;
2294
2295 last_request->wiphy_idx = WIPHY_IDX_INVALID;
2296 last_request->country_ie_env = ENVIRON_ANY;
2297 out:
2298 mutex_unlock(&reg_mutex);
2299 }
2300
2301 static void reg_timeout_work(struct work_struct *work)
2302 {
2303 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2304 restore_regulatory_settings(true);
2305 }
2306
2307 int __init regulatory_init(void)
2308 {
2309 int err = 0;
2310
2311 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2312 if (IS_ERR(reg_pdev))
2313 return PTR_ERR(reg_pdev);
2314
2315 reg_pdev->dev.type = &reg_device_type;
2316
2317 spin_lock_init(&reg_requests_lock);
2318 spin_lock_init(&reg_pending_beacons_lock);
2319
2320 reg_regdb_size_check();
2321
2322 cfg80211_regdomain = cfg80211_world_regdom;
2323
2324 user_alpha2[0] = '9';
2325 user_alpha2[1] = '7';
2326
2327 /* We always try to get an update for the static regdomain */
2328 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2329 if (err) {
2330 if (err == -ENOMEM)
2331 return err;
2332 /*
2333 * N.B. kobject_uevent_env() can fail mainly for when we're out
2334 * memory which is handled and propagated appropriately above
2335 * but it can also fail during a netlink_broadcast() or during
2336 * early boot for call_usermodehelper(). For now treat these
2337 * errors as non-fatal.
2338 */
2339 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2340 #ifdef CONFIG_CFG80211_REG_DEBUG
2341 /* We want to find out exactly why when debugging */
2342 WARN_ON(err);
2343 #endif
2344 }
2345
2346 /*
2347 * Finally, if the user set the module parameter treat it
2348 * as a user hint.
2349 */
2350 if (!is_world_regdom(ieee80211_regdom))
2351 regulatory_hint_user(ieee80211_regdom,
2352 NL80211_USER_REG_HINT_USER);
2353
2354 return 0;
2355 }
2356
2357 void regulatory_exit(void)
2358 {
2359 struct regulatory_request *reg_request, *tmp;
2360 struct reg_beacon *reg_beacon, *btmp;
2361
2362 cancel_work_sync(&reg_work);
2363 cancel_delayed_work_sync(&reg_timeout);
2364
2365 /* Lock to suppress warnings */
2366 mutex_lock(&cfg80211_mutex);
2367 mutex_lock(&reg_mutex);
2368 reset_regdomains(true);
2369 mutex_unlock(&cfg80211_mutex);
2370 mutex_unlock(&reg_mutex);
2371
2372 dev_set_uevent_suppress(&reg_pdev->dev, true);
2373
2374 platform_device_unregister(reg_pdev);
2375
2376 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2377 list_del(&reg_beacon->list);
2378 kfree(reg_beacon);
2379 }
2380
2381 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2382 list_del(&reg_beacon->list);
2383 kfree(reg_beacon);
2384 }
2385
2386 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2387 list_del(&reg_request->list);
2388 kfree(reg_request);
2389 }
2390 }