]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/wireless/reg.c
Merge tag 'for-linus-20161104' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-bionic-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 *
8 * Permission to use, copy, modify, and/or distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21
22 /**
23 * DOC: Wireless regulatory infrastructure
24 *
25 * The usual implementation is for a driver to read a device EEPROM to
26 * determine which regulatory domain it should be operating under, then
27 * looking up the allowable channels in a driver-local table and finally
28 * registering those channels in the wiphy structure.
29 *
30 * Another set of compliance enforcement is for drivers to use their
31 * own compliance limits which can be stored on the EEPROM. The host
32 * driver or firmware may ensure these are used.
33 *
34 * In addition to all this we provide an extra layer of regulatory
35 * conformance. For drivers which do not have any regulatory
36 * information CRDA provides the complete regulatory solution.
37 * For others it provides a community effort on further restrictions
38 * to enhance compliance.
39 *
40 * Note: When number of rules --> infinity we will not be able to
41 * index on alpha2 any more, instead we'll probably have to
42 * rely on some SHA1 checksum of the regdomain for example.
43 *
44 */
45
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "rdev-ops.h"
60 #include "regdb.h"
61 #include "nl80211.h"
62
63 /*
64 * Grace period we give before making sure all current interfaces reside on
65 * channels allowed by the current regulatory domain.
66 */
67 #define REG_ENFORCE_GRACE_MS 60000
68
69 /**
70 * enum reg_request_treatment - regulatory request treatment
71 *
72 * @REG_REQ_OK: continue processing the regulatory request
73 * @REG_REQ_IGNORE: ignore the regulatory request
74 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
75 * be intersected with the current one.
76 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
77 * regulatory settings, and no further processing is required.
78 */
79 enum reg_request_treatment {
80 REG_REQ_OK,
81 REG_REQ_IGNORE,
82 REG_REQ_INTERSECT,
83 REG_REQ_ALREADY_SET,
84 };
85
86 static struct regulatory_request core_request_world = {
87 .initiator = NL80211_REGDOM_SET_BY_CORE,
88 .alpha2[0] = '0',
89 .alpha2[1] = '0',
90 .intersect = false,
91 .processed = true,
92 .country_ie_env = ENVIRON_ANY,
93 };
94
95 /*
96 * Receipt of information from last regulatory request,
97 * protected by RTNL (and can be accessed with RCU protection)
98 */
99 static struct regulatory_request __rcu *last_request =
100 (void __force __rcu *)&core_request_world;
101
102 /* To trigger userspace events */
103 static struct platform_device *reg_pdev;
104
105 /*
106 * Central wireless core regulatory domains, we only need two,
107 * the current one and a world regulatory domain in case we have no
108 * information to give us an alpha2.
109 * (protected by RTNL, can be read under RCU)
110 */
111 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
112
113 /*
114 * Number of devices that registered to the core
115 * that support cellular base station regulatory hints
116 * (protected by RTNL)
117 */
118 static int reg_num_devs_support_basehint;
119
120 /*
121 * State variable indicating if the platform on which the devices
122 * are attached is operating in an indoor environment. The state variable
123 * is relevant for all registered devices.
124 */
125 static bool reg_is_indoor;
126 static spinlock_t reg_indoor_lock;
127
128 /* Used to track the userspace process controlling the indoor setting */
129 static u32 reg_is_indoor_portid;
130
131 static void restore_regulatory_settings(bool reset_user);
132
133 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
134 {
135 return rtnl_dereference(cfg80211_regdomain);
136 }
137
138 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
139 {
140 return rtnl_dereference(wiphy->regd);
141 }
142
143 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
144 {
145 switch (dfs_region) {
146 case NL80211_DFS_UNSET:
147 return "unset";
148 case NL80211_DFS_FCC:
149 return "FCC";
150 case NL80211_DFS_ETSI:
151 return "ETSI";
152 case NL80211_DFS_JP:
153 return "JP";
154 }
155 return "Unknown";
156 }
157
158 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
159 {
160 const struct ieee80211_regdomain *regd = NULL;
161 const struct ieee80211_regdomain *wiphy_regd = NULL;
162
163 regd = get_cfg80211_regdom();
164 if (!wiphy)
165 goto out;
166
167 wiphy_regd = get_wiphy_regdom(wiphy);
168 if (!wiphy_regd)
169 goto out;
170
171 if (wiphy_regd->dfs_region == regd->dfs_region)
172 goto out;
173
174 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
175 dev_name(&wiphy->dev),
176 reg_dfs_region_str(wiphy_regd->dfs_region),
177 reg_dfs_region_str(regd->dfs_region));
178
179 out:
180 return regd->dfs_region;
181 }
182
183 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
184 {
185 if (!r)
186 return;
187 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
188 }
189
190 static struct regulatory_request *get_last_request(void)
191 {
192 return rcu_dereference_rtnl(last_request);
193 }
194
195 /* Used to queue up regulatory hints */
196 static LIST_HEAD(reg_requests_list);
197 static spinlock_t reg_requests_lock;
198
199 /* Used to queue up beacon hints for review */
200 static LIST_HEAD(reg_pending_beacons);
201 static spinlock_t reg_pending_beacons_lock;
202
203 /* Used to keep track of processed beacon hints */
204 static LIST_HEAD(reg_beacon_list);
205
206 struct reg_beacon {
207 struct list_head list;
208 struct ieee80211_channel chan;
209 };
210
211 static void reg_check_chans_work(struct work_struct *work);
212 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
213
214 static void reg_todo(struct work_struct *work);
215 static DECLARE_WORK(reg_work, reg_todo);
216
217 /* We keep a static world regulatory domain in case of the absence of CRDA */
218 static const struct ieee80211_regdomain world_regdom = {
219 .n_reg_rules = 8,
220 .alpha2 = "00",
221 .reg_rules = {
222 /* IEEE 802.11b/g, channels 1..11 */
223 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
224 /* IEEE 802.11b/g, channels 12..13. */
225 REG_RULE(2467-10, 2472+10, 20, 6, 20,
226 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
227 /* IEEE 802.11 channel 14 - Only JP enables
228 * this and for 802.11b only */
229 REG_RULE(2484-10, 2484+10, 20, 6, 20,
230 NL80211_RRF_NO_IR |
231 NL80211_RRF_NO_OFDM),
232 /* IEEE 802.11a, channel 36..48 */
233 REG_RULE(5180-10, 5240+10, 80, 6, 20,
234 NL80211_RRF_NO_IR |
235 NL80211_RRF_AUTO_BW),
236
237 /* IEEE 802.11a, channel 52..64 - DFS required */
238 REG_RULE(5260-10, 5320+10, 80, 6, 20,
239 NL80211_RRF_NO_IR |
240 NL80211_RRF_AUTO_BW |
241 NL80211_RRF_DFS),
242
243 /* IEEE 802.11a, channel 100..144 - DFS required */
244 REG_RULE(5500-10, 5720+10, 160, 6, 20,
245 NL80211_RRF_NO_IR |
246 NL80211_RRF_DFS),
247
248 /* IEEE 802.11a, channel 149..165 */
249 REG_RULE(5745-10, 5825+10, 80, 6, 20,
250 NL80211_RRF_NO_IR),
251
252 /* IEEE 802.11ad (60GHz), channels 1..3 */
253 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
254 }
255 };
256
257 /* protected by RTNL */
258 static const struct ieee80211_regdomain *cfg80211_world_regdom =
259 &world_regdom;
260
261 static char *ieee80211_regdom = "00";
262 static char user_alpha2[2];
263
264 module_param(ieee80211_regdom, charp, 0444);
265 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
266
267 static void reg_free_request(struct regulatory_request *request)
268 {
269 if (request == &core_request_world)
270 return;
271
272 if (request != get_last_request())
273 kfree(request);
274 }
275
276 static void reg_free_last_request(void)
277 {
278 struct regulatory_request *lr = get_last_request();
279
280 if (lr != &core_request_world && lr)
281 kfree_rcu(lr, rcu_head);
282 }
283
284 static void reg_update_last_request(struct regulatory_request *request)
285 {
286 struct regulatory_request *lr;
287
288 lr = get_last_request();
289 if (lr == request)
290 return;
291
292 reg_free_last_request();
293 rcu_assign_pointer(last_request, request);
294 }
295
296 static void reset_regdomains(bool full_reset,
297 const struct ieee80211_regdomain *new_regdom)
298 {
299 const struct ieee80211_regdomain *r;
300
301 ASSERT_RTNL();
302
303 r = get_cfg80211_regdom();
304
305 /* avoid freeing static information or freeing something twice */
306 if (r == cfg80211_world_regdom)
307 r = NULL;
308 if (cfg80211_world_regdom == &world_regdom)
309 cfg80211_world_regdom = NULL;
310 if (r == &world_regdom)
311 r = NULL;
312
313 rcu_free_regdom(r);
314 rcu_free_regdom(cfg80211_world_regdom);
315
316 cfg80211_world_regdom = &world_regdom;
317 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
318
319 if (!full_reset)
320 return;
321
322 reg_update_last_request(&core_request_world);
323 }
324
325 /*
326 * Dynamic world regulatory domain requested by the wireless
327 * core upon initialization
328 */
329 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
330 {
331 struct regulatory_request *lr;
332
333 lr = get_last_request();
334
335 WARN_ON(!lr);
336
337 reset_regdomains(false, rd);
338
339 cfg80211_world_regdom = rd;
340 }
341
342 bool is_world_regdom(const char *alpha2)
343 {
344 if (!alpha2)
345 return false;
346 return alpha2[0] == '0' && alpha2[1] == '0';
347 }
348
349 static bool is_alpha2_set(const char *alpha2)
350 {
351 if (!alpha2)
352 return false;
353 return alpha2[0] && alpha2[1];
354 }
355
356 static bool is_unknown_alpha2(const char *alpha2)
357 {
358 if (!alpha2)
359 return false;
360 /*
361 * Special case where regulatory domain was built by driver
362 * but a specific alpha2 cannot be determined
363 */
364 return alpha2[0] == '9' && alpha2[1] == '9';
365 }
366
367 static bool is_intersected_alpha2(const char *alpha2)
368 {
369 if (!alpha2)
370 return false;
371 /*
372 * Special case where regulatory domain is the
373 * result of an intersection between two regulatory domain
374 * structures
375 */
376 return alpha2[0] == '9' && alpha2[1] == '8';
377 }
378
379 static bool is_an_alpha2(const char *alpha2)
380 {
381 if (!alpha2)
382 return false;
383 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
384 }
385
386 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
387 {
388 if (!alpha2_x || !alpha2_y)
389 return false;
390 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
391 }
392
393 static bool regdom_changes(const char *alpha2)
394 {
395 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
396
397 if (!r)
398 return true;
399 return !alpha2_equal(r->alpha2, alpha2);
400 }
401
402 /*
403 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
404 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
405 * has ever been issued.
406 */
407 static bool is_user_regdom_saved(void)
408 {
409 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
410 return false;
411
412 /* This would indicate a mistake on the design */
413 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
414 "Unexpected user alpha2: %c%c\n",
415 user_alpha2[0], user_alpha2[1]))
416 return false;
417
418 return true;
419 }
420
421 static const struct ieee80211_regdomain *
422 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
423 {
424 struct ieee80211_regdomain *regd;
425 int size_of_regd;
426 unsigned int i;
427
428 size_of_regd =
429 sizeof(struct ieee80211_regdomain) +
430 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
431
432 regd = kzalloc(size_of_regd, GFP_KERNEL);
433 if (!regd)
434 return ERR_PTR(-ENOMEM);
435
436 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
437
438 for (i = 0; i < src_regd->n_reg_rules; i++)
439 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
440 sizeof(struct ieee80211_reg_rule));
441
442 return regd;
443 }
444
445 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
446 struct reg_regdb_apply_request {
447 struct list_head list;
448 const struct ieee80211_regdomain *regdom;
449 };
450
451 static LIST_HEAD(reg_regdb_apply_list);
452 static DEFINE_MUTEX(reg_regdb_apply_mutex);
453
454 static void reg_regdb_apply(struct work_struct *work)
455 {
456 struct reg_regdb_apply_request *request;
457
458 rtnl_lock();
459
460 mutex_lock(&reg_regdb_apply_mutex);
461 while (!list_empty(&reg_regdb_apply_list)) {
462 request = list_first_entry(&reg_regdb_apply_list,
463 struct reg_regdb_apply_request,
464 list);
465 list_del(&request->list);
466
467 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
468 kfree(request);
469 }
470 mutex_unlock(&reg_regdb_apply_mutex);
471
472 rtnl_unlock();
473 }
474
475 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
476
477 static int reg_query_builtin(const char *alpha2)
478 {
479 const struct ieee80211_regdomain *regdom = NULL;
480 struct reg_regdb_apply_request *request;
481 unsigned int i;
482
483 for (i = 0; i < reg_regdb_size; i++) {
484 if (alpha2_equal(alpha2, reg_regdb[i]->alpha2)) {
485 regdom = reg_regdb[i];
486 break;
487 }
488 }
489
490 if (!regdom)
491 return -ENODATA;
492
493 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
494 if (!request)
495 return -ENOMEM;
496
497 request->regdom = reg_copy_regd(regdom);
498 if (IS_ERR_OR_NULL(request->regdom)) {
499 kfree(request);
500 return -ENOMEM;
501 }
502
503 mutex_lock(&reg_regdb_apply_mutex);
504 list_add_tail(&request->list, &reg_regdb_apply_list);
505 mutex_unlock(&reg_regdb_apply_mutex);
506
507 schedule_work(&reg_regdb_work);
508
509 return 0;
510 }
511
512 /* Feel free to add any other sanity checks here */
513 static void reg_regdb_size_check(void)
514 {
515 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
516 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
517 }
518 #else
519 static inline void reg_regdb_size_check(void) {}
520 static inline int reg_query_builtin(const char *alpha2)
521 {
522 return -ENODATA;
523 }
524 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
525
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA */
528 #define REG_MAX_CRDA_TIMEOUTS 10
529
530 static u32 reg_crda_timeouts;
531
532 static void crda_timeout_work(struct work_struct *work);
533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534
535 static void crda_timeout_work(struct work_struct *work)
536 {
537 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538 rtnl_lock();
539 reg_crda_timeouts++;
540 restore_regulatory_settings(true);
541 rtnl_unlock();
542 }
543
544 static void cancel_crda_timeout(void)
545 {
546 cancel_delayed_work(&crda_timeout);
547 }
548
549 static void cancel_crda_timeout_sync(void)
550 {
551 cancel_delayed_work_sync(&crda_timeout);
552 }
553
554 static void reset_crda_timeouts(void)
555 {
556 reg_crda_timeouts = 0;
557 }
558
559 /*
560 * This lets us keep regulatory code which is updated on a regulatory
561 * basis in userspace.
562 */
563 static int call_crda(const char *alpha2)
564 {
565 char country[12];
566 char *env[] = { country, NULL };
567 int ret;
568
569 snprintf(country, sizeof(country), "COUNTRY=%c%c",
570 alpha2[0], alpha2[1]);
571
572 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574 return -EINVAL;
575 }
576
577 if (!is_world_regdom((char *) alpha2))
578 pr_debug("Calling CRDA for country: %c%c\n",
579 alpha2[0], alpha2[1]);
580 else
581 pr_debug("Calling CRDA to update world regulatory domain\n");
582
583 ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
584 if (ret)
585 return ret;
586
587 queue_delayed_work(system_power_efficient_wq,
588 &crda_timeout, msecs_to_jiffies(3142));
589 return 0;
590 }
591 #else
592 static inline void cancel_crda_timeout(void) {}
593 static inline void cancel_crda_timeout_sync(void) {}
594 static inline void reset_crda_timeouts(void) {}
595 static inline int call_crda(const char *alpha2)
596 {
597 return -ENODATA;
598 }
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600
601 static bool reg_query_database(struct regulatory_request *request)
602 {
603 /* query internal regulatory database (if it exists) */
604 if (reg_query_builtin(request->alpha2) == 0)
605 return true;
606
607 if (call_crda(request->alpha2) == 0)
608 return true;
609
610 return false;
611 }
612
613 bool reg_is_valid_request(const char *alpha2)
614 {
615 struct regulatory_request *lr = get_last_request();
616
617 if (!lr || lr->processed)
618 return false;
619
620 return alpha2_equal(lr->alpha2, alpha2);
621 }
622
623 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
624 {
625 struct regulatory_request *lr = get_last_request();
626
627 /*
628 * Follow the driver's regulatory domain, if present, unless a country
629 * IE has been processed or a user wants to help complaince further
630 */
631 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
632 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
633 wiphy->regd)
634 return get_wiphy_regdom(wiphy);
635
636 return get_cfg80211_regdom();
637 }
638
639 static unsigned int
640 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
641 const struct ieee80211_reg_rule *rule)
642 {
643 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
644 const struct ieee80211_freq_range *freq_range_tmp;
645 const struct ieee80211_reg_rule *tmp;
646 u32 start_freq, end_freq, idx, no;
647
648 for (idx = 0; idx < rd->n_reg_rules; idx++)
649 if (rule == &rd->reg_rules[idx])
650 break;
651
652 if (idx == rd->n_reg_rules)
653 return 0;
654
655 /* get start_freq */
656 no = idx;
657
658 while (no) {
659 tmp = &rd->reg_rules[--no];
660 freq_range_tmp = &tmp->freq_range;
661
662 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
663 break;
664
665 freq_range = freq_range_tmp;
666 }
667
668 start_freq = freq_range->start_freq_khz;
669
670 /* get end_freq */
671 freq_range = &rule->freq_range;
672 no = idx;
673
674 while (no < rd->n_reg_rules - 1) {
675 tmp = &rd->reg_rules[++no];
676 freq_range_tmp = &tmp->freq_range;
677
678 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
679 break;
680
681 freq_range = freq_range_tmp;
682 }
683
684 end_freq = freq_range->end_freq_khz;
685
686 return end_freq - start_freq;
687 }
688
689 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
690 const struct ieee80211_reg_rule *rule)
691 {
692 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
693
694 if (rule->flags & NL80211_RRF_NO_160MHZ)
695 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
696 if (rule->flags & NL80211_RRF_NO_80MHZ)
697 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
698
699 /*
700 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
701 * are not allowed.
702 */
703 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
704 rule->flags & NL80211_RRF_NO_HT40PLUS)
705 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
706
707 return bw;
708 }
709
710 /* Sanity check on a regulatory rule */
711 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
712 {
713 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
714 u32 freq_diff;
715
716 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
717 return false;
718
719 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
720 return false;
721
722 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
723
724 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
725 freq_range->max_bandwidth_khz > freq_diff)
726 return false;
727
728 return true;
729 }
730
731 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
732 {
733 const struct ieee80211_reg_rule *reg_rule = NULL;
734 unsigned int i;
735
736 if (!rd->n_reg_rules)
737 return false;
738
739 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
740 return false;
741
742 for (i = 0; i < rd->n_reg_rules; i++) {
743 reg_rule = &rd->reg_rules[i];
744 if (!is_valid_reg_rule(reg_rule))
745 return false;
746 }
747
748 return true;
749 }
750
751 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
752 u32 center_freq_khz, u32 bw_khz)
753 {
754 u32 start_freq_khz, end_freq_khz;
755
756 start_freq_khz = center_freq_khz - (bw_khz/2);
757 end_freq_khz = center_freq_khz + (bw_khz/2);
758
759 if (start_freq_khz >= freq_range->start_freq_khz &&
760 end_freq_khz <= freq_range->end_freq_khz)
761 return true;
762
763 return false;
764 }
765
766 /**
767 * freq_in_rule_band - tells us if a frequency is in a frequency band
768 * @freq_range: frequency rule we want to query
769 * @freq_khz: frequency we are inquiring about
770 *
771 * This lets us know if a specific frequency rule is or is not relevant to
772 * a specific frequency's band. Bands are device specific and artificial
773 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
774 * however it is safe for now to assume that a frequency rule should not be
775 * part of a frequency's band if the start freq or end freq are off by more
776 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
777 * 60 GHz band.
778 * This resolution can be lowered and should be considered as we add
779 * regulatory rule support for other "bands".
780 **/
781 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
782 u32 freq_khz)
783 {
784 #define ONE_GHZ_IN_KHZ 1000000
785 /*
786 * From 802.11ad: directional multi-gigabit (DMG):
787 * Pertaining to operation in a frequency band containing a channel
788 * with the Channel starting frequency above 45 GHz.
789 */
790 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
791 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
792 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
793 return true;
794 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
795 return true;
796 return false;
797 #undef ONE_GHZ_IN_KHZ
798 }
799
800 /*
801 * Later on we can perhaps use the more restrictive DFS
802 * region but we don't have information for that yet so
803 * for now simply disallow conflicts.
804 */
805 static enum nl80211_dfs_regions
806 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
807 const enum nl80211_dfs_regions dfs_region2)
808 {
809 if (dfs_region1 != dfs_region2)
810 return NL80211_DFS_UNSET;
811 return dfs_region1;
812 }
813
814 /*
815 * Helper for regdom_intersect(), this does the real
816 * mathematical intersection fun
817 */
818 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
819 const struct ieee80211_regdomain *rd2,
820 const struct ieee80211_reg_rule *rule1,
821 const struct ieee80211_reg_rule *rule2,
822 struct ieee80211_reg_rule *intersected_rule)
823 {
824 const struct ieee80211_freq_range *freq_range1, *freq_range2;
825 struct ieee80211_freq_range *freq_range;
826 const struct ieee80211_power_rule *power_rule1, *power_rule2;
827 struct ieee80211_power_rule *power_rule;
828 u32 freq_diff, max_bandwidth1, max_bandwidth2;
829
830 freq_range1 = &rule1->freq_range;
831 freq_range2 = &rule2->freq_range;
832 freq_range = &intersected_rule->freq_range;
833
834 power_rule1 = &rule1->power_rule;
835 power_rule2 = &rule2->power_rule;
836 power_rule = &intersected_rule->power_rule;
837
838 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
839 freq_range2->start_freq_khz);
840 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
841 freq_range2->end_freq_khz);
842
843 max_bandwidth1 = freq_range1->max_bandwidth_khz;
844 max_bandwidth2 = freq_range2->max_bandwidth_khz;
845
846 if (rule1->flags & NL80211_RRF_AUTO_BW)
847 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
848 if (rule2->flags & NL80211_RRF_AUTO_BW)
849 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
850
851 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
852
853 intersected_rule->flags = rule1->flags | rule2->flags;
854
855 /*
856 * In case NL80211_RRF_AUTO_BW requested for both rules
857 * set AUTO_BW in intersected rule also. Next we will
858 * calculate BW correctly in handle_channel function.
859 * In other case remove AUTO_BW flag while we calculate
860 * maximum bandwidth correctly and auto calculation is
861 * not required.
862 */
863 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
864 (rule2->flags & NL80211_RRF_AUTO_BW))
865 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
866 else
867 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
868
869 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
870 if (freq_range->max_bandwidth_khz > freq_diff)
871 freq_range->max_bandwidth_khz = freq_diff;
872
873 power_rule->max_eirp = min(power_rule1->max_eirp,
874 power_rule2->max_eirp);
875 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
876 power_rule2->max_antenna_gain);
877
878 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
879 rule2->dfs_cac_ms);
880
881 if (!is_valid_reg_rule(intersected_rule))
882 return -EINVAL;
883
884 return 0;
885 }
886
887 /* check whether old rule contains new rule */
888 static bool rule_contains(struct ieee80211_reg_rule *r1,
889 struct ieee80211_reg_rule *r2)
890 {
891 /* for simplicity, currently consider only same flags */
892 if (r1->flags != r2->flags)
893 return false;
894
895 /* verify r1 is more restrictive */
896 if ((r1->power_rule.max_antenna_gain >
897 r2->power_rule.max_antenna_gain) ||
898 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
899 return false;
900
901 /* make sure r2's range is contained within r1 */
902 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
903 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
904 return false;
905
906 /* and finally verify that r1.max_bw >= r2.max_bw */
907 if (r1->freq_range.max_bandwidth_khz <
908 r2->freq_range.max_bandwidth_khz)
909 return false;
910
911 return true;
912 }
913
914 /* add or extend current rules. do nothing if rule is already contained */
915 static void add_rule(struct ieee80211_reg_rule *rule,
916 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
917 {
918 struct ieee80211_reg_rule *tmp_rule;
919 int i;
920
921 for (i = 0; i < *n_rules; i++) {
922 tmp_rule = &reg_rules[i];
923 /* rule is already contained - do nothing */
924 if (rule_contains(tmp_rule, rule))
925 return;
926
927 /* extend rule if possible */
928 if (rule_contains(rule, tmp_rule)) {
929 memcpy(tmp_rule, rule, sizeof(*rule));
930 return;
931 }
932 }
933
934 memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
935 (*n_rules)++;
936 }
937
938 /**
939 * regdom_intersect - do the intersection between two regulatory domains
940 * @rd1: first regulatory domain
941 * @rd2: second regulatory domain
942 *
943 * Use this function to get the intersection between two regulatory domains.
944 * Once completed we will mark the alpha2 for the rd as intersected, "98",
945 * as no one single alpha2 can represent this regulatory domain.
946 *
947 * Returns a pointer to the regulatory domain structure which will hold the
948 * resulting intersection of rules between rd1 and rd2. We will
949 * kzalloc() this structure for you.
950 */
951 static struct ieee80211_regdomain *
952 regdom_intersect(const struct ieee80211_regdomain *rd1,
953 const struct ieee80211_regdomain *rd2)
954 {
955 int r, size_of_regd;
956 unsigned int x, y;
957 unsigned int num_rules = 0;
958 const struct ieee80211_reg_rule *rule1, *rule2;
959 struct ieee80211_reg_rule intersected_rule;
960 struct ieee80211_regdomain *rd;
961
962 if (!rd1 || !rd2)
963 return NULL;
964
965 /*
966 * First we get a count of the rules we'll need, then we actually
967 * build them. This is to so we can malloc() and free() a
968 * regdomain once. The reason we use reg_rules_intersect() here
969 * is it will return -EINVAL if the rule computed makes no sense.
970 * All rules that do check out OK are valid.
971 */
972
973 for (x = 0; x < rd1->n_reg_rules; x++) {
974 rule1 = &rd1->reg_rules[x];
975 for (y = 0; y < rd2->n_reg_rules; y++) {
976 rule2 = &rd2->reg_rules[y];
977 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
978 &intersected_rule))
979 num_rules++;
980 }
981 }
982
983 if (!num_rules)
984 return NULL;
985
986 size_of_regd = sizeof(struct ieee80211_regdomain) +
987 num_rules * sizeof(struct ieee80211_reg_rule);
988
989 rd = kzalloc(size_of_regd, GFP_KERNEL);
990 if (!rd)
991 return NULL;
992
993 for (x = 0; x < rd1->n_reg_rules; x++) {
994 rule1 = &rd1->reg_rules[x];
995 for (y = 0; y < rd2->n_reg_rules; y++) {
996 rule2 = &rd2->reg_rules[y];
997 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
998 &intersected_rule);
999 /*
1000 * No need to memset here the intersected rule here as
1001 * we're not using the stack anymore
1002 */
1003 if (r)
1004 continue;
1005
1006 add_rule(&intersected_rule, rd->reg_rules,
1007 &rd->n_reg_rules);
1008 }
1009 }
1010
1011 rd->alpha2[0] = '9';
1012 rd->alpha2[1] = '8';
1013 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1014 rd2->dfs_region);
1015
1016 return rd;
1017 }
1018
1019 /*
1020 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1021 * want to just have the channel structure use these
1022 */
1023 static u32 map_regdom_flags(u32 rd_flags)
1024 {
1025 u32 channel_flags = 0;
1026 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1027 channel_flags |= IEEE80211_CHAN_NO_IR;
1028 if (rd_flags & NL80211_RRF_DFS)
1029 channel_flags |= IEEE80211_CHAN_RADAR;
1030 if (rd_flags & NL80211_RRF_NO_OFDM)
1031 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1032 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1033 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1034 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1035 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1036 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1037 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1038 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1039 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1040 if (rd_flags & NL80211_RRF_NO_80MHZ)
1041 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1042 if (rd_flags & NL80211_RRF_NO_160MHZ)
1043 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1044 return channel_flags;
1045 }
1046
1047 static const struct ieee80211_reg_rule *
1048 freq_reg_info_regd(u32 center_freq,
1049 const struct ieee80211_regdomain *regd, u32 bw)
1050 {
1051 int i;
1052 bool band_rule_found = false;
1053 bool bw_fits = false;
1054
1055 if (!regd)
1056 return ERR_PTR(-EINVAL);
1057
1058 for (i = 0; i < regd->n_reg_rules; i++) {
1059 const struct ieee80211_reg_rule *rr;
1060 const struct ieee80211_freq_range *fr = NULL;
1061
1062 rr = &regd->reg_rules[i];
1063 fr = &rr->freq_range;
1064
1065 /*
1066 * We only need to know if one frequency rule was
1067 * was in center_freq's band, that's enough, so lets
1068 * not overwrite it once found
1069 */
1070 if (!band_rule_found)
1071 band_rule_found = freq_in_rule_band(fr, center_freq);
1072
1073 bw_fits = reg_does_bw_fit(fr, center_freq, bw);
1074
1075 if (band_rule_found && bw_fits)
1076 return rr;
1077 }
1078
1079 if (!band_rule_found)
1080 return ERR_PTR(-ERANGE);
1081
1082 return ERR_PTR(-EINVAL);
1083 }
1084
1085 static const struct ieee80211_reg_rule *
1086 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1087 {
1088 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1089 const struct ieee80211_reg_rule *reg_rule = NULL;
1090 u32 bw;
1091
1092 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1093 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1094 if (!IS_ERR(reg_rule))
1095 return reg_rule;
1096 }
1097
1098 return reg_rule;
1099 }
1100
1101 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1102 u32 center_freq)
1103 {
1104 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1105 }
1106 EXPORT_SYMBOL(freq_reg_info);
1107
1108 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1109 {
1110 switch (initiator) {
1111 case NL80211_REGDOM_SET_BY_CORE:
1112 return "core";
1113 case NL80211_REGDOM_SET_BY_USER:
1114 return "user";
1115 case NL80211_REGDOM_SET_BY_DRIVER:
1116 return "driver";
1117 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1118 return "country IE";
1119 default:
1120 WARN_ON(1);
1121 return "bug";
1122 }
1123 }
1124 EXPORT_SYMBOL(reg_initiator_name);
1125
1126 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1127 const struct ieee80211_reg_rule *reg_rule,
1128 const struct ieee80211_channel *chan)
1129 {
1130 const struct ieee80211_freq_range *freq_range = NULL;
1131 u32 max_bandwidth_khz, bw_flags = 0;
1132
1133 freq_range = &reg_rule->freq_range;
1134
1135 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1136 /* Check if auto calculation requested */
1137 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1138 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1139
1140 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1141 if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1142 MHZ_TO_KHZ(10)))
1143 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1144 if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1145 MHZ_TO_KHZ(20)))
1146 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1147
1148 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1149 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1150 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1151 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1152 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1153 bw_flags |= IEEE80211_CHAN_NO_HT40;
1154 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1155 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1156 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1157 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1158 return bw_flags;
1159 }
1160
1161 /*
1162 * Note that right now we assume the desired channel bandwidth
1163 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1164 * per channel, the primary and the extension channel).
1165 */
1166 static void handle_channel(struct wiphy *wiphy,
1167 enum nl80211_reg_initiator initiator,
1168 struct ieee80211_channel *chan)
1169 {
1170 u32 flags, bw_flags = 0;
1171 const struct ieee80211_reg_rule *reg_rule = NULL;
1172 const struct ieee80211_power_rule *power_rule = NULL;
1173 struct wiphy *request_wiphy = NULL;
1174 struct regulatory_request *lr = get_last_request();
1175 const struct ieee80211_regdomain *regd;
1176
1177 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1178
1179 flags = chan->orig_flags;
1180
1181 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1182 if (IS_ERR(reg_rule)) {
1183 /*
1184 * We will disable all channels that do not match our
1185 * received regulatory rule unless the hint is coming
1186 * from a Country IE and the Country IE had no information
1187 * about a band. The IEEE 802.11 spec allows for an AP
1188 * to send only a subset of the regulatory rules allowed,
1189 * so an AP in the US that only supports 2.4 GHz may only send
1190 * a country IE with information for the 2.4 GHz band
1191 * while 5 GHz is still supported.
1192 */
1193 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1194 PTR_ERR(reg_rule) == -ERANGE)
1195 return;
1196
1197 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1198 request_wiphy && request_wiphy == wiphy &&
1199 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1200 pr_debug("Disabling freq %d MHz for good\n",
1201 chan->center_freq);
1202 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1203 chan->flags = chan->orig_flags;
1204 } else {
1205 pr_debug("Disabling freq %d MHz\n",
1206 chan->center_freq);
1207 chan->flags |= IEEE80211_CHAN_DISABLED;
1208 }
1209 return;
1210 }
1211
1212 regd = reg_get_regdomain(wiphy);
1213
1214 power_rule = &reg_rule->power_rule;
1215 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1216
1217 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1218 request_wiphy && request_wiphy == wiphy &&
1219 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1220 /*
1221 * This guarantees the driver's requested regulatory domain
1222 * will always be used as a base for further regulatory
1223 * settings
1224 */
1225 chan->flags = chan->orig_flags =
1226 map_regdom_flags(reg_rule->flags) | bw_flags;
1227 chan->max_antenna_gain = chan->orig_mag =
1228 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1229 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1230 (int) MBM_TO_DBM(power_rule->max_eirp);
1231
1232 if (chan->flags & IEEE80211_CHAN_RADAR) {
1233 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1234 if (reg_rule->dfs_cac_ms)
1235 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1236 }
1237
1238 return;
1239 }
1240
1241 chan->dfs_state = NL80211_DFS_USABLE;
1242 chan->dfs_state_entered = jiffies;
1243
1244 chan->beacon_found = false;
1245 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1246 chan->max_antenna_gain =
1247 min_t(int, chan->orig_mag,
1248 MBI_TO_DBI(power_rule->max_antenna_gain));
1249 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1250
1251 if (chan->flags & IEEE80211_CHAN_RADAR) {
1252 if (reg_rule->dfs_cac_ms)
1253 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1254 else
1255 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1256 }
1257
1258 if (chan->orig_mpwr) {
1259 /*
1260 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1261 * will always follow the passed country IE power settings.
1262 */
1263 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1264 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1265 chan->max_power = chan->max_reg_power;
1266 else
1267 chan->max_power = min(chan->orig_mpwr,
1268 chan->max_reg_power);
1269 } else
1270 chan->max_power = chan->max_reg_power;
1271 }
1272
1273 static void handle_band(struct wiphy *wiphy,
1274 enum nl80211_reg_initiator initiator,
1275 struct ieee80211_supported_band *sband)
1276 {
1277 unsigned int i;
1278
1279 if (!sband)
1280 return;
1281
1282 for (i = 0; i < sband->n_channels; i++)
1283 handle_channel(wiphy, initiator, &sband->channels[i]);
1284 }
1285
1286 static bool reg_request_cell_base(struct regulatory_request *request)
1287 {
1288 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1289 return false;
1290 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1291 }
1292
1293 bool reg_last_request_cell_base(void)
1294 {
1295 return reg_request_cell_base(get_last_request());
1296 }
1297
1298 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1299 /* Core specific check */
1300 static enum reg_request_treatment
1301 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1302 {
1303 struct regulatory_request *lr = get_last_request();
1304
1305 if (!reg_num_devs_support_basehint)
1306 return REG_REQ_IGNORE;
1307
1308 if (reg_request_cell_base(lr) &&
1309 !regdom_changes(pending_request->alpha2))
1310 return REG_REQ_ALREADY_SET;
1311
1312 return REG_REQ_OK;
1313 }
1314
1315 /* Device specific check */
1316 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1317 {
1318 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1319 }
1320 #else
1321 static enum reg_request_treatment
1322 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1323 {
1324 return REG_REQ_IGNORE;
1325 }
1326
1327 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1328 {
1329 return true;
1330 }
1331 #endif
1332
1333 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1334 {
1335 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1336 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1337 return true;
1338 return false;
1339 }
1340
1341 static bool ignore_reg_update(struct wiphy *wiphy,
1342 enum nl80211_reg_initiator initiator)
1343 {
1344 struct regulatory_request *lr = get_last_request();
1345
1346 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1347 return true;
1348
1349 if (!lr) {
1350 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1351 reg_initiator_name(initiator));
1352 return true;
1353 }
1354
1355 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1356 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1357 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1358 reg_initiator_name(initiator));
1359 return true;
1360 }
1361
1362 /*
1363 * wiphy->regd will be set once the device has its own
1364 * desired regulatory domain set
1365 */
1366 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1367 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1368 !is_world_regdom(lr->alpha2)) {
1369 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1370 reg_initiator_name(initiator));
1371 return true;
1372 }
1373
1374 if (reg_request_cell_base(lr))
1375 return reg_dev_ignore_cell_hint(wiphy);
1376
1377 return false;
1378 }
1379
1380 static bool reg_is_world_roaming(struct wiphy *wiphy)
1381 {
1382 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1383 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1384 struct regulatory_request *lr = get_last_request();
1385
1386 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1387 return true;
1388
1389 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1390 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1391 return true;
1392
1393 return false;
1394 }
1395
1396 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1397 struct reg_beacon *reg_beacon)
1398 {
1399 struct ieee80211_supported_band *sband;
1400 struct ieee80211_channel *chan;
1401 bool channel_changed = false;
1402 struct ieee80211_channel chan_before;
1403
1404 sband = wiphy->bands[reg_beacon->chan.band];
1405 chan = &sband->channels[chan_idx];
1406
1407 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1408 return;
1409
1410 if (chan->beacon_found)
1411 return;
1412
1413 chan->beacon_found = true;
1414
1415 if (!reg_is_world_roaming(wiphy))
1416 return;
1417
1418 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1419 return;
1420
1421 chan_before.center_freq = chan->center_freq;
1422 chan_before.flags = chan->flags;
1423
1424 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1425 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1426 channel_changed = true;
1427 }
1428
1429 if (channel_changed)
1430 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1431 }
1432
1433 /*
1434 * Called when a scan on a wiphy finds a beacon on
1435 * new channel
1436 */
1437 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1438 struct reg_beacon *reg_beacon)
1439 {
1440 unsigned int i;
1441 struct ieee80211_supported_band *sband;
1442
1443 if (!wiphy->bands[reg_beacon->chan.band])
1444 return;
1445
1446 sband = wiphy->bands[reg_beacon->chan.band];
1447
1448 for (i = 0; i < sband->n_channels; i++)
1449 handle_reg_beacon(wiphy, i, reg_beacon);
1450 }
1451
1452 /*
1453 * Called upon reg changes or a new wiphy is added
1454 */
1455 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1456 {
1457 unsigned int i;
1458 struct ieee80211_supported_band *sband;
1459 struct reg_beacon *reg_beacon;
1460
1461 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1462 if (!wiphy->bands[reg_beacon->chan.band])
1463 continue;
1464 sband = wiphy->bands[reg_beacon->chan.band];
1465 for (i = 0; i < sband->n_channels; i++)
1466 handle_reg_beacon(wiphy, i, reg_beacon);
1467 }
1468 }
1469
1470 /* Reap the advantages of previously found beacons */
1471 static void reg_process_beacons(struct wiphy *wiphy)
1472 {
1473 /*
1474 * Means we are just firing up cfg80211, so no beacons would
1475 * have been processed yet.
1476 */
1477 if (!last_request)
1478 return;
1479 wiphy_update_beacon_reg(wiphy);
1480 }
1481
1482 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1483 {
1484 if (!chan)
1485 return false;
1486 if (chan->flags & IEEE80211_CHAN_DISABLED)
1487 return false;
1488 /* This would happen when regulatory rules disallow HT40 completely */
1489 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1490 return false;
1491 return true;
1492 }
1493
1494 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1495 struct ieee80211_channel *channel)
1496 {
1497 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1498 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1499 unsigned int i;
1500
1501 if (!is_ht40_allowed(channel)) {
1502 channel->flags |= IEEE80211_CHAN_NO_HT40;
1503 return;
1504 }
1505
1506 /*
1507 * We need to ensure the extension channels exist to
1508 * be able to use HT40- or HT40+, this finds them (or not)
1509 */
1510 for (i = 0; i < sband->n_channels; i++) {
1511 struct ieee80211_channel *c = &sband->channels[i];
1512
1513 if (c->center_freq == (channel->center_freq - 20))
1514 channel_before = c;
1515 if (c->center_freq == (channel->center_freq + 20))
1516 channel_after = c;
1517 }
1518
1519 /*
1520 * Please note that this assumes target bandwidth is 20 MHz,
1521 * if that ever changes we also need to change the below logic
1522 * to include that as well.
1523 */
1524 if (!is_ht40_allowed(channel_before))
1525 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1526 else
1527 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1528
1529 if (!is_ht40_allowed(channel_after))
1530 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1531 else
1532 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1533 }
1534
1535 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1536 struct ieee80211_supported_band *sband)
1537 {
1538 unsigned int i;
1539
1540 if (!sband)
1541 return;
1542
1543 for (i = 0; i < sband->n_channels; i++)
1544 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1545 }
1546
1547 static void reg_process_ht_flags(struct wiphy *wiphy)
1548 {
1549 enum nl80211_band band;
1550
1551 if (!wiphy)
1552 return;
1553
1554 for (band = 0; band < NUM_NL80211_BANDS; band++)
1555 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1556 }
1557
1558 static void reg_call_notifier(struct wiphy *wiphy,
1559 struct regulatory_request *request)
1560 {
1561 if (wiphy->reg_notifier)
1562 wiphy->reg_notifier(wiphy, request);
1563 }
1564
1565 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1566 {
1567 struct cfg80211_chan_def chandef;
1568 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1569 enum nl80211_iftype iftype;
1570
1571 wdev_lock(wdev);
1572 iftype = wdev->iftype;
1573
1574 /* make sure the interface is active */
1575 if (!wdev->netdev || !netif_running(wdev->netdev))
1576 goto wdev_inactive_unlock;
1577
1578 switch (iftype) {
1579 case NL80211_IFTYPE_AP:
1580 case NL80211_IFTYPE_P2P_GO:
1581 if (!wdev->beacon_interval)
1582 goto wdev_inactive_unlock;
1583 chandef = wdev->chandef;
1584 break;
1585 case NL80211_IFTYPE_ADHOC:
1586 if (!wdev->ssid_len)
1587 goto wdev_inactive_unlock;
1588 chandef = wdev->chandef;
1589 break;
1590 case NL80211_IFTYPE_STATION:
1591 case NL80211_IFTYPE_P2P_CLIENT:
1592 if (!wdev->current_bss ||
1593 !wdev->current_bss->pub.channel)
1594 goto wdev_inactive_unlock;
1595
1596 if (!rdev->ops->get_channel ||
1597 rdev_get_channel(rdev, wdev, &chandef))
1598 cfg80211_chandef_create(&chandef,
1599 wdev->current_bss->pub.channel,
1600 NL80211_CHAN_NO_HT);
1601 break;
1602 case NL80211_IFTYPE_MONITOR:
1603 case NL80211_IFTYPE_AP_VLAN:
1604 case NL80211_IFTYPE_P2P_DEVICE:
1605 /* no enforcement required */
1606 break;
1607 default:
1608 /* others not implemented for now */
1609 WARN_ON(1);
1610 break;
1611 }
1612
1613 wdev_unlock(wdev);
1614
1615 switch (iftype) {
1616 case NL80211_IFTYPE_AP:
1617 case NL80211_IFTYPE_P2P_GO:
1618 case NL80211_IFTYPE_ADHOC:
1619 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
1620 case NL80211_IFTYPE_STATION:
1621 case NL80211_IFTYPE_P2P_CLIENT:
1622 return cfg80211_chandef_usable(wiphy, &chandef,
1623 IEEE80211_CHAN_DISABLED);
1624 default:
1625 break;
1626 }
1627
1628 return true;
1629
1630 wdev_inactive_unlock:
1631 wdev_unlock(wdev);
1632 return true;
1633 }
1634
1635 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1636 {
1637 struct wireless_dev *wdev;
1638 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1639
1640 ASSERT_RTNL();
1641
1642 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1643 if (!reg_wdev_chan_valid(wiphy, wdev))
1644 cfg80211_leave(rdev, wdev);
1645 }
1646
1647 static void reg_check_chans_work(struct work_struct *work)
1648 {
1649 struct cfg80211_registered_device *rdev;
1650
1651 pr_debug("Verifying active interfaces after reg change\n");
1652 rtnl_lock();
1653
1654 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1655 if (!(rdev->wiphy.regulatory_flags &
1656 REGULATORY_IGNORE_STALE_KICKOFF))
1657 reg_leave_invalid_chans(&rdev->wiphy);
1658
1659 rtnl_unlock();
1660 }
1661
1662 static void reg_check_channels(void)
1663 {
1664 /*
1665 * Give usermode a chance to do something nicer (move to another
1666 * channel, orderly disconnection), before forcing a disconnection.
1667 */
1668 mod_delayed_work(system_power_efficient_wq,
1669 &reg_check_chans,
1670 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1671 }
1672
1673 static void wiphy_update_regulatory(struct wiphy *wiphy,
1674 enum nl80211_reg_initiator initiator)
1675 {
1676 enum nl80211_band band;
1677 struct regulatory_request *lr = get_last_request();
1678
1679 if (ignore_reg_update(wiphy, initiator)) {
1680 /*
1681 * Regulatory updates set by CORE are ignored for custom
1682 * regulatory cards. Let us notify the changes to the driver,
1683 * as some drivers used this to restore its orig_* reg domain.
1684 */
1685 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1686 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1687 reg_call_notifier(wiphy, lr);
1688 return;
1689 }
1690
1691 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1692
1693 for (band = 0; band < NUM_NL80211_BANDS; band++)
1694 handle_band(wiphy, initiator, wiphy->bands[band]);
1695
1696 reg_process_beacons(wiphy);
1697 reg_process_ht_flags(wiphy);
1698 reg_call_notifier(wiphy, lr);
1699 }
1700
1701 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1702 {
1703 struct cfg80211_registered_device *rdev;
1704 struct wiphy *wiphy;
1705
1706 ASSERT_RTNL();
1707
1708 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1709 wiphy = &rdev->wiphy;
1710 wiphy_update_regulatory(wiphy, initiator);
1711 }
1712
1713 reg_check_channels();
1714 }
1715
1716 static void handle_channel_custom(struct wiphy *wiphy,
1717 struct ieee80211_channel *chan,
1718 const struct ieee80211_regdomain *regd)
1719 {
1720 u32 bw_flags = 0;
1721 const struct ieee80211_reg_rule *reg_rule = NULL;
1722 const struct ieee80211_power_rule *power_rule = NULL;
1723 u32 bw;
1724
1725 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
1726 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
1727 regd, bw);
1728 if (!IS_ERR(reg_rule))
1729 break;
1730 }
1731
1732 if (IS_ERR(reg_rule)) {
1733 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1734 chan->center_freq);
1735 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1736 chan->flags |= IEEE80211_CHAN_DISABLED;
1737 } else {
1738 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1739 chan->flags = chan->orig_flags;
1740 }
1741 return;
1742 }
1743
1744 power_rule = &reg_rule->power_rule;
1745 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1746
1747 chan->dfs_state_entered = jiffies;
1748 chan->dfs_state = NL80211_DFS_USABLE;
1749
1750 chan->beacon_found = false;
1751
1752 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1753 chan->flags = chan->orig_flags | bw_flags |
1754 map_regdom_flags(reg_rule->flags);
1755 else
1756 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1757
1758 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1759 chan->max_reg_power = chan->max_power =
1760 (int) MBM_TO_DBM(power_rule->max_eirp);
1761
1762 if (chan->flags & IEEE80211_CHAN_RADAR) {
1763 if (reg_rule->dfs_cac_ms)
1764 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1765 else
1766 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1767 }
1768
1769 chan->max_power = chan->max_reg_power;
1770 }
1771
1772 static void handle_band_custom(struct wiphy *wiphy,
1773 struct ieee80211_supported_band *sband,
1774 const struct ieee80211_regdomain *regd)
1775 {
1776 unsigned int i;
1777
1778 if (!sband)
1779 return;
1780
1781 for (i = 0; i < sband->n_channels; i++)
1782 handle_channel_custom(wiphy, &sband->channels[i], regd);
1783 }
1784
1785 /* Used by drivers prior to wiphy registration */
1786 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1787 const struct ieee80211_regdomain *regd)
1788 {
1789 enum nl80211_band band;
1790 unsigned int bands_set = 0;
1791
1792 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1793 "wiphy should have REGULATORY_CUSTOM_REG\n");
1794 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1795
1796 for (band = 0; band < NUM_NL80211_BANDS; band++) {
1797 if (!wiphy->bands[band])
1798 continue;
1799 handle_band_custom(wiphy, wiphy->bands[band], regd);
1800 bands_set++;
1801 }
1802
1803 /*
1804 * no point in calling this if it won't have any effect
1805 * on your device's supported bands.
1806 */
1807 WARN_ON(!bands_set);
1808 }
1809 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1810
1811 static void reg_set_request_processed(void)
1812 {
1813 bool need_more_processing = false;
1814 struct regulatory_request *lr = get_last_request();
1815
1816 lr->processed = true;
1817
1818 spin_lock(&reg_requests_lock);
1819 if (!list_empty(&reg_requests_list))
1820 need_more_processing = true;
1821 spin_unlock(&reg_requests_lock);
1822
1823 cancel_crda_timeout();
1824
1825 if (need_more_processing)
1826 schedule_work(&reg_work);
1827 }
1828
1829 /**
1830 * reg_process_hint_core - process core regulatory requests
1831 * @pending_request: a pending core regulatory request
1832 *
1833 * The wireless subsystem can use this function to process
1834 * a regulatory request issued by the regulatory core.
1835 */
1836 static enum reg_request_treatment
1837 reg_process_hint_core(struct regulatory_request *core_request)
1838 {
1839 if (reg_query_database(core_request)) {
1840 core_request->intersect = false;
1841 core_request->processed = false;
1842 reg_update_last_request(core_request);
1843 return REG_REQ_OK;
1844 }
1845
1846 return REG_REQ_IGNORE;
1847 }
1848
1849 static enum reg_request_treatment
1850 __reg_process_hint_user(struct regulatory_request *user_request)
1851 {
1852 struct regulatory_request *lr = get_last_request();
1853
1854 if (reg_request_cell_base(user_request))
1855 return reg_ignore_cell_hint(user_request);
1856
1857 if (reg_request_cell_base(lr))
1858 return REG_REQ_IGNORE;
1859
1860 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1861 return REG_REQ_INTERSECT;
1862 /*
1863 * If the user knows better the user should set the regdom
1864 * to their country before the IE is picked up
1865 */
1866 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1867 lr->intersect)
1868 return REG_REQ_IGNORE;
1869 /*
1870 * Process user requests only after previous user/driver/core
1871 * requests have been processed
1872 */
1873 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1874 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1875 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1876 regdom_changes(lr->alpha2))
1877 return REG_REQ_IGNORE;
1878
1879 if (!regdom_changes(user_request->alpha2))
1880 return REG_REQ_ALREADY_SET;
1881
1882 return REG_REQ_OK;
1883 }
1884
1885 /**
1886 * reg_process_hint_user - process user regulatory requests
1887 * @user_request: a pending user regulatory request
1888 *
1889 * The wireless subsystem can use this function to process
1890 * a regulatory request initiated by userspace.
1891 */
1892 static enum reg_request_treatment
1893 reg_process_hint_user(struct regulatory_request *user_request)
1894 {
1895 enum reg_request_treatment treatment;
1896
1897 treatment = __reg_process_hint_user(user_request);
1898 if (treatment == REG_REQ_IGNORE ||
1899 treatment == REG_REQ_ALREADY_SET)
1900 return REG_REQ_IGNORE;
1901
1902 user_request->intersect = treatment == REG_REQ_INTERSECT;
1903 user_request->processed = false;
1904
1905 if (reg_query_database(user_request)) {
1906 reg_update_last_request(user_request);
1907 user_alpha2[0] = user_request->alpha2[0];
1908 user_alpha2[1] = user_request->alpha2[1];
1909 return REG_REQ_OK;
1910 }
1911
1912 return REG_REQ_IGNORE;
1913 }
1914
1915 static enum reg_request_treatment
1916 __reg_process_hint_driver(struct regulatory_request *driver_request)
1917 {
1918 struct regulatory_request *lr = get_last_request();
1919
1920 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1921 if (regdom_changes(driver_request->alpha2))
1922 return REG_REQ_OK;
1923 return REG_REQ_ALREADY_SET;
1924 }
1925
1926 /*
1927 * This would happen if you unplug and plug your card
1928 * back in or if you add a new device for which the previously
1929 * loaded card also agrees on the regulatory domain.
1930 */
1931 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1932 !regdom_changes(driver_request->alpha2))
1933 return REG_REQ_ALREADY_SET;
1934
1935 return REG_REQ_INTERSECT;
1936 }
1937
1938 /**
1939 * reg_process_hint_driver - process driver regulatory requests
1940 * @driver_request: a pending driver regulatory request
1941 *
1942 * The wireless subsystem can use this function to process
1943 * a regulatory request issued by an 802.11 driver.
1944 *
1945 * Returns one of the different reg request treatment values.
1946 */
1947 static enum reg_request_treatment
1948 reg_process_hint_driver(struct wiphy *wiphy,
1949 struct regulatory_request *driver_request)
1950 {
1951 const struct ieee80211_regdomain *regd, *tmp;
1952 enum reg_request_treatment treatment;
1953
1954 treatment = __reg_process_hint_driver(driver_request);
1955
1956 switch (treatment) {
1957 case REG_REQ_OK:
1958 break;
1959 case REG_REQ_IGNORE:
1960 return REG_REQ_IGNORE;
1961 case REG_REQ_INTERSECT:
1962 case REG_REQ_ALREADY_SET:
1963 regd = reg_copy_regd(get_cfg80211_regdom());
1964 if (IS_ERR(regd))
1965 return REG_REQ_IGNORE;
1966
1967 tmp = get_wiphy_regdom(wiphy);
1968 rcu_assign_pointer(wiphy->regd, regd);
1969 rcu_free_regdom(tmp);
1970 }
1971
1972
1973 driver_request->intersect = treatment == REG_REQ_INTERSECT;
1974 driver_request->processed = false;
1975
1976 /*
1977 * Since CRDA will not be called in this case as we already
1978 * have applied the requested regulatory domain before we just
1979 * inform userspace we have processed the request
1980 */
1981 if (treatment == REG_REQ_ALREADY_SET) {
1982 nl80211_send_reg_change_event(driver_request);
1983 reg_update_last_request(driver_request);
1984 reg_set_request_processed();
1985 return REG_REQ_ALREADY_SET;
1986 }
1987
1988 if (reg_query_database(driver_request)) {
1989 reg_update_last_request(driver_request);
1990 return REG_REQ_OK;
1991 }
1992
1993 return REG_REQ_IGNORE;
1994 }
1995
1996 static enum reg_request_treatment
1997 __reg_process_hint_country_ie(struct wiphy *wiphy,
1998 struct regulatory_request *country_ie_request)
1999 {
2000 struct wiphy *last_wiphy = NULL;
2001 struct regulatory_request *lr = get_last_request();
2002
2003 if (reg_request_cell_base(lr)) {
2004 /* Trust a Cell base station over the AP's country IE */
2005 if (regdom_changes(country_ie_request->alpha2))
2006 return REG_REQ_IGNORE;
2007 return REG_REQ_ALREADY_SET;
2008 } else {
2009 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2010 return REG_REQ_IGNORE;
2011 }
2012
2013 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2014 return -EINVAL;
2015
2016 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2017 return REG_REQ_OK;
2018
2019 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2020
2021 if (last_wiphy != wiphy) {
2022 /*
2023 * Two cards with two APs claiming different
2024 * Country IE alpha2s. We could
2025 * intersect them, but that seems unlikely
2026 * to be correct. Reject second one for now.
2027 */
2028 if (regdom_changes(country_ie_request->alpha2))
2029 return REG_REQ_IGNORE;
2030 return REG_REQ_ALREADY_SET;
2031 }
2032
2033 if (regdom_changes(country_ie_request->alpha2))
2034 return REG_REQ_OK;
2035 return REG_REQ_ALREADY_SET;
2036 }
2037
2038 /**
2039 * reg_process_hint_country_ie - process regulatory requests from country IEs
2040 * @country_ie_request: a regulatory request from a country IE
2041 *
2042 * The wireless subsystem can use this function to process
2043 * a regulatory request issued by a country Information Element.
2044 *
2045 * Returns one of the different reg request treatment values.
2046 */
2047 static enum reg_request_treatment
2048 reg_process_hint_country_ie(struct wiphy *wiphy,
2049 struct regulatory_request *country_ie_request)
2050 {
2051 enum reg_request_treatment treatment;
2052
2053 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2054
2055 switch (treatment) {
2056 case REG_REQ_OK:
2057 break;
2058 case REG_REQ_IGNORE:
2059 return REG_REQ_IGNORE;
2060 case REG_REQ_ALREADY_SET:
2061 reg_free_request(country_ie_request);
2062 return REG_REQ_ALREADY_SET;
2063 case REG_REQ_INTERSECT:
2064 /*
2065 * This doesn't happen yet, not sure we
2066 * ever want to support it for this case.
2067 */
2068 WARN_ONCE(1, "Unexpected intersection for country IEs");
2069 return REG_REQ_IGNORE;
2070 }
2071
2072 country_ie_request->intersect = false;
2073 country_ie_request->processed = false;
2074
2075 if (reg_query_database(country_ie_request)) {
2076 reg_update_last_request(country_ie_request);
2077 return REG_REQ_OK;
2078 }
2079
2080 return REG_REQ_IGNORE;
2081 }
2082
2083 /* This processes *all* regulatory hints */
2084 static void reg_process_hint(struct regulatory_request *reg_request)
2085 {
2086 struct wiphy *wiphy = NULL;
2087 enum reg_request_treatment treatment;
2088
2089 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2090 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2091
2092 switch (reg_request->initiator) {
2093 case NL80211_REGDOM_SET_BY_CORE:
2094 treatment = reg_process_hint_core(reg_request);
2095 break;
2096 case NL80211_REGDOM_SET_BY_USER:
2097 treatment = reg_process_hint_user(reg_request);
2098 break;
2099 case NL80211_REGDOM_SET_BY_DRIVER:
2100 if (!wiphy)
2101 goto out_free;
2102 treatment = reg_process_hint_driver(wiphy, reg_request);
2103 break;
2104 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2105 if (!wiphy)
2106 goto out_free;
2107 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2108 break;
2109 default:
2110 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2111 goto out_free;
2112 }
2113
2114 if (treatment == REG_REQ_IGNORE)
2115 goto out_free;
2116
2117 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2118 "unexpected treatment value %d\n", treatment);
2119
2120 /* This is required so that the orig_* parameters are saved.
2121 * NOTE: treatment must be set for any case that reaches here!
2122 */
2123 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2124 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2125 wiphy_update_regulatory(wiphy, reg_request->initiator);
2126 reg_check_channels();
2127 }
2128
2129 return;
2130
2131 out_free:
2132 reg_free_request(reg_request);
2133 }
2134
2135 static bool reg_only_self_managed_wiphys(void)
2136 {
2137 struct cfg80211_registered_device *rdev;
2138 struct wiphy *wiphy;
2139 bool self_managed_found = false;
2140
2141 ASSERT_RTNL();
2142
2143 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2144 wiphy = &rdev->wiphy;
2145 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2146 self_managed_found = true;
2147 else
2148 return false;
2149 }
2150
2151 /* make sure at least one self-managed wiphy exists */
2152 return self_managed_found;
2153 }
2154
2155 /*
2156 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2157 * Regulatory hints come on a first come first serve basis and we
2158 * must process each one atomically.
2159 */
2160 static void reg_process_pending_hints(void)
2161 {
2162 struct regulatory_request *reg_request, *lr;
2163
2164 lr = get_last_request();
2165
2166 /* When last_request->processed becomes true this will be rescheduled */
2167 if (lr && !lr->processed) {
2168 reg_process_hint(lr);
2169 return;
2170 }
2171
2172 spin_lock(&reg_requests_lock);
2173
2174 if (list_empty(&reg_requests_list)) {
2175 spin_unlock(&reg_requests_lock);
2176 return;
2177 }
2178
2179 reg_request = list_first_entry(&reg_requests_list,
2180 struct regulatory_request,
2181 list);
2182 list_del_init(&reg_request->list);
2183
2184 spin_unlock(&reg_requests_lock);
2185
2186 if (reg_only_self_managed_wiphys()) {
2187 reg_free_request(reg_request);
2188 return;
2189 }
2190
2191 reg_process_hint(reg_request);
2192
2193 lr = get_last_request();
2194
2195 spin_lock(&reg_requests_lock);
2196 if (!list_empty(&reg_requests_list) && lr && lr->processed)
2197 schedule_work(&reg_work);
2198 spin_unlock(&reg_requests_lock);
2199 }
2200
2201 /* Processes beacon hints -- this has nothing to do with country IEs */
2202 static void reg_process_pending_beacon_hints(void)
2203 {
2204 struct cfg80211_registered_device *rdev;
2205 struct reg_beacon *pending_beacon, *tmp;
2206
2207 /* This goes through the _pending_ beacon list */
2208 spin_lock_bh(&reg_pending_beacons_lock);
2209
2210 list_for_each_entry_safe(pending_beacon, tmp,
2211 &reg_pending_beacons, list) {
2212 list_del_init(&pending_beacon->list);
2213
2214 /* Applies the beacon hint to current wiphys */
2215 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2216 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2217
2218 /* Remembers the beacon hint for new wiphys or reg changes */
2219 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2220 }
2221
2222 spin_unlock_bh(&reg_pending_beacons_lock);
2223 }
2224
2225 static void reg_process_self_managed_hints(void)
2226 {
2227 struct cfg80211_registered_device *rdev;
2228 struct wiphy *wiphy;
2229 const struct ieee80211_regdomain *tmp;
2230 const struct ieee80211_regdomain *regd;
2231 enum nl80211_band band;
2232 struct regulatory_request request = {};
2233
2234 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2235 wiphy = &rdev->wiphy;
2236
2237 spin_lock(&reg_requests_lock);
2238 regd = rdev->requested_regd;
2239 rdev->requested_regd = NULL;
2240 spin_unlock(&reg_requests_lock);
2241
2242 if (regd == NULL)
2243 continue;
2244
2245 tmp = get_wiphy_regdom(wiphy);
2246 rcu_assign_pointer(wiphy->regd, regd);
2247 rcu_free_regdom(tmp);
2248
2249 for (band = 0; band < NUM_NL80211_BANDS; band++)
2250 handle_band_custom(wiphy, wiphy->bands[band], regd);
2251
2252 reg_process_ht_flags(wiphy);
2253
2254 request.wiphy_idx = get_wiphy_idx(wiphy);
2255 request.alpha2[0] = regd->alpha2[0];
2256 request.alpha2[1] = regd->alpha2[1];
2257 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2258
2259 nl80211_send_wiphy_reg_change_event(&request);
2260 }
2261
2262 reg_check_channels();
2263 }
2264
2265 static void reg_todo(struct work_struct *work)
2266 {
2267 rtnl_lock();
2268 reg_process_pending_hints();
2269 reg_process_pending_beacon_hints();
2270 reg_process_self_managed_hints();
2271 rtnl_unlock();
2272 }
2273
2274 static void queue_regulatory_request(struct regulatory_request *request)
2275 {
2276 request->alpha2[0] = toupper(request->alpha2[0]);
2277 request->alpha2[1] = toupper(request->alpha2[1]);
2278
2279 spin_lock(&reg_requests_lock);
2280 list_add_tail(&request->list, &reg_requests_list);
2281 spin_unlock(&reg_requests_lock);
2282
2283 schedule_work(&reg_work);
2284 }
2285
2286 /*
2287 * Core regulatory hint -- happens during cfg80211_init()
2288 * and when we restore regulatory settings.
2289 */
2290 static int regulatory_hint_core(const char *alpha2)
2291 {
2292 struct regulatory_request *request;
2293
2294 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2295 if (!request)
2296 return -ENOMEM;
2297
2298 request->alpha2[0] = alpha2[0];
2299 request->alpha2[1] = alpha2[1];
2300 request->initiator = NL80211_REGDOM_SET_BY_CORE;
2301
2302 queue_regulatory_request(request);
2303
2304 return 0;
2305 }
2306
2307 /* User hints */
2308 int regulatory_hint_user(const char *alpha2,
2309 enum nl80211_user_reg_hint_type user_reg_hint_type)
2310 {
2311 struct regulatory_request *request;
2312
2313 if (WARN_ON(!alpha2))
2314 return -EINVAL;
2315
2316 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2317 if (!request)
2318 return -ENOMEM;
2319
2320 request->wiphy_idx = WIPHY_IDX_INVALID;
2321 request->alpha2[0] = alpha2[0];
2322 request->alpha2[1] = alpha2[1];
2323 request->initiator = NL80211_REGDOM_SET_BY_USER;
2324 request->user_reg_hint_type = user_reg_hint_type;
2325
2326 /* Allow calling CRDA again */
2327 reset_crda_timeouts();
2328
2329 queue_regulatory_request(request);
2330
2331 return 0;
2332 }
2333
2334 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2335 {
2336 spin_lock(&reg_indoor_lock);
2337
2338 /* It is possible that more than one user space process is trying to
2339 * configure the indoor setting. To handle such cases, clear the indoor
2340 * setting in case that some process does not think that the device
2341 * is operating in an indoor environment. In addition, if a user space
2342 * process indicates that it is controlling the indoor setting, save its
2343 * portid, i.e., make it the owner.
2344 */
2345 reg_is_indoor = is_indoor;
2346 if (reg_is_indoor) {
2347 if (!reg_is_indoor_portid)
2348 reg_is_indoor_portid = portid;
2349 } else {
2350 reg_is_indoor_portid = 0;
2351 }
2352
2353 spin_unlock(&reg_indoor_lock);
2354
2355 if (!is_indoor)
2356 reg_check_channels();
2357
2358 return 0;
2359 }
2360
2361 void regulatory_netlink_notify(u32 portid)
2362 {
2363 spin_lock(&reg_indoor_lock);
2364
2365 if (reg_is_indoor_portid != portid) {
2366 spin_unlock(&reg_indoor_lock);
2367 return;
2368 }
2369
2370 reg_is_indoor = false;
2371 reg_is_indoor_portid = 0;
2372
2373 spin_unlock(&reg_indoor_lock);
2374
2375 reg_check_channels();
2376 }
2377
2378 /* Driver hints */
2379 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2380 {
2381 struct regulatory_request *request;
2382
2383 if (WARN_ON(!alpha2 || !wiphy))
2384 return -EINVAL;
2385
2386 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2387
2388 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2389 if (!request)
2390 return -ENOMEM;
2391
2392 request->wiphy_idx = get_wiphy_idx(wiphy);
2393
2394 request->alpha2[0] = alpha2[0];
2395 request->alpha2[1] = alpha2[1];
2396 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2397
2398 /* Allow calling CRDA again */
2399 reset_crda_timeouts();
2400
2401 queue_regulatory_request(request);
2402
2403 return 0;
2404 }
2405 EXPORT_SYMBOL(regulatory_hint);
2406
2407 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
2408 const u8 *country_ie, u8 country_ie_len)
2409 {
2410 char alpha2[2];
2411 enum environment_cap env = ENVIRON_ANY;
2412 struct regulatory_request *request = NULL, *lr;
2413
2414 /* IE len must be evenly divisible by 2 */
2415 if (country_ie_len & 0x01)
2416 return;
2417
2418 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2419 return;
2420
2421 request = kzalloc(sizeof(*request), GFP_KERNEL);
2422 if (!request)
2423 return;
2424
2425 alpha2[0] = country_ie[0];
2426 alpha2[1] = country_ie[1];
2427
2428 if (country_ie[2] == 'I')
2429 env = ENVIRON_INDOOR;
2430 else if (country_ie[2] == 'O')
2431 env = ENVIRON_OUTDOOR;
2432
2433 rcu_read_lock();
2434 lr = get_last_request();
2435
2436 if (unlikely(!lr))
2437 goto out;
2438
2439 /*
2440 * We will run this only upon a successful connection on cfg80211.
2441 * We leave conflict resolution to the workqueue, where can hold
2442 * the RTNL.
2443 */
2444 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2445 lr->wiphy_idx != WIPHY_IDX_INVALID)
2446 goto out;
2447
2448 request->wiphy_idx = get_wiphy_idx(wiphy);
2449 request->alpha2[0] = alpha2[0];
2450 request->alpha2[1] = alpha2[1];
2451 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2452 request->country_ie_env = env;
2453
2454 /* Allow calling CRDA again */
2455 reset_crda_timeouts();
2456
2457 queue_regulatory_request(request);
2458 request = NULL;
2459 out:
2460 kfree(request);
2461 rcu_read_unlock();
2462 }
2463
2464 static void restore_alpha2(char *alpha2, bool reset_user)
2465 {
2466 /* indicates there is no alpha2 to consider for restoration */
2467 alpha2[0] = '9';
2468 alpha2[1] = '7';
2469
2470 /* The user setting has precedence over the module parameter */
2471 if (is_user_regdom_saved()) {
2472 /* Unless we're asked to ignore it and reset it */
2473 if (reset_user) {
2474 pr_debug("Restoring regulatory settings including user preference\n");
2475 user_alpha2[0] = '9';
2476 user_alpha2[1] = '7';
2477
2478 /*
2479 * If we're ignoring user settings, we still need to
2480 * check the module parameter to ensure we put things
2481 * back as they were for a full restore.
2482 */
2483 if (!is_world_regdom(ieee80211_regdom)) {
2484 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2485 ieee80211_regdom[0], ieee80211_regdom[1]);
2486 alpha2[0] = ieee80211_regdom[0];
2487 alpha2[1] = ieee80211_regdom[1];
2488 }
2489 } else {
2490 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
2491 user_alpha2[0], user_alpha2[1]);
2492 alpha2[0] = user_alpha2[0];
2493 alpha2[1] = user_alpha2[1];
2494 }
2495 } else if (!is_world_regdom(ieee80211_regdom)) {
2496 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2497 ieee80211_regdom[0], ieee80211_regdom[1]);
2498 alpha2[0] = ieee80211_regdom[0];
2499 alpha2[1] = ieee80211_regdom[1];
2500 } else
2501 pr_debug("Restoring regulatory settings\n");
2502 }
2503
2504 static void restore_custom_reg_settings(struct wiphy *wiphy)
2505 {
2506 struct ieee80211_supported_band *sband;
2507 enum nl80211_band band;
2508 struct ieee80211_channel *chan;
2509 int i;
2510
2511 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2512 sband = wiphy->bands[band];
2513 if (!sband)
2514 continue;
2515 for (i = 0; i < sband->n_channels; i++) {
2516 chan = &sband->channels[i];
2517 chan->flags = chan->orig_flags;
2518 chan->max_antenna_gain = chan->orig_mag;
2519 chan->max_power = chan->orig_mpwr;
2520 chan->beacon_found = false;
2521 }
2522 }
2523 }
2524
2525 /*
2526 * Restoring regulatory settings involves ingoring any
2527 * possibly stale country IE information and user regulatory
2528 * settings if so desired, this includes any beacon hints
2529 * learned as we could have traveled outside to another country
2530 * after disconnection. To restore regulatory settings we do
2531 * exactly what we did at bootup:
2532 *
2533 * - send a core regulatory hint
2534 * - send a user regulatory hint if applicable
2535 *
2536 * Device drivers that send a regulatory hint for a specific country
2537 * keep their own regulatory domain on wiphy->regd so that does does
2538 * not need to be remembered.
2539 */
2540 static void restore_regulatory_settings(bool reset_user)
2541 {
2542 char alpha2[2];
2543 char world_alpha2[2];
2544 struct reg_beacon *reg_beacon, *btmp;
2545 LIST_HEAD(tmp_reg_req_list);
2546 struct cfg80211_registered_device *rdev;
2547
2548 ASSERT_RTNL();
2549
2550 /*
2551 * Clear the indoor setting in case that it is not controlled by user
2552 * space, as otherwise there is no guarantee that the device is still
2553 * operating in an indoor environment.
2554 */
2555 spin_lock(&reg_indoor_lock);
2556 if (reg_is_indoor && !reg_is_indoor_portid) {
2557 reg_is_indoor = false;
2558 reg_check_channels();
2559 }
2560 spin_unlock(&reg_indoor_lock);
2561
2562 reset_regdomains(true, &world_regdom);
2563 restore_alpha2(alpha2, reset_user);
2564
2565 /*
2566 * If there's any pending requests we simply
2567 * stash them to a temporary pending queue and
2568 * add then after we've restored regulatory
2569 * settings.
2570 */
2571 spin_lock(&reg_requests_lock);
2572 list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
2573 spin_unlock(&reg_requests_lock);
2574
2575 /* Clear beacon hints */
2576 spin_lock_bh(&reg_pending_beacons_lock);
2577 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2578 list_del(&reg_beacon->list);
2579 kfree(reg_beacon);
2580 }
2581 spin_unlock_bh(&reg_pending_beacons_lock);
2582
2583 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2584 list_del(&reg_beacon->list);
2585 kfree(reg_beacon);
2586 }
2587
2588 /* First restore to the basic regulatory settings */
2589 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2590 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2591
2592 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2593 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2594 continue;
2595 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2596 restore_custom_reg_settings(&rdev->wiphy);
2597 }
2598
2599 regulatory_hint_core(world_alpha2);
2600
2601 /*
2602 * This restores the ieee80211_regdom module parameter
2603 * preference or the last user requested regulatory
2604 * settings, user regulatory settings takes precedence.
2605 */
2606 if (is_an_alpha2(alpha2))
2607 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
2608
2609 spin_lock(&reg_requests_lock);
2610 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2611 spin_unlock(&reg_requests_lock);
2612
2613 pr_debug("Kicking the queue\n");
2614
2615 schedule_work(&reg_work);
2616 }
2617
2618 void regulatory_hint_disconnect(void)
2619 {
2620 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
2621 restore_regulatory_settings(false);
2622 }
2623
2624 static bool freq_is_chan_12_13_14(u16 freq)
2625 {
2626 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
2627 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
2628 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
2629 return true;
2630 return false;
2631 }
2632
2633 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2634 {
2635 struct reg_beacon *pending_beacon;
2636
2637 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2638 if (beacon_chan->center_freq ==
2639 pending_beacon->chan.center_freq)
2640 return true;
2641 return false;
2642 }
2643
2644 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2645 struct ieee80211_channel *beacon_chan,
2646 gfp_t gfp)
2647 {
2648 struct reg_beacon *reg_beacon;
2649 bool processing;
2650
2651 if (beacon_chan->beacon_found ||
2652 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2653 (beacon_chan->band == NL80211_BAND_2GHZ &&
2654 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2655 return 0;
2656
2657 spin_lock_bh(&reg_pending_beacons_lock);
2658 processing = pending_reg_beacon(beacon_chan);
2659 spin_unlock_bh(&reg_pending_beacons_lock);
2660
2661 if (processing)
2662 return 0;
2663
2664 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2665 if (!reg_beacon)
2666 return -ENOMEM;
2667
2668 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2669 beacon_chan->center_freq,
2670 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2671 wiphy_name(wiphy));
2672
2673 memcpy(&reg_beacon->chan, beacon_chan,
2674 sizeof(struct ieee80211_channel));
2675
2676 /*
2677 * Since we can be called from BH or and non-BH context
2678 * we must use spin_lock_bh()
2679 */
2680 spin_lock_bh(&reg_pending_beacons_lock);
2681 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2682 spin_unlock_bh(&reg_pending_beacons_lock);
2683
2684 schedule_work(&reg_work);
2685
2686 return 0;
2687 }
2688
2689 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2690 {
2691 unsigned int i;
2692 const struct ieee80211_reg_rule *reg_rule = NULL;
2693 const struct ieee80211_freq_range *freq_range = NULL;
2694 const struct ieee80211_power_rule *power_rule = NULL;
2695 char bw[32], cac_time[32];
2696
2697 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2698
2699 for (i = 0; i < rd->n_reg_rules; i++) {
2700 reg_rule = &rd->reg_rules[i];
2701 freq_range = &reg_rule->freq_range;
2702 power_rule = &reg_rule->power_rule;
2703
2704 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2705 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2706 freq_range->max_bandwidth_khz,
2707 reg_get_max_bandwidth(rd, reg_rule));
2708 else
2709 snprintf(bw, sizeof(bw), "%d KHz",
2710 freq_range->max_bandwidth_khz);
2711
2712 if (reg_rule->flags & NL80211_RRF_DFS)
2713 scnprintf(cac_time, sizeof(cac_time), "%u s",
2714 reg_rule->dfs_cac_ms/1000);
2715 else
2716 scnprintf(cac_time, sizeof(cac_time), "N/A");
2717
2718
2719 /*
2720 * There may not be documentation for max antenna gain
2721 * in certain regions
2722 */
2723 if (power_rule->max_antenna_gain)
2724 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2725 freq_range->start_freq_khz,
2726 freq_range->end_freq_khz,
2727 bw,
2728 power_rule->max_antenna_gain,
2729 power_rule->max_eirp,
2730 cac_time);
2731 else
2732 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2733 freq_range->start_freq_khz,
2734 freq_range->end_freq_khz,
2735 bw,
2736 power_rule->max_eirp,
2737 cac_time);
2738 }
2739 }
2740
2741 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2742 {
2743 switch (dfs_region) {
2744 case NL80211_DFS_UNSET:
2745 case NL80211_DFS_FCC:
2746 case NL80211_DFS_ETSI:
2747 case NL80211_DFS_JP:
2748 return true;
2749 default:
2750 pr_debug("Ignoring uknown DFS master region: %d\n", dfs_region);
2751 return false;
2752 }
2753 }
2754
2755 static void print_regdomain(const struct ieee80211_regdomain *rd)
2756 {
2757 struct regulatory_request *lr = get_last_request();
2758
2759 if (is_intersected_alpha2(rd->alpha2)) {
2760 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2761 struct cfg80211_registered_device *rdev;
2762 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2763 if (rdev) {
2764 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
2765 rdev->country_ie_alpha2[0],
2766 rdev->country_ie_alpha2[1]);
2767 } else
2768 pr_debug("Current regulatory domain intersected:\n");
2769 } else
2770 pr_debug("Current regulatory domain intersected:\n");
2771 } else if (is_world_regdom(rd->alpha2)) {
2772 pr_debug("World regulatory domain updated:\n");
2773 } else {
2774 if (is_unknown_alpha2(rd->alpha2))
2775 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
2776 else {
2777 if (reg_request_cell_base(lr))
2778 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
2779 rd->alpha2[0], rd->alpha2[1]);
2780 else
2781 pr_debug("Regulatory domain changed to country: %c%c\n",
2782 rd->alpha2[0], rd->alpha2[1]);
2783 }
2784 }
2785
2786 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2787 print_rd_rules(rd);
2788 }
2789
2790 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2791 {
2792 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2793 print_rd_rules(rd);
2794 }
2795
2796 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2797 {
2798 if (!is_world_regdom(rd->alpha2))
2799 return -EINVAL;
2800 update_world_regdomain(rd);
2801 return 0;
2802 }
2803
2804 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2805 struct regulatory_request *user_request)
2806 {
2807 const struct ieee80211_regdomain *intersected_rd = NULL;
2808
2809 if (!regdom_changes(rd->alpha2))
2810 return -EALREADY;
2811
2812 if (!is_valid_rd(rd)) {
2813 pr_err("Invalid regulatory domain detected: %c%c\n",
2814 rd->alpha2[0], rd->alpha2[1]);
2815 print_regdomain_info(rd);
2816 return -EINVAL;
2817 }
2818
2819 if (!user_request->intersect) {
2820 reset_regdomains(false, rd);
2821 return 0;
2822 }
2823
2824 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2825 if (!intersected_rd)
2826 return -EINVAL;
2827
2828 kfree(rd);
2829 rd = NULL;
2830 reset_regdomains(false, intersected_rd);
2831
2832 return 0;
2833 }
2834
2835 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2836 struct regulatory_request *driver_request)
2837 {
2838 const struct ieee80211_regdomain *regd;
2839 const struct ieee80211_regdomain *intersected_rd = NULL;
2840 const struct ieee80211_regdomain *tmp;
2841 struct wiphy *request_wiphy;
2842
2843 if (is_world_regdom(rd->alpha2))
2844 return -EINVAL;
2845
2846 if (!regdom_changes(rd->alpha2))
2847 return -EALREADY;
2848
2849 if (!is_valid_rd(rd)) {
2850 pr_err("Invalid regulatory domain detected: %c%c\n",
2851 rd->alpha2[0], rd->alpha2[1]);
2852 print_regdomain_info(rd);
2853 return -EINVAL;
2854 }
2855
2856 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2857 if (!request_wiphy)
2858 return -ENODEV;
2859
2860 if (!driver_request->intersect) {
2861 if (request_wiphy->regd)
2862 return -EALREADY;
2863
2864 regd = reg_copy_regd(rd);
2865 if (IS_ERR(regd))
2866 return PTR_ERR(regd);
2867
2868 rcu_assign_pointer(request_wiphy->regd, regd);
2869 reset_regdomains(false, rd);
2870 return 0;
2871 }
2872
2873 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2874 if (!intersected_rd)
2875 return -EINVAL;
2876
2877 /*
2878 * We can trash what CRDA provided now.
2879 * However if a driver requested this specific regulatory
2880 * domain we keep it for its private use
2881 */
2882 tmp = get_wiphy_regdom(request_wiphy);
2883 rcu_assign_pointer(request_wiphy->regd, rd);
2884 rcu_free_regdom(tmp);
2885
2886 rd = NULL;
2887
2888 reset_regdomains(false, intersected_rd);
2889
2890 return 0;
2891 }
2892
2893 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2894 struct regulatory_request *country_ie_request)
2895 {
2896 struct wiphy *request_wiphy;
2897
2898 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2899 !is_unknown_alpha2(rd->alpha2))
2900 return -EINVAL;
2901
2902 /*
2903 * Lets only bother proceeding on the same alpha2 if the current
2904 * rd is non static (it means CRDA was present and was used last)
2905 * and the pending request came in from a country IE
2906 */
2907
2908 if (!is_valid_rd(rd)) {
2909 pr_err("Invalid regulatory domain detected: %c%c\n",
2910 rd->alpha2[0], rd->alpha2[1]);
2911 print_regdomain_info(rd);
2912 return -EINVAL;
2913 }
2914
2915 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2916 if (!request_wiphy)
2917 return -ENODEV;
2918
2919 if (country_ie_request->intersect)
2920 return -EINVAL;
2921
2922 reset_regdomains(false, rd);
2923 return 0;
2924 }
2925
2926 /*
2927 * Use this call to set the current regulatory domain. Conflicts with
2928 * multiple drivers can be ironed out later. Caller must've already
2929 * kmalloc'd the rd structure.
2930 */
2931 int set_regdom(const struct ieee80211_regdomain *rd,
2932 enum ieee80211_regd_source regd_src)
2933 {
2934 struct regulatory_request *lr;
2935 bool user_reset = false;
2936 int r;
2937
2938 if (!reg_is_valid_request(rd->alpha2)) {
2939 kfree(rd);
2940 return -EINVAL;
2941 }
2942
2943 if (regd_src == REGD_SOURCE_CRDA)
2944 reset_crda_timeouts();
2945
2946 lr = get_last_request();
2947
2948 /* Note that this doesn't update the wiphys, this is done below */
2949 switch (lr->initiator) {
2950 case NL80211_REGDOM_SET_BY_CORE:
2951 r = reg_set_rd_core(rd);
2952 break;
2953 case NL80211_REGDOM_SET_BY_USER:
2954 r = reg_set_rd_user(rd, lr);
2955 user_reset = true;
2956 break;
2957 case NL80211_REGDOM_SET_BY_DRIVER:
2958 r = reg_set_rd_driver(rd, lr);
2959 break;
2960 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2961 r = reg_set_rd_country_ie(rd, lr);
2962 break;
2963 default:
2964 WARN(1, "invalid initiator %d\n", lr->initiator);
2965 kfree(rd);
2966 return -EINVAL;
2967 }
2968
2969 if (r) {
2970 switch (r) {
2971 case -EALREADY:
2972 reg_set_request_processed();
2973 break;
2974 default:
2975 /* Back to world regulatory in case of errors */
2976 restore_regulatory_settings(user_reset);
2977 }
2978
2979 kfree(rd);
2980 return r;
2981 }
2982
2983 /* This would make this whole thing pointless */
2984 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2985 return -EINVAL;
2986
2987 /* update all wiphys now with the new established regulatory domain */
2988 update_all_wiphy_regulatory(lr->initiator);
2989
2990 print_regdomain(get_cfg80211_regdom());
2991
2992 nl80211_send_reg_change_event(lr);
2993
2994 reg_set_request_processed();
2995
2996 return 0;
2997 }
2998
2999 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3000 struct ieee80211_regdomain *rd)
3001 {
3002 const struct ieee80211_regdomain *regd;
3003 const struct ieee80211_regdomain *prev_regd;
3004 struct cfg80211_registered_device *rdev;
3005
3006 if (WARN_ON(!wiphy || !rd))
3007 return -EINVAL;
3008
3009 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3010 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3011 return -EPERM;
3012
3013 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3014 print_regdomain_info(rd);
3015 return -EINVAL;
3016 }
3017
3018 regd = reg_copy_regd(rd);
3019 if (IS_ERR(regd))
3020 return PTR_ERR(regd);
3021
3022 rdev = wiphy_to_rdev(wiphy);
3023
3024 spin_lock(&reg_requests_lock);
3025 prev_regd = rdev->requested_regd;
3026 rdev->requested_regd = regd;
3027 spin_unlock(&reg_requests_lock);
3028
3029 kfree(prev_regd);
3030 return 0;
3031 }
3032
3033 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3034 struct ieee80211_regdomain *rd)
3035 {
3036 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3037
3038 if (ret)
3039 return ret;
3040
3041 schedule_work(&reg_work);
3042 return 0;
3043 }
3044 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3045
3046 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3047 struct ieee80211_regdomain *rd)
3048 {
3049 int ret;
3050
3051 ASSERT_RTNL();
3052
3053 ret = __regulatory_set_wiphy_regd(wiphy, rd);
3054 if (ret)
3055 return ret;
3056
3057 /* process the request immediately */
3058 reg_process_self_managed_hints();
3059 return 0;
3060 }
3061 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3062
3063 void wiphy_regulatory_register(struct wiphy *wiphy)
3064 {
3065 struct regulatory_request *lr;
3066
3067 /* self-managed devices ignore external hints */
3068 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3069 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3070 REGULATORY_COUNTRY_IE_IGNORE;
3071
3072 if (!reg_dev_ignore_cell_hint(wiphy))
3073 reg_num_devs_support_basehint++;
3074
3075 lr = get_last_request();
3076 wiphy_update_regulatory(wiphy, lr->initiator);
3077 }
3078
3079 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3080 {
3081 struct wiphy *request_wiphy = NULL;
3082 struct regulatory_request *lr;
3083
3084 lr = get_last_request();
3085
3086 if (!reg_dev_ignore_cell_hint(wiphy))
3087 reg_num_devs_support_basehint--;
3088
3089 rcu_free_regdom(get_wiphy_regdom(wiphy));
3090 RCU_INIT_POINTER(wiphy->regd, NULL);
3091
3092 if (lr)
3093 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3094
3095 if (!request_wiphy || request_wiphy != wiphy)
3096 return;
3097
3098 lr->wiphy_idx = WIPHY_IDX_INVALID;
3099 lr->country_ie_env = ENVIRON_ANY;
3100 }
3101
3102 /*
3103 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3104 * UNII band definitions
3105 */
3106 int cfg80211_get_unii(int freq)
3107 {
3108 /* UNII-1 */
3109 if (freq >= 5150 && freq <= 5250)
3110 return 0;
3111
3112 /* UNII-2A */
3113 if (freq > 5250 && freq <= 5350)
3114 return 1;
3115
3116 /* UNII-2B */
3117 if (freq > 5350 && freq <= 5470)
3118 return 2;
3119
3120 /* UNII-2C */
3121 if (freq > 5470 && freq <= 5725)
3122 return 3;
3123
3124 /* UNII-3 */
3125 if (freq > 5725 && freq <= 5825)
3126 return 4;
3127
3128 return -EINVAL;
3129 }
3130
3131 bool regulatory_indoor_allowed(void)
3132 {
3133 return reg_is_indoor;
3134 }
3135
3136 int __init regulatory_init(void)
3137 {
3138 int err = 0;
3139
3140 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3141 if (IS_ERR(reg_pdev))
3142 return PTR_ERR(reg_pdev);
3143
3144 spin_lock_init(&reg_requests_lock);
3145 spin_lock_init(&reg_pending_beacons_lock);
3146 spin_lock_init(&reg_indoor_lock);
3147
3148 reg_regdb_size_check();
3149
3150 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3151
3152 user_alpha2[0] = '9';
3153 user_alpha2[1] = '7';
3154
3155 /* We always try to get an update for the static regdomain */
3156 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3157 if (err) {
3158 if (err == -ENOMEM) {
3159 platform_device_unregister(reg_pdev);
3160 return err;
3161 }
3162 /*
3163 * N.B. kobject_uevent_env() can fail mainly for when we're out
3164 * memory which is handled and propagated appropriately above
3165 * but it can also fail during a netlink_broadcast() or during
3166 * early boot for call_usermodehelper(). For now treat these
3167 * errors as non-fatal.
3168 */
3169 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3170 }
3171
3172 /*
3173 * Finally, if the user set the module parameter treat it
3174 * as a user hint.
3175 */
3176 if (!is_world_regdom(ieee80211_regdom))
3177 regulatory_hint_user(ieee80211_regdom,
3178 NL80211_USER_REG_HINT_USER);
3179
3180 return 0;
3181 }
3182
3183 void regulatory_exit(void)
3184 {
3185 struct regulatory_request *reg_request, *tmp;
3186 struct reg_beacon *reg_beacon, *btmp;
3187
3188 cancel_work_sync(&reg_work);
3189 cancel_crda_timeout_sync();
3190 cancel_delayed_work_sync(&reg_check_chans);
3191
3192 /* Lock to suppress warnings */
3193 rtnl_lock();
3194 reset_regdomains(true, NULL);
3195 rtnl_unlock();
3196
3197 dev_set_uevent_suppress(&reg_pdev->dev, true);
3198
3199 platform_device_unregister(reg_pdev);
3200
3201 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3202 list_del(&reg_beacon->list);
3203 kfree(reg_beacon);
3204 }
3205
3206 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3207 list_del(&reg_beacon->list);
3208 kfree(reg_beacon);
3209 }
3210
3211 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3212 list_del(&reg_request->list);
3213 kfree(reg_request);
3214 }
3215 }