]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/wireless/reg.c
UBUNTU: [Config] CONFIG_SND_SOC_DIO2125=m
[mirror_ubuntu-artful-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 *
8 * Permission to use, copy, modify, and/or distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21
22 /**
23 * DOC: Wireless regulatory infrastructure
24 *
25 * The usual implementation is for a driver to read a device EEPROM to
26 * determine which regulatory domain it should be operating under, then
27 * looking up the allowable channels in a driver-local table and finally
28 * registering those channels in the wiphy structure.
29 *
30 * Another set of compliance enforcement is for drivers to use their
31 * own compliance limits which can be stored on the EEPROM. The host
32 * driver or firmware may ensure these are used.
33 *
34 * In addition to all this we provide an extra layer of regulatory
35 * conformance. For drivers which do not have any regulatory
36 * information CRDA provides the complete regulatory solution.
37 * For others it provides a community effort on further restrictions
38 * to enhance compliance.
39 *
40 * Note: When number of rules --> infinity we will not be able to
41 * index on alpha2 any more, instead we'll probably have to
42 * rely on some SHA1 checksum of the regdomain for example.
43 *
44 */
45
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "rdev-ops.h"
60 #include "regdb.h"
61 #include "nl80211.h"
62
63 /*
64 * Grace period we give before making sure all current interfaces reside on
65 * channels allowed by the current regulatory domain.
66 */
67 #define REG_ENFORCE_GRACE_MS 60000
68
69 /**
70 * enum reg_request_treatment - regulatory request treatment
71 *
72 * @REG_REQ_OK: continue processing the regulatory request
73 * @REG_REQ_IGNORE: ignore the regulatory request
74 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
75 * be intersected with the current one.
76 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
77 * regulatory settings, and no further processing is required.
78 */
79 enum reg_request_treatment {
80 REG_REQ_OK,
81 REG_REQ_IGNORE,
82 REG_REQ_INTERSECT,
83 REG_REQ_ALREADY_SET,
84 };
85
86 static struct regulatory_request core_request_world = {
87 .initiator = NL80211_REGDOM_SET_BY_CORE,
88 .alpha2[0] = '0',
89 .alpha2[1] = '0',
90 .intersect = false,
91 .processed = true,
92 .country_ie_env = ENVIRON_ANY,
93 };
94
95 /*
96 * Receipt of information from last regulatory request,
97 * protected by RTNL (and can be accessed with RCU protection)
98 */
99 static struct regulatory_request __rcu *last_request =
100 (void __force __rcu *)&core_request_world;
101
102 /* To trigger userspace events */
103 static struct platform_device *reg_pdev;
104
105 /*
106 * Central wireless core regulatory domains, we only need two,
107 * the current one and a world regulatory domain in case we have no
108 * information to give us an alpha2.
109 * (protected by RTNL, can be read under RCU)
110 */
111 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
112
113 /*
114 * Number of devices that registered to the core
115 * that support cellular base station regulatory hints
116 * (protected by RTNL)
117 */
118 static int reg_num_devs_support_basehint;
119
120 /*
121 * State variable indicating if the platform on which the devices
122 * are attached is operating in an indoor environment. The state variable
123 * is relevant for all registered devices.
124 */
125 static bool reg_is_indoor;
126 static spinlock_t reg_indoor_lock;
127
128 /* Used to track the userspace process controlling the indoor setting */
129 static u32 reg_is_indoor_portid;
130
131 static void restore_regulatory_settings(bool reset_user);
132
133 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
134 {
135 return rtnl_dereference(cfg80211_regdomain);
136 }
137
138 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
139 {
140 return rtnl_dereference(wiphy->regd);
141 }
142
143 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
144 {
145 switch (dfs_region) {
146 case NL80211_DFS_UNSET:
147 return "unset";
148 case NL80211_DFS_FCC:
149 return "FCC";
150 case NL80211_DFS_ETSI:
151 return "ETSI";
152 case NL80211_DFS_JP:
153 return "JP";
154 }
155 return "Unknown";
156 }
157
158 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
159 {
160 const struct ieee80211_regdomain *regd = NULL;
161 const struct ieee80211_regdomain *wiphy_regd = NULL;
162
163 regd = get_cfg80211_regdom();
164 if (!wiphy)
165 goto out;
166
167 wiphy_regd = get_wiphy_regdom(wiphy);
168 if (!wiphy_regd)
169 goto out;
170
171 if (wiphy_regd->dfs_region == regd->dfs_region)
172 goto out;
173
174 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
175 dev_name(&wiphy->dev),
176 reg_dfs_region_str(wiphy_regd->dfs_region),
177 reg_dfs_region_str(regd->dfs_region));
178
179 out:
180 return regd->dfs_region;
181 }
182
183 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
184 {
185 if (!r)
186 return;
187 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
188 }
189
190 static struct regulatory_request *get_last_request(void)
191 {
192 return rcu_dereference_rtnl(last_request);
193 }
194
195 /* Used to queue up regulatory hints */
196 static LIST_HEAD(reg_requests_list);
197 static spinlock_t reg_requests_lock;
198
199 /* Used to queue up beacon hints for review */
200 static LIST_HEAD(reg_pending_beacons);
201 static spinlock_t reg_pending_beacons_lock;
202
203 /* Used to keep track of processed beacon hints */
204 static LIST_HEAD(reg_beacon_list);
205
206 struct reg_beacon {
207 struct list_head list;
208 struct ieee80211_channel chan;
209 };
210
211 static void reg_check_chans_work(struct work_struct *work);
212 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
213
214 static void reg_todo(struct work_struct *work);
215 static DECLARE_WORK(reg_work, reg_todo);
216
217 /* We keep a static world regulatory domain in case of the absence of CRDA */
218 static const struct ieee80211_regdomain world_regdom = {
219 .n_reg_rules = 8,
220 .alpha2 = "00",
221 .reg_rules = {
222 /* IEEE 802.11b/g, channels 1..11 */
223 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
224 /* IEEE 802.11b/g, channels 12..13. */
225 REG_RULE(2467-10, 2472+10, 20, 6, 20,
226 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
227 /* IEEE 802.11 channel 14 - Only JP enables
228 * this and for 802.11b only */
229 REG_RULE(2484-10, 2484+10, 20, 6, 20,
230 NL80211_RRF_NO_IR |
231 NL80211_RRF_NO_OFDM),
232 /* IEEE 802.11a, channel 36..48 */
233 REG_RULE(5180-10, 5240+10, 80, 6, 20,
234 NL80211_RRF_NO_IR |
235 NL80211_RRF_AUTO_BW),
236
237 /* IEEE 802.11a, channel 52..64 - DFS required */
238 REG_RULE(5260-10, 5320+10, 80, 6, 20,
239 NL80211_RRF_NO_IR |
240 NL80211_RRF_AUTO_BW |
241 NL80211_RRF_DFS),
242
243 /* IEEE 802.11a, channel 100..144 - DFS required */
244 REG_RULE(5500-10, 5720+10, 160, 6, 20,
245 NL80211_RRF_NO_IR |
246 NL80211_RRF_DFS),
247
248 /* IEEE 802.11a, channel 149..165 */
249 REG_RULE(5745-10, 5825+10, 80, 6, 20,
250 NL80211_RRF_NO_IR),
251
252 /* IEEE 802.11ad (60GHz), channels 1..3 */
253 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
254 }
255 };
256
257 /* protected by RTNL */
258 static const struct ieee80211_regdomain *cfg80211_world_regdom =
259 &world_regdom;
260
261 static char *ieee80211_regdom = "00";
262 static char user_alpha2[2];
263
264 module_param(ieee80211_regdom, charp, 0444);
265 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
266
267 static void reg_free_request(struct regulatory_request *request)
268 {
269 if (request == &core_request_world)
270 return;
271
272 if (request != get_last_request())
273 kfree(request);
274 }
275
276 static void reg_free_last_request(void)
277 {
278 struct regulatory_request *lr = get_last_request();
279
280 if (lr != &core_request_world && lr)
281 kfree_rcu(lr, rcu_head);
282 }
283
284 static void reg_update_last_request(struct regulatory_request *request)
285 {
286 struct regulatory_request *lr;
287
288 lr = get_last_request();
289 if (lr == request)
290 return;
291
292 reg_free_last_request();
293 rcu_assign_pointer(last_request, request);
294 }
295
296 static void reset_regdomains(bool full_reset,
297 const struct ieee80211_regdomain *new_regdom)
298 {
299 const struct ieee80211_regdomain *r;
300
301 ASSERT_RTNL();
302
303 r = get_cfg80211_regdom();
304
305 /* avoid freeing static information or freeing something twice */
306 if (r == cfg80211_world_regdom)
307 r = NULL;
308 if (cfg80211_world_regdom == &world_regdom)
309 cfg80211_world_regdom = NULL;
310 if (r == &world_regdom)
311 r = NULL;
312
313 rcu_free_regdom(r);
314 rcu_free_regdom(cfg80211_world_regdom);
315
316 cfg80211_world_regdom = &world_regdom;
317 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
318
319 if (!full_reset)
320 return;
321
322 reg_update_last_request(&core_request_world);
323 }
324
325 /*
326 * Dynamic world regulatory domain requested by the wireless
327 * core upon initialization
328 */
329 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
330 {
331 struct regulatory_request *lr;
332
333 lr = get_last_request();
334
335 WARN_ON(!lr);
336
337 reset_regdomains(false, rd);
338
339 cfg80211_world_regdom = rd;
340 }
341
342 bool is_world_regdom(const char *alpha2)
343 {
344 if (!alpha2)
345 return false;
346 return alpha2[0] == '0' && alpha2[1] == '0';
347 }
348
349 static bool is_alpha2_set(const char *alpha2)
350 {
351 if (!alpha2)
352 return false;
353 return alpha2[0] && alpha2[1];
354 }
355
356 static bool is_unknown_alpha2(const char *alpha2)
357 {
358 if (!alpha2)
359 return false;
360 /*
361 * Special case where regulatory domain was built by driver
362 * but a specific alpha2 cannot be determined
363 */
364 return alpha2[0] == '9' && alpha2[1] == '9';
365 }
366
367 static bool is_intersected_alpha2(const char *alpha2)
368 {
369 if (!alpha2)
370 return false;
371 /*
372 * Special case where regulatory domain is the
373 * result of an intersection between two regulatory domain
374 * structures
375 */
376 return alpha2[0] == '9' && alpha2[1] == '8';
377 }
378
379 static bool is_an_alpha2(const char *alpha2)
380 {
381 if (!alpha2)
382 return false;
383 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
384 }
385
386 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
387 {
388 if (!alpha2_x || !alpha2_y)
389 return false;
390 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
391 }
392
393 static bool regdom_changes(const char *alpha2)
394 {
395 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
396
397 if (!r)
398 return true;
399 return !alpha2_equal(r->alpha2, alpha2);
400 }
401
402 /*
403 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
404 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
405 * has ever been issued.
406 */
407 static bool is_user_regdom_saved(void)
408 {
409 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
410 return false;
411
412 /* This would indicate a mistake on the design */
413 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
414 "Unexpected user alpha2: %c%c\n",
415 user_alpha2[0], user_alpha2[1]))
416 return false;
417
418 return true;
419 }
420
421 static const struct ieee80211_regdomain *
422 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
423 {
424 struct ieee80211_regdomain *regd;
425 int size_of_regd;
426 unsigned int i;
427
428 size_of_regd =
429 sizeof(struct ieee80211_regdomain) +
430 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
431
432 regd = kzalloc(size_of_regd, GFP_KERNEL);
433 if (!regd)
434 return ERR_PTR(-ENOMEM);
435
436 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
437
438 for (i = 0; i < src_regd->n_reg_rules; i++)
439 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
440 sizeof(struct ieee80211_reg_rule));
441
442 return regd;
443 }
444
445 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
446 struct reg_regdb_apply_request {
447 struct list_head list;
448 const struct ieee80211_regdomain *regdom;
449 };
450
451 static LIST_HEAD(reg_regdb_apply_list);
452 static DEFINE_MUTEX(reg_regdb_apply_mutex);
453
454 static void reg_regdb_apply(struct work_struct *work)
455 {
456 struct reg_regdb_apply_request *request;
457
458 rtnl_lock();
459
460 mutex_lock(&reg_regdb_apply_mutex);
461 while (!list_empty(&reg_regdb_apply_list)) {
462 request = list_first_entry(&reg_regdb_apply_list,
463 struct reg_regdb_apply_request,
464 list);
465 list_del(&request->list);
466
467 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
468 kfree(request);
469 }
470 mutex_unlock(&reg_regdb_apply_mutex);
471
472 rtnl_unlock();
473 }
474
475 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
476
477 static int reg_query_builtin(const char *alpha2)
478 {
479 const struct ieee80211_regdomain *regdom = NULL;
480 struct reg_regdb_apply_request *request;
481 unsigned int i;
482
483 for (i = 0; i < reg_regdb_size; i++) {
484 if (alpha2_equal(alpha2, reg_regdb[i]->alpha2)) {
485 regdom = reg_regdb[i];
486 break;
487 }
488 }
489
490 if (!regdom)
491 return -ENODATA;
492
493 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
494 if (!request)
495 return -ENOMEM;
496
497 request->regdom = reg_copy_regd(regdom);
498 if (IS_ERR_OR_NULL(request->regdom)) {
499 kfree(request);
500 return -ENOMEM;
501 }
502
503 mutex_lock(&reg_regdb_apply_mutex);
504 list_add_tail(&request->list, &reg_regdb_apply_list);
505 mutex_unlock(&reg_regdb_apply_mutex);
506
507 schedule_work(&reg_regdb_work);
508
509 return 0;
510 }
511
512 /* Feel free to add any other sanity checks here */
513 static void reg_regdb_size_check(void)
514 {
515 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
516 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
517 }
518 #else
519 static inline void reg_regdb_size_check(void) {}
520 static inline int reg_query_builtin(const char *alpha2)
521 {
522 return -ENODATA;
523 }
524 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
525
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA */
528 #define REG_MAX_CRDA_TIMEOUTS 10
529
530 static u32 reg_crda_timeouts;
531
532 static void crda_timeout_work(struct work_struct *work);
533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534
535 static void crda_timeout_work(struct work_struct *work)
536 {
537 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538 rtnl_lock();
539 reg_crda_timeouts++;
540 restore_regulatory_settings(true);
541 rtnl_unlock();
542 }
543
544 static void cancel_crda_timeout(void)
545 {
546 cancel_delayed_work(&crda_timeout);
547 }
548
549 static void cancel_crda_timeout_sync(void)
550 {
551 cancel_delayed_work_sync(&crda_timeout);
552 }
553
554 static void reset_crda_timeouts(void)
555 {
556 reg_crda_timeouts = 0;
557 }
558
559 /*
560 * This lets us keep regulatory code which is updated on a regulatory
561 * basis in userspace.
562 */
563 static int call_crda(const char *alpha2)
564 {
565 char country[12];
566 char *env[] = { country, NULL };
567 int ret;
568
569 snprintf(country, sizeof(country), "COUNTRY=%c%c",
570 alpha2[0], alpha2[1]);
571
572 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574 return -EINVAL;
575 }
576
577 if (!is_world_regdom((char *) alpha2))
578 pr_debug("Calling CRDA for country: %c%c\n",
579 alpha2[0], alpha2[1]);
580 else
581 pr_debug("Calling CRDA to update world regulatory domain\n");
582
583 ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
584 if (ret)
585 return ret;
586
587 queue_delayed_work(system_power_efficient_wq,
588 &crda_timeout, msecs_to_jiffies(3142));
589 return 0;
590 }
591 #else
592 static inline void cancel_crda_timeout(void) {}
593 static inline void cancel_crda_timeout_sync(void) {}
594 static inline void reset_crda_timeouts(void) {}
595 static inline int call_crda(const char *alpha2)
596 {
597 return -ENODATA;
598 }
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600
601 static bool reg_query_database(struct regulatory_request *request)
602 {
603 /* query internal regulatory database (if it exists) */
604 if (reg_query_builtin(request->alpha2) == 0)
605 return true;
606
607 if (call_crda(request->alpha2) == 0)
608 return true;
609
610 return false;
611 }
612
613 bool reg_is_valid_request(const char *alpha2)
614 {
615 struct regulatory_request *lr = get_last_request();
616
617 if (!lr || lr->processed)
618 return false;
619
620 return alpha2_equal(lr->alpha2, alpha2);
621 }
622
623 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
624 {
625 struct regulatory_request *lr = get_last_request();
626
627 /*
628 * Follow the driver's regulatory domain, if present, unless a country
629 * IE has been processed or a user wants to help complaince further
630 */
631 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
632 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
633 wiphy->regd)
634 return get_wiphy_regdom(wiphy);
635
636 return get_cfg80211_regdom();
637 }
638
639 static unsigned int
640 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
641 const struct ieee80211_reg_rule *rule)
642 {
643 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
644 const struct ieee80211_freq_range *freq_range_tmp;
645 const struct ieee80211_reg_rule *tmp;
646 u32 start_freq, end_freq, idx, no;
647
648 for (idx = 0; idx < rd->n_reg_rules; idx++)
649 if (rule == &rd->reg_rules[idx])
650 break;
651
652 if (idx == rd->n_reg_rules)
653 return 0;
654
655 /* get start_freq */
656 no = idx;
657
658 while (no) {
659 tmp = &rd->reg_rules[--no];
660 freq_range_tmp = &tmp->freq_range;
661
662 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
663 break;
664
665 freq_range = freq_range_tmp;
666 }
667
668 start_freq = freq_range->start_freq_khz;
669
670 /* get end_freq */
671 freq_range = &rule->freq_range;
672 no = idx;
673
674 while (no < rd->n_reg_rules - 1) {
675 tmp = &rd->reg_rules[++no];
676 freq_range_tmp = &tmp->freq_range;
677
678 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
679 break;
680
681 freq_range = freq_range_tmp;
682 }
683
684 end_freq = freq_range->end_freq_khz;
685
686 return end_freq - start_freq;
687 }
688
689 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
690 const struct ieee80211_reg_rule *rule)
691 {
692 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
693
694 if (rule->flags & NL80211_RRF_NO_160MHZ)
695 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
696 if (rule->flags & NL80211_RRF_NO_80MHZ)
697 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
698
699 /*
700 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
701 * are not allowed.
702 */
703 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
704 rule->flags & NL80211_RRF_NO_HT40PLUS)
705 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
706
707 return bw;
708 }
709
710 /* Sanity check on a regulatory rule */
711 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
712 {
713 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
714 u32 freq_diff;
715
716 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
717 return false;
718
719 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
720 return false;
721
722 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
723
724 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
725 freq_range->max_bandwidth_khz > freq_diff)
726 return false;
727
728 return true;
729 }
730
731 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
732 {
733 const struct ieee80211_reg_rule *reg_rule = NULL;
734 unsigned int i;
735
736 if (!rd->n_reg_rules)
737 return false;
738
739 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
740 return false;
741
742 for (i = 0; i < rd->n_reg_rules; i++) {
743 reg_rule = &rd->reg_rules[i];
744 if (!is_valid_reg_rule(reg_rule))
745 return false;
746 }
747
748 return true;
749 }
750
751 /**
752 * freq_in_rule_band - tells us if a frequency is in a frequency band
753 * @freq_range: frequency rule we want to query
754 * @freq_khz: frequency we are inquiring about
755 *
756 * This lets us know if a specific frequency rule is or is not relevant to
757 * a specific frequency's band. Bands are device specific and artificial
758 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
759 * however it is safe for now to assume that a frequency rule should not be
760 * part of a frequency's band if the start freq or end freq are off by more
761 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
762 * 60 GHz band.
763 * This resolution can be lowered and should be considered as we add
764 * regulatory rule support for other "bands".
765 **/
766 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
767 u32 freq_khz)
768 {
769 #define ONE_GHZ_IN_KHZ 1000000
770 /*
771 * From 802.11ad: directional multi-gigabit (DMG):
772 * Pertaining to operation in a frequency band containing a channel
773 * with the Channel starting frequency above 45 GHz.
774 */
775 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
776 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
777 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
778 return true;
779 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
780 return true;
781 return false;
782 #undef ONE_GHZ_IN_KHZ
783 }
784
785 /*
786 * Later on we can perhaps use the more restrictive DFS
787 * region but we don't have information for that yet so
788 * for now simply disallow conflicts.
789 */
790 static enum nl80211_dfs_regions
791 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
792 const enum nl80211_dfs_regions dfs_region2)
793 {
794 if (dfs_region1 != dfs_region2)
795 return NL80211_DFS_UNSET;
796 return dfs_region1;
797 }
798
799 /*
800 * Helper for regdom_intersect(), this does the real
801 * mathematical intersection fun
802 */
803 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
804 const struct ieee80211_regdomain *rd2,
805 const struct ieee80211_reg_rule *rule1,
806 const struct ieee80211_reg_rule *rule2,
807 struct ieee80211_reg_rule *intersected_rule)
808 {
809 const struct ieee80211_freq_range *freq_range1, *freq_range2;
810 struct ieee80211_freq_range *freq_range;
811 const struct ieee80211_power_rule *power_rule1, *power_rule2;
812 struct ieee80211_power_rule *power_rule;
813 u32 freq_diff, max_bandwidth1, max_bandwidth2;
814
815 freq_range1 = &rule1->freq_range;
816 freq_range2 = &rule2->freq_range;
817 freq_range = &intersected_rule->freq_range;
818
819 power_rule1 = &rule1->power_rule;
820 power_rule2 = &rule2->power_rule;
821 power_rule = &intersected_rule->power_rule;
822
823 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
824 freq_range2->start_freq_khz);
825 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
826 freq_range2->end_freq_khz);
827
828 max_bandwidth1 = freq_range1->max_bandwidth_khz;
829 max_bandwidth2 = freq_range2->max_bandwidth_khz;
830
831 if (rule1->flags & NL80211_RRF_AUTO_BW)
832 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
833 if (rule2->flags & NL80211_RRF_AUTO_BW)
834 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
835
836 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
837
838 intersected_rule->flags = rule1->flags | rule2->flags;
839
840 /*
841 * In case NL80211_RRF_AUTO_BW requested for both rules
842 * set AUTO_BW in intersected rule also. Next we will
843 * calculate BW correctly in handle_channel function.
844 * In other case remove AUTO_BW flag while we calculate
845 * maximum bandwidth correctly and auto calculation is
846 * not required.
847 */
848 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
849 (rule2->flags & NL80211_RRF_AUTO_BW))
850 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
851 else
852 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
853
854 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
855 if (freq_range->max_bandwidth_khz > freq_diff)
856 freq_range->max_bandwidth_khz = freq_diff;
857
858 power_rule->max_eirp = min(power_rule1->max_eirp,
859 power_rule2->max_eirp);
860 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
861 power_rule2->max_antenna_gain);
862
863 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
864 rule2->dfs_cac_ms);
865
866 if (!is_valid_reg_rule(intersected_rule))
867 return -EINVAL;
868
869 return 0;
870 }
871
872 /* check whether old rule contains new rule */
873 static bool rule_contains(struct ieee80211_reg_rule *r1,
874 struct ieee80211_reg_rule *r2)
875 {
876 /* for simplicity, currently consider only same flags */
877 if (r1->flags != r2->flags)
878 return false;
879
880 /* verify r1 is more restrictive */
881 if ((r1->power_rule.max_antenna_gain >
882 r2->power_rule.max_antenna_gain) ||
883 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
884 return false;
885
886 /* make sure r2's range is contained within r1 */
887 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
888 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
889 return false;
890
891 /* and finally verify that r1.max_bw >= r2.max_bw */
892 if (r1->freq_range.max_bandwidth_khz <
893 r2->freq_range.max_bandwidth_khz)
894 return false;
895
896 return true;
897 }
898
899 /* add or extend current rules. do nothing if rule is already contained */
900 static void add_rule(struct ieee80211_reg_rule *rule,
901 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
902 {
903 struct ieee80211_reg_rule *tmp_rule;
904 int i;
905
906 for (i = 0; i < *n_rules; i++) {
907 tmp_rule = &reg_rules[i];
908 /* rule is already contained - do nothing */
909 if (rule_contains(tmp_rule, rule))
910 return;
911
912 /* extend rule if possible */
913 if (rule_contains(rule, tmp_rule)) {
914 memcpy(tmp_rule, rule, sizeof(*rule));
915 return;
916 }
917 }
918
919 memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
920 (*n_rules)++;
921 }
922
923 /**
924 * regdom_intersect - do the intersection between two regulatory domains
925 * @rd1: first regulatory domain
926 * @rd2: second regulatory domain
927 *
928 * Use this function to get the intersection between two regulatory domains.
929 * Once completed we will mark the alpha2 for the rd as intersected, "98",
930 * as no one single alpha2 can represent this regulatory domain.
931 *
932 * Returns a pointer to the regulatory domain structure which will hold the
933 * resulting intersection of rules between rd1 and rd2. We will
934 * kzalloc() this structure for you.
935 */
936 static struct ieee80211_regdomain *
937 regdom_intersect(const struct ieee80211_regdomain *rd1,
938 const struct ieee80211_regdomain *rd2)
939 {
940 int r, size_of_regd;
941 unsigned int x, y;
942 unsigned int num_rules = 0;
943 const struct ieee80211_reg_rule *rule1, *rule2;
944 struct ieee80211_reg_rule intersected_rule;
945 struct ieee80211_regdomain *rd;
946
947 if (!rd1 || !rd2)
948 return NULL;
949
950 /*
951 * First we get a count of the rules we'll need, then we actually
952 * build them. This is to so we can malloc() and free() a
953 * regdomain once. The reason we use reg_rules_intersect() here
954 * is it will return -EINVAL if the rule computed makes no sense.
955 * All rules that do check out OK are valid.
956 */
957
958 for (x = 0; x < rd1->n_reg_rules; x++) {
959 rule1 = &rd1->reg_rules[x];
960 for (y = 0; y < rd2->n_reg_rules; y++) {
961 rule2 = &rd2->reg_rules[y];
962 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
963 &intersected_rule))
964 num_rules++;
965 }
966 }
967
968 if (!num_rules)
969 return NULL;
970
971 size_of_regd = sizeof(struct ieee80211_regdomain) +
972 num_rules * sizeof(struct ieee80211_reg_rule);
973
974 rd = kzalloc(size_of_regd, GFP_KERNEL);
975 if (!rd)
976 return NULL;
977
978 for (x = 0; x < rd1->n_reg_rules; x++) {
979 rule1 = &rd1->reg_rules[x];
980 for (y = 0; y < rd2->n_reg_rules; y++) {
981 rule2 = &rd2->reg_rules[y];
982 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
983 &intersected_rule);
984 /*
985 * No need to memset here the intersected rule here as
986 * we're not using the stack anymore
987 */
988 if (r)
989 continue;
990
991 add_rule(&intersected_rule, rd->reg_rules,
992 &rd->n_reg_rules);
993 }
994 }
995
996 rd->alpha2[0] = '9';
997 rd->alpha2[1] = '8';
998 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
999 rd2->dfs_region);
1000
1001 return rd;
1002 }
1003
1004 /*
1005 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1006 * want to just have the channel structure use these
1007 */
1008 static u32 map_regdom_flags(u32 rd_flags)
1009 {
1010 u32 channel_flags = 0;
1011 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1012 channel_flags |= IEEE80211_CHAN_NO_IR;
1013 if (rd_flags & NL80211_RRF_DFS)
1014 channel_flags |= IEEE80211_CHAN_RADAR;
1015 if (rd_flags & NL80211_RRF_NO_OFDM)
1016 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1017 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1018 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1019 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1020 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1021 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1022 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1023 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1024 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1025 if (rd_flags & NL80211_RRF_NO_80MHZ)
1026 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1027 if (rd_flags & NL80211_RRF_NO_160MHZ)
1028 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1029 return channel_flags;
1030 }
1031
1032 static const struct ieee80211_reg_rule *
1033 freq_reg_info_regd(u32 center_freq,
1034 const struct ieee80211_regdomain *regd, u32 bw)
1035 {
1036 int i;
1037 bool band_rule_found = false;
1038 bool bw_fits = false;
1039
1040 if (!regd)
1041 return ERR_PTR(-EINVAL);
1042
1043 for (i = 0; i < regd->n_reg_rules; i++) {
1044 const struct ieee80211_reg_rule *rr;
1045 const struct ieee80211_freq_range *fr = NULL;
1046
1047 rr = &regd->reg_rules[i];
1048 fr = &rr->freq_range;
1049
1050 /*
1051 * We only need to know if one frequency rule was
1052 * was in center_freq's band, that's enough, so lets
1053 * not overwrite it once found
1054 */
1055 if (!band_rule_found)
1056 band_rule_found = freq_in_rule_band(fr, center_freq);
1057
1058 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1059
1060 if (band_rule_found && bw_fits)
1061 return rr;
1062 }
1063
1064 if (!band_rule_found)
1065 return ERR_PTR(-ERANGE);
1066
1067 return ERR_PTR(-EINVAL);
1068 }
1069
1070 static const struct ieee80211_reg_rule *
1071 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1072 {
1073 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1074 const struct ieee80211_reg_rule *reg_rule = NULL;
1075 u32 bw;
1076
1077 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1078 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1079 if (!IS_ERR(reg_rule))
1080 return reg_rule;
1081 }
1082
1083 return reg_rule;
1084 }
1085
1086 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1087 u32 center_freq)
1088 {
1089 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1090 }
1091 EXPORT_SYMBOL(freq_reg_info);
1092
1093 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1094 {
1095 switch (initiator) {
1096 case NL80211_REGDOM_SET_BY_CORE:
1097 return "core";
1098 case NL80211_REGDOM_SET_BY_USER:
1099 return "user";
1100 case NL80211_REGDOM_SET_BY_DRIVER:
1101 return "driver";
1102 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1103 return "country IE";
1104 default:
1105 WARN_ON(1);
1106 return "bug";
1107 }
1108 }
1109 EXPORT_SYMBOL(reg_initiator_name);
1110
1111 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1112 const struct ieee80211_reg_rule *reg_rule,
1113 const struct ieee80211_channel *chan)
1114 {
1115 const struct ieee80211_freq_range *freq_range = NULL;
1116 u32 max_bandwidth_khz, bw_flags = 0;
1117
1118 freq_range = &reg_rule->freq_range;
1119
1120 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1121 /* Check if auto calculation requested */
1122 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1123 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1124
1125 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1126 if (!cfg80211_does_bw_fit_range(freq_range,
1127 MHZ_TO_KHZ(chan->center_freq),
1128 MHZ_TO_KHZ(10)))
1129 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1130 if (!cfg80211_does_bw_fit_range(freq_range,
1131 MHZ_TO_KHZ(chan->center_freq),
1132 MHZ_TO_KHZ(20)))
1133 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1134
1135 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1136 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1137 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1138 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1139 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1140 bw_flags |= IEEE80211_CHAN_NO_HT40;
1141 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1142 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1143 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1144 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1145 return bw_flags;
1146 }
1147
1148 /*
1149 * Note that right now we assume the desired channel bandwidth
1150 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1151 * per channel, the primary and the extension channel).
1152 */
1153 static void handle_channel(struct wiphy *wiphy,
1154 enum nl80211_reg_initiator initiator,
1155 struct ieee80211_channel *chan)
1156 {
1157 u32 flags, bw_flags = 0;
1158 const struct ieee80211_reg_rule *reg_rule = NULL;
1159 const struct ieee80211_power_rule *power_rule = NULL;
1160 struct wiphy *request_wiphy = NULL;
1161 struct regulatory_request *lr = get_last_request();
1162 const struct ieee80211_regdomain *regd;
1163
1164 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1165
1166 flags = chan->orig_flags;
1167
1168 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1169 if (IS_ERR(reg_rule)) {
1170 /*
1171 * We will disable all channels that do not match our
1172 * received regulatory rule unless the hint is coming
1173 * from a Country IE and the Country IE had no information
1174 * about a band. The IEEE 802.11 spec allows for an AP
1175 * to send only a subset of the regulatory rules allowed,
1176 * so an AP in the US that only supports 2.4 GHz may only send
1177 * a country IE with information for the 2.4 GHz band
1178 * while 5 GHz is still supported.
1179 */
1180 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1181 PTR_ERR(reg_rule) == -ERANGE)
1182 return;
1183
1184 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1185 request_wiphy && request_wiphy == wiphy &&
1186 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1187 pr_debug("Disabling freq %d MHz for good\n",
1188 chan->center_freq);
1189 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1190 chan->flags = chan->orig_flags;
1191 } else {
1192 pr_debug("Disabling freq %d MHz\n",
1193 chan->center_freq);
1194 chan->flags |= IEEE80211_CHAN_DISABLED;
1195 }
1196 return;
1197 }
1198
1199 regd = reg_get_regdomain(wiphy);
1200
1201 power_rule = &reg_rule->power_rule;
1202 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1203
1204 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1205 request_wiphy && request_wiphy == wiphy &&
1206 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1207 /*
1208 * This guarantees the driver's requested regulatory domain
1209 * will always be used as a base for further regulatory
1210 * settings
1211 */
1212 chan->flags = chan->orig_flags =
1213 map_regdom_flags(reg_rule->flags) | bw_flags;
1214 chan->max_antenna_gain = chan->orig_mag =
1215 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1216 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1217 (int) MBM_TO_DBM(power_rule->max_eirp);
1218
1219 if (chan->flags & IEEE80211_CHAN_RADAR) {
1220 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1221 if (reg_rule->dfs_cac_ms)
1222 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1223 }
1224
1225 return;
1226 }
1227
1228 chan->dfs_state = NL80211_DFS_USABLE;
1229 chan->dfs_state_entered = jiffies;
1230
1231 chan->beacon_found = false;
1232 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1233 chan->max_antenna_gain =
1234 min_t(int, chan->orig_mag,
1235 MBI_TO_DBI(power_rule->max_antenna_gain));
1236 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1237
1238 if (chan->flags & IEEE80211_CHAN_RADAR) {
1239 if (reg_rule->dfs_cac_ms)
1240 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1241 else
1242 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1243 }
1244
1245 if (chan->orig_mpwr) {
1246 /*
1247 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1248 * will always follow the passed country IE power settings.
1249 */
1250 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1251 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1252 chan->max_power = chan->max_reg_power;
1253 else
1254 chan->max_power = min(chan->orig_mpwr,
1255 chan->max_reg_power);
1256 } else
1257 chan->max_power = chan->max_reg_power;
1258 }
1259
1260 static void handle_band(struct wiphy *wiphy,
1261 enum nl80211_reg_initiator initiator,
1262 struct ieee80211_supported_band *sband)
1263 {
1264 unsigned int i;
1265
1266 if (!sband)
1267 return;
1268
1269 for (i = 0; i < sband->n_channels; i++)
1270 handle_channel(wiphy, initiator, &sband->channels[i]);
1271 }
1272
1273 static bool reg_request_cell_base(struct regulatory_request *request)
1274 {
1275 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1276 return false;
1277 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1278 }
1279
1280 bool reg_last_request_cell_base(void)
1281 {
1282 return reg_request_cell_base(get_last_request());
1283 }
1284
1285 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1286 /* Core specific check */
1287 static enum reg_request_treatment
1288 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1289 {
1290 struct regulatory_request *lr = get_last_request();
1291
1292 if (!reg_num_devs_support_basehint)
1293 return REG_REQ_IGNORE;
1294
1295 if (reg_request_cell_base(lr) &&
1296 !regdom_changes(pending_request->alpha2))
1297 return REG_REQ_ALREADY_SET;
1298
1299 return REG_REQ_OK;
1300 }
1301
1302 /* Device specific check */
1303 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1304 {
1305 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1306 }
1307 #else
1308 static enum reg_request_treatment
1309 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1310 {
1311 return REG_REQ_IGNORE;
1312 }
1313
1314 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1315 {
1316 return true;
1317 }
1318 #endif
1319
1320 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1321 {
1322 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1323 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1324 return true;
1325 return false;
1326 }
1327
1328 static bool ignore_reg_update(struct wiphy *wiphy,
1329 enum nl80211_reg_initiator initiator)
1330 {
1331 struct regulatory_request *lr = get_last_request();
1332
1333 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1334 return true;
1335
1336 if (!lr) {
1337 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1338 reg_initiator_name(initiator));
1339 return true;
1340 }
1341
1342 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1343 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1344 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1345 reg_initiator_name(initiator));
1346 return true;
1347 }
1348
1349 /*
1350 * wiphy->regd will be set once the device has its own
1351 * desired regulatory domain set
1352 */
1353 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1354 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1355 !is_world_regdom(lr->alpha2)) {
1356 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1357 reg_initiator_name(initiator));
1358 return true;
1359 }
1360
1361 if (reg_request_cell_base(lr))
1362 return reg_dev_ignore_cell_hint(wiphy);
1363
1364 return false;
1365 }
1366
1367 static bool reg_is_world_roaming(struct wiphy *wiphy)
1368 {
1369 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1370 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1371 struct regulatory_request *lr = get_last_request();
1372
1373 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1374 return true;
1375
1376 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1377 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1378 return true;
1379
1380 return false;
1381 }
1382
1383 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1384 struct reg_beacon *reg_beacon)
1385 {
1386 struct ieee80211_supported_band *sband;
1387 struct ieee80211_channel *chan;
1388 bool channel_changed = false;
1389 struct ieee80211_channel chan_before;
1390
1391 sband = wiphy->bands[reg_beacon->chan.band];
1392 chan = &sband->channels[chan_idx];
1393
1394 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1395 return;
1396
1397 if (chan->beacon_found)
1398 return;
1399
1400 chan->beacon_found = true;
1401
1402 if (!reg_is_world_roaming(wiphy))
1403 return;
1404
1405 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1406 return;
1407
1408 chan_before.center_freq = chan->center_freq;
1409 chan_before.flags = chan->flags;
1410
1411 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1412 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1413 channel_changed = true;
1414 }
1415
1416 if (channel_changed)
1417 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1418 }
1419
1420 /*
1421 * Called when a scan on a wiphy finds a beacon on
1422 * new channel
1423 */
1424 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1425 struct reg_beacon *reg_beacon)
1426 {
1427 unsigned int i;
1428 struct ieee80211_supported_band *sband;
1429
1430 if (!wiphy->bands[reg_beacon->chan.band])
1431 return;
1432
1433 sband = wiphy->bands[reg_beacon->chan.band];
1434
1435 for (i = 0; i < sband->n_channels; i++)
1436 handle_reg_beacon(wiphy, i, reg_beacon);
1437 }
1438
1439 /*
1440 * Called upon reg changes or a new wiphy is added
1441 */
1442 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1443 {
1444 unsigned int i;
1445 struct ieee80211_supported_band *sband;
1446 struct reg_beacon *reg_beacon;
1447
1448 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1449 if (!wiphy->bands[reg_beacon->chan.band])
1450 continue;
1451 sband = wiphy->bands[reg_beacon->chan.band];
1452 for (i = 0; i < sband->n_channels; i++)
1453 handle_reg_beacon(wiphy, i, reg_beacon);
1454 }
1455 }
1456
1457 /* Reap the advantages of previously found beacons */
1458 static void reg_process_beacons(struct wiphy *wiphy)
1459 {
1460 /*
1461 * Means we are just firing up cfg80211, so no beacons would
1462 * have been processed yet.
1463 */
1464 if (!last_request)
1465 return;
1466 wiphy_update_beacon_reg(wiphy);
1467 }
1468
1469 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1470 {
1471 if (!chan)
1472 return false;
1473 if (chan->flags & IEEE80211_CHAN_DISABLED)
1474 return false;
1475 /* This would happen when regulatory rules disallow HT40 completely */
1476 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1477 return false;
1478 return true;
1479 }
1480
1481 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1482 struct ieee80211_channel *channel)
1483 {
1484 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1485 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1486 unsigned int i;
1487
1488 if (!is_ht40_allowed(channel)) {
1489 channel->flags |= IEEE80211_CHAN_NO_HT40;
1490 return;
1491 }
1492
1493 /*
1494 * We need to ensure the extension channels exist to
1495 * be able to use HT40- or HT40+, this finds them (or not)
1496 */
1497 for (i = 0; i < sband->n_channels; i++) {
1498 struct ieee80211_channel *c = &sband->channels[i];
1499
1500 if (c->center_freq == (channel->center_freq - 20))
1501 channel_before = c;
1502 if (c->center_freq == (channel->center_freq + 20))
1503 channel_after = c;
1504 }
1505
1506 /*
1507 * Please note that this assumes target bandwidth is 20 MHz,
1508 * if that ever changes we also need to change the below logic
1509 * to include that as well.
1510 */
1511 if (!is_ht40_allowed(channel_before))
1512 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1513 else
1514 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1515
1516 if (!is_ht40_allowed(channel_after))
1517 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1518 else
1519 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1520 }
1521
1522 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1523 struct ieee80211_supported_band *sband)
1524 {
1525 unsigned int i;
1526
1527 if (!sband)
1528 return;
1529
1530 for (i = 0; i < sband->n_channels; i++)
1531 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1532 }
1533
1534 static void reg_process_ht_flags(struct wiphy *wiphy)
1535 {
1536 enum nl80211_band band;
1537
1538 if (!wiphy)
1539 return;
1540
1541 for (band = 0; band < NUM_NL80211_BANDS; band++)
1542 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1543 }
1544
1545 static void reg_call_notifier(struct wiphy *wiphy,
1546 struct regulatory_request *request)
1547 {
1548 if (wiphy->reg_notifier)
1549 wiphy->reg_notifier(wiphy, request);
1550 }
1551
1552 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1553 {
1554 struct cfg80211_chan_def chandef;
1555 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1556 enum nl80211_iftype iftype;
1557
1558 wdev_lock(wdev);
1559 iftype = wdev->iftype;
1560
1561 /* make sure the interface is active */
1562 if (!wdev->netdev || !netif_running(wdev->netdev))
1563 goto wdev_inactive_unlock;
1564
1565 switch (iftype) {
1566 case NL80211_IFTYPE_AP:
1567 case NL80211_IFTYPE_P2P_GO:
1568 if (!wdev->beacon_interval)
1569 goto wdev_inactive_unlock;
1570 chandef = wdev->chandef;
1571 break;
1572 case NL80211_IFTYPE_ADHOC:
1573 if (!wdev->ssid_len)
1574 goto wdev_inactive_unlock;
1575 chandef = wdev->chandef;
1576 break;
1577 case NL80211_IFTYPE_STATION:
1578 case NL80211_IFTYPE_P2P_CLIENT:
1579 if (!wdev->current_bss ||
1580 !wdev->current_bss->pub.channel)
1581 goto wdev_inactive_unlock;
1582
1583 if (!rdev->ops->get_channel ||
1584 rdev_get_channel(rdev, wdev, &chandef))
1585 cfg80211_chandef_create(&chandef,
1586 wdev->current_bss->pub.channel,
1587 NL80211_CHAN_NO_HT);
1588 break;
1589 case NL80211_IFTYPE_MONITOR:
1590 case NL80211_IFTYPE_AP_VLAN:
1591 case NL80211_IFTYPE_P2P_DEVICE:
1592 /* no enforcement required */
1593 break;
1594 default:
1595 /* others not implemented for now */
1596 WARN_ON(1);
1597 break;
1598 }
1599
1600 wdev_unlock(wdev);
1601
1602 switch (iftype) {
1603 case NL80211_IFTYPE_AP:
1604 case NL80211_IFTYPE_P2P_GO:
1605 case NL80211_IFTYPE_ADHOC:
1606 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
1607 case NL80211_IFTYPE_STATION:
1608 case NL80211_IFTYPE_P2P_CLIENT:
1609 return cfg80211_chandef_usable(wiphy, &chandef,
1610 IEEE80211_CHAN_DISABLED);
1611 default:
1612 break;
1613 }
1614
1615 return true;
1616
1617 wdev_inactive_unlock:
1618 wdev_unlock(wdev);
1619 return true;
1620 }
1621
1622 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1623 {
1624 struct wireless_dev *wdev;
1625 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1626
1627 ASSERT_RTNL();
1628
1629 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1630 if (!reg_wdev_chan_valid(wiphy, wdev))
1631 cfg80211_leave(rdev, wdev);
1632 }
1633
1634 static void reg_check_chans_work(struct work_struct *work)
1635 {
1636 struct cfg80211_registered_device *rdev;
1637
1638 pr_debug("Verifying active interfaces after reg change\n");
1639 rtnl_lock();
1640
1641 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1642 if (!(rdev->wiphy.regulatory_flags &
1643 REGULATORY_IGNORE_STALE_KICKOFF))
1644 reg_leave_invalid_chans(&rdev->wiphy);
1645
1646 rtnl_unlock();
1647 }
1648
1649 static void reg_check_channels(void)
1650 {
1651 /*
1652 * Give usermode a chance to do something nicer (move to another
1653 * channel, orderly disconnection), before forcing a disconnection.
1654 */
1655 mod_delayed_work(system_power_efficient_wq,
1656 &reg_check_chans,
1657 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1658 }
1659
1660 static void wiphy_update_regulatory(struct wiphy *wiphy,
1661 enum nl80211_reg_initiator initiator)
1662 {
1663 enum nl80211_band band;
1664 struct regulatory_request *lr = get_last_request();
1665
1666 if (ignore_reg_update(wiphy, initiator)) {
1667 /*
1668 * Regulatory updates set by CORE are ignored for custom
1669 * regulatory cards. Let us notify the changes to the driver,
1670 * as some drivers used this to restore its orig_* reg domain.
1671 */
1672 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1673 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1674 reg_call_notifier(wiphy, lr);
1675 return;
1676 }
1677
1678 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1679
1680 for (band = 0; band < NUM_NL80211_BANDS; band++)
1681 handle_band(wiphy, initiator, wiphy->bands[band]);
1682
1683 reg_process_beacons(wiphy);
1684 reg_process_ht_flags(wiphy);
1685 reg_call_notifier(wiphy, lr);
1686 }
1687
1688 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1689 {
1690 struct cfg80211_registered_device *rdev;
1691 struct wiphy *wiphy;
1692
1693 ASSERT_RTNL();
1694
1695 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1696 wiphy = &rdev->wiphy;
1697 wiphy_update_regulatory(wiphy, initiator);
1698 }
1699
1700 reg_check_channels();
1701 }
1702
1703 static void handle_channel_custom(struct wiphy *wiphy,
1704 struct ieee80211_channel *chan,
1705 const struct ieee80211_regdomain *regd)
1706 {
1707 u32 bw_flags = 0;
1708 const struct ieee80211_reg_rule *reg_rule = NULL;
1709 const struct ieee80211_power_rule *power_rule = NULL;
1710 u32 bw;
1711
1712 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
1713 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
1714 regd, bw);
1715 if (!IS_ERR(reg_rule))
1716 break;
1717 }
1718
1719 if (IS_ERR(reg_rule)) {
1720 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1721 chan->center_freq);
1722 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1723 chan->flags |= IEEE80211_CHAN_DISABLED;
1724 } else {
1725 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1726 chan->flags = chan->orig_flags;
1727 }
1728 return;
1729 }
1730
1731 power_rule = &reg_rule->power_rule;
1732 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1733
1734 chan->dfs_state_entered = jiffies;
1735 chan->dfs_state = NL80211_DFS_USABLE;
1736
1737 chan->beacon_found = false;
1738
1739 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1740 chan->flags = chan->orig_flags | bw_flags |
1741 map_regdom_flags(reg_rule->flags);
1742 else
1743 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1744
1745 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1746 chan->max_reg_power = chan->max_power =
1747 (int) MBM_TO_DBM(power_rule->max_eirp);
1748
1749 if (chan->flags & IEEE80211_CHAN_RADAR) {
1750 if (reg_rule->dfs_cac_ms)
1751 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1752 else
1753 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1754 }
1755
1756 chan->max_power = chan->max_reg_power;
1757 }
1758
1759 static void handle_band_custom(struct wiphy *wiphy,
1760 struct ieee80211_supported_band *sband,
1761 const struct ieee80211_regdomain *regd)
1762 {
1763 unsigned int i;
1764
1765 if (!sband)
1766 return;
1767
1768 for (i = 0; i < sband->n_channels; i++)
1769 handle_channel_custom(wiphy, &sband->channels[i], regd);
1770 }
1771
1772 /* Used by drivers prior to wiphy registration */
1773 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1774 const struct ieee80211_regdomain *regd)
1775 {
1776 enum nl80211_band band;
1777 unsigned int bands_set = 0;
1778
1779 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1780 "wiphy should have REGULATORY_CUSTOM_REG\n");
1781 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1782
1783 for (band = 0; band < NUM_NL80211_BANDS; band++) {
1784 if (!wiphy->bands[band])
1785 continue;
1786 handle_band_custom(wiphy, wiphy->bands[band], regd);
1787 bands_set++;
1788 }
1789
1790 /*
1791 * no point in calling this if it won't have any effect
1792 * on your device's supported bands.
1793 */
1794 WARN_ON(!bands_set);
1795 }
1796 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1797
1798 static void reg_set_request_processed(void)
1799 {
1800 bool need_more_processing = false;
1801 struct regulatory_request *lr = get_last_request();
1802
1803 lr->processed = true;
1804
1805 spin_lock(&reg_requests_lock);
1806 if (!list_empty(&reg_requests_list))
1807 need_more_processing = true;
1808 spin_unlock(&reg_requests_lock);
1809
1810 cancel_crda_timeout();
1811
1812 if (need_more_processing)
1813 schedule_work(&reg_work);
1814 }
1815
1816 /**
1817 * reg_process_hint_core - process core regulatory requests
1818 * @pending_request: a pending core regulatory request
1819 *
1820 * The wireless subsystem can use this function to process
1821 * a regulatory request issued by the regulatory core.
1822 */
1823 static enum reg_request_treatment
1824 reg_process_hint_core(struct regulatory_request *core_request)
1825 {
1826 if (reg_query_database(core_request)) {
1827 core_request->intersect = false;
1828 core_request->processed = false;
1829 reg_update_last_request(core_request);
1830 return REG_REQ_OK;
1831 }
1832
1833 return REG_REQ_IGNORE;
1834 }
1835
1836 static enum reg_request_treatment
1837 __reg_process_hint_user(struct regulatory_request *user_request)
1838 {
1839 struct regulatory_request *lr = get_last_request();
1840
1841 if (reg_request_cell_base(user_request))
1842 return reg_ignore_cell_hint(user_request);
1843
1844 if (reg_request_cell_base(lr))
1845 return REG_REQ_IGNORE;
1846
1847 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1848 return REG_REQ_INTERSECT;
1849 /*
1850 * If the user knows better the user should set the regdom
1851 * to their country before the IE is picked up
1852 */
1853 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1854 lr->intersect)
1855 return REG_REQ_IGNORE;
1856 /*
1857 * Process user requests only after previous user/driver/core
1858 * requests have been processed
1859 */
1860 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1861 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1862 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1863 regdom_changes(lr->alpha2))
1864 return REG_REQ_IGNORE;
1865
1866 if (!regdom_changes(user_request->alpha2))
1867 return REG_REQ_ALREADY_SET;
1868
1869 return REG_REQ_OK;
1870 }
1871
1872 /**
1873 * reg_process_hint_user - process user regulatory requests
1874 * @user_request: a pending user regulatory request
1875 *
1876 * The wireless subsystem can use this function to process
1877 * a regulatory request initiated by userspace.
1878 */
1879 static enum reg_request_treatment
1880 reg_process_hint_user(struct regulatory_request *user_request)
1881 {
1882 enum reg_request_treatment treatment;
1883
1884 treatment = __reg_process_hint_user(user_request);
1885 if (treatment == REG_REQ_IGNORE ||
1886 treatment == REG_REQ_ALREADY_SET)
1887 return REG_REQ_IGNORE;
1888
1889 user_request->intersect = treatment == REG_REQ_INTERSECT;
1890 user_request->processed = false;
1891
1892 if (reg_query_database(user_request)) {
1893 reg_update_last_request(user_request);
1894 user_alpha2[0] = user_request->alpha2[0];
1895 user_alpha2[1] = user_request->alpha2[1];
1896 return REG_REQ_OK;
1897 }
1898
1899 return REG_REQ_IGNORE;
1900 }
1901
1902 static enum reg_request_treatment
1903 __reg_process_hint_driver(struct regulatory_request *driver_request)
1904 {
1905 struct regulatory_request *lr = get_last_request();
1906
1907 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1908 if (regdom_changes(driver_request->alpha2))
1909 return REG_REQ_OK;
1910 return REG_REQ_ALREADY_SET;
1911 }
1912
1913 /*
1914 * This would happen if you unplug and plug your card
1915 * back in or if you add a new device for which the previously
1916 * loaded card also agrees on the regulatory domain.
1917 */
1918 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1919 !regdom_changes(driver_request->alpha2))
1920 return REG_REQ_ALREADY_SET;
1921
1922 return REG_REQ_INTERSECT;
1923 }
1924
1925 /**
1926 * reg_process_hint_driver - process driver regulatory requests
1927 * @driver_request: a pending driver regulatory request
1928 *
1929 * The wireless subsystem can use this function to process
1930 * a regulatory request issued by an 802.11 driver.
1931 *
1932 * Returns one of the different reg request treatment values.
1933 */
1934 static enum reg_request_treatment
1935 reg_process_hint_driver(struct wiphy *wiphy,
1936 struct regulatory_request *driver_request)
1937 {
1938 const struct ieee80211_regdomain *regd, *tmp;
1939 enum reg_request_treatment treatment;
1940
1941 treatment = __reg_process_hint_driver(driver_request);
1942
1943 switch (treatment) {
1944 case REG_REQ_OK:
1945 break;
1946 case REG_REQ_IGNORE:
1947 return REG_REQ_IGNORE;
1948 case REG_REQ_INTERSECT:
1949 case REG_REQ_ALREADY_SET:
1950 regd = reg_copy_regd(get_cfg80211_regdom());
1951 if (IS_ERR(regd))
1952 return REG_REQ_IGNORE;
1953
1954 tmp = get_wiphy_regdom(wiphy);
1955 rcu_assign_pointer(wiphy->regd, regd);
1956 rcu_free_regdom(tmp);
1957 }
1958
1959
1960 driver_request->intersect = treatment == REG_REQ_INTERSECT;
1961 driver_request->processed = false;
1962
1963 /*
1964 * Since CRDA will not be called in this case as we already
1965 * have applied the requested regulatory domain before we just
1966 * inform userspace we have processed the request
1967 */
1968 if (treatment == REG_REQ_ALREADY_SET) {
1969 nl80211_send_reg_change_event(driver_request);
1970 reg_update_last_request(driver_request);
1971 reg_set_request_processed();
1972 return REG_REQ_ALREADY_SET;
1973 }
1974
1975 if (reg_query_database(driver_request)) {
1976 reg_update_last_request(driver_request);
1977 return REG_REQ_OK;
1978 }
1979
1980 return REG_REQ_IGNORE;
1981 }
1982
1983 static enum reg_request_treatment
1984 __reg_process_hint_country_ie(struct wiphy *wiphy,
1985 struct regulatory_request *country_ie_request)
1986 {
1987 struct wiphy *last_wiphy = NULL;
1988 struct regulatory_request *lr = get_last_request();
1989
1990 if (reg_request_cell_base(lr)) {
1991 /* Trust a Cell base station over the AP's country IE */
1992 if (regdom_changes(country_ie_request->alpha2))
1993 return REG_REQ_IGNORE;
1994 return REG_REQ_ALREADY_SET;
1995 } else {
1996 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1997 return REG_REQ_IGNORE;
1998 }
1999
2000 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2001 return -EINVAL;
2002
2003 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2004 return REG_REQ_OK;
2005
2006 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2007
2008 if (last_wiphy != wiphy) {
2009 /*
2010 * Two cards with two APs claiming different
2011 * Country IE alpha2s. We could
2012 * intersect them, but that seems unlikely
2013 * to be correct. Reject second one for now.
2014 */
2015 if (regdom_changes(country_ie_request->alpha2))
2016 return REG_REQ_IGNORE;
2017 return REG_REQ_ALREADY_SET;
2018 }
2019
2020 if (regdom_changes(country_ie_request->alpha2))
2021 return REG_REQ_OK;
2022 return REG_REQ_ALREADY_SET;
2023 }
2024
2025 /**
2026 * reg_process_hint_country_ie - process regulatory requests from country IEs
2027 * @country_ie_request: a regulatory request from a country IE
2028 *
2029 * The wireless subsystem can use this function to process
2030 * a regulatory request issued by a country Information Element.
2031 *
2032 * Returns one of the different reg request treatment values.
2033 */
2034 static enum reg_request_treatment
2035 reg_process_hint_country_ie(struct wiphy *wiphy,
2036 struct regulatory_request *country_ie_request)
2037 {
2038 enum reg_request_treatment treatment;
2039
2040 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2041
2042 switch (treatment) {
2043 case REG_REQ_OK:
2044 break;
2045 case REG_REQ_IGNORE:
2046 return REG_REQ_IGNORE;
2047 case REG_REQ_ALREADY_SET:
2048 reg_free_request(country_ie_request);
2049 return REG_REQ_ALREADY_SET;
2050 case REG_REQ_INTERSECT:
2051 /*
2052 * This doesn't happen yet, not sure we
2053 * ever want to support it for this case.
2054 */
2055 WARN_ONCE(1, "Unexpected intersection for country IEs");
2056 return REG_REQ_IGNORE;
2057 }
2058
2059 country_ie_request->intersect = false;
2060 country_ie_request->processed = false;
2061
2062 if (reg_query_database(country_ie_request)) {
2063 reg_update_last_request(country_ie_request);
2064 return REG_REQ_OK;
2065 }
2066
2067 return REG_REQ_IGNORE;
2068 }
2069
2070 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2071 {
2072 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2073 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2074 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2075 bool dfs_domain_same;
2076
2077 rcu_read_lock();
2078
2079 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2080 wiphy1_regd = rcu_dereference(wiphy1->regd);
2081 if (!wiphy1_regd)
2082 wiphy1_regd = cfg80211_regd;
2083
2084 wiphy2_regd = rcu_dereference(wiphy2->regd);
2085 if (!wiphy2_regd)
2086 wiphy2_regd = cfg80211_regd;
2087
2088 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2089
2090 rcu_read_unlock();
2091
2092 return dfs_domain_same;
2093 }
2094
2095 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2096 struct ieee80211_channel *src_chan)
2097 {
2098 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2099 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2100 return;
2101
2102 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2103 src_chan->flags & IEEE80211_CHAN_DISABLED)
2104 return;
2105
2106 if (src_chan->center_freq == dst_chan->center_freq &&
2107 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2108 dst_chan->dfs_state = src_chan->dfs_state;
2109 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2110 }
2111 }
2112
2113 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2114 struct wiphy *src_wiphy)
2115 {
2116 struct ieee80211_supported_band *src_sband, *dst_sband;
2117 struct ieee80211_channel *src_chan, *dst_chan;
2118 int i, j, band;
2119
2120 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2121 return;
2122
2123 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2124 dst_sband = dst_wiphy->bands[band];
2125 src_sband = src_wiphy->bands[band];
2126 if (!dst_sband || !src_sband)
2127 continue;
2128
2129 for (i = 0; i < dst_sband->n_channels; i++) {
2130 dst_chan = &dst_sband->channels[i];
2131 for (j = 0; j < src_sband->n_channels; j++) {
2132 src_chan = &src_sband->channels[j];
2133 reg_copy_dfs_chan_state(dst_chan, src_chan);
2134 }
2135 }
2136 }
2137 }
2138
2139 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2140 {
2141 struct cfg80211_registered_device *rdev;
2142
2143 ASSERT_RTNL();
2144
2145 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2146 if (wiphy == &rdev->wiphy)
2147 continue;
2148 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2149 }
2150 }
2151
2152 /* This processes *all* regulatory hints */
2153 static void reg_process_hint(struct regulatory_request *reg_request)
2154 {
2155 struct wiphy *wiphy = NULL;
2156 enum reg_request_treatment treatment;
2157
2158 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2159 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2160
2161 switch (reg_request->initiator) {
2162 case NL80211_REGDOM_SET_BY_CORE:
2163 treatment = reg_process_hint_core(reg_request);
2164 break;
2165 case NL80211_REGDOM_SET_BY_USER:
2166 treatment = reg_process_hint_user(reg_request);
2167 break;
2168 case NL80211_REGDOM_SET_BY_DRIVER:
2169 if (!wiphy)
2170 goto out_free;
2171 treatment = reg_process_hint_driver(wiphy, reg_request);
2172 break;
2173 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2174 if (!wiphy)
2175 goto out_free;
2176 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2177 break;
2178 default:
2179 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2180 goto out_free;
2181 }
2182
2183 if (treatment == REG_REQ_IGNORE)
2184 goto out_free;
2185
2186 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2187 "unexpected treatment value %d\n", treatment);
2188
2189 /* This is required so that the orig_* parameters are saved.
2190 * NOTE: treatment must be set for any case that reaches here!
2191 */
2192 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2193 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2194 wiphy_update_regulatory(wiphy, reg_request->initiator);
2195 wiphy_all_share_dfs_chan_state(wiphy);
2196 reg_check_channels();
2197 }
2198
2199 return;
2200
2201 out_free:
2202 reg_free_request(reg_request);
2203 }
2204
2205 static bool reg_only_self_managed_wiphys(void)
2206 {
2207 struct cfg80211_registered_device *rdev;
2208 struct wiphy *wiphy;
2209 bool self_managed_found = false;
2210
2211 ASSERT_RTNL();
2212
2213 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2214 wiphy = &rdev->wiphy;
2215 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2216 self_managed_found = true;
2217 else
2218 return false;
2219 }
2220
2221 /* make sure at least one self-managed wiphy exists */
2222 return self_managed_found;
2223 }
2224
2225 /*
2226 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2227 * Regulatory hints come on a first come first serve basis and we
2228 * must process each one atomically.
2229 */
2230 static void reg_process_pending_hints(void)
2231 {
2232 struct regulatory_request *reg_request, *lr;
2233
2234 lr = get_last_request();
2235
2236 /* When last_request->processed becomes true this will be rescheduled */
2237 if (lr && !lr->processed) {
2238 reg_process_hint(lr);
2239 return;
2240 }
2241
2242 spin_lock(&reg_requests_lock);
2243
2244 if (list_empty(&reg_requests_list)) {
2245 spin_unlock(&reg_requests_lock);
2246 return;
2247 }
2248
2249 reg_request = list_first_entry(&reg_requests_list,
2250 struct regulatory_request,
2251 list);
2252 list_del_init(&reg_request->list);
2253
2254 spin_unlock(&reg_requests_lock);
2255
2256 if (reg_only_self_managed_wiphys()) {
2257 reg_free_request(reg_request);
2258 return;
2259 }
2260
2261 reg_process_hint(reg_request);
2262
2263 lr = get_last_request();
2264
2265 spin_lock(&reg_requests_lock);
2266 if (!list_empty(&reg_requests_list) && lr && lr->processed)
2267 schedule_work(&reg_work);
2268 spin_unlock(&reg_requests_lock);
2269 }
2270
2271 /* Processes beacon hints -- this has nothing to do with country IEs */
2272 static void reg_process_pending_beacon_hints(void)
2273 {
2274 struct cfg80211_registered_device *rdev;
2275 struct reg_beacon *pending_beacon, *tmp;
2276
2277 /* This goes through the _pending_ beacon list */
2278 spin_lock_bh(&reg_pending_beacons_lock);
2279
2280 list_for_each_entry_safe(pending_beacon, tmp,
2281 &reg_pending_beacons, list) {
2282 list_del_init(&pending_beacon->list);
2283
2284 /* Applies the beacon hint to current wiphys */
2285 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2286 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2287
2288 /* Remembers the beacon hint for new wiphys or reg changes */
2289 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2290 }
2291
2292 spin_unlock_bh(&reg_pending_beacons_lock);
2293 }
2294
2295 static void reg_process_self_managed_hints(void)
2296 {
2297 struct cfg80211_registered_device *rdev;
2298 struct wiphy *wiphy;
2299 const struct ieee80211_regdomain *tmp;
2300 const struct ieee80211_regdomain *regd;
2301 enum nl80211_band band;
2302 struct regulatory_request request = {};
2303
2304 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2305 wiphy = &rdev->wiphy;
2306
2307 spin_lock(&reg_requests_lock);
2308 regd = rdev->requested_regd;
2309 rdev->requested_regd = NULL;
2310 spin_unlock(&reg_requests_lock);
2311
2312 if (regd == NULL)
2313 continue;
2314
2315 tmp = get_wiphy_regdom(wiphy);
2316 rcu_assign_pointer(wiphy->regd, regd);
2317 rcu_free_regdom(tmp);
2318
2319 for (band = 0; band < NUM_NL80211_BANDS; band++)
2320 handle_band_custom(wiphy, wiphy->bands[band], regd);
2321
2322 reg_process_ht_flags(wiphy);
2323
2324 request.wiphy_idx = get_wiphy_idx(wiphy);
2325 request.alpha2[0] = regd->alpha2[0];
2326 request.alpha2[1] = regd->alpha2[1];
2327 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2328
2329 nl80211_send_wiphy_reg_change_event(&request);
2330 }
2331
2332 reg_check_channels();
2333 }
2334
2335 static void reg_todo(struct work_struct *work)
2336 {
2337 rtnl_lock();
2338 reg_process_pending_hints();
2339 reg_process_pending_beacon_hints();
2340 reg_process_self_managed_hints();
2341 rtnl_unlock();
2342 }
2343
2344 static void queue_regulatory_request(struct regulatory_request *request)
2345 {
2346 request->alpha2[0] = toupper(request->alpha2[0]);
2347 request->alpha2[1] = toupper(request->alpha2[1]);
2348
2349 spin_lock(&reg_requests_lock);
2350 list_add_tail(&request->list, &reg_requests_list);
2351 spin_unlock(&reg_requests_lock);
2352
2353 schedule_work(&reg_work);
2354 }
2355
2356 /*
2357 * Core regulatory hint -- happens during cfg80211_init()
2358 * and when we restore regulatory settings.
2359 */
2360 static int regulatory_hint_core(const char *alpha2)
2361 {
2362 struct regulatory_request *request;
2363
2364 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2365 if (!request)
2366 return -ENOMEM;
2367
2368 request->alpha2[0] = alpha2[0];
2369 request->alpha2[1] = alpha2[1];
2370 request->initiator = NL80211_REGDOM_SET_BY_CORE;
2371
2372 queue_regulatory_request(request);
2373
2374 return 0;
2375 }
2376
2377 /* User hints */
2378 int regulatory_hint_user(const char *alpha2,
2379 enum nl80211_user_reg_hint_type user_reg_hint_type)
2380 {
2381 struct regulatory_request *request;
2382
2383 if (WARN_ON(!alpha2))
2384 return -EINVAL;
2385
2386 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2387 if (!request)
2388 return -ENOMEM;
2389
2390 request->wiphy_idx = WIPHY_IDX_INVALID;
2391 request->alpha2[0] = alpha2[0];
2392 request->alpha2[1] = alpha2[1];
2393 request->initiator = NL80211_REGDOM_SET_BY_USER;
2394 request->user_reg_hint_type = user_reg_hint_type;
2395
2396 /* Allow calling CRDA again */
2397 reset_crda_timeouts();
2398
2399 queue_regulatory_request(request);
2400
2401 return 0;
2402 }
2403
2404 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2405 {
2406 spin_lock(&reg_indoor_lock);
2407
2408 /* It is possible that more than one user space process is trying to
2409 * configure the indoor setting. To handle such cases, clear the indoor
2410 * setting in case that some process does not think that the device
2411 * is operating in an indoor environment. In addition, if a user space
2412 * process indicates that it is controlling the indoor setting, save its
2413 * portid, i.e., make it the owner.
2414 */
2415 reg_is_indoor = is_indoor;
2416 if (reg_is_indoor) {
2417 if (!reg_is_indoor_portid)
2418 reg_is_indoor_portid = portid;
2419 } else {
2420 reg_is_indoor_portid = 0;
2421 }
2422
2423 spin_unlock(&reg_indoor_lock);
2424
2425 if (!is_indoor)
2426 reg_check_channels();
2427
2428 return 0;
2429 }
2430
2431 void regulatory_netlink_notify(u32 portid)
2432 {
2433 spin_lock(&reg_indoor_lock);
2434
2435 if (reg_is_indoor_portid != portid) {
2436 spin_unlock(&reg_indoor_lock);
2437 return;
2438 }
2439
2440 reg_is_indoor = false;
2441 reg_is_indoor_portid = 0;
2442
2443 spin_unlock(&reg_indoor_lock);
2444
2445 reg_check_channels();
2446 }
2447
2448 /* Driver hints */
2449 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2450 {
2451 struct regulatory_request *request;
2452
2453 if (WARN_ON(!alpha2 || !wiphy))
2454 return -EINVAL;
2455
2456 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2457
2458 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2459 if (!request)
2460 return -ENOMEM;
2461
2462 request->wiphy_idx = get_wiphy_idx(wiphy);
2463
2464 request->alpha2[0] = alpha2[0];
2465 request->alpha2[1] = alpha2[1];
2466 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2467
2468 /* Allow calling CRDA again */
2469 reset_crda_timeouts();
2470
2471 queue_regulatory_request(request);
2472
2473 return 0;
2474 }
2475 EXPORT_SYMBOL(regulatory_hint);
2476
2477 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
2478 const u8 *country_ie, u8 country_ie_len)
2479 {
2480 char alpha2[2];
2481 enum environment_cap env = ENVIRON_ANY;
2482 struct regulatory_request *request = NULL, *lr;
2483
2484 /* IE len must be evenly divisible by 2 */
2485 if (country_ie_len & 0x01)
2486 return;
2487
2488 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2489 return;
2490
2491 request = kzalloc(sizeof(*request), GFP_KERNEL);
2492 if (!request)
2493 return;
2494
2495 alpha2[0] = country_ie[0];
2496 alpha2[1] = country_ie[1];
2497
2498 if (country_ie[2] == 'I')
2499 env = ENVIRON_INDOOR;
2500 else if (country_ie[2] == 'O')
2501 env = ENVIRON_OUTDOOR;
2502
2503 rcu_read_lock();
2504 lr = get_last_request();
2505
2506 if (unlikely(!lr))
2507 goto out;
2508
2509 /*
2510 * We will run this only upon a successful connection on cfg80211.
2511 * We leave conflict resolution to the workqueue, where can hold
2512 * the RTNL.
2513 */
2514 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2515 lr->wiphy_idx != WIPHY_IDX_INVALID)
2516 goto out;
2517
2518 request->wiphy_idx = get_wiphy_idx(wiphy);
2519 request->alpha2[0] = alpha2[0];
2520 request->alpha2[1] = alpha2[1];
2521 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2522 request->country_ie_env = env;
2523
2524 /* Allow calling CRDA again */
2525 reset_crda_timeouts();
2526
2527 queue_regulatory_request(request);
2528 request = NULL;
2529 out:
2530 kfree(request);
2531 rcu_read_unlock();
2532 }
2533
2534 static void restore_alpha2(char *alpha2, bool reset_user)
2535 {
2536 /* indicates there is no alpha2 to consider for restoration */
2537 alpha2[0] = '9';
2538 alpha2[1] = '7';
2539
2540 /* The user setting has precedence over the module parameter */
2541 if (is_user_regdom_saved()) {
2542 /* Unless we're asked to ignore it and reset it */
2543 if (reset_user) {
2544 pr_debug("Restoring regulatory settings including user preference\n");
2545 user_alpha2[0] = '9';
2546 user_alpha2[1] = '7';
2547
2548 /*
2549 * If we're ignoring user settings, we still need to
2550 * check the module parameter to ensure we put things
2551 * back as they were for a full restore.
2552 */
2553 if (!is_world_regdom(ieee80211_regdom)) {
2554 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2555 ieee80211_regdom[0], ieee80211_regdom[1]);
2556 alpha2[0] = ieee80211_regdom[0];
2557 alpha2[1] = ieee80211_regdom[1];
2558 }
2559 } else {
2560 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
2561 user_alpha2[0], user_alpha2[1]);
2562 alpha2[0] = user_alpha2[0];
2563 alpha2[1] = user_alpha2[1];
2564 }
2565 } else if (!is_world_regdom(ieee80211_regdom)) {
2566 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2567 ieee80211_regdom[0], ieee80211_regdom[1]);
2568 alpha2[0] = ieee80211_regdom[0];
2569 alpha2[1] = ieee80211_regdom[1];
2570 } else
2571 pr_debug("Restoring regulatory settings\n");
2572 }
2573
2574 static void restore_custom_reg_settings(struct wiphy *wiphy)
2575 {
2576 struct ieee80211_supported_band *sband;
2577 enum nl80211_band band;
2578 struct ieee80211_channel *chan;
2579 int i;
2580
2581 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2582 sband = wiphy->bands[band];
2583 if (!sband)
2584 continue;
2585 for (i = 0; i < sband->n_channels; i++) {
2586 chan = &sband->channels[i];
2587 chan->flags = chan->orig_flags;
2588 chan->max_antenna_gain = chan->orig_mag;
2589 chan->max_power = chan->orig_mpwr;
2590 chan->beacon_found = false;
2591 }
2592 }
2593 }
2594
2595 /*
2596 * Restoring regulatory settings involves ingoring any
2597 * possibly stale country IE information and user regulatory
2598 * settings if so desired, this includes any beacon hints
2599 * learned as we could have traveled outside to another country
2600 * after disconnection. To restore regulatory settings we do
2601 * exactly what we did at bootup:
2602 *
2603 * - send a core regulatory hint
2604 * - send a user regulatory hint if applicable
2605 *
2606 * Device drivers that send a regulatory hint for a specific country
2607 * keep their own regulatory domain on wiphy->regd so that does does
2608 * not need to be remembered.
2609 */
2610 static void restore_regulatory_settings(bool reset_user)
2611 {
2612 char alpha2[2];
2613 char world_alpha2[2];
2614 struct reg_beacon *reg_beacon, *btmp;
2615 LIST_HEAD(tmp_reg_req_list);
2616 struct cfg80211_registered_device *rdev;
2617
2618 ASSERT_RTNL();
2619
2620 /*
2621 * Clear the indoor setting in case that it is not controlled by user
2622 * space, as otherwise there is no guarantee that the device is still
2623 * operating in an indoor environment.
2624 */
2625 spin_lock(&reg_indoor_lock);
2626 if (reg_is_indoor && !reg_is_indoor_portid) {
2627 reg_is_indoor = false;
2628 reg_check_channels();
2629 }
2630 spin_unlock(&reg_indoor_lock);
2631
2632 reset_regdomains(true, &world_regdom);
2633 restore_alpha2(alpha2, reset_user);
2634
2635 /*
2636 * If there's any pending requests we simply
2637 * stash them to a temporary pending queue and
2638 * add then after we've restored regulatory
2639 * settings.
2640 */
2641 spin_lock(&reg_requests_lock);
2642 list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
2643 spin_unlock(&reg_requests_lock);
2644
2645 /* Clear beacon hints */
2646 spin_lock_bh(&reg_pending_beacons_lock);
2647 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2648 list_del(&reg_beacon->list);
2649 kfree(reg_beacon);
2650 }
2651 spin_unlock_bh(&reg_pending_beacons_lock);
2652
2653 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2654 list_del(&reg_beacon->list);
2655 kfree(reg_beacon);
2656 }
2657
2658 /* First restore to the basic regulatory settings */
2659 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2660 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2661
2662 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2663 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2664 continue;
2665 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2666 restore_custom_reg_settings(&rdev->wiphy);
2667 }
2668
2669 regulatory_hint_core(world_alpha2);
2670
2671 /*
2672 * This restores the ieee80211_regdom module parameter
2673 * preference or the last user requested regulatory
2674 * settings, user regulatory settings takes precedence.
2675 */
2676 if (is_an_alpha2(alpha2))
2677 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
2678
2679 spin_lock(&reg_requests_lock);
2680 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2681 spin_unlock(&reg_requests_lock);
2682
2683 pr_debug("Kicking the queue\n");
2684
2685 schedule_work(&reg_work);
2686 }
2687
2688 void regulatory_hint_disconnect(void)
2689 {
2690 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
2691 restore_regulatory_settings(false);
2692 }
2693
2694 static bool freq_is_chan_12_13_14(u16 freq)
2695 {
2696 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
2697 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
2698 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
2699 return true;
2700 return false;
2701 }
2702
2703 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2704 {
2705 struct reg_beacon *pending_beacon;
2706
2707 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2708 if (beacon_chan->center_freq ==
2709 pending_beacon->chan.center_freq)
2710 return true;
2711 return false;
2712 }
2713
2714 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2715 struct ieee80211_channel *beacon_chan,
2716 gfp_t gfp)
2717 {
2718 struct reg_beacon *reg_beacon;
2719 bool processing;
2720
2721 if (beacon_chan->beacon_found ||
2722 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2723 (beacon_chan->band == NL80211_BAND_2GHZ &&
2724 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2725 return 0;
2726
2727 spin_lock_bh(&reg_pending_beacons_lock);
2728 processing = pending_reg_beacon(beacon_chan);
2729 spin_unlock_bh(&reg_pending_beacons_lock);
2730
2731 if (processing)
2732 return 0;
2733
2734 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2735 if (!reg_beacon)
2736 return -ENOMEM;
2737
2738 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2739 beacon_chan->center_freq,
2740 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2741 wiphy_name(wiphy));
2742
2743 memcpy(&reg_beacon->chan, beacon_chan,
2744 sizeof(struct ieee80211_channel));
2745
2746 /*
2747 * Since we can be called from BH or and non-BH context
2748 * we must use spin_lock_bh()
2749 */
2750 spin_lock_bh(&reg_pending_beacons_lock);
2751 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2752 spin_unlock_bh(&reg_pending_beacons_lock);
2753
2754 schedule_work(&reg_work);
2755
2756 return 0;
2757 }
2758
2759 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2760 {
2761 unsigned int i;
2762 const struct ieee80211_reg_rule *reg_rule = NULL;
2763 const struct ieee80211_freq_range *freq_range = NULL;
2764 const struct ieee80211_power_rule *power_rule = NULL;
2765 char bw[32], cac_time[32];
2766
2767 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2768
2769 for (i = 0; i < rd->n_reg_rules; i++) {
2770 reg_rule = &rd->reg_rules[i];
2771 freq_range = &reg_rule->freq_range;
2772 power_rule = &reg_rule->power_rule;
2773
2774 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2775 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2776 freq_range->max_bandwidth_khz,
2777 reg_get_max_bandwidth(rd, reg_rule));
2778 else
2779 snprintf(bw, sizeof(bw), "%d KHz",
2780 freq_range->max_bandwidth_khz);
2781
2782 if (reg_rule->flags & NL80211_RRF_DFS)
2783 scnprintf(cac_time, sizeof(cac_time), "%u s",
2784 reg_rule->dfs_cac_ms/1000);
2785 else
2786 scnprintf(cac_time, sizeof(cac_time), "N/A");
2787
2788
2789 /*
2790 * There may not be documentation for max antenna gain
2791 * in certain regions
2792 */
2793 if (power_rule->max_antenna_gain)
2794 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2795 freq_range->start_freq_khz,
2796 freq_range->end_freq_khz,
2797 bw,
2798 power_rule->max_antenna_gain,
2799 power_rule->max_eirp,
2800 cac_time);
2801 else
2802 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2803 freq_range->start_freq_khz,
2804 freq_range->end_freq_khz,
2805 bw,
2806 power_rule->max_eirp,
2807 cac_time);
2808 }
2809 }
2810
2811 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2812 {
2813 switch (dfs_region) {
2814 case NL80211_DFS_UNSET:
2815 case NL80211_DFS_FCC:
2816 case NL80211_DFS_ETSI:
2817 case NL80211_DFS_JP:
2818 return true;
2819 default:
2820 pr_debug("Ignoring uknown DFS master region: %d\n", dfs_region);
2821 return false;
2822 }
2823 }
2824
2825 static void print_regdomain(const struct ieee80211_regdomain *rd)
2826 {
2827 struct regulatory_request *lr = get_last_request();
2828
2829 if (is_intersected_alpha2(rd->alpha2)) {
2830 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2831 struct cfg80211_registered_device *rdev;
2832 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2833 if (rdev) {
2834 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
2835 rdev->country_ie_alpha2[0],
2836 rdev->country_ie_alpha2[1]);
2837 } else
2838 pr_debug("Current regulatory domain intersected:\n");
2839 } else
2840 pr_debug("Current regulatory domain intersected:\n");
2841 } else if (is_world_regdom(rd->alpha2)) {
2842 pr_debug("World regulatory domain updated:\n");
2843 } else {
2844 if (is_unknown_alpha2(rd->alpha2))
2845 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
2846 else {
2847 if (reg_request_cell_base(lr))
2848 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
2849 rd->alpha2[0], rd->alpha2[1]);
2850 else
2851 pr_debug("Regulatory domain changed to country: %c%c\n",
2852 rd->alpha2[0], rd->alpha2[1]);
2853 }
2854 }
2855
2856 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2857 print_rd_rules(rd);
2858 }
2859
2860 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2861 {
2862 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2863 print_rd_rules(rd);
2864 }
2865
2866 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2867 {
2868 if (!is_world_regdom(rd->alpha2))
2869 return -EINVAL;
2870 update_world_regdomain(rd);
2871 return 0;
2872 }
2873
2874 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2875 struct regulatory_request *user_request)
2876 {
2877 const struct ieee80211_regdomain *intersected_rd = NULL;
2878
2879 if (!regdom_changes(rd->alpha2))
2880 return -EALREADY;
2881
2882 if (!is_valid_rd(rd)) {
2883 pr_err("Invalid regulatory domain detected: %c%c\n",
2884 rd->alpha2[0], rd->alpha2[1]);
2885 print_regdomain_info(rd);
2886 return -EINVAL;
2887 }
2888
2889 if (!user_request->intersect) {
2890 reset_regdomains(false, rd);
2891 return 0;
2892 }
2893
2894 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2895 if (!intersected_rd)
2896 return -EINVAL;
2897
2898 kfree(rd);
2899 rd = NULL;
2900 reset_regdomains(false, intersected_rd);
2901
2902 return 0;
2903 }
2904
2905 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2906 struct regulatory_request *driver_request)
2907 {
2908 const struct ieee80211_regdomain *regd;
2909 const struct ieee80211_regdomain *intersected_rd = NULL;
2910 const struct ieee80211_regdomain *tmp;
2911 struct wiphy *request_wiphy;
2912
2913 if (is_world_regdom(rd->alpha2))
2914 return -EINVAL;
2915
2916 if (!regdom_changes(rd->alpha2))
2917 return -EALREADY;
2918
2919 if (!is_valid_rd(rd)) {
2920 pr_err("Invalid regulatory domain detected: %c%c\n",
2921 rd->alpha2[0], rd->alpha2[1]);
2922 print_regdomain_info(rd);
2923 return -EINVAL;
2924 }
2925
2926 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2927 if (!request_wiphy)
2928 return -ENODEV;
2929
2930 if (!driver_request->intersect) {
2931 if (request_wiphy->regd)
2932 return -EALREADY;
2933
2934 regd = reg_copy_regd(rd);
2935 if (IS_ERR(regd))
2936 return PTR_ERR(regd);
2937
2938 rcu_assign_pointer(request_wiphy->regd, regd);
2939 reset_regdomains(false, rd);
2940 return 0;
2941 }
2942
2943 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2944 if (!intersected_rd)
2945 return -EINVAL;
2946
2947 /*
2948 * We can trash what CRDA provided now.
2949 * However if a driver requested this specific regulatory
2950 * domain we keep it for its private use
2951 */
2952 tmp = get_wiphy_regdom(request_wiphy);
2953 rcu_assign_pointer(request_wiphy->regd, rd);
2954 rcu_free_regdom(tmp);
2955
2956 rd = NULL;
2957
2958 reset_regdomains(false, intersected_rd);
2959
2960 return 0;
2961 }
2962
2963 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2964 struct regulatory_request *country_ie_request)
2965 {
2966 struct wiphy *request_wiphy;
2967
2968 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2969 !is_unknown_alpha2(rd->alpha2))
2970 return -EINVAL;
2971
2972 /*
2973 * Lets only bother proceeding on the same alpha2 if the current
2974 * rd is non static (it means CRDA was present and was used last)
2975 * and the pending request came in from a country IE
2976 */
2977
2978 if (!is_valid_rd(rd)) {
2979 pr_err("Invalid regulatory domain detected: %c%c\n",
2980 rd->alpha2[0], rd->alpha2[1]);
2981 print_regdomain_info(rd);
2982 return -EINVAL;
2983 }
2984
2985 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2986 if (!request_wiphy)
2987 return -ENODEV;
2988
2989 if (country_ie_request->intersect)
2990 return -EINVAL;
2991
2992 reset_regdomains(false, rd);
2993 return 0;
2994 }
2995
2996 /*
2997 * Use this call to set the current regulatory domain. Conflicts with
2998 * multiple drivers can be ironed out later. Caller must've already
2999 * kmalloc'd the rd structure.
3000 */
3001 int set_regdom(const struct ieee80211_regdomain *rd,
3002 enum ieee80211_regd_source regd_src)
3003 {
3004 struct regulatory_request *lr;
3005 bool user_reset = false;
3006 int r;
3007
3008 if (!reg_is_valid_request(rd->alpha2)) {
3009 kfree(rd);
3010 return -EINVAL;
3011 }
3012
3013 if (regd_src == REGD_SOURCE_CRDA)
3014 reset_crda_timeouts();
3015
3016 lr = get_last_request();
3017
3018 /* Note that this doesn't update the wiphys, this is done below */
3019 switch (lr->initiator) {
3020 case NL80211_REGDOM_SET_BY_CORE:
3021 r = reg_set_rd_core(rd);
3022 break;
3023 case NL80211_REGDOM_SET_BY_USER:
3024 r = reg_set_rd_user(rd, lr);
3025 user_reset = true;
3026 break;
3027 case NL80211_REGDOM_SET_BY_DRIVER:
3028 r = reg_set_rd_driver(rd, lr);
3029 break;
3030 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3031 r = reg_set_rd_country_ie(rd, lr);
3032 break;
3033 default:
3034 WARN(1, "invalid initiator %d\n", lr->initiator);
3035 kfree(rd);
3036 return -EINVAL;
3037 }
3038
3039 if (r) {
3040 switch (r) {
3041 case -EALREADY:
3042 reg_set_request_processed();
3043 break;
3044 default:
3045 /* Back to world regulatory in case of errors */
3046 restore_regulatory_settings(user_reset);
3047 }
3048
3049 kfree(rd);
3050 return r;
3051 }
3052
3053 /* This would make this whole thing pointless */
3054 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3055 return -EINVAL;
3056
3057 /* update all wiphys now with the new established regulatory domain */
3058 update_all_wiphy_regulatory(lr->initiator);
3059
3060 print_regdomain(get_cfg80211_regdom());
3061
3062 nl80211_send_reg_change_event(lr);
3063
3064 reg_set_request_processed();
3065
3066 return 0;
3067 }
3068
3069 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3070 struct ieee80211_regdomain *rd)
3071 {
3072 const struct ieee80211_regdomain *regd;
3073 const struct ieee80211_regdomain *prev_regd;
3074 struct cfg80211_registered_device *rdev;
3075
3076 if (WARN_ON(!wiphy || !rd))
3077 return -EINVAL;
3078
3079 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3080 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3081 return -EPERM;
3082
3083 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3084 print_regdomain_info(rd);
3085 return -EINVAL;
3086 }
3087
3088 regd = reg_copy_regd(rd);
3089 if (IS_ERR(regd))
3090 return PTR_ERR(regd);
3091
3092 rdev = wiphy_to_rdev(wiphy);
3093
3094 spin_lock(&reg_requests_lock);
3095 prev_regd = rdev->requested_regd;
3096 rdev->requested_regd = regd;
3097 spin_unlock(&reg_requests_lock);
3098
3099 kfree(prev_regd);
3100 return 0;
3101 }
3102
3103 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3104 struct ieee80211_regdomain *rd)
3105 {
3106 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3107
3108 if (ret)
3109 return ret;
3110
3111 schedule_work(&reg_work);
3112 return 0;
3113 }
3114 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3115
3116 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3117 struct ieee80211_regdomain *rd)
3118 {
3119 int ret;
3120
3121 ASSERT_RTNL();
3122
3123 ret = __regulatory_set_wiphy_regd(wiphy, rd);
3124 if (ret)
3125 return ret;
3126
3127 /* process the request immediately */
3128 reg_process_self_managed_hints();
3129 return 0;
3130 }
3131 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3132
3133 void wiphy_regulatory_register(struct wiphy *wiphy)
3134 {
3135 struct regulatory_request *lr;
3136
3137 /* self-managed devices ignore external hints */
3138 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3139 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3140 REGULATORY_COUNTRY_IE_IGNORE;
3141
3142 if (!reg_dev_ignore_cell_hint(wiphy))
3143 reg_num_devs_support_basehint++;
3144
3145 lr = get_last_request();
3146 wiphy_update_regulatory(wiphy, lr->initiator);
3147 wiphy_all_share_dfs_chan_state(wiphy);
3148 }
3149
3150 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3151 {
3152 struct wiphy *request_wiphy = NULL;
3153 struct regulatory_request *lr;
3154
3155 lr = get_last_request();
3156
3157 if (!reg_dev_ignore_cell_hint(wiphy))
3158 reg_num_devs_support_basehint--;
3159
3160 rcu_free_regdom(get_wiphy_regdom(wiphy));
3161 RCU_INIT_POINTER(wiphy->regd, NULL);
3162
3163 if (lr)
3164 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3165
3166 if (!request_wiphy || request_wiphy != wiphy)
3167 return;
3168
3169 lr->wiphy_idx = WIPHY_IDX_INVALID;
3170 lr->country_ie_env = ENVIRON_ANY;
3171 }
3172
3173 /*
3174 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3175 * UNII band definitions
3176 */
3177 int cfg80211_get_unii(int freq)
3178 {
3179 /* UNII-1 */
3180 if (freq >= 5150 && freq <= 5250)
3181 return 0;
3182
3183 /* UNII-2A */
3184 if (freq > 5250 && freq <= 5350)
3185 return 1;
3186
3187 /* UNII-2B */
3188 if (freq > 5350 && freq <= 5470)
3189 return 2;
3190
3191 /* UNII-2C */
3192 if (freq > 5470 && freq <= 5725)
3193 return 3;
3194
3195 /* UNII-3 */
3196 if (freq > 5725 && freq <= 5825)
3197 return 4;
3198
3199 return -EINVAL;
3200 }
3201
3202 bool regulatory_indoor_allowed(void)
3203 {
3204 return reg_is_indoor;
3205 }
3206
3207 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3208 {
3209 const struct ieee80211_regdomain *regd = NULL;
3210 const struct ieee80211_regdomain *wiphy_regd = NULL;
3211 bool pre_cac_allowed = false;
3212
3213 rcu_read_lock();
3214
3215 regd = rcu_dereference(cfg80211_regdomain);
3216 wiphy_regd = rcu_dereference(wiphy->regd);
3217 if (!wiphy_regd) {
3218 if (regd->dfs_region == NL80211_DFS_ETSI)
3219 pre_cac_allowed = true;
3220
3221 rcu_read_unlock();
3222
3223 return pre_cac_allowed;
3224 }
3225
3226 if (regd->dfs_region == wiphy_regd->dfs_region &&
3227 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3228 pre_cac_allowed = true;
3229
3230 rcu_read_unlock();
3231
3232 return pre_cac_allowed;
3233 }
3234
3235 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3236 struct cfg80211_chan_def *chandef,
3237 enum nl80211_dfs_state dfs_state,
3238 enum nl80211_radar_event event)
3239 {
3240 struct cfg80211_registered_device *rdev;
3241
3242 ASSERT_RTNL();
3243
3244 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3245 return;
3246
3247 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3248 if (wiphy == &rdev->wiphy)
3249 continue;
3250
3251 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3252 continue;
3253
3254 if (!ieee80211_get_channel(&rdev->wiphy,
3255 chandef->chan->center_freq))
3256 continue;
3257
3258 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3259
3260 if (event == NL80211_RADAR_DETECTED ||
3261 event == NL80211_RADAR_CAC_FINISHED)
3262 cfg80211_sched_dfs_chan_update(rdev);
3263
3264 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3265 }
3266 }
3267
3268 int __init regulatory_init(void)
3269 {
3270 int err = 0;
3271
3272 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3273 if (IS_ERR(reg_pdev))
3274 return PTR_ERR(reg_pdev);
3275
3276 spin_lock_init(&reg_requests_lock);
3277 spin_lock_init(&reg_pending_beacons_lock);
3278 spin_lock_init(&reg_indoor_lock);
3279
3280 reg_regdb_size_check();
3281
3282 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3283
3284 user_alpha2[0] = '9';
3285 user_alpha2[1] = '7';
3286
3287 /* We always try to get an update for the static regdomain */
3288 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3289 if (err) {
3290 if (err == -ENOMEM) {
3291 platform_device_unregister(reg_pdev);
3292 return err;
3293 }
3294 /*
3295 * N.B. kobject_uevent_env() can fail mainly for when we're out
3296 * memory which is handled and propagated appropriately above
3297 * but it can also fail during a netlink_broadcast() or during
3298 * early boot for call_usermodehelper(). For now treat these
3299 * errors as non-fatal.
3300 */
3301 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3302 }
3303
3304 /*
3305 * Finally, if the user set the module parameter treat it
3306 * as a user hint.
3307 */
3308 if (!is_world_regdom(ieee80211_regdom))
3309 regulatory_hint_user(ieee80211_regdom,
3310 NL80211_USER_REG_HINT_USER);
3311
3312 return 0;
3313 }
3314
3315 void regulatory_exit(void)
3316 {
3317 struct regulatory_request *reg_request, *tmp;
3318 struct reg_beacon *reg_beacon, *btmp;
3319
3320 cancel_work_sync(&reg_work);
3321 cancel_crda_timeout_sync();
3322 cancel_delayed_work_sync(&reg_check_chans);
3323
3324 /* Lock to suppress warnings */
3325 rtnl_lock();
3326 reset_regdomains(true, NULL);
3327 rtnl_unlock();
3328
3329 dev_set_uevent_suppress(&reg_pdev->dev, true);
3330
3331 platform_device_unregister(reg_pdev);
3332
3333 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3334 list_del(&reg_beacon->list);
3335 kfree(reg_beacon);
3336 }
3337
3338 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3339 list_del(&reg_beacon->list);
3340 kfree(reg_beacon);
3341 }
3342
3343 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3344 list_del(&reg_request->list);
3345 kfree(reg_request);
3346 }
3347 }