]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/wireless/reg.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wireless
[mirror_ubuntu-artful-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 /**
13 * DOC: Wireless regulatory infrastructure
14 *
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
19 *
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
23 *
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
29 *
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
33 *
34 */
35
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37
38 #include <linux/kernel.h>
39 #include <linux/export.h>
40 #include <linux/slab.h>
41 #include <linux/list.h>
42 #include <linux/random.h>
43 #include <linux/ctype.h>
44 #include <linux/nl80211.h>
45 #include <linux/platform_device.h>
46 #include <linux/moduleparam.h>
47 #include <net/cfg80211.h>
48 #include "core.h"
49 #include "reg.h"
50 #include "regdb.h"
51 #include "nl80211.h"
52
53 #ifdef CONFIG_CFG80211_REG_DEBUG
54 #define REG_DBG_PRINT(format, args...) \
55 printk(KERN_DEBUG pr_fmt(format), ##args)
56 #else
57 #define REG_DBG_PRINT(args...)
58 #endif
59
60 static struct regulatory_request core_request_world = {
61 .initiator = NL80211_REGDOM_SET_BY_CORE,
62 .alpha2[0] = '0',
63 .alpha2[1] = '0',
64 .intersect = false,
65 .processed = true,
66 .country_ie_env = ENVIRON_ANY,
67 };
68
69 /* Receipt of information from last regulatory request */
70 static struct regulatory_request *last_request = &core_request_world;
71
72 /* To trigger userspace events */
73 static struct platform_device *reg_pdev;
74
75 static struct device_type reg_device_type = {
76 .uevent = reg_device_uevent,
77 };
78
79 /*
80 * Central wireless core regulatory domains, we only need two,
81 * the current one and a world regulatory domain in case we have no
82 * information to give us an alpha2
83 */
84 const struct ieee80211_regdomain *cfg80211_regdomain;
85
86 /*
87 * Protects static reg.c components:
88 * - cfg80211_world_regdom
89 * - cfg80211_regdom
90 * - last_request
91 */
92 static DEFINE_MUTEX(reg_mutex);
93
94 static inline void assert_reg_lock(void)
95 {
96 lockdep_assert_held(&reg_mutex);
97 }
98
99 /* Used to queue up regulatory hints */
100 static LIST_HEAD(reg_requests_list);
101 static spinlock_t reg_requests_lock;
102
103 /* Used to queue up beacon hints for review */
104 static LIST_HEAD(reg_pending_beacons);
105 static spinlock_t reg_pending_beacons_lock;
106
107 /* Used to keep track of processed beacon hints */
108 static LIST_HEAD(reg_beacon_list);
109
110 struct reg_beacon {
111 struct list_head list;
112 struct ieee80211_channel chan;
113 };
114
115 static void reg_todo(struct work_struct *work);
116 static DECLARE_WORK(reg_work, reg_todo);
117
118 static void reg_timeout_work(struct work_struct *work);
119 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
120
121 /* We keep a static world regulatory domain in case of the absence of CRDA */
122 static const struct ieee80211_regdomain world_regdom = {
123 .n_reg_rules = 5,
124 .alpha2 = "00",
125 .reg_rules = {
126 /* IEEE 802.11b/g, channels 1..11 */
127 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
128 /* IEEE 802.11b/g, channels 12..13. No HT40
129 * channel fits here. */
130 REG_RULE(2467-10, 2472+10, 20, 6, 20,
131 NL80211_RRF_PASSIVE_SCAN |
132 NL80211_RRF_NO_IBSS),
133 /* IEEE 802.11 channel 14 - Only JP enables
134 * this and for 802.11b only */
135 REG_RULE(2484-10, 2484+10, 20, 6, 20,
136 NL80211_RRF_PASSIVE_SCAN |
137 NL80211_RRF_NO_IBSS |
138 NL80211_RRF_NO_OFDM),
139 /* IEEE 802.11a, channel 36..48 */
140 REG_RULE(5180-10, 5240+10, 40, 6, 20,
141 NL80211_RRF_PASSIVE_SCAN |
142 NL80211_RRF_NO_IBSS),
143
144 /* NB: 5260 MHz - 5700 MHz requies DFS */
145
146 /* IEEE 802.11a, channel 149..165 */
147 REG_RULE(5745-10, 5825+10, 40, 6, 20,
148 NL80211_RRF_PASSIVE_SCAN |
149 NL80211_RRF_NO_IBSS),
150 }
151 };
152
153 static const struct ieee80211_regdomain *cfg80211_world_regdom =
154 &world_regdom;
155
156 static char *ieee80211_regdom = "00";
157 static char user_alpha2[2];
158
159 module_param(ieee80211_regdom, charp, 0444);
160 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
161
162 static void reset_regdomains(bool full_reset)
163 {
164 /* avoid freeing static information or freeing something twice */
165 if (cfg80211_regdomain == cfg80211_world_regdom)
166 cfg80211_regdomain = NULL;
167 if (cfg80211_world_regdom == &world_regdom)
168 cfg80211_world_regdom = NULL;
169 if (cfg80211_regdomain == &world_regdom)
170 cfg80211_regdomain = NULL;
171
172 kfree(cfg80211_regdomain);
173 kfree(cfg80211_world_regdom);
174
175 cfg80211_world_regdom = &world_regdom;
176 cfg80211_regdomain = NULL;
177
178 if (!full_reset)
179 return;
180
181 if (last_request != &core_request_world)
182 kfree(last_request);
183 last_request = &core_request_world;
184 }
185
186 /*
187 * Dynamic world regulatory domain requested by the wireless
188 * core upon initialization
189 */
190 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
191 {
192 BUG_ON(!last_request);
193
194 reset_regdomains(false);
195
196 cfg80211_world_regdom = rd;
197 cfg80211_regdomain = rd;
198 }
199
200 bool is_world_regdom(const char *alpha2)
201 {
202 if (!alpha2)
203 return false;
204 if (alpha2[0] == '0' && alpha2[1] == '0')
205 return true;
206 return false;
207 }
208
209 static bool is_alpha2_set(const char *alpha2)
210 {
211 if (!alpha2)
212 return false;
213 if (alpha2[0] != 0 && alpha2[1] != 0)
214 return true;
215 return false;
216 }
217
218 static bool is_unknown_alpha2(const char *alpha2)
219 {
220 if (!alpha2)
221 return false;
222 /*
223 * Special case where regulatory domain was built by driver
224 * but a specific alpha2 cannot be determined
225 */
226 if (alpha2[0] == '9' && alpha2[1] == '9')
227 return true;
228 return false;
229 }
230
231 static bool is_intersected_alpha2(const char *alpha2)
232 {
233 if (!alpha2)
234 return false;
235 /*
236 * Special case where regulatory domain is the
237 * result of an intersection between two regulatory domain
238 * structures
239 */
240 if (alpha2[0] == '9' && alpha2[1] == '8')
241 return true;
242 return false;
243 }
244
245 static bool is_an_alpha2(const char *alpha2)
246 {
247 if (!alpha2)
248 return false;
249 if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
250 return true;
251 return false;
252 }
253
254 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
255 {
256 if (!alpha2_x || !alpha2_y)
257 return false;
258 if (alpha2_x[0] == alpha2_y[0] &&
259 alpha2_x[1] == alpha2_y[1])
260 return true;
261 return false;
262 }
263
264 static bool regdom_changes(const char *alpha2)
265 {
266 assert_cfg80211_lock();
267
268 if (!cfg80211_regdomain)
269 return true;
270 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
271 return false;
272 return true;
273 }
274
275 /*
276 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
277 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
278 * has ever been issued.
279 */
280 static bool is_user_regdom_saved(void)
281 {
282 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
283 return false;
284
285 /* This would indicate a mistake on the design */
286 if (WARN((!is_world_regdom(user_alpha2) &&
287 !is_an_alpha2(user_alpha2)),
288 "Unexpected user alpha2: %c%c\n",
289 user_alpha2[0],
290 user_alpha2[1]))
291 return false;
292
293 return true;
294 }
295
296 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
297 const struct ieee80211_regdomain *src_regd)
298 {
299 struct ieee80211_regdomain *regd;
300 int size_of_regd = 0;
301 unsigned int i;
302
303 size_of_regd = sizeof(struct ieee80211_regdomain) +
304 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
305
306 regd = kzalloc(size_of_regd, GFP_KERNEL);
307 if (!regd)
308 return -ENOMEM;
309
310 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
311
312 for (i = 0; i < src_regd->n_reg_rules; i++)
313 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
314 sizeof(struct ieee80211_reg_rule));
315
316 *dst_regd = regd;
317 return 0;
318 }
319
320 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
321 struct reg_regdb_search_request {
322 char alpha2[2];
323 struct list_head list;
324 };
325
326 static LIST_HEAD(reg_regdb_search_list);
327 static DEFINE_MUTEX(reg_regdb_search_mutex);
328
329 static void reg_regdb_search(struct work_struct *work)
330 {
331 struct reg_regdb_search_request *request;
332 const struct ieee80211_regdomain *curdom, *regdom;
333 int i, r;
334
335 mutex_lock(&reg_regdb_search_mutex);
336 while (!list_empty(&reg_regdb_search_list)) {
337 request = list_first_entry(&reg_regdb_search_list,
338 struct reg_regdb_search_request,
339 list);
340 list_del(&request->list);
341
342 for (i=0; i<reg_regdb_size; i++) {
343 curdom = reg_regdb[i];
344
345 if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
346 r = reg_copy_regd(&regdom, curdom);
347 if (r)
348 break;
349 mutex_lock(&cfg80211_mutex);
350 set_regdom(regdom);
351 mutex_unlock(&cfg80211_mutex);
352 break;
353 }
354 }
355
356 kfree(request);
357 }
358 mutex_unlock(&reg_regdb_search_mutex);
359 }
360
361 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
362
363 static void reg_regdb_query(const char *alpha2)
364 {
365 struct reg_regdb_search_request *request;
366
367 if (!alpha2)
368 return;
369
370 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
371 if (!request)
372 return;
373
374 memcpy(request->alpha2, alpha2, 2);
375
376 mutex_lock(&reg_regdb_search_mutex);
377 list_add_tail(&request->list, &reg_regdb_search_list);
378 mutex_unlock(&reg_regdb_search_mutex);
379
380 schedule_work(&reg_regdb_work);
381 }
382 #else
383 static inline void reg_regdb_query(const char *alpha2) {}
384 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
385
386 /*
387 * This lets us keep regulatory code which is updated on a regulatory
388 * basis in userspace. Country information is filled in by
389 * reg_device_uevent
390 */
391 static int call_crda(const char *alpha2)
392 {
393 if (!is_world_regdom((char *) alpha2))
394 pr_info("Calling CRDA for country: %c%c\n",
395 alpha2[0], alpha2[1]);
396 else
397 pr_info("Calling CRDA to update world regulatory domain\n");
398
399 /* query internal regulatory database (if it exists) */
400 reg_regdb_query(alpha2);
401
402 return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
403 }
404
405 /* Used by nl80211 before kmalloc'ing our regulatory domain */
406 bool reg_is_valid_request(const char *alpha2)
407 {
408 assert_cfg80211_lock();
409
410 if (!last_request)
411 return false;
412
413 return alpha2_equal(last_request->alpha2, alpha2);
414 }
415
416 /* Sanity check on a regulatory rule */
417 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
418 {
419 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
420 u32 freq_diff;
421
422 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
423 return false;
424
425 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
426 return false;
427
428 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
429
430 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
431 freq_range->max_bandwidth_khz > freq_diff)
432 return false;
433
434 return true;
435 }
436
437 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
438 {
439 const struct ieee80211_reg_rule *reg_rule = NULL;
440 unsigned int i;
441
442 if (!rd->n_reg_rules)
443 return false;
444
445 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
446 return false;
447
448 for (i = 0; i < rd->n_reg_rules; i++) {
449 reg_rule = &rd->reg_rules[i];
450 if (!is_valid_reg_rule(reg_rule))
451 return false;
452 }
453
454 return true;
455 }
456
457 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
458 u32 center_freq_khz,
459 u32 bw_khz)
460 {
461 u32 start_freq_khz, end_freq_khz;
462
463 start_freq_khz = center_freq_khz - (bw_khz/2);
464 end_freq_khz = center_freq_khz + (bw_khz/2);
465
466 if (start_freq_khz >= freq_range->start_freq_khz &&
467 end_freq_khz <= freq_range->end_freq_khz)
468 return true;
469
470 return false;
471 }
472
473 /**
474 * freq_in_rule_band - tells us if a frequency is in a frequency band
475 * @freq_range: frequency rule we want to query
476 * @freq_khz: frequency we are inquiring about
477 *
478 * This lets us know if a specific frequency rule is or is not relevant to
479 * a specific frequency's band. Bands are device specific and artificial
480 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
481 * safe for now to assume that a frequency rule should not be part of a
482 * frequency's band if the start freq or end freq are off by more than 2 GHz.
483 * This resolution can be lowered and should be considered as we add
484 * regulatory rule support for other "bands".
485 **/
486 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
487 u32 freq_khz)
488 {
489 #define ONE_GHZ_IN_KHZ 1000000
490 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
491 return true;
492 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
493 return true;
494 return false;
495 #undef ONE_GHZ_IN_KHZ
496 }
497
498 /*
499 * Helper for regdom_intersect(), this does the real
500 * mathematical intersection fun
501 */
502 static int reg_rules_intersect(
503 const struct ieee80211_reg_rule *rule1,
504 const struct ieee80211_reg_rule *rule2,
505 struct ieee80211_reg_rule *intersected_rule)
506 {
507 const struct ieee80211_freq_range *freq_range1, *freq_range2;
508 struct ieee80211_freq_range *freq_range;
509 const struct ieee80211_power_rule *power_rule1, *power_rule2;
510 struct ieee80211_power_rule *power_rule;
511 u32 freq_diff;
512
513 freq_range1 = &rule1->freq_range;
514 freq_range2 = &rule2->freq_range;
515 freq_range = &intersected_rule->freq_range;
516
517 power_rule1 = &rule1->power_rule;
518 power_rule2 = &rule2->power_rule;
519 power_rule = &intersected_rule->power_rule;
520
521 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
522 freq_range2->start_freq_khz);
523 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
524 freq_range2->end_freq_khz);
525 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
526 freq_range2->max_bandwidth_khz);
527
528 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
529 if (freq_range->max_bandwidth_khz > freq_diff)
530 freq_range->max_bandwidth_khz = freq_diff;
531
532 power_rule->max_eirp = min(power_rule1->max_eirp,
533 power_rule2->max_eirp);
534 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
535 power_rule2->max_antenna_gain);
536
537 intersected_rule->flags = (rule1->flags | rule2->flags);
538
539 if (!is_valid_reg_rule(intersected_rule))
540 return -EINVAL;
541
542 return 0;
543 }
544
545 /**
546 * regdom_intersect - do the intersection between two regulatory domains
547 * @rd1: first regulatory domain
548 * @rd2: second regulatory domain
549 *
550 * Use this function to get the intersection between two regulatory domains.
551 * Once completed we will mark the alpha2 for the rd as intersected, "98",
552 * as no one single alpha2 can represent this regulatory domain.
553 *
554 * Returns a pointer to the regulatory domain structure which will hold the
555 * resulting intersection of rules between rd1 and rd2. We will
556 * kzalloc() this structure for you.
557 */
558 static struct ieee80211_regdomain *regdom_intersect(
559 const struct ieee80211_regdomain *rd1,
560 const struct ieee80211_regdomain *rd2)
561 {
562 int r, size_of_regd;
563 unsigned int x, y;
564 unsigned int num_rules = 0, rule_idx = 0;
565 const struct ieee80211_reg_rule *rule1, *rule2;
566 struct ieee80211_reg_rule *intersected_rule;
567 struct ieee80211_regdomain *rd;
568 /* This is just a dummy holder to help us count */
569 struct ieee80211_reg_rule irule;
570
571 /* Uses the stack temporarily for counter arithmetic */
572 intersected_rule = &irule;
573
574 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
575
576 if (!rd1 || !rd2)
577 return NULL;
578
579 /*
580 * First we get a count of the rules we'll need, then we actually
581 * build them. This is to so we can malloc() and free() a
582 * regdomain once. The reason we use reg_rules_intersect() here
583 * is it will return -EINVAL if the rule computed makes no sense.
584 * All rules that do check out OK are valid.
585 */
586
587 for (x = 0; x < rd1->n_reg_rules; x++) {
588 rule1 = &rd1->reg_rules[x];
589 for (y = 0; y < rd2->n_reg_rules; y++) {
590 rule2 = &rd2->reg_rules[y];
591 if (!reg_rules_intersect(rule1, rule2,
592 intersected_rule))
593 num_rules++;
594 memset(intersected_rule, 0,
595 sizeof(struct ieee80211_reg_rule));
596 }
597 }
598
599 if (!num_rules)
600 return NULL;
601
602 size_of_regd = sizeof(struct ieee80211_regdomain) +
603 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
604
605 rd = kzalloc(size_of_regd, GFP_KERNEL);
606 if (!rd)
607 return NULL;
608
609 for (x = 0; x < rd1->n_reg_rules; x++) {
610 rule1 = &rd1->reg_rules[x];
611 for (y = 0; y < rd2->n_reg_rules; y++) {
612 rule2 = &rd2->reg_rules[y];
613 /*
614 * This time around instead of using the stack lets
615 * write to the target rule directly saving ourselves
616 * a memcpy()
617 */
618 intersected_rule = &rd->reg_rules[rule_idx];
619 r = reg_rules_intersect(rule1, rule2,
620 intersected_rule);
621 /*
622 * No need to memset here the intersected rule here as
623 * we're not using the stack anymore
624 */
625 if (r)
626 continue;
627 rule_idx++;
628 }
629 }
630
631 if (rule_idx != num_rules) {
632 kfree(rd);
633 return NULL;
634 }
635
636 rd->n_reg_rules = num_rules;
637 rd->alpha2[0] = '9';
638 rd->alpha2[1] = '8';
639
640 return rd;
641 }
642
643 /*
644 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
645 * want to just have the channel structure use these
646 */
647 static u32 map_regdom_flags(u32 rd_flags)
648 {
649 u32 channel_flags = 0;
650 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
651 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
652 if (rd_flags & NL80211_RRF_NO_IBSS)
653 channel_flags |= IEEE80211_CHAN_NO_IBSS;
654 if (rd_flags & NL80211_RRF_DFS)
655 channel_flags |= IEEE80211_CHAN_RADAR;
656 return channel_flags;
657 }
658
659 static int freq_reg_info_regd(struct wiphy *wiphy,
660 u32 center_freq,
661 u32 desired_bw_khz,
662 const struct ieee80211_reg_rule **reg_rule,
663 const struct ieee80211_regdomain *custom_regd)
664 {
665 int i;
666 bool band_rule_found = false;
667 const struct ieee80211_regdomain *regd;
668 bool bw_fits = false;
669
670 if (!desired_bw_khz)
671 desired_bw_khz = MHZ_TO_KHZ(20);
672
673 regd = custom_regd ? custom_regd : cfg80211_regdomain;
674
675 /*
676 * Follow the driver's regulatory domain, if present, unless a country
677 * IE has been processed or a user wants to help complaince further
678 */
679 if (!custom_regd &&
680 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
681 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
682 wiphy->regd)
683 regd = wiphy->regd;
684
685 if (!regd)
686 return -EINVAL;
687
688 for (i = 0; i < regd->n_reg_rules; i++) {
689 const struct ieee80211_reg_rule *rr;
690 const struct ieee80211_freq_range *fr = NULL;
691
692 rr = &regd->reg_rules[i];
693 fr = &rr->freq_range;
694
695 /*
696 * We only need to know if one frequency rule was
697 * was in center_freq's band, that's enough, so lets
698 * not overwrite it once found
699 */
700 if (!band_rule_found)
701 band_rule_found = freq_in_rule_band(fr, center_freq);
702
703 bw_fits = reg_does_bw_fit(fr,
704 center_freq,
705 desired_bw_khz);
706
707 if (band_rule_found && bw_fits) {
708 *reg_rule = rr;
709 return 0;
710 }
711 }
712
713 if (!band_rule_found)
714 return -ERANGE;
715
716 return -EINVAL;
717 }
718
719 int freq_reg_info(struct wiphy *wiphy,
720 u32 center_freq,
721 u32 desired_bw_khz,
722 const struct ieee80211_reg_rule **reg_rule)
723 {
724 assert_cfg80211_lock();
725 return freq_reg_info_regd(wiphy,
726 center_freq,
727 desired_bw_khz,
728 reg_rule,
729 NULL);
730 }
731 EXPORT_SYMBOL(freq_reg_info);
732
733 #ifdef CONFIG_CFG80211_REG_DEBUG
734 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
735 {
736 switch (initiator) {
737 case NL80211_REGDOM_SET_BY_CORE:
738 return "Set by core";
739 case NL80211_REGDOM_SET_BY_USER:
740 return "Set by user";
741 case NL80211_REGDOM_SET_BY_DRIVER:
742 return "Set by driver";
743 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
744 return "Set by country IE";
745 default:
746 WARN_ON(1);
747 return "Set by bug";
748 }
749 }
750
751 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
752 u32 desired_bw_khz,
753 const struct ieee80211_reg_rule *reg_rule)
754 {
755 const struct ieee80211_power_rule *power_rule;
756 const struct ieee80211_freq_range *freq_range;
757 char max_antenna_gain[32];
758
759 power_rule = &reg_rule->power_rule;
760 freq_range = &reg_rule->freq_range;
761
762 if (!power_rule->max_antenna_gain)
763 snprintf(max_antenna_gain, 32, "N/A");
764 else
765 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
766
767 REG_DBG_PRINT("Updating information on frequency %d MHz "
768 "for a %d MHz width channel with regulatory rule:\n",
769 chan->center_freq,
770 KHZ_TO_MHZ(desired_bw_khz));
771
772 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
773 freq_range->start_freq_khz,
774 freq_range->end_freq_khz,
775 freq_range->max_bandwidth_khz,
776 max_antenna_gain,
777 power_rule->max_eirp);
778 }
779 #else
780 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
781 u32 desired_bw_khz,
782 const struct ieee80211_reg_rule *reg_rule)
783 {
784 return;
785 }
786 #endif
787
788 /*
789 * Note that right now we assume the desired channel bandwidth
790 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
791 * per channel, the primary and the extension channel). To support
792 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
793 * new ieee80211_channel.target_bw and re run the regulatory check
794 * on the wiphy with the target_bw specified. Then we can simply use
795 * that below for the desired_bw_khz below.
796 */
797 static void handle_channel(struct wiphy *wiphy,
798 enum nl80211_reg_initiator initiator,
799 enum ieee80211_band band,
800 unsigned int chan_idx)
801 {
802 int r;
803 u32 flags, bw_flags = 0;
804 u32 desired_bw_khz = MHZ_TO_KHZ(20);
805 const struct ieee80211_reg_rule *reg_rule = NULL;
806 const struct ieee80211_power_rule *power_rule = NULL;
807 const struct ieee80211_freq_range *freq_range = NULL;
808 struct ieee80211_supported_band *sband;
809 struct ieee80211_channel *chan;
810 struct wiphy *request_wiphy = NULL;
811
812 assert_cfg80211_lock();
813
814 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
815
816 sband = wiphy->bands[band];
817 BUG_ON(chan_idx >= sband->n_channels);
818 chan = &sband->channels[chan_idx];
819
820 flags = chan->orig_flags;
821
822 r = freq_reg_info(wiphy,
823 MHZ_TO_KHZ(chan->center_freq),
824 desired_bw_khz,
825 &reg_rule);
826
827 if (r) {
828 /*
829 * We will disable all channels that do not match our
830 * received regulatory rule unless the hint is coming
831 * from a Country IE and the Country IE had no information
832 * about a band. The IEEE 802.11 spec allows for an AP
833 * to send only a subset of the regulatory rules allowed,
834 * so an AP in the US that only supports 2.4 GHz may only send
835 * a country IE with information for the 2.4 GHz band
836 * while 5 GHz is still supported.
837 */
838 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
839 r == -ERANGE)
840 return;
841
842 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
843 chan->flags = IEEE80211_CHAN_DISABLED;
844 return;
845 }
846
847 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
848
849 power_rule = &reg_rule->power_rule;
850 freq_range = &reg_rule->freq_range;
851
852 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
853 bw_flags = IEEE80211_CHAN_NO_HT40;
854
855 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
856 request_wiphy && request_wiphy == wiphy &&
857 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
858 /*
859 * This guarantees the driver's requested regulatory domain
860 * will always be used as a base for further regulatory
861 * settings
862 */
863 chan->flags = chan->orig_flags =
864 map_regdom_flags(reg_rule->flags) | bw_flags;
865 chan->max_antenna_gain = chan->orig_mag =
866 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
867 chan->max_power = chan->orig_mpwr =
868 (int) MBM_TO_DBM(power_rule->max_eirp);
869 return;
870 }
871
872 chan->beacon_found = false;
873 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
874 chan->max_antenna_gain = min(chan->orig_mag,
875 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
876 if (chan->orig_mpwr)
877 chan->max_power = min(chan->orig_mpwr,
878 (int) MBM_TO_DBM(power_rule->max_eirp));
879 else
880 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
881 }
882
883 static void handle_band(struct wiphy *wiphy,
884 enum ieee80211_band band,
885 enum nl80211_reg_initiator initiator)
886 {
887 unsigned int i;
888 struct ieee80211_supported_band *sband;
889
890 BUG_ON(!wiphy->bands[band]);
891 sband = wiphy->bands[band];
892
893 for (i = 0; i < sband->n_channels; i++)
894 handle_channel(wiphy, initiator, band, i);
895 }
896
897 static bool ignore_reg_update(struct wiphy *wiphy,
898 enum nl80211_reg_initiator initiator)
899 {
900 if (!last_request) {
901 REG_DBG_PRINT("Ignoring regulatory request %s since "
902 "last_request is not set\n",
903 reg_initiator_name(initiator));
904 return true;
905 }
906
907 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
908 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
909 REG_DBG_PRINT("Ignoring regulatory request %s "
910 "since the driver uses its own custom "
911 "regulatory domain\n",
912 reg_initiator_name(initiator));
913 return true;
914 }
915
916 /*
917 * wiphy->regd will be set once the device has its own
918 * desired regulatory domain set
919 */
920 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
921 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
922 !is_world_regdom(last_request->alpha2)) {
923 REG_DBG_PRINT("Ignoring regulatory request %s "
924 "since the driver requires its own regulatory "
925 "domain to be set first\n",
926 reg_initiator_name(initiator));
927 return true;
928 }
929
930 return false;
931 }
932
933 static void handle_reg_beacon(struct wiphy *wiphy,
934 unsigned int chan_idx,
935 struct reg_beacon *reg_beacon)
936 {
937 struct ieee80211_supported_band *sband;
938 struct ieee80211_channel *chan;
939 bool channel_changed = false;
940 struct ieee80211_channel chan_before;
941
942 assert_cfg80211_lock();
943
944 sband = wiphy->bands[reg_beacon->chan.band];
945 chan = &sband->channels[chan_idx];
946
947 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
948 return;
949
950 if (chan->beacon_found)
951 return;
952
953 chan->beacon_found = true;
954
955 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
956 return;
957
958 chan_before.center_freq = chan->center_freq;
959 chan_before.flags = chan->flags;
960
961 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
962 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
963 channel_changed = true;
964 }
965
966 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
967 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
968 channel_changed = true;
969 }
970
971 if (channel_changed)
972 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
973 }
974
975 /*
976 * Called when a scan on a wiphy finds a beacon on
977 * new channel
978 */
979 static void wiphy_update_new_beacon(struct wiphy *wiphy,
980 struct reg_beacon *reg_beacon)
981 {
982 unsigned int i;
983 struct ieee80211_supported_band *sband;
984
985 assert_cfg80211_lock();
986
987 if (!wiphy->bands[reg_beacon->chan.band])
988 return;
989
990 sband = wiphy->bands[reg_beacon->chan.band];
991
992 for (i = 0; i < sband->n_channels; i++)
993 handle_reg_beacon(wiphy, i, reg_beacon);
994 }
995
996 /*
997 * Called upon reg changes or a new wiphy is added
998 */
999 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1000 {
1001 unsigned int i;
1002 struct ieee80211_supported_band *sband;
1003 struct reg_beacon *reg_beacon;
1004
1005 assert_cfg80211_lock();
1006
1007 if (list_empty(&reg_beacon_list))
1008 return;
1009
1010 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1011 if (!wiphy->bands[reg_beacon->chan.band])
1012 continue;
1013 sband = wiphy->bands[reg_beacon->chan.band];
1014 for (i = 0; i < sband->n_channels; i++)
1015 handle_reg_beacon(wiphy, i, reg_beacon);
1016 }
1017 }
1018
1019 static bool reg_is_world_roaming(struct wiphy *wiphy)
1020 {
1021 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1022 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1023 return true;
1024 if (last_request &&
1025 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1026 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1027 return true;
1028 return false;
1029 }
1030
1031 /* Reap the advantages of previously found beacons */
1032 static void reg_process_beacons(struct wiphy *wiphy)
1033 {
1034 /*
1035 * Means we are just firing up cfg80211, so no beacons would
1036 * have been processed yet.
1037 */
1038 if (!last_request)
1039 return;
1040 if (!reg_is_world_roaming(wiphy))
1041 return;
1042 wiphy_update_beacon_reg(wiphy);
1043 }
1044
1045 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1046 {
1047 if (!chan)
1048 return true;
1049 if (chan->flags & IEEE80211_CHAN_DISABLED)
1050 return true;
1051 /* This would happen when regulatory rules disallow HT40 completely */
1052 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1053 return true;
1054 return false;
1055 }
1056
1057 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1058 enum ieee80211_band band,
1059 unsigned int chan_idx)
1060 {
1061 struct ieee80211_supported_band *sband;
1062 struct ieee80211_channel *channel;
1063 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1064 unsigned int i;
1065
1066 assert_cfg80211_lock();
1067
1068 sband = wiphy->bands[band];
1069 BUG_ON(chan_idx >= sband->n_channels);
1070 channel = &sband->channels[chan_idx];
1071
1072 if (is_ht40_not_allowed(channel)) {
1073 channel->flags |= IEEE80211_CHAN_NO_HT40;
1074 return;
1075 }
1076
1077 /*
1078 * We need to ensure the extension channels exist to
1079 * be able to use HT40- or HT40+, this finds them (or not)
1080 */
1081 for (i = 0; i < sband->n_channels; i++) {
1082 struct ieee80211_channel *c = &sband->channels[i];
1083 if (c->center_freq == (channel->center_freq - 20))
1084 channel_before = c;
1085 if (c->center_freq == (channel->center_freq + 20))
1086 channel_after = c;
1087 }
1088
1089 /*
1090 * Please note that this assumes target bandwidth is 20 MHz,
1091 * if that ever changes we also need to change the below logic
1092 * to include that as well.
1093 */
1094 if (is_ht40_not_allowed(channel_before))
1095 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1096 else
1097 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1098
1099 if (is_ht40_not_allowed(channel_after))
1100 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1101 else
1102 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1103 }
1104
1105 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1106 enum ieee80211_band band)
1107 {
1108 unsigned int i;
1109 struct ieee80211_supported_band *sband;
1110
1111 BUG_ON(!wiphy->bands[band]);
1112 sband = wiphy->bands[band];
1113
1114 for (i = 0; i < sband->n_channels; i++)
1115 reg_process_ht_flags_channel(wiphy, band, i);
1116 }
1117
1118 static void reg_process_ht_flags(struct wiphy *wiphy)
1119 {
1120 enum ieee80211_band band;
1121
1122 if (!wiphy)
1123 return;
1124
1125 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1126 if (wiphy->bands[band])
1127 reg_process_ht_flags_band(wiphy, band);
1128 }
1129
1130 }
1131
1132 static void wiphy_update_regulatory(struct wiphy *wiphy,
1133 enum nl80211_reg_initiator initiator)
1134 {
1135 enum ieee80211_band band;
1136
1137 assert_reg_lock();
1138
1139 if (ignore_reg_update(wiphy, initiator))
1140 return;
1141
1142 last_request->dfs_region = cfg80211_regdomain->dfs_region;
1143
1144 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1145 if (wiphy->bands[band])
1146 handle_band(wiphy, band, initiator);
1147 }
1148
1149 reg_process_beacons(wiphy);
1150 reg_process_ht_flags(wiphy);
1151 if (wiphy->reg_notifier)
1152 wiphy->reg_notifier(wiphy, last_request);
1153 }
1154
1155 void regulatory_update(struct wiphy *wiphy,
1156 enum nl80211_reg_initiator setby)
1157 {
1158 mutex_lock(&reg_mutex);
1159 wiphy_update_regulatory(wiphy, setby);
1160 mutex_unlock(&reg_mutex);
1161 }
1162
1163 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1164 {
1165 struct cfg80211_registered_device *rdev;
1166
1167 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1168 wiphy_update_regulatory(&rdev->wiphy, initiator);
1169 }
1170
1171 static void handle_channel_custom(struct wiphy *wiphy,
1172 enum ieee80211_band band,
1173 unsigned int chan_idx,
1174 const struct ieee80211_regdomain *regd)
1175 {
1176 int r;
1177 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1178 u32 bw_flags = 0;
1179 const struct ieee80211_reg_rule *reg_rule = NULL;
1180 const struct ieee80211_power_rule *power_rule = NULL;
1181 const struct ieee80211_freq_range *freq_range = NULL;
1182 struct ieee80211_supported_band *sband;
1183 struct ieee80211_channel *chan;
1184
1185 assert_reg_lock();
1186
1187 sband = wiphy->bands[band];
1188 BUG_ON(chan_idx >= sband->n_channels);
1189 chan = &sband->channels[chan_idx];
1190
1191 r = freq_reg_info_regd(wiphy,
1192 MHZ_TO_KHZ(chan->center_freq),
1193 desired_bw_khz,
1194 &reg_rule,
1195 regd);
1196
1197 if (r) {
1198 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1199 "regd has no rule that fits a %d MHz "
1200 "wide channel\n",
1201 chan->center_freq,
1202 KHZ_TO_MHZ(desired_bw_khz));
1203 chan->flags = IEEE80211_CHAN_DISABLED;
1204 return;
1205 }
1206
1207 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1208
1209 power_rule = &reg_rule->power_rule;
1210 freq_range = &reg_rule->freq_range;
1211
1212 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1213 bw_flags = IEEE80211_CHAN_NO_HT40;
1214
1215 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1216 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1217 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1218 }
1219
1220 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1221 const struct ieee80211_regdomain *regd)
1222 {
1223 unsigned int i;
1224 struct ieee80211_supported_band *sband;
1225
1226 BUG_ON(!wiphy->bands[band]);
1227 sband = wiphy->bands[band];
1228
1229 for (i = 0; i < sband->n_channels; i++)
1230 handle_channel_custom(wiphy, band, i, regd);
1231 }
1232
1233 /* Used by drivers prior to wiphy registration */
1234 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1235 const struct ieee80211_regdomain *regd)
1236 {
1237 enum ieee80211_band band;
1238 unsigned int bands_set = 0;
1239
1240 mutex_lock(&reg_mutex);
1241 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1242 if (!wiphy->bands[band])
1243 continue;
1244 handle_band_custom(wiphy, band, regd);
1245 bands_set++;
1246 }
1247 mutex_unlock(&reg_mutex);
1248
1249 /*
1250 * no point in calling this if it won't have any effect
1251 * on your device's supportd bands.
1252 */
1253 WARN_ON(!bands_set);
1254 }
1255 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1256
1257 /*
1258 * Return value which can be used by ignore_request() to indicate
1259 * it has been determined we should intersect two regulatory domains
1260 */
1261 #define REG_INTERSECT 1
1262
1263 /* This has the logic which determines when a new request
1264 * should be ignored. */
1265 static int ignore_request(struct wiphy *wiphy,
1266 struct regulatory_request *pending_request)
1267 {
1268 struct wiphy *last_wiphy = NULL;
1269
1270 assert_cfg80211_lock();
1271
1272 /* All initial requests are respected */
1273 if (!last_request)
1274 return 0;
1275
1276 switch (pending_request->initiator) {
1277 case NL80211_REGDOM_SET_BY_CORE:
1278 return 0;
1279 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1280
1281 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1282
1283 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1284 return -EINVAL;
1285 if (last_request->initiator ==
1286 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1287 if (last_wiphy != wiphy) {
1288 /*
1289 * Two cards with two APs claiming different
1290 * Country IE alpha2s. We could
1291 * intersect them, but that seems unlikely
1292 * to be correct. Reject second one for now.
1293 */
1294 if (regdom_changes(pending_request->alpha2))
1295 return -EOPNOTSUPP;
1296 return -EALREADY;
1297 }
1298 /*
1299 * Two consecutive Country IE hints on the same wiphy.
1300 * This should be picked up early by the driver/stack
1301 */
1302 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1303 return 0;
1304 return -EALREADY;
1305 }
1306 return 0;
1307 case NL80211_REGDOM_SET_BY_DRIVER:
1308 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1309 if (regdom_changes(pending_request->alpha2))
1310 return 0;
1311 return -EALREADY;
1312 }
1313
1314 /*
1315 * This would happen if you unplug and plug your card
1316 * back in or if you add a new device for which the previously
1317 * loaded card also agrees on the regulatory domain.
1318 */
1319 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1320 !regdom_changes(pending_request->alpha2))
1321 return -EALREADY;
1322
1323 return REG_INTERSECT;
1324 case NL80211_REGDOM_SET_BY_USER:
1325 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1326 return REG_INTERSECT;
1327 /*
1328 * If the user knows better the user should set the regdom
1329 * to their country before the IE is picked up
1330 */
1331 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1332 last_request->intersect)
1333 return -EOPNOTSUPP;
1334 /*
1335 * Process user requests only after previous user/driver/core
1336 * requests have been processed
1337 */
1338 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1339 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1340 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1341 if (regdom_changes(last_request->alpha2))
1342 return -EAGAIN;
1343 }
1344
1345 if (!regdom_changes(pending_request->alpha2))
1346 return -EALREADY;
1347
1348 return 0;
1349 }
1350
1351 return -EINVAL;
1352 }
1353
1354 static void reg_set_request_processed(void)
1355 {
1356 bool need_more_processing = false;
1357
1358 last_request->processed = true;
1359
1360 spin_lock(&reg_requests_lock);
1361 if (!list_empty(&reg_requests_list))
1362 need_more_processing = true;
1363 spin_unlock(&reg_requests_lock);
1364
1365 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1366 cancel_delayed_work_sync(&reg_timeout);
1367
1368 if (need_more_processing)
1369 schedule_work(&reg_work);
1370 }
1371
1372 /**
1373 * __regulatory_hint - hint to the wireless core a regulatory domain
1374 * @wiphy: if the hint comes from country information from an AP, this
1375 * is required to be set to the wiphy that received the information
1376 * @pending_request: the regulatory request currently being processed
1377 *
1378 * The Wireless subsystem can use this function to hint to the wireless core
1379 * what it believes should be the current regulatory domain.
1380 *
1381 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1382 * already been set or other standard error codes.
1383 *
1384 * Caller must hold &cfg80211_mutex and &reg_mutex
1385 */
1386 static int __regulatory_hint(struct wiphy *wiphy,
1387 struct regulatory_request *pending_request)
1388 {
1389 bool intersect = false;
1390 int r = 0;
1391
1392 assert_cfg80211_lock();
1393
1394 r = ignore_request(wiphy, pending_request);
1395
1396 if (r == REG_INTERSECT) {
1397 if (pending_request->initiator ==
1398 NL80211_REGDOM_SET_BY_DRIVER) {
1399 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1400 if (r) {
1401 kfree(pending_request);
1402 return r;
1403 }
1404 }
1405 intersect = true;
1406 } else if (r) {
1407 /*
1408 * If the regulatory domain being requested by the
1409 * driver has already been set just copy it to the
1410 * wiphy
1411 */
1412 if (r == -EALREADY &&
1413 pending_request->initiator ==
1414 NL80211_REGDOM_SET_BY_DRIVER) {
1415 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1416 if (r) {
1417 kfree(pending_request);
1418 return r;
1419 }
1420 r = -EALREADY;
1421 goto new_request;
1422 }
1423 kfree(pending_request);
1424 return r;
1425 }
1426
1427 new_request:
1428 if (last_request != &core_request_world)
1429 kfree(last_request);
1430
1431 last_request = pending_request;
1432 last_request->intersect = intersect;
1433
1434 pending_request = NULL;
1435
1436 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1437 user_alpha2[0] = last_request->alpha2[0];
1438 user_alpha2[1] = last_request->alpha2[1];
1439 }
1440
1441 /* When r == REG_INTERSECT we do need to call CRDA */
1442 if (r < 0) {
1443 /*
1444 * Since CRDA will not be called in this case as we already
1445 * have applied the requested regulatory domain before we just
1446 * inform userspace we have processed the request
1447 */
1448 if (r == -EALREADY) {
1449 nl80211_send_reg_change_event(last_request);
1450 reg_set_request_processed();
1451 }
1452 return r;
1453 }
1454
1455 return call_crda(last_request->alpha2);
1456 }
1457
1458 /* This processes *all* regulatory hints */
1459 static void reg_process_hint(struct regulatory_request *reg_request)
1460 {
1461 int r = 0;
1462 struct wiphy *wiphy = NULL;
1463 enum nl80211_reg_initiator initiator = reg_request->initiator;
1464
1465 BUG_ON(!reg_request->alpha2);
1466
1467 if (wiphy_idx_valid(reg_request->wiphy_idx))
1468 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1469
1470 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1471 !wiphy) {
1472 kfree(reg_request);
1473 return;
1474 }
1475
1476 r = __regulatory_hint(wiphy, reg_request);
1477 /* This is required so that the orig_* parameters are saved */
1478 if (r == -EALREADY && wiphy &&
1479 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1480 wiphy_update_regulatory(wiphy, initiator);
1481 return;
1482 }
1483
1484 /*
1485 * We only time out user hints, given that they should be the only
1486 * source of bogus requests.
1487 */
1488 if (r != -EALREADY &&
1489 reg_request->initiator == NL80211_REGDOM_SET_BY_USER)
1490 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1491 }
1492
1493 /*
1494 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1495 * Regulatory hints come on a first come first serve basis and we
1496 * must process each one atomically.
1497 */
1498 static void reg_process_pending_hints(void)
1499 {
1500 struct regulatory_request *reg_request;
1501
1502 mutex_lock(&cfg80211_mutex);
1503 mutex_lock(&reg_mutex);
1504
1505 /* When last_request->processed becomes true this will be rescheduled */
1506 if (last_request && !last_request->processed) {
1507 REG_DBG_PRINT("Pending regulatory request, waiting "
1508 "for it to be processed...\n");
1509 goto out;
1510 }
1511
1512 spin_lock(&reg_requests_lock);
1513
1514 if (list_empty(&reg_requests_list)) {
1515 spin_unlock(&reg_requests_lock);
1516 goto out;
1517 }
1518
1519 reg_request = list_first_entry(&reg_requests_list,
1520 struct regulatory_request,
1521 list);
1522 list_del_init(&reg_request->list);
1523
1524 spin_unlock(&reg_requests_lock);
1525
1526 reg_process_hint(reg_request);
1527
1528 out:
1529 mutex_unlock(&reg_mutex);
1530 mutex_unlock(&cfg80211_mutex);
1531 }
1532
1533 /* Processes beacon hints -- this has nothing to do with country IEs */
1534 static void reg_process_pending_beacon_hints(void)
1535 {
1536 struct cfg80211_registered_device *rdev;
1537 struct reg_beacon *pending_beacon, *tmp;
1538
1539 /*
1540 * No need to hold the reg_mutex here as we just touch wiphys
1541 * and do not read or access regulatory variables.
1542 */
1543 mutex_lock(&cfg80211_mutex);
1544
1545 /* This goes through the _pending_ beacon list */
1546 spin_lock_bh(&reg_pending_beacons_lock);
1547
1548 if (list_empty(&reg_pending_beacons)) {
1549 spin_unlock_bh(&reg_pending_beacons_lock);
1550 goto out;
1551 }
1552
1553 list_for_each_entry_safe(pending_beacon, tmp,
1554 &reg_pending_beacons, list) {
1555
1556 list_del_init(&pending_beacon->list);
1557
1558 /* Applies the beacon hint to current wiphys */
1559 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1560 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1561
1562 /* Remembers the beacon hint for new wiphys or reg changes */
1563 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1564 }
1565
1566 spin_unlock_bh(&reg_pending_beacons_lock);
1567 out:
1568 mutex_unlock(&cfg80211_mutex);
1569 }
1570
1571 static void reg_todo(struct work_struct *work)
1572 {
1573 reg_process_pending_hints();
1574 reg_process_pending_beacon_hints();
1575 }
1576
1577 static void queue_regulatory_request(struct regulatory_request *request)
1578 {
1579 if (isalpha(request->alpha2[0]))
1580 request->alpha2[0] = toupper(request->alpha2[0]);
1581 if (isalpha(request->alpha2[1]))
1582 request->alpha2[1] = toupper(request->alpha2[1]);
1583
1584 spin_lock(&reg_requests_lock);
1585 list_add_tail(&request->list, &reg_requests_list);
1586 spin_unlock(&reg_requests_lock);
1587
1588 schedule_work(&reg_work);
1589 }
1590
1591 /*
1592 * Core regulatory hint -- happens during cfg80211_init()
1593 * and when we restore regulatory settings.
1594 */
1595 static int regulatory_hint_core(const char *alpha2)
1596 {
1597 struct regulatory_request *request;
1598
1599 request = kzalloc(sizeof(struct regulatory_request),
1600 GFP_KERNEL);
1601 if (!request)
1602 return -ENOMEM;
1603
1604 request->alpha2[0] = alpha2[0];
1605 request->alpha2[1] = alpha2[1];
1606 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1607
1608 queue_regulatory_request(request);
1609
1610 return 0;
1611 }
1612
1613 /* User hints */
1614 int regulatory_hint_user(const char *alpha2)
1615 {
1616 struct regulatory_request *request;
1617
1618 BUG_ON(!alpha2);
1619
1620 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1621 if (!request)
1622 return -ENOMEM;
1623
1624 request->wiphy_idx = WIPHY_IDX_STALE;
1625 request->alpha2[0] = alpha2[0];
1626 request->alpha2[1] = alpha2[1];
1627 request->initiator = NL80211_REGDOM_SET_BY_USER;
1628
1629 queue_regulatory_request(request);
1630
1631 return 0;
1632 }
1633
1634 /* Driver hints */
1635 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1636 {
1637 struct regulatory_request *request;
1638
1639 BUG_ON(!alpha2);
1640 BUG_ON(!wiphy);
1641
1642 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1643 if (!request)
1644 return -ENOMEM;
1645
1646 request->wiphy_idx = get_wiphy_idx(wiphy);
1647
1648 /* Must have registered wiphy first */
1649 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1650
1651 request->alpha2[0] = alpha2[0];
1652 request->alpha2[1] = alpha2[1];
1653 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1654
1655 queue_regulatory_request(request);
1656
1657 return 0;
1658 }
1659 EXPORT_SYMBOL(regulatory_hint);
1660
1661 /*
1662 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1663 * therefore cannot iterate over the rdev list here.
1664 */
1665 void regulatory_hint_11d(struct wiphy *wiphy,
1666 enum ieee80211_band band,
1667 u8 *country_ie,
1668 u8 country_ie_len)
1669 {
1670 char alpha2[2];
1671 enum environment_cap env = ENVIRON_ANY;
1672 struct regulatory_request *request;
1673
1674 mutex_lock(&reg_mutex);
1675
1676 if (unlikely(!last_request))
1677 goto out;
1678
1679 /* IE len must be evenly divisible by 2 */
1680 if (country_ie_len & 0x01)
1681 goto out;
1682
1683 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1684 goto out;
1685
1686 alpha2[0] = country_ie[0];
1687 alpha2[1] = country_ie[1];
1688
1689 if (country_ie[2] == 'I')
1690 env = ENVIRON_INDOOR;
1691 else if (country_ie[2] == 'O')
1692 env = ENVIRON_OUTDOOR;
1693
1694 /*
1695 * We will run this only upon a successful connection on cfg80211.
1696 * We leave conflict resolution to the workqueue, where can hold
1697 * cfg80211_mutex.
1698 */
1699 if (likely(last_request->initiator ==
1700 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1701 wiphy_idx_valid(last_request->wiphy_idx)))
1702 goto out;
1703
1704 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1705 if (!request)
1706 goto out;
1707
1708 request->wiphy_idx = get_wiphy_idx(wiphy);
1709 request->alpha2[0] = alpha2[0];
1710 request->alpha2[1] = alpha2[1];
1711 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1712 request->country_ie_env = env;
1713
1714 mutex_unlock(&reg_mutex);
1715
1716 queue_regulatory_request(request);
1717
1718 return;
1719
1720 out:
1721 mutex_unlock(&reg_mutex);
1722 }
1723
1724 static void restore_alpha2(char *alpha2, bool reset_user)
1725 {
1726 /* indicates there is no alpha2 to consider for restoration */
1727 alpha2[0] = '9';
1728 alpha2[1] = '7';
1729
1730 /* The user setting has precedence over the module parameter */
1731 if (is_user_regdom_saved()) {
1732 /* Unless we're asked to ignore it and reset it */
1733 if (reset_user) {
1734 REG_DBG_PRINT("Restoring regulatory settings "
1735 "including user preference\n");
1736 user_alpha2[0] = '9';
1737 user_alpha2[1] = '7';
1738
1739 /*
1740 * If we're ignoring user settings, we still need to
1741 * check the module parameter to ensure we put things
1742 * back as they were for a full restore.
1743 */
1744 if (!is_world_regdom(ieee80211_regdom)) {
1745 REG_DBG_PRINT("Keeping preference on "
1746 "module parameter ieee80211_regdom: %c%c\n",
1747 ieee80211_regdom[0],
1748 ieee80211_regdom[1]);
1749 alpha2[0] = ieee80211_regdom[0];
1750 alpha2[1] = ieee80211_regdom[1];
1751 }
1752 } else {
1753 REG_DBG_PRINT("Restoring regulatory settings "
1754 "while preserving user preference for: %c%c\n",
1755 user_alpha2[0],
1756 user_alpha2[1]);
1757 alpha2[0] = user_alpha2[0];
1758 alpha2[1] = user_alpha2[1];
1759 }
1760 } else if (!is_world_regdom(ieee80211_regdom)) {
1761 REG_DBG_PRINT("Keeping preference on "
1762 "module parameter ieee80211_regdom: %c%c\n",
1763 ieee80211_regdom[0],
1764 ieee80211_regdom[1]);
1765 alpha2[0] = ieee80211_regdom[0];
1766 alpha2[1] = ieee80211_regdom[1];
1767 } else
1768 REG_DBG_PRINT("Restoring regulatory settings\n");
1769 }
1770
1771 /*
1772 * Restoring regulatory settings involves ingoring any
1773 * possibly stale country IE information and user regulatory
1774 * settings if so desired, this includes any beacon hints
1775 * learned as we could have traveled outside to another country
1776 * after disconnection. To restore regulatory settings we do
1777 * exactly what we did at bootup:
1778 *
1779 * - send a core regulatory hint
1780 * - send a user regulatory hint if applicable
1781 *
1782 * Device drivers that send a regulatory hint for a specific country
1783 * keep their own regulatory domain on wiphy->regd so that does does
1784 * not need to be remembered.
1785 */
1786 static void restore_regulatory_settings(bool reset_user)
1787 {
1788 char alpha2[2];
1789 struct reg_beacon *reg_beacon, *btmp;
1790 struct regulatory_request *reg_request, *tmp;
1791 LIST_HEAD(tmp_reg_req_list);
1792
1793 mutex_lock(&cfg80211_mutex);
1794 mutex_lock(&reg_mutex);
1795
1796 reset_regdomains(true);
1797 restore_alpha2(alpha2, reset_user);
1798
1799 /*
1800 * If there's any pending requests we simply
1801 * stash them to a temporary pending queue and
1802 * add then after we've restored regulatory
1803 * settings.
1804 */
1805 spin_lock(&reg_requests_lock);
1806 if (!list_empty(&reg_requests_list)) {
1807 list_for_each_entry_safe(reg_request, tmp,
1808 &reg_requests_list, list) {
1809 if (reg_request->initiator !=
1810 NL80211_REGDOM_SET_BY_USER)
1811 continue;
1812 list_del(&reg_request->list);
1813 list_add_tail(&reg_request->list, &tmp_reg_req_list);
1814 }
1815 }
1816 spin_unlock(&reg_requests_lock);
1817
1818 /* Clear beacon hints */
1819 spin_lock_bh(&reg_pending_beacons_lock);
1820 if (!list_empty(&reg_pending_beacons)) {
1821 list_for_each_entry_safe(reg_beacon, btmp,
1822 &reg_pending_beacons, list) {
1823 list_del(&reg_beacon->list);
1824 kfree(reg_beacon);
1825 }
1826 }
1827 spin_unlock_bh(&reg_pending_beacons_lock);
1828
1829 if (!list_empty(&reg_beacon_list)) {
1830 list_for_each_entry_safe(reg_beacon, btmp,
1831 &reg_beacon_list, list) {
1832 list_del(&reg_beacon->list);
1833 kfree(reg_beacon);
1834 }
1835 }
1836
1837 /* First restore to the basic regulatory settings */
1838 cfg80211_regdomain = cfg80211_world_regdom;
1839
1840 mutex_unlock(&reg_mutex);
1841 mutex_unlock(&cfg80211_mutex);
1842
1843 regulatory_hint_core(cfg80211_regdomain->alpha2);
1844
1845 /*
1846 * This restores the ieee80211_regdom module parameter
1847 * preference or the last user requested regulatory
1848 * settings, user regulatory settings takes precedence.
1849 */
1850 if (is_an_alpha2(alpha2))
1851 regulatory_hint_user(user_alpha2);
1852
1853 if (list_empty(&tmp_reg_req_list))
1854 return;
1855
1856 mutex_lock(&cfg80211_mutex);
1857 mutex_lock(&reg_mutex);
1858
1859 spin_lock(&reg_requests_lock);
1860 list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1861 REG_DBG_PRINT("Adding request for country %c%c back "
1862 "into the queue\n",
1863 reg_request->alpha2[0],
1864 reg_request->alpha2[1]);
1865 list_del(&reg_request->list);
1866 list_add_tail(&reg_request->list, &reg_requests_list);
1867 }
1868 spin_unlock(&reg_requests_lock);
1869
1870 mutex_unlock(&reg_mutex);
1871 mutex_unlock(&cfg80211_mutex);
1872
1873 REG_DBG_PRINT("Kicking the queue\n");
1874
1875 schedule_work(&reg_work);
1876 }
1877
1878 void regulatory_hint_disconnect(void)
1879 {
1880 REG_DBG_PRINT("All devices are disconnected, going to "
1881 "restore regulatory settings\n");
1882 restore_regulatory_settings(false);
1883 }
1884
1885 static bool freq_is_chan_12_13_14(u16 freq)
1886 {
1887 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1888 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1889 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1890 return true;
1891 return false;
1892 }
1893
1894 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1895 struct ieee80211_channel *beacon_chan,
1896 gfp_t gfp)
1897 {
1898 struct reg_beacon *reg_beacon;
1899
1900 if (likely((beacon_chan->beacon_found ||
1901 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1902 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1903 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1904 return 0;
1905
1906 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1907 if (!reg_beacon)
1908 return -ENOMEM;
1909
1910 REG_DBG_PRINT("Found new beacon on "
1911 "frequency: %d MHz (Ch %d) on %s\n",
1912 beacon_chan->center_freq,
1913 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1914 wiphy_name(wiphy));
1915
1916 memcpy(&reg_beacon->chan, beacon_chan,
1917 sizeof(struct ieee80211_channel));
1918
1919
1920 /*
1921 * Since we can be called from BH or and non-BH context
1922 * we must use spin_lock_bh()
1923 */
1924 spin_lock_bh(&reg_pending_beacons_lock);
1925 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1926 spin_unlock_bh(&reg_pending_beacons_lock);
1927
1928 schedule_work(&reg_work);
1929
1930 return 0;
1931 }
1932
1933 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1934 {
1935 unsigned int i;
1936 const struct ieee80211_reg_rule *reg_rule = NULL;
1937 const struct ieee80211_freq_range *freq_range = NULL;
1938 const struct ieee80211_power_rule *power_rule = NULL;
1939
1940 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1941
1942 for (i = 0; i < rd->n_reg_rules; i++) {
1943 reg_rule = &rd->reg_rules[i];
1944 freq_range = &reg_rule->freq_range;
1945 power_rule = &reg_rule->power_rule;
1946
1947 /*
1948 * There may not be documentation for max antenna gain
1949 * in certain regions
1950 */
1951 if (power_rule->max_antenna_gain)
1952 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1953 freq_range->start_freq_khz,
1954 freq_range->end_freq_khz,
1955 freq_range->max_bandwidth_khz,
1956 power_rule->max_antenna_gain,
1957 power_rule->max_eirp);
1958 else
1959 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1960 freq_range->start_freq_khz,
1961 freq_range->end_freq_khz,
1962 freq_range->max_bandwidth_khz,
1963 power_rule->max_eirp);
1964 }
1965 }
1966
1967 bool reg_supported_dfs_region(u8 dfs_region)
1968 {
1969 switch (dfs_region) {
1970 case NL80211_DFS_UNSET:
1971 case NL80211_DFS_FCC:
1972 case NL80211_DFS_ETSI:
1973 case NL80211_DFS_JP:
1974 return true;
1975 default:
1976 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
1977 dfs_region);
1978 return false;
1979 }
1980 }
1981
1982 static void print_dfs_region(u8 dfs_region)
1983 {
1984 if (!dfs_region)
1985 return;
1986
1987 switch (dfs_region) {
1988 case NL80211_DFS_FCC:
1989 pr_info(" DFS Master region FCC");
1990 break;
1991 case NL80211_DFS_ETSI:
1992 pr_info(" DFS Master region ETSI");
1993 break;
1994 case NL80211_DFS_JP:
1995 pr_info(" DFS Master region JP");
1996 break;
1997 default:
1998 pr_info(" DFS Master region Uknown");
1999 break;
2000 }
2001 }
2002
2003 static void print_regdomain(const struct ieee80211_regdomain *rd)
2004 {
2005
2006 if (is_intersected_alpha2(rd->alpha2)) {
2007
2008 if (last_request->initiator ==
2009 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2010 struct cfg80211_registered_device *rdev;
2011 rdev = cfg80211_rdev_by_wiphy_idx(
2012 last_request->wiphy_idx);
2013 if (rdev) {
2014 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2015 rdev->country_ie_alpha2[0],
2016 rdev->country_ie_alpha2[1]);
2017 } else
2018 pr_info("Current regulatory domain intersected:\n");
2019 } else
2020 pr_info("Current regulatory domain intersected:\n");
2021 } else if (is_world_regdom(rd->alpha2))
2022 pr_info("World regulatory domain updated:\n");
2023 else {
2024 if (is_unknown_alpha2(rd->alpha2))
2025 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2026 else
2027 pr_info("Regulatory domain changed to country: %c%c\n",
2028 rd->alpha2[0], rd->alpha2[1]);
2029 }
2030 print_dfs_region(rd->dfs_region);
2031 print_rd_rules(rd);
2032 }
2033
2034 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2035 {
2036 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2037 print_rd_rules(rd);
2038 }
2039
2040 /* Takes ownership of rd only if it doesn't fail */
2041 static int __set_regdom(const struct ieee80211_regdomain *rd)
2042 {
2043 const struct ieee80211_regdomain *intersected_rd = NULL;
2044 struct cfg80211_registered_device *rdev = NULL;
2045 struct wiphy *request_wiphy;
2046 /* Some basic sanity checks first */
2047
2048 if (is_world_regdom(rd->alpha2)) {
2049 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2050 return -EINVAL;
2051 update_world_regdomain(rd);
2052 return 0;
2053 }
2054
2055 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2056 !is_unknown_alpha2(rd->alpha2))
2057 return -EINVAL;
2058
2059 if (!last_request)
2060 return -EINVAL;
2061
2062 /*
2063 * Lets only bother proceeding on the same alpha2 if the current
2064 * rd is non static (it means CRDA was present and was used last)
2065 * and the pending request came in from a country IE
2066 */
2067 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2068 /*
2069 * If someone else asked us to change the rd lets only bother
2070 * checking if the alpha2 changes if CRDA was already called
2071 */
2072 if (!regdom_changes(rd->alpha2))
2073 return -EINVAL;
2074 }
2075
2076 /*
2077 * Now lets set the regulatory domain, update all driver channels
2078 * and finally inform them of what we have done, in case they want
2079 * to review or adjust their own settings based on their own
2080 * internal EEPROM data
2081 */
2082
2083 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2084 return -EINVAL;
2085
2086 if (!is_valid_rd(rd)) {
2087 pr_err("Invalid regulatory domain detected:\n");
2088 print_regdomain_info(rd);
2089 return -EINVAL;
2090 }
2091
2092 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2093 if (!request_wiphy &&
2094 (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2095 last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2096 schedule_delayed_work(&reg_timeout, 0);
2097 return -ENODEV;
2098 }
2099
2100 if (!last_request->intersect) {
2101 int r;
2102
2103 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2104 reset_regdomains(false);
2105 cfg80211_regdomain = rd;
2106 return 0;
2107 }
2108
2109 /*
2110 * For a driver hint, lets copy the regulatory domain the
2111 * driver wanted to the wiphy to deal with conflicts
2112 */
2113
2114 /*
2115 * Userspace could have sent two replies with only
2116 * one kernel request.
2117 */
2118 if (request_wiphy->regd)
2119 return -EALREADY;
2120
2121 r = reg_copy_regd(&request_wiphy->regd, rd);
2122 if (r)
2123 return r;
2124
2125 reset_regdomains(false);
2126 cfg80211_regdomain = rd;
2127 return 0;
2128 }
2129
2130 /* Intersection requires a bit more work */
2131
2132 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2133
2134 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2135 if (!intersected_rd)
2136 return -EINVAL;
2137
2138 /*
2139 * We can trash what CRDA provided now.
2140 * However if a driver requested this specific regulatory
2141 * domain we keep it for its private use
2142 */
2143 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2144 request_wiphy->regd = rd;
2145 else
2146 kfree(rd);
2147
2148 rd = NULL;
2149
2150 reset_regdomains(false);
2151 cfg80211_regdomain = intersected_rd;
2152
2153 return 0;
2154 }
2155
2156 if (!intersected_rd)
2157 return -EINVAL;
2158
2159 rdev = wiphy_to_dev(request_wiphy);
2160
2161 rdev->country_ie_alpha2[0] = rd->alpha2[0];
2162 rdev->country_ie_alpha2[1] = rd->alpha2[1];
2163 rdev->env = last_request->country_ie_env;
2164
2165 BUG_ON(intersected_rd == rd);
2166
2167 kfree(rd);
2168 rd = NULL;
2169
2170 reset_regdomains(false);
2171 cfg80211_regdomain = intersected_rd;
2172
2173 return 0;
2174 }
2175
2176
2177 /*
2178 * Use this call to set the current regulatory domain. Conflicts with
2179 * multiple drivers can be ironed out later. Caller must've already
2180 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2181 */
2182 int set_regdom(const struct ieee80211_regdomain *rd)
2183 {
2184 int r;
2185
2186 assert_cfg80211_lock();
2187
2188 mutex_lock(&reg_mutex);
2189
2190 /* Note that this doesn't update the wiphys, this is done below */
2191 r = __set_regdom(rd);
2192 if (r) {
2193 kfree(rd);
2194 mutex_unlock(&reg_mutex);
2195 return r;
2196 }
2197
2198 /* This would make this whole thing pointless */
2199 if (!last_request->intersect)
2200 BUG_ON(rd != cfg80211_regdomain);
2201
2202 /* update all wiphys now with the new established regulatory domain */
2203 update_all_wiphy_regulatory(last_request->initiator);
2204
2205 print_regdomain(cfg80211_regdomain);
2206
2207 nl80211_send_reg_change_event(last_request);
2208
2209 reg_set_request_processed();
2210
2211 mutex_unlock(&reg_mutex);
2212
2213 return r;
2214 }
2215
2216 #ifdef CONFIG_HOTPLUG
2217 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2218 {
2219 if (last_request && !last_request->processed) {
2220 if (add_uevent_var(env, "COUNTRY=%c%c",
2221 last_request->alpha2[0],
2222 last_request->alpha2[1]))
2223 return -ENOMEM;
2224 }
2225
2226 return 0;
2227 }
2228 #else
2229 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2230 {
2231 return -ENODEV;
2232 }
2233 #endif /* CONFIG_HOTPLUG */
2234
2235 /* Caller must hold cfg80211_mutex */
2236 void reg_device_remove(struct wiphy *wiphy)
2237 {
2238 struct wiphy *request_wiphy = NULL;
2239
2240 assert_cfg80211_lock();
2241
2242 mutex_lock(&reg_mutex);
2243
2244 kfree(wiphy->regd);
2245
2246 if (last_request)
2247 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2248
2249 if (!request_wiphy || request_wiphy != wiphy)
2250 goto out;
2251
2252 last_request->wiphy_idx = WIPHY_IDX_STALE;
2253 last_request->country_ie_env = ENVIRON_ANY;
2254 out:
2255 mutex_unlock(&reg_mutex);
2256 }
2257
2258 static void reg_timeout_work(struct work_struct *work)
2259 {
2260 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2261 "restoring regulatory settings\n");
2262 restore_regulatory_settings(true);
2263 }
2264
2265 int __init regulatory_init(void)
2266 {
2267 int err = 0;
2268
2269 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2270 if (IS_ERR(reg_pdev))
2271 return PTR_ERR(reg_pdev);
2272
2273 reg_pdev->dev.type = &reg_device_type;
2274
2275 spin_lock_init(&reg_requests_lock);
2276 spin_lock_init(&reg_pending_beacons_lock);
2277
2278 cfg80211_regdomain = cfg80211_world_regdom;
2279
2280 user_alpha2[0] = '9';
2281 user_alpha2[1] = '7';
2282
2283 /* We always try to get an update for the static regdomain */
2284 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2285 if (err) {
2286 if (err == -ENOMEM)
2287 return err;
2288 /*
2289 * N.B. kobject_uevent_env() can fail mainly for when we're out
2290 * memory which is handled and propagated appropriately above
2291 * but it can also fail during a netlink_broadcast() or during
2292 * early boot for call_usermodehelper(). For now treat these
2293 * errors as non-fatal.
2294 */
2295 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2296 #ifdef CONFIG_CFG80211_REG_DEBUG
2297 /* We want to find out exactly why when debugging */
2298 WARN_ON(err);
2299 #endif
2300 }
2301
2302 /*
2303 * Finally, if the user set the module parameter treat it
2304 * as a user hint.
2305 */
2306 if (!is_world_regdom(ieee80211_regdom))
2307 regulatory_hint_user(ieee80211_regdom);
2308
2309 return 0;
2310 }
2311
2312 void /* __init_or_exit */ regulatory_exit(void)
2313 {
2314 struct regulatory_request *reg_request, *tmp;
2315 struct reg_beacon *reg_beacon, *btmp;
2316
2317 cancel_work_sync(&reg_work);
2318 cancel_delayed_work_sync(&reg_timeout);
2319
2320 mutex_lock(&cfg80211_mutex);
2321 mutex_lock(&reg_mutex);
2322
2323 reset_regdomains(true);
2324
2325 dev_set_uevent_suppress(&reg_pdev->dev, true);
2326
2327 platform_device_unregister(reg_pdev);
2328
2329 spin_lock_bh(&reg_pending_beacons_lock);
2330 if (!list_empty(&reg_pending_beacons)) {
2331 list_for_each_entry_safe(reg_beacon, btmp,
2332 &reg_pending_beacons, list) {
2333 list_del(&reg_beacon->list);
2334 kfree(reg_beacon);
2335 }
2336 }
2337 spin_unlock_bh(&reg_pending_beacons_lock);
2338
2339 if (!list_empty(&reg_beacon_list)) {
2340 list_for_each_entry_safe(reg_beacon, btmp,
2341 &reg_beacon_list, list) {
2342 list_del(&reg_beacon->list);
2343 kfree(reg_beacon);
2344 }
2345 }
2346
2347 spin_lock(&reg_requests_lock);
2348 if (!list_empty(&reg_requests_list)) {
2349 list_for_each_entry_safe(reg_request, tmp,
2350 &reg_requests_list, list) {
2351 list_del(&reg_request->list);
2352 kfree(reg_request);
2353 }
2354 }
2355 spin_unlock(&reg_requests_lock);
2356
2357 mutex_unlock(&reg_mutex);
2358 mutex_unlock(&cfg80211_mutex);
2359 }