]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/wireless/reg.c
cfg80211: add cellular base station regulatory hint support
[mirror_ubuntu-bionic-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20
21 /**
22 * DOC: Wireless regulatory infrastructure
23 *
24 * The usual implementation is for a driver to read a device EEPROM to
25 * determine which regulatory domain it should be operating under, then
26 * looking up the allowable channels in a driver-local table and finally
27 * registering those channels in the wiphy structure.
28 *
29 * Another set of compliance enforcement is for drivers to use their
30 * own compliance limits which can be stored on the EEPROM. The host
31 * driver or firmware may ensure these are used.
32 *
33 * In addition to all this we provide an extra layer of regulatory
34 * conformance. For drivers which do not have any regulatory
35 * information CRDA provides the complete regulatory solution.
36 * For others it provides a community effort on further restrictions
37 * to enhance compliance.
38 *
39 * Note: When number of rules --> infinity we will not be able to
40 * index on alpha2 any more, instead we'll probably have to
41 * rely on some SHA1 checksum of the regdomain for example.
42 *
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/random.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "regdb.h"
60 #include "nl80211.h"
61
62 #ifdef CONFIG_CFG80211_REG_DEBUG
63 #define REG_DBG_PRINT(format, args...) \
64 printk(KERN_DEBUG pr_fmt(format), ##args)
65 #else
66 #define REG_DBG_PRINT(args...)
67 #endif
68
69 static struct regulatory_request core_request_world = {
70 .initiator = NL80211_REGDOM_SET_BY_CORE,
71 .alpha2[0] = '0',
72 .alpha2[1] = '0',
73 .intersect = false,
74 .processed = true,
75 .country_ie_env = ENVIRON_ANY,
76 };
77
78 /* Receipt of information from last regulatory request */
79 static struct regulatory_request *last_request = &core_request_world;
80
81 /* To trigger userspace events */
82 static struct platform_device *reg_pdev;
83
84 static struct device_type reg_device_type = {
85 .uevent = reg_device_uevent,
86 };
87
88 /*
89 * Central wireless core regulatory domains, we only need two,
90 * the current one and a world regulatory domain in case we have no
91 * information to give us an alpha2
92 */
93 const struct ieee80211_regdomain *cfg80211_regdomain;
94
95 /*
96 * Protects static reg.c components:
97 * - cfg80211_world_regdom
98 * - cfg80211_regdom
99 * - last_request
100 * - reg_num_devs_support_basehint
101 */
102 static DEFINE_MUTEX(reg_mutex);
103
104 /*
105 * Number of devices that registered to the core
106 * that support cellular base station regulatory hints
107 */
108 static int reg_num_devs_support_basehint;
109
110 static inline void assert_reg_lock(void)
111 {
112 lockdep_assert_held(&reg_mutex);
113 }
114
115 /* Used to queue up regulatory hints */
116 static LIST_HEAD(reg_requests_list);
117 static spinlock_t reg_requests_lock;
118
119 /* Used to queue up beacon hints for review */
120 static LIST_HEAD(reg_pending_beacons);
121 static spinlock_t reg_pending_beacons_lock;
122
123 /* Used to keep track of processed beacon hints */
124 static LIST_HEAD(reg_beacon_list);
125
126 struct reg_beacon {
127 struct list_head list;
128 struct ieee80211_channel chan;
129 };
130
131 static void reg_todo(struct work_struct *work);
132 static DECLARE_WORK(reg_work, reg_todo);
133
134 static void reg_timeout_work(struct work_struct *work);
135 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
136
137 /* We keep a static world regulatory domain in case of the absence of CRDA */
138 static const struct ieee80211_regdomain world_regdom = {
139 .n_reg_rules = 6,
140 .alpha2 = "00",
141 .reg_rules = {
142 /* IEEE 802.11b/g, channels 1..11 */
143 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
144 /* IEEE 802.11b/g, channels 12..13. No HT40
145 * channel fits here. */
146 REG_RULE(2467-10, 2472+10, 20, 6, 20,
147 NL80211_RRF_PASSIVE_SCAN |
148 NL80211_RRF_NO_IBSS),
149 /* IEEE 802.11 channel 14 - Only JP enables
150 * this and for 802.11b only */
151 REG_RULE(2484-10, 2484+10, 20, 6, 20,
152 NL80211_RRF_PASSIVE_SCAN |
153 NL80211_RRF_NO_IBSS |
154 NL80211_RRF_NO_OFDM),
155 /* IEEE 802.11a, channel 36..48 */
156 REG_RULE(5180-10, 5240+10, 40, 6, 20,
157 NL80211_RRF_PASSIVE_SCAN |
158 NL80211_RRF_NO_IBSS),
159
160 /* NB: 5260 MHz - 5700 MHz requies DFS */
161
162 /* IEEE 802.11a, channel 149..165 */
163 REG_RULE(5745-10, 5825+10, 40, 6, 20,
164 NL80211_RRF_PASSIVE_SCAN |
165 NL80211_RRF_NO_IBSS),
166
167 /* IEEE 802.11ad (60gHz), channels 1..3 */
168 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
169 }
170 };
171
172 static const struct ieee80211_regdomain *cfg80211_world_regdom =
173 &world_regdom;
174
175 static char *ieee80211_regdom = "00";
176 static char user_alpha2[2];
177
178 module_param(ieee80211_regdom, charp, 0444);
179 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
180
181 static void reset_regdomains(bool full_reset)
182 {
183 /* avoid freeing static information or freeing something twice */
184 if (cfg80211_regdomain == cfg80211_world_regdom)
185 cfg80211_regdomain = NULL;
186 if (cfg80211_world_regdom == &world_regdom)
187 cfg80211_world_regdom = NULL;
188 if (cfg80211_regdomain == &world_regdom)
189 cfg80211_regdomain = NULL;
190
191 kfree(cfg80211_regdomain);
192 kfree(cfg80211_world_regdom);
193
194 cfg80211_world_regdom = &world_regdom;
195 cfg80211_regdomain = NULL;
196
197 if (!full_reset)
198 return;
199
200 if (last_request != &core_request_world)
201 kfree(last_request);
202 last_request = &core_request_world;
203 }
204
205 /*
206 * Dynamic world regulatory domain requested by the wireless
207 * core upon initialization
208 */
209 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
210 {
211 BUG_ON(!last_request);
212
213 reset_regdomains(false);
214
215 cfg80211_world_regdom = rd;
216 cfg80211_regdomain = rd;
217 }
218
219 bool is_world_regdom(const char *alpha2)
220 {
221 if (!alpha2)
222 return false;
223 if (alpha2[0] == '0' && alpha2[1] == '0')
224 return true;
225 return false;
226 }
227
228 static bool is_alpha2_set(const char *alpha2)
229 {
230 if (!alpha2)
231 return false;
232 if (alpha2[0] != 0 && alpha2[1] != 0)
233 return true;
234 return false;
235 }
236
237 static bool is_unknown_alpha2(const char *alpha2)
238 {
239 if (!alpha2)
240 return false;
241 /*
242 * Special case where regulatory domain was built by driver
243 * but a specific alpha2 cannot be determined
244 */
245 if (alpha2[0] == '9' && alpha2[1] == '9')
246 return true;
247 return false;
248 }
249
250 static bool is_intersected_alpha2(const char *alpha2)
251 {
252 if (!alpha2)
253 return false;
254 /*
255 * Special case where regulatory domain is the
256 * result of an intersection between two regulatory domain
257 * structures
258 */
259 if (alpha2[0] == '9' && alpha2[1] == '8')
260 return true;
261 return false;
262 }
263
264 static bool is_an_alpha2(const char *alpha2)
265 {
266 if (!alpha2)
267 return false;
268 if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
269 return true;
270 return false;
271 }
272
273 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
274 {
275 if (!alpha2_x || !alpha2_y)
276 return false;
277 if (alpha2_x[0] == alpha2_y[0] &&
278 alpha2_x[1] == alpha2_y[1])
279 return true;
280 return false;
281 }
282
283 static bool regdom_changes(const char *alpha2)
284 {
285 assert_cfg80211_lock();
286
287 if (!cfg80211_regdomain)
288 return true;
289 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
290 return false;
291 return true;
292 }
293
294 /*
295 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
296 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
297 * has ever been issued.
298 */
299 static bool is_user_regdom_saved(void)
300 {
301 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
302 return false;
303
304 /* This would indicate a mistake on the design */
305 if (WARN((!is_world_regdom(user_alpha2) &&
306 !is_an_alpha2(user_alpha2)),
307 "Unexpected user alpha2: %c%c\n",
308 user_alpha2[0],
309 user_alpha2[1]))
310 return false;
311
312 return true;
313 }
314
315 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
316 const struct ieee80211_regdomain *src_regd)
317 {
318 struct ieee80211_regdomain *regd;
319 int size_of_regd = 0;
320 unsigned int i;
321
322 size_of_regd = sizeof(struct ieee80211_regdomain) +
323 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
324
325 regd = kzalloc(size_of_regd, GFP_KERNEL);
326 if (!regd)
327 return -ENOMEM;
328
329 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
330
331 for (i = 0; i < src_regd->n_reg_rules; i++)
332 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
333 sizeof(struct ieee80211_reg_rule));
334
335 *dst_regd = regd;
336 return 0;
337 }
338
339 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
340 struct reg_regdb_search_request {
341 char alpha2[2];
342 struct list_head list;
343 };
344
345 static LIST_HEAD(reg_regdb_search_list);
346 static DEFINE_MUTEX(reg_regdb_search_mutex);
347
348 static void reg_regdb_search(struct work_struct *work)
349 {
350 struct reg_regdb_search_request *request;
351 const struct ieee80211_regdomain *curdom, *regdom;
352 int i, r;
353
354 mutex_lock(&reg_regdb_search_mutex);
355 while (!list_empty(&reg_regdb_search_list)) {
356 request = list_first_entry(&reg_regdb_search_list,
357 struct reg_regdb_search_request,
358 list);
359 list_del(&request->list);
360
361 for (i=0; i<reg_regdb_size; i++) {
362 curdom = reg_regdb[i];
363
364 if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
365 r = reg_copy_regd(&regdom, curdom);
366 if (r)
367 break;
368 mutex_lock(&cfg80211_mutex);
369 set_regdom(regdom);
370 mutex_unlock(&cfg80211_mutex);
371 break;
372 }
373 }
374
375 kfree(request);
376 }
377 mutex_unlock(&reg_regdb_search_mutex);
378 }
379
380 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
381
382 static void reg_regdb_query(const char *alpha2)
383 {
384 struct reg_regdb_search_request *request;
385
386 if (!alpha2)
387 return;
388
389 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
390 if (!request)
391 return;
392
393 memcpy(request->alpha2, alpha2, 2);
394
395 mutex_lock(&reg_regdb_search_mutex);
396 list_add_tail(&request->list, &reg_regdb_search_list);
397 mutex_unlock(&reg_regdb_search_mutex);
398
399 schedule_work(&reg_regdb_work);
400 }
401
402 /* Feel free to add any other sanity checks here */
403 static void reg_regdb_size_check(void)
404 {
405 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
406 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
407 }
408 #else
409 static inline void reg_regdb_size_check(void) {}
410 static inline void reg_regdb_query(const char *alpha2) {}
411 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
412
413 /*
414 * This lets us keep regulatory code which is updated on a regulatory
415 * basis in userspace. Country information is filled in by
416 * reg_device_uevent
417 */
418 static int call_crda(const char *alpha2)
419 {
420 if (!is_world_regdom((char *) alpha2))
421 pr_info("Calling CRDA for country: %c%c\n",
422 alpha2[0], alpha2[1]);
423 else
424 pr_info("Calling CRDA to update world regulatory domain\n");
425
426 /* query internal regulatory database (if it exists) */
427 reg_regdb_query(alpha2);
428
429 return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
430 }
431
432 /* Used by nl80211 before kmalloc'ing our regulatory domain */
433 bool reg_is_valid_request(const char *alpha2)
434 {
435 assert_cfg80211_lock();
436
437 if (!last_request)
438 return false;
439
440 return alpha2_equal(last_request->alpha2, alpha2);
441 }
442
443 /* Sanity check on a regulatory rule */
444 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
445 {
446 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
447 u32 freq_diff;
448
449 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
450 return false;
451
452 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
453 return false;
454
455 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
456
457 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
458 freq_range->max_bandwidth_khz > freq_diff)
459 return false;
460
461 return true;
462 }
463
464 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
465 {
466 const struct ieee80211_reg_rule *reg_rule = NULL;
467 unsigned int i;
468
469 if (!rd->n_reg_rules)
470 return false;
471
472 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
473 return false;
474
475 for (i = 0; i < rd->n_reg_rules; i++) {
476 reg_rule = &rd->reg_rules[i];
477 if (!is_valid_reg_rule(reg_rule))
478 return false;
479 }
480
481 return true;
482 }
483
484 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
485 u32 center_freq_khz,
486 u32 bw_khz)
487 {
488 u32 start_freq_khz, end_freq_khz;
489
490 start_freq_khz = center_freq_khz - (bw_khz/2);
491 end_freq_khz = center_freq_khz + (bw_khz/2);
492
493 if (start_freq_khz >= freq_range->start_freq_khz &&
494 end_freq_khz <= freq_range->end_freq_khz)
495 return true;
496
497 return false;
498 }
499
500 /**
501 * freq_in_rule_band - tells us if a frequency is in a frequency band
502 * @freq_range: frequency rule we want to query
503 * @freq_khz: frequency we are inquiring about
504 *
505 * This lets us know if a specific frequency rule is or is not relevant to
506 * a specific frequency's band. Bands are device specific and artificial
507 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
508 * safe for now to assume that a frequency rule should not be part of a
509 * frequency's band if the start freq or end freq are off by more than 2 GHz.
510 * This resolution can be lowered and should be considered as we add
511 * regulatory rule support for other "bands".
512 **/
513 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
514 u32 freq_khz)
515 {
516 #define ONE_GHZ_IN_KHZ 1000000
517 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
518 return true;
519 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
520 return true;
521 return false;
522 #undef ONE_GHZ_IN_KHZ
523 }
524
525 /*
526 * Helper for regdom_intersect(), this does the real
527 * mathematical intersection fun
528 */
529 static int reg_rules_intersect(
530 const struct ieee80211_reg_rule *rule1,
531 const struct ieee80211_reg_rule *rule2,
532 struct ieee80211_reg_rule *intersected_rule)
533 {
534 const struct ieee80211_freq_range *freq_range1, *freq_range2;
535 struct ieee80211_freq_range *freq_range;
536 const struct ieee80211_power_rule *power_rule1, *power_rule2;
537 struct ieee80211_power_rule *power_rule;
538 u32 freq_diff;
539
540 freq_range1 = &rule1->freq_range;
541 freq_range2 = &rule2->freq_range;
542 freq_range = &intersected_rule->freq_range;
543
544 power_rule1 = &rule1->power_rule;
545 power_rule2 = &rule2->power_rule;
546 power_rule = &intersected_rule->power_rule;
547
548 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
549 freq_range2->start_freq_khz);
550 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
551 freq_range2->end_freq_khz);
552 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
553 freq_range2->max_bandwidth_khz);
554
555 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
556 if (freq_range->max_bandwidth_khz > freq_diff)
557 freq_range->max_bandwidth_khz = freq_diff;
558
559 power_rule->max_eirp = min(power_rule1->max_eirp,
560 power_rule2->max_eirp);
561 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
562 power_rule2->max_antenna_gain);
563
564 intersected_rule->flags = (rule1->flags | rule2->flags);
565
566 if (!is_valid_reg_rule(intersected_rule))
567 return -EINVAL;
568
569 return 0;
570 }
571
572 /**
573 * regdom_intersect - do the intersection between two regulatory domains
574 * @rd1: first regulatory domain
575 * @rd2: second regulatory domain
576 *
577 * Use this function to get the intersection between two regulatory domains.
578 * Once completed we will mark the alpha2 for the rd as intersected, "98",
579 * as no one single alpha2 can represent this regulatory domain.
580 *
581 * Returns a pointer to the regulatory domain structure which will hold the
582 * resulting intersection of rules between rd1 and rd2. We will
583 * kzalloc() this structure for you.
584 */
585 static struct ieee80211_regdomain *regdom_intersect(
586 const struct ieee80211_regdomain *rd1,
587 const struct ieee80211_regdomain *rd2)
588 {
589 int r, size_of_regd;
590 unsigned int x, y;
591 unsigned int num_rules = 0, rule_idx = 0;
592 const struct ieee80211_reg_rule *rule1, *rule2;
593 struct ieee80211_reg_rule *intersected_rule;
594 struct ieee80211_regdomain *rd;
595 /* This is just a dummy holder to help us count */
596 struct ieee80211_reg_rule irule;
597
598 /* Uses the stack temporarily for counter arithmetic */
599 intersected_rule = &irule;
600
601 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
602
603 if (!rd1 || !rd2)
604 return NULL;
605
606 /*
607 * First we get a count of the rules we'll need, then we actually
608 * build them. This is to so we can malloc() and free() a
609 * regdomain once. The reason we use reg_rules_intersect() here
610 * is it will return -EINVAL if the rule computed makes no sense.
611 * All rules that do check out OK are valid.
612 */
613
614 for (x = 0; x < rd1->n_reg_rules; x++) {
615 rule1 = &rd1->reg_rules[x];
616 for (y = 0; y < rd2->n_reg_rules; y++) {
617 rule2 = &rd2->reg_rules[y];
618 if (!reg_rules_intersect(rule1, rule2,
619 intersected_rule))
620 num_rules++;
621 memset(intersected_rule, 0,
622 sizeof(struct ieee80211_reg_rule));
623 }
624 }
625
626 if (!num_rules)
627 return NULL;
628
629 size_of_regd = sizeof(struct ieee80211_regdomain) +
630 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
631
632 rd = kzalloc(size_of_regd, GFP_KERNEL);
633 if (!rd)
634 return NULL;
635
636 for (x = 0; x < rd1->n_reg_rules; x++) {
637 rule1 = &rd1->reg_rules[x];
638 for (y = 0; y < rd2->n_reg_rules; y++) {
639 rule2 = &rd2->reg_rules[y];
640 /*
641 * This time around instead of using the stack lets
642 * write to the target rule directly saving ourselves
643 * a memcpy()
644 */
645 intersected_rule = &rd->reg_rules[rule_idx];
646 r = reg_rules_intersect(rule1, rule2,
647 intersected_rule);
648 /*
649 * No need to memset here the intersected rule here as
650 * we're not using the stack anymore
651 */
652 if (r)
653 continue;
654 rule_idx++;
655 }
656 }
657
658 if (rule_idx != num_rules) {
659 kfree(rd);
660 return NULL;
661 }
662
663 rd->n_reg_rules = num_rules;
664 rd->alpha2[0] = '9';
665 rd->alpha2[1] = '8';
666
667 return rd;
668 }
669
670 /*
671 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
672 * want to just have the channel structure use these
673 */
674 static u32 map_regdom_flags(u32 rd_flags)
675 {
676 u32 channel_flags = 0;
677 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
678 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
679 if (rd_flags & NL80211_RRF_NO_IBSS)
680 channel_flags |= IEEE80211_CHAN_NO_IBSS;
681 if (rd_flags & NL80211_RRF_DFS)
682 channel_flags |= IEEE80211_CHAN_RADAR;
683 return channel_flags;
684 }
685
686 static int freq_reg_info_regd(struct wiphy *wiphy,
687 u32 center_freq,
688 u32 desired_bw_khz,
689 const struct ieee80211_reg_rule **reg_rule,
690 const struct ieee80211_regdomain *custom_regd)
691 {
692 int i;
693 bool band_rule_found = false;
694 const struct ieee80211_regdomain *regd;
695 bool bw_fits = false;
696
697 if (!desired_bw_khz)
698 desired_bw_khz = MHZ_TO_KHZ(20);
699
700 regd = custom_regd ? custom_regd : cfg80211_regdomain;
701
702 /*
703 * Follow the driver's regulatory domain, if present, unless a country
704 * IE has been processed or a user wants to help complaince further
705 */
706 if (!custom_regd &&
707 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
708 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
709 wiphy->regd)
710 regd = wiphy->regd;
711
712 if (!regd)
713 return -EINVAL;
714
715 for (i = 0; i < regd->n_reg_rules; i++) {
716 const struct ieee80211_reg_rule *rr;
717 const struct ieee80211_freq_range *fr = NULL;
718
719 rr = &regd->reg_rules[i];
720 fr = &rr->freq_range;
721
722 /*
723 * We only need to know if one frequency rule was
724 * was in center_freq's band, that's enough, so lets
725 * not overwrite it once found
726 */
727 if (!band_rule_found)
728 band_rule_found = freq_in_rule_band(fr, center_freq);
729
730 bw_fits = reg_does_bw_fit(fr,
731 center_freq,
732 desired_bw_khz);
733
734 if (band_rule_found && bw_fits) {
735 *reg_rule = rr;
736 return 0;
737 }
738 }
739
740 if (!band_rule_found)
741 return -ERANGE;
742
743 return -EINVAL;
744 }
745
746 int freq_reg_info(struct wiphy *wiphy,
747 u32 center_freq,
748 u32 desired_bw_khz,
749 const struct ieee80211_reg_rule **reg_rule)
750 {
751 assert_cfg80211_lock();
752 return freq_reg_info_regd(wiphy,
753 center_freq,
754 desired_bw_khz,
755 reg_rule,
756 NULL);
757 }
758 EXPORT_SYMBOL(freq_reg_info);
759
760 #ifdef CONFIG_CFG80211_REG_DEBUG
761 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
762 {
763 switch (initiator) {
764 case NL80211_REGDOM_SET_BY_CORE:
765 return "Set by core";
766 case NL80211_REGDOM_SET_BY_USER:
767 return "Set by user";
768 case NL80211_REGDOM_SET_BY_DRIVER:
769 return "Set by driver";
770 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
771 return "Set by country IE";
772 default:
773 WARN_ON(1);
774 return "Set by bug";
775 }
776 }
777
778 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
779 u32 desired_bw_khz,
780 const struct ieee80211_reg_rule *reg_rule)
781 {
782 const struct ieee80211_power_rule *power_rule;
783 const struct ieee80211_freq_range *freq_range;
784 char max_antenna_gain[32];
785
786 power_rule = &reg_rule->power_rule;
787 freq_range = &reg_rule->freq_range;
788
789 if (!power_rule->max_antenna_gain)
790 snprintf(max_antenna_gain, 32, "N/A");
791 else
792 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
793
794 REG_DBG_PRINT("Updating information on frequency %d MHz "
795 "for a %d MHz width channel with regulatory rule:\n",
796 chan->center_freq,
797 KHZ_TO_MHZ(desired_bw_khz));
798
799 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
800 freq_range->start_freq_khz,
801 freq_range->end_freq_khz,
802 freq_range->max_bandwidth_khz,
803 max_antenna_gain,
804 power_rule->max_eirp);
805 }
806 #else
807 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
808 u32 desired_bw_khz,
809 const struct ieee80211_reg_rule *reg_rule)
810 {
811 return;
812 }
813 #endif
814
815 /*
816 * Note that right now we assume the desired channel bandwidth
817 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
818 * per channel, the primary and the extension channel). To support
819 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
820 * new ieee80211_channel.target_bw and re run the regulatory check
821 * on the wiphy with the target_bw specified. Then we can simply use
822 * that below for the desired_bw_khz below.
823 */
824 static void handle_channel(struct wiphy *wiphy,
825 enum nl80211_reg_initiator initiator,
826 enum ieee80211_band band,
827 unsigned int chan_idx)
828 {
829 int r;
830 u32 flags, bw_flags = 0;
831 u32 desired_bw_khz = MHZ_TO_KHZ(20);
832 const struct ieee80211_reg_rule *reg_rule = NULL;
833 const struct ieee80211_power_rule *power_rule = NULL;
834 const struct ieee80211_freq_range *freq_range = NULL;
835 struct ieee80211_supported_band *sband;
836 struct ieee80211_channel *chan;
837 struct wiphy *request_wiphy = NULL;
838
839 assert_cfg80211_lock();
840
841 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
842
843 sband = wiphy->bands[band];
844 BUG_ON(chan_idx >= sband->n_channels);
845 chan = &sband->channels[chan_idx];
846
847 flags = chan->orig_flags;
848
849 r = freq_reg_info(wiphy,
850 MHZ_TO_KHZ(chan->center_freq),
851 desired_bw_khz,
852 &reg_rule);
853
854 if (r) {
855 /*
856 * We will disable all channels that do not match our
857 * received regulatory rule unless the hint is coming
858 * from a Country IE and the Country IE had no information
859 * about a band. The IEEE 802.11 spec allows for an AP
860 * to send only a subset of the regulatory rules allowed,
861 * so an AP in the US that only supports 2.4 GHz may only send
862 * a country IE with information for the 2.4 GHz band
863 * while 5 GHz is still supported.
864 */
865 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
866 r == -ERANGE)
867 return;
868
869 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
870 chan->flags = IEEE80211_CHAN_DISABLED;
871 return;
872 }
873
874 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
875
876 power_rule = &reg_rule->power_rule;
877 freq_range = &reg_rule->freq_range;
878
879 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
880 bw_flags = IEEE80211_CHAN_NO_HT40;
881
882 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
883 request_wiphy && request_wiphy == wiphy &&
884 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
885 /*
886 * This guarantees the driver's requested regulatory domain
887 * will always be used as a base for further regulatory
888 * settings
889 */
890 chan->flags = chan->orig_flags =
891 map_regdom_flags(reg_rule->flags) | bw_flags;
892 chan->max_antenna_gain = chan->orig_mag =
893 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
894 chan->max_power = chan->orig_mpwr =
895 (int) MBM_TO_DBM(power_rule->max_eirp);
896 return;
897 }
898
899 chan->beacon_found = false;
900 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
901 chan->max_antenna_gain = min(chan->orig_mag,
902 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
903 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
904 chan->max_power = min(chan->max_power, chan->max_reg_power);
905 }
906
907 static void handle_band(struct wiphy *wiphy,
908 enum ieee80211_band band,
909 enum nl80211_reg_initiator initiator)
910 {
911 unsigned int i;
912 struct ieee80211_supported_band *sband;
913
914 BUG_ON(!wiphy->bands[band]);
915 sband = wiphy->bands[band];
916
917 for (i = 0; i < sband->n_channels; i++)
918 handle_channel(wiphy, initiator, band, i);
919 }
920
921 static bool reg_request_cell_base(struct regulatory_request *request)
922 {
923 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
924 return false;
925 if (request->user_reg_hint_type != NL80211_USER_REG_HINT_CELL_BASE)
926 return false;
927 return true;
928 }
929
930 bool reg_last_request_cell_base(void)
931 {
932 assert_cfg80211_lock();
933
934 mutex_lock(&reg_mutex);
935 return reg_request_cell_base(last_request);
936 mutex_unlock(&reg_mutex);
937 }
938
939 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
940
941 /* Core specific check */
942 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
943 {
944 if (!reg_num_devs_support_basehint)
945 return -EOPNOTSUPP;
946
947 if (reg_request_cell_base(last_request)) {
948 if (!regdom_changes(pending_request->alpha2))
949 return -EALREADY;
950 return 0;
951 }
952 return 0;
953 }
954
955 /* Device specific check */
956 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
957 {
958 if (!(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS))
959 return true;
960 return false;
961 }
962 #else
963 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
964 {
965 return -EOPNOTSUPP;
966 }
967 static int reg_dev_ignore_cell_hint(struct wiphy *wiphy)
968 {
969 return true;
970 }
971 #endif
972
973
974 static bool ignore_reg_update(struct wiphy *wiphy,
975 enum nl80211_reg_initiator initiator)
976 {
977 if (!last_request) {
978 REG_DBG_PRINT("Ignoring regulatory request %s since "
979 "last_request is not set\n",
980 reg_initiator_name(initiator));
981 return true;
982 }
983
984 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
985 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
986 REG_DBG_PRINT("Ignoring regulatory request %s "
987 "since the driver uses its own custom "
988 "regulatory domain\n",
989 reg_initiator_name(initiator));
990 return true;
991 }
992
993 /*
994 * wiphy->regd will be set once the device has its own
995 * desired regulatory domain set
996 */
997 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
998 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
999 !is_world_regdom(last_request->alpha2)) {
1000 REG_DBG_PRINT("Ignoring regulatory request %s "
1001 "since the driver requires its own regulatory "
1002 "domain to be set first\n",
1003 reg_initiator_name(initiator));
1004 return true;
1005 }
1006
1007 if (reg_request_cell_base(last_request))
1008 return reg_dev_ignore_cell_hint(wiphy);
1009
1010 return false;
1011 }
1012
1013 static void handle_reg_beacon(struct wiphy *wiphy,
1014 unsigned int chan_idx,
1015 struct reg_beacon *reg_beacon)
1016 {
1017 struct ieee80211_supported_band *sband;
1018 struct ieee80211_channel *chan;
1019 bool channel_changed = false;
1020 struct ieee80211_channel chan_before;
1021
1022 assert_cfg80211_lock();
1023
1024 sband = wiphy->bands[reg_beacon->chan.band];
1025 chan = &sband->channels[chan_idx];
1026
1027 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1028 return;
1029
1030 if (chan->beacon_found)
1031 return;
1032
1033 chan->beacon_found = true;
1034
1035 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1036 return;
1037
1038 chan_before.center_freq = chan->center_freq;
1039 chan_before.flags = chan->flags;
1040
1041 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1042 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1043 channel_changed = true;
1044 }
1045
1046 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1047 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1048 channel_changed = true;
1049 }
1050
1051 if (channel_changed)
1052 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1053 }
1054
1055 /*
1056 * Called when a scan on a wiphy finds a beacon on
1057 * new channel
1058 */
1059 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1060 struct reg_beacon *reg_beacon)
1061 {
1062 unsigned int i;
1063 struct ieee80211_supported_band *sband;
1064
1065 assert_cfg80211_lock();
1066
1067 if (!wiphy->bands[reg_beacon->chan.band])
1068 return;
1069
1070 sband = wiphy->bands[reg_beacon->chan.band];
1071
1072 for (i = 0; i < sband->n_channels; i++)
1073 handle_reg_beacon(wiphy, i, reg_beacon);
1074 }
1075
1076 /*
1077 * Called upon reg changes or a new wiphy is added
1078 */
1079 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1080 {
1081 unsigned int i;
1082 struct ieee80211_supported_band *sband;
1083 struct reg_beacon *reg_beacon;
1084
1085 assert_cfg80211_lock();
1086
1087 if (list_empty(&reg_beacon_list))
1088 return;
1089
1090 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1091 if (!wiphy->bands[reg_beacon->chan.band])
1092 continue;
1093 sband = wiphy->bands[reg_beacon->chan.band];
1094 for (i = 0; i < sband->n_channels; i++)
1095 handle_reg_beacon(wiphy, i, reg_beacon);
1096 }
1097 }
1098
1099 static bool reg_is_world_roaming(struct wiphy *wiphy)
1100 {
1101 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1102 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1103 return true;
1104 if (last_request &&
1105 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1106 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1107 return true;
1108 return false;
1109 }
1110
1111 /* Reap the advantages of previously found beacons */
1112 static void reg_process_beacons(struct wiphy *wiphy)
1113 {
1114 /*
1115 * Means we are just firing up cfg80211, so no beacons would
1116 * have been processed yet.
1117 */
1118 if (!last_request)
1119 return;
1120 if (!reg_is_world_roaming(wiphy))
1121 return;
1122 wiphy_update_beacon_reg(wiphy);
1123 }
1124
1125 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1126 {
1127 if (!chan)
1128 return true;
1129 if (chan->flags & IEEE80211_CHAN_DISABLED)
1130 return true;
1131 /* This would happen when regulatory rules disallow HT40 completely */
1132 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1133 return true;
1134 return false;
1135 }
1136
1137 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1138 enum ieee80211_band band,
1139 unsigned int chan_idx)
1140 {
1141 struct ieee80211_supported_band *sband;
1142 struct ieee80211_channel *channel;
1143 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1144 unsigned int i;
1145
1146 assert_cfg80211_lock();
1147
1148 sband = wiphy->bands[band];
1149 BUG_ON(chan_idx >= sband->n_channels);
1150 channel = &sband->channels[chan_idx];
1151
1152 if (is_ht40_not_allowed(channel)) {
1153 channel->flags |= IEEE80211_CHAN_NO_HT40;
1154 return;
1155 }
1156
1157 /*
1158 * We need to ensure the extension channels exist to
1159 * be able to use HT40- or HT40+, this finds them (or not)
1160 */
1161 for (i = 0; i < sband->n_channels; i++) {
1162 struct ieee80211_channel *c = &sband->channels[i];
1163 if (c->center_freq == (channel->center_freq - 20))
1164 channel_before = c;
1165 if (c->center_freq == (channel->center_freq + 20))
1166 channel_after = c;
1167 }
1168
1169 /*
1170 * Please note that this assumes target bandwidth is 20 MHz,
1171 * if that ever changes we also need to change the below logic
1172 * to include that as well.
1173 */
1174 if (is_ht40_not_allowed(channel_before))
1175 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1176 else
1177 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1178
1179 if (is_ht40_not_allowed(channel_after))
1180 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1181 else
1182 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1183 }
1184
1185 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1186 enum ieee80211_band band)
1187 {
1188 unsigned int i;
1189 struct ieee80211_supported_band *sband;
1190
1191 BUG_ON(!wiphy->bands[band]);
1192 sband = wiphy->bands[band];
1193
1194 for (i = 0; i < sband->n_channels; i++)
1195 reg_process_ht_flags_channel(wiphy, band, i);
1196 }
1197
1198 static void reg_process_ht_flags(struct wiphy *wiphy)
1199 {
1200 enum ieee80211_band band;
1201
1202 if (!wiphy)
1203 return;
1204
1205 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1206 if (wiphy->bands[band])
1207 reg_process_ht_flags_band(wiphy, band);
1208 }
1209
1210 }
1211
1212 static void wiphy_update_regulatory(struct wiphy *wiphy,
1213 enum nl80211_reg_initiator initiator)
1214 {
1215 enum ieee80211_band band;
1216
1217 assert_reg_lock();
1218
1219 if (ignore_reg_update(wiphy, initiator))
1220 return;
1221
1222 last_request->dfs_region = cfg80211_regdomain->dfs_region;
1223
1224 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1225 if (wiphy->bands[band])
1226 handle_band(wiphy, band, initiator);
1227 }
1228
1229 reg_process_beacons(wiphy);
1230 reg_process_ht_flags(wiphy);
1231 if (wiphy->reg_notifier)
1232 wiphy->reg_notifier(wiphy, last_request);
1233 }
1234
1235 void regulatory_update(struct wiphy *wiphy,
1236 enum nl80211_reg_initiator setby)
1237 {
1238 mutex_lock(&reg_mutex);
1239 wiphy_update_regulatory(wiphy, setby);
1240 mutex_unlock(&reg_mutex);
1241 }
1242
1243 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1244 {
1245 struct cfg80211_registered_device *rdev;
1246 struct wiphy *wiphy;
1247
1248 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1249 wiphy = &rdev->wiphy;
1250 wiphy_update_regulatory(wiphy, initiator);
1251 /*
1252 * Regulatory updates set by CORE are ignored for custom
1253 * regulatory cards. Let us notify the changes to the driver,
1254 * as some drivers used this to restore its orig_* reg domain.
1255 */
1256 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1257 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1258 wiphy->reg_notifier)
1259 wiphy->reg_notifier(wiphy, last_request);
1260 }
1261 }
1262
1263 static void handle_channel_custom(struct wiphy *wiphy,
1264 enum ieee80211_band band,
1265 unsigned int chan_idx,
1266 const struct ieee80211_regdomain *regd)
1267 {
1268 int r;
1269 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1270 u32 bw_flags = 0;
1271 const struct ieee80211_reg_rule *reg_rule = NULL;
1272 const struct ieee80211_power_rule *power_rule = NULL;
1273 const struct ieee80211_freq_range *freq_range = NULL;
1274 struct ieee80211_supported_band *sband;
1275 struct ieee80211_channel *chan;
1276
1277 assert_reg_lock();
1278
1279 sband = wiphy->bands[band];
1280 BUG_ON(chan_idx >= sband->n_channels);
1281 chan = &sband->channels[chan_idx];
1282
1283 r = freq_reg_info_regd(wiphy,
1284 MHZ_TO_KHZ(chan->center_freq),
1285 desired_bw_khz,
1286 &reg_rule,
1287 regd);
1288
1289 if (r) {
1290 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1291 "regd has no rule that fits a %d MHz "
1292 "wide channel\n",
1293 chan->center_freq,
1294 KHZ_TO_MHZ(desired_bw_khz));
1295 chan->flags = IEEE80211_CHAN_DISABLED;
1296 return;
1297 }
1298
1299 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1300
1301 power_rule = &reg_rule->power_rule;
1302 freq_range = &reg_rule->freq_range;
1303
1304 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1305 bw_flags = IEEE80211_CHAN_NO_HT40;
1306
1307 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1308 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1309 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1310 }
1311
1312 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1313 const struct ieee80211_regdomain *regd)
1314 {
1315 unsigned int i;
1316 struct ieee80211_supported_band *sband;
1317
1318 BUG_ON(!wiphy->bands[band]);
1319 sband = wiphy->bands[band];
1320
1321 for (i = 0; i < sband->n_channels; i++)
1322 handle_channel_custom(wiphy, band, i, regd);
1323 }
1324
1325 /* Used by drivers prior to wiphy registration */
1326 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1327 const struct ieee80211_regdomain *regd)
1328 {
1329 enum ieee80211_band band;
1330 unsigned int bands_set = 0;
1331
1332 mutex_lock(&reg_mutex);
1333 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1334 if (!wiphy->bands[band])
1335 continue;
1336 handle_band_custom(wiphy, band, regd);
1337 bands_set++;
1338 }
1339 mutex_unlock(&reg_mutex);
1340
1341 /*
1342 * no point in calling this if it won't have any effect
1343 * on your device's supportd bands.
1344 */
1345 WARN_ON(!bands_set);
1346 }
1347 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1348
1349 /*
1350 * Return value which can be used by ignore_request() to indicate
1351 * it has been determined we should intersect two regulatory domains
1352 */
1353 #define REG_INTERSECT 1
1354
1355 /* This has the logic which determines when a new request
1356 * should be ignored. */
1357 static int ignore_request(struct wiphy *wiphy,
1358 struct regulatory_request *pending_request)
1359 {
1360 struct wiphy *last_wiphy = NULL;
1361
1362 assert_cfg80211_lock();
1363
1364 /* All initial requests are respected */
1365 if (!last_request)
1366 return 0;
1367
1368 switch (pending_request->initiator) {
1369 case NL80211_REGDOM_SET_BY_CORE:
1370 return 0;
1371 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1372
1373 if (reg_request_cell_base(last_request)) {
1374 /* Trust a Cell base station over the AP's country IE */
1375 if (regdom_changes(pending_request->alpha2))
1376 return -EOPNOTSUPP;
1377 return -EALREADY;
1378 }
1379
1380 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1381
1382 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1383 return -EINVAL;
1384 if (last_request->initiator ==
1385 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1386 if (last_wiphy != wiphy) {
1387 /*
1388 * Two cards with two APs claiming different
1389 * Country IE alpha2s. We could
1390 * intersect them, but that seems unlikely
1391 * to be correct. Reject second one for now.
1392 */
1393 if (regdom_changes(pending_request->alpha2))
1394 return -EOPNOTSUPP;
1395 return -EALREADY;
1396 }
1397 /*
1398 * Two consecutive Country IE hints on the same wiphy.
1399 * This should be picked up early by the driver/stack
1400 */
1401 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1402 return 0;
1403 return -EALREADY;
1404 }
1405 return 0;
1406 case NL80211_REGDOM_SET_BY_DRIVER:
1407 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1408 if (regdom_changes(pending_request->alpha2))
1409 return 0;
1410 return -EALREADY;
1411 }
1412
1413 /*
1414 * This would happen if you unplug and plug your card
1415 * back in or if you add a new device for which the previously
1416 * loaded card also agrees on the regulatory domain.
1417 */
1418 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1419 !regdom_changes(pending_request->alpha2))
1420 return -EALREADY;
1421
1422 return REG_INTERSECT;
1423 case NL80211_REGDOM_SET_BY_USER:
1424 if (reg_request_cell_base(pending_request))
1425 return reg_ignore_cell_hint(pending_request);
1426
1427 if (reg_request_cell_base(last_request))
1428 return -EOPNOTSUPP;
1429
1430 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1431 return REG_INTERSECT;
1432 /*
1433 * If the user knows better the user should set the regdom
1434 * to their country before the IE is picked up
1435 */
1436 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1437 last_request->intersect)
1438 return -EOPNOTSUPP;
1439 /*
1440 * Process user requests only after previous user/driver/core
1441 * requests have been processed
1442 */
1443 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1444 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1445 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1446 if (regdom_changes(last_request->alpha2))
1447 return -EAGAIN;
1448 }
1449
1450 if (!regdom_changes(pending_request->alpha2))
1451 return -EALREADY;
1452
1453 return 0;
1454 }
1455
1456 return -EINVAL;
1457 }
1458
1459 static void reg_set_request_processed(void)
1460 {
1461 bool need_more_processing = false;
1462
1463 last_request->processed = true;
1464
1465 spin_lock(&reg_requests_lock);
1466 if (!list_empty(&reg_requests_list))
1467 need_more_processing = true;
1468 spin_unlock(&reg_requests_lock);
1469
1470 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1471 cancel_delayed_work(&reg_timeout);
1472
1473 if (need_more_processing)
1474 schedule_work(&reg_work);
1475 }
1476
1477 /**
1478 * __regulatory_hint - hint to the wireless core a regulatory domain
1479 * @wiphy: if the hint comes from country information from an AP, this
1480 * is required to be set to the wiphy that received the information
1481 * @pending_request: the regulatory request currently being processed
1482 *
1483 * The Wireless subsystem can use this function to hint to the wireless core
1484 * what it believes should be the current regulatory domain.
1485 *
1486 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1487 * already been set or other standard error codes.
1488 *
1489 * Caller must hold &cfg80211_mutex and &reg_mutex
1490 */
1491 static int __regulatory_hint(struct wiphy *wiphy,
1492 struct regulatory_request *pending_request)
1493 {
1494 bool intersect = false;
1495 int r = 0;
1496
1497 assert_cfg80211_lock();
1498
1499 r = ignore_request(wiphy, pending_request);
1500
1501 if (r == REG_INTERSECT) {
1502 if (pending_request->initiator ==
1503 NL80211_REGDOM_SET_BY_DRIVER) {
1504 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1505 if (r) {
1506 kfree(pending_request);
1507 return r;
1508 }
1509 }
1510 intersect = true;
1511 } else if (r) {
1512 /*
1513 * If the regulatory domain being requested by the
1514 * driver has already been set just copy it to the
1515 * wiphy
1516 */
1517 if (r == -EALREADY &&
1518 pending_request->initiator ==
1519 NL80211_REGDOM_SET_BY_DRIVER) {
1520 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1521 if (r) {
1522 kfree(pending_request);
1523 return r;
1524 }
1525 r = -EALREADY;
1526 goto new_request;
1527 }
1528 kfree(pending_request);
1529 return r;
1530 }
1531
1532 new_request:
1533 if (last_request != &core_request_world)
1534 kfree(last_request);
1535
1536 last_request = pending_request;
1537 last_request->intersect = intersect;
1538
1539 pending_request = NULL;
1540
1541 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1542 user_alpha2[0] = last_request->alpha2[0];
1543 user_alpha2[1] = last_request->alpha2[1];
1544 }
1545
1546 /* When r == REG_INTERSECT we do need to call CRDA */
1547 if (r < 0) {
1548 /*
1549 * Since CRDA will not be called in this case as we already
1550 * have applied the requested regulatory domain before we just
1551 * inform userspace we have processed the request
1552 */
1553 if (r == -EALREADY) {
1554 nl80211_send_reg_change_event(last_request);
1555 reg_set_request_processed();
1556 }
1557 return r;
1558 }
1559
1560 return call_crda(last_request->alpha2);
1561 }
1562
1563 /* This processes *all* regulatory hints */
1564 static void reg_process_hint(struct regulatory_request *reg_request,
1565 enum nl80211_reg_initiator reg_initiator)
1566 {
1567 int r = 0;
1568 struct wiphy *wiphy = NULL;
1569
1570 BUG_ON(!reg_request->alpha2);
1571
1572 if (wiphy_idx_valid(reg_request->wiphy_idx))
1573 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1574
1575 if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1576 !wiphy) {
1577 kfree(reg_request);
1578 return;
1579 }
1580
1581 r = __regulatory_hint(wiphy, reg_request);
1582 /* This is required so that the orig_* parameters are saved */
1583 if (r == -EALREADY && wiphy &&
1584 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1585 wiphy_update_regulatory(wiphy, reg_initiator);
1586 return;
1587 }
1588
1589 /*
1590 * We only time out user hints, given that they should be the only
1591 * source of bogus requests.
1592 */
1593 if (r != -EALREADY &&
1594 reg_initiator == NL80211_REGDOM_SET_BY_USER)
1595 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1596 }
1597
1598 /*
1599 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1600 * Regulatory hints come on a first come first serve basis and we
1601 * must process each one atomically.
1602 */
1603 static void reg_process_pending_hints(void)
1604 {
1605 struct regulatory_request *reg_request;
1606
1607 mutex_lock(&cfg80211_mutex);
1608 mutex_lock(&reg_mutex);
1609
1610 /* When last_request->processed becomes true this will be rescheduled */
1611 if (last_request && !last_request->processed) {
1612 REG_DBG_PRINT("Pending regulatory request, waiting "
1613 "for it to be processed...\n");
1614 goto out;
1615 }
1616
1617 spin_lock(&reg_requests_lock);
1618
1619 if (list_empty(&reg_requests_list)) {
1620 spin_unlock(&reg_requests_lock);
1621 goto out;
1622 }
1623
1624 reg_request = list_first_entry(&reg_requests_list,
1625 struct regulatory_request,
1626 list);
1627 list_del_init(&reg_request->list);
1628
1629 spin_unlock(&reg_requests_lock);
1630
1631 reg_process_hint(reg_request, reg_request->initiator);
1632
1633 out:
1634 mutex_unlock(&reg_mutex);
1635 mutex_unlock(&cfg80211_mutex);
1636 }
1637
1638 /* Processes beacon hints -- this has nothing to do with country IEs */
1639 static void reg_process_pending_beacon_hints(void)
1640 {
1641 struct cfg80211_registered_device *rdev;
1642 struct reg_beacon *pending_beacon, *tmp;
1643
1644 /*
1645 * No need to hold the reg_mutex here as we just touch wiphys
1646 * and do not read or access regulatory variables.
1647 */
1648 mutex_lock(&cfg80211_mutex);
1649
1650 /* This goes through the _pending_ beacon list */
1651 spin_lock_bh(&reg_pending_beacons_lock);
1652
1653 if (list_empty(&reg_pending_beacons)) {
1654 spin_unlock_bh(&reg_pending_beacons_lock);
1655 goto out;
1656 }
1657
1658 list_for_each_entry_safe(pending_beacon, tmp,
1659 &reg_pending_beacons, list) {
1660
1661 list_del_init(&pending_beacon->list);
1662
1663 /* Applies the beacon hint to current wiphys */
1664 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1665 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1666
1667 /* Remembers the beacon hint for new wiphys or reg changes */
1668 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1669 }
1670
1671 spin_unlock_bh(&reg_pending_beacons_lock);
1672 out:
1673 mutex_unlock(&cfg80211_mutex);
1674 }
1675
1676 static void reg_todo(struct work_struct *work)
1677 {
1678 reg_process_pending_hints();
1679 reg_process_pending_beacon_hints();
1680 }
1681
1682 static void queue_regulatory_request(struct regulatory_request *request)
1683 {
1684 if (isalpha(request->alpha2[0]))
1685 request->alpha2[0] = toupper(request->alpha2[0]);
1686 if (isalpha(request->alpha2[1]))
1687 request->alpha2[1] = toupper(request->alpha2[1]);
1688
1689 spin_lock(&reg_requests_lock);
1690 list_add_tail(&request->list, &reg_requests_list);
1691 spin_unlock(&reg_requests_lock);
1692
1693 schedule_work(&reg_work);
1694 }
1695
1696 /*
1697 * Core regulatory hint -- happens during cfg80211_init()
1698 * and when we restore regulatory settings.
1699 */
1700 static int regulatory_hint_core(const char *alpha2)
1701 {
1702 struct regulatory_request *request;
1703
1704 request = kzalloc(sizeof(struct regulatory_request),
1705 GFP_KERNEL);
1706 if (!request)
1707 return -ENOMEM;
1708
1709 request->alpha2[0] = alpha2[0];
1710 request->alpha2[1] = alpha2[1];
1711 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1712
1713 queue_regulatory_request(request);
1714
1715 return 0;
1716 }
1717
1718 /* User hints */
1719 int regulatory_hint_user(const char *alpha2,
1720 enum nl80211_user_reg_hint_type user_reg_hint_type)
1721 {
1722 struct regulatory_request *request;
1723
1724 BUG_ON(!alpha2);
1725
1726 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1727 if (!request)
1728 return -ENOMEM;
1729
1730 request->wiphy_idx = WIPHY_IDX_STALE;
1731 request->alpha2[0] = alpha2[0];
1732 request->alpha2[1] = alpha2[1];
1733 request->initiator = NL80211_REGDOM_SET_BY_USER;
1734 request->user_reg_hint_type = user_reg_hint_type;
1735
1736 queue_regulatory_request(request);
1737
1738 return 0;
1739 }
1740
1741 /* Driver hints */
1742 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1743 {
1744 struct regulatory_request *request;
1745
1746 BUG_ON(!alpha2);
1747 BUG_ON(!wiphy);
1748
1749 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1750 if (!request)
1751 return -ENOMEM;
1752
1753 request->wiphy_idx = get_wiphy_idx(wiphy);
1754
1755 /* Must have registered wiphy first */
1756 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1757
1758 request->alpha2[0] = alpha2[0];
1759 request->alpha2[1] = alpha2[1];
1760 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1761
1762 queue_regulatory_request(request);
1763
1764 return 0;
1765 }
1766 EXPORT_SYMBOL(regulatory_hint);
1767
1768 /*
1769 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1770 * therefore cannot iterate over the rdev list here.
1771 */
1772 void regulatory_hint_11d(struct wiphy *wiphy,
1773 enum ieee80211_band band,
1774 u8 *country_ie,
1775 u8 country_ie_len)
1776 {
1777 char alpha2[2];
1778 enum environment_cap env = ENVIRON_ANY;
1779 struct regulatory_request *request;
1780
1781 mutex_lock(&reg_mutex);
1782
1783 if (unlikely(!last_request))
1784 goto out;
1785
1786 /* IE len must be evenly divisible by 2 */
1787 if (country_ie_len & 0x01)
1788 goto out;
1789
1790 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1791 goto out;
1792
1793 alpha2[0] = country_ie[0];
1794 alpha2[1] = country_ie[1];
1795
1796 if (country_ie[2] == 'I')
1797 env = ENVIRON_INDOOR;
1798 else if (country_ie[2] == 'O')
1799 env = ENVIRON_OUTDOOR;
1800
1801 /*
1802 * We will run this only upon a successful connection on cfg80211.
1803 * We leave conflict resolution to the workqueue, where can hold
1804 * cfg80211_mutex.
1805 */
1806 if (likely(last_request->initiator ==
1807 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1808 wiphy_idx_valid(last_request->wiphy_idx)))
1809 goto out;
1810
1811 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1812 if (!request)
1813 goto out;
1814
1815 request->wiphy_idx = get_wiphy_idx(wiphy);
1816 request->alpha2[0] = alpha2[0];
1817 request->alpha2[1] = alpha2[1];
1818 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1819 request->country_ie_env = env;
1820
1821 mutex_unlock(&reg_mutex);
1822
1823 queue_regulatory_request(request);
1824
1825 return;
1826
1827 out:
1828 mutex_unlock(&reg_mutex);
1829 }
1830
1831 static void restore_alpha2(char *alpha2, bool reset_user)
1832 {
1833 /* indicates there is no alpha2 to consider for restoration */
1834 alpha2[0] = '9';
1835 alpha2[1] = '7';
1836
1837 /* The user setting has precedence over the module parameter */
1838 if (is_user_regdom_saved()) {
1839 /* Unless we're asked to ignore it and reset it */
1840 if (reset_user) {
1841 REG_DBG_PRINT("Restoring regulatory settings "
1842 "including user preference\n");
1843 user_alpha2[0] = '9';
1844 user_alpha2[1] = '7';
1845
1846 /*
1847 * If we're ignoring user settings, we still need to
1848 * check the module parameter to ensure we put things
1849 * back as they were for a full restore.
1850 */
1851 if (!is_world_regdom(ieee80211_regdom)) {
1852 REG_DBG_PRINT("Keeping preference on "
1853 "module parameter ieee80211_regdom: %c%c\n",
1854 ieee80211_regdom[0],
1855 ieee80211_regdom[1]);
1856 alpha2[0] = ieee80211_regdom[0];
1857 alpha2[1] = ieee80211_regdom[1];
1858 }
1859 } else {
1860 REG_DBG_PRINT("Restoring regulatory settings "
1861 "while preserving user preference for: %c%c\n",
1862 user_alpha2[0],
1863 user_alpha2[1]);
1864 alpha2[0] = user_alpha2[0];
1865 alpha2[1] = user_alpha2[1];
1866 }
1867 } else if (!is_world_regdom(ieee80211_regdom)) {
1868 REG_DBG_PRINT("Keeping preference on "
1869 "module parameter ieee80211_regdom: %c%c\n",
1870 ieee80211_regdom[0],
1871 ieee80211_regdom[1]);
1872 alpha2[0] = ieee80211_regdom[0];
1873 alpha2[1] = ieee80211_regdom[1];
1874 } else
1875 REG_DBG_PRINT("Restoring regulatory settings\n");
1876 }
1877
1878 static void restore_custom_reg_settings(struct wiphy *wiphy)
1879 {
1880 struct ieee80211_supported_band *sband;
1881 enum ieee80211_band band;
1882 struct ieee80211_channel *chan;
1883 int i;
1884
1885 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1886 sband = wiphy->bands[band];
1887 if (!sband)
1888 continue;
1889 for (i = 0; i < sband->n_channels; i++) {
1890 chan = &sband->channels[i];
1891 chan->flags = chan->orig_flags;
1892 chan->max_antenna_gain = chan->orig_mag;
1893 chan->max_power = chan->orig_mpwr;
1894 }
1895 }
1896 }
1897
1898 /*
1899 * Restoring regulatory settings involves ingoring any
1900 * possibly stale country IE information and user regulatory
1901 * settings if so desired, this includes any beacon hints
1902 * learned as we could have traveled outside to another country
1903 * after disconnection. To restore regulatory settings we do
1904 * exactly what we did at bootup:
1905 *
1906 * - send a core regulatory hint
1907 * - send a user regulatory hint if applicable
1908 *
1909 * Device drivers that send a regulatory hint for a specific country
1910 * keep their own regulatory domain on wiphy->regd so that does does
1911 * not need to be remembered.
1912 */
1913 static void restore_regulatory_settings(bool reset_user)
1914 {
1915 char alpha2[2];
1916 char world_alpha2[2];
1917 struct reg_beacon *reg_beacon, *btmp;
1918 struct regulatory_request *reg_request, *tmp;
1919 LIST_HEAD(tmp_reg_req_list);
1920 struct cfg80211_registered_device *rdev;
1921
1922 mutex_lock(&cfg80211_mutex);
1923 mutex_lock(&reg_mutex);
1924
1925 reset_regdomains(true);
1926 restore_alpha2(alpha2, reset_user);
1927
1928 /*
1929 * If there's any pending requests we simply
1930 * stash them to a temporary pending queue and
1931 * add then after we've restored regulatory
1932 * settings.
1933 */
1934 spin_lock(&reg_requests_lock);
1935 if (!list_empty(&reg_requests_list)) {
1936 list_for_each_entry_safe(reg_request, tmp,
1937 &reg_requests_list, list) {
1938 if (reg_request->initiator !=
1939 NL80211_REGDOM_SET_BY_USER)
1940 continue;
1941 list_del(&reg_request->list);
1942 list_add_tail(&reg_request->list, &tmp_reg_req_list);
1943 }
1944 }
1945 spin_unlock(&reg_requests_lock);
1946
1947 /* Clear beacon hints */
1948 spin_lock_bh(&reg_pending_beacons_lock);
1949 if (!list_empty(&reg_pending_beacons)) {
1950 list_for_each_entry_safe(reg_beacon, btmp,
1951 &reg_pending_beacons, list) {
1952 list_del(&reg_beacon->list);
1953 kfree(reg_beacon);
1954 }
1955 }
1956 spin_unlock_bh(&reg_pending_beacons_lock);
1957
1958 if (!list_empty(&reg_beacon_list)) {
1959 list_for_each_entry_safe(reg_beacon, btmp,
1960 &reg_beacon_list, list) {
1961 list_del(&reg_beacon->list);
1962 kfree(reg_beacon);
1963 }
1964 }
1965
1966 /* First restore to the basic regulatory settings */
1967 cfg80211_regdomain = cfg80211_world_regdom;
1968 world_alpha2[0] = cfg80211_regdomain->alpha2[0];
1969 world_alpha2[1] = cfg80211_regdomain->alpha2[1];
1970
1971 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1972 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1973 restore_custom_reg_settings(&rdev->wiphy);
1974 }
1975
1976 mutex_unlock(&reg_mutex);
1977 mutex_unlock(&cfg80211_mutex);
1978
1979 regulatory_hint_core(world_alpha2);
1980
1981 /*
1982 * This restores the ieee80211_regdom module parameter
1983 * preference or the last user requested regulatory
1984 * settings, user regulatory settings takes precedence.
1985 */
1986 if (is_an_alpha2(alpha2))
1987 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
1988
1989 if (list_empty(&tmp_reg_req_list))
1990 return;
1991
1992 mutex_lock(&cfg80211_mutex);
1993 mutex_lock(&reg_mutex);
1994
1995 spin_lock(&reg_requests_lock);
1996 list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1997 REG_DBG_PRINT("Adding request for country %c%c back "
1998 "into the queue\n",
1999 reg_request->alpha2[0],
2000 reg_request->alpha2[1]);
2001 list_del(&reg_request->list);
2002 list_add_tail(&reg_request->list, &reg_requests_list);
2003 }
2004 spin_unlock(&reg_requests_lock);
2005
2006 mutex_unlock(&reg_mutex);
2007 mutex_unlock(&cfg80211_mutex);
2008
2009 REG_DBG_PRINT("Kicking the queue\n");
2010
2011 schedule_work(&reg_work);
2012 }
2013
2014 void regulatory_hint_disconnect(void)
2015 {
2016 REG_DBG_PRINT("All devices are disconnected, going to "
2017 "restore regulatory settings\n");
2018 restore_regulatory_settings(false);
2019 }
2020
2021 static bool freq_is_chan_12_13_14(u16 freq)
2022 {
2023 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2024 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2025 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2026 return true;
2027 return false;
2028 }
2029
2030 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2031 struct ieee80211_channel *beacon_chan,
2032 gfp_t gfp)
2033 {
2034 struct reg_beacon *reg_beacon;
2035
2036 if (likely((beacon_chan->beacon_found ||
2037 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
2038 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2039 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
2040 return 0;
2041
2042 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2043 if (!reg_beacon)
2044 return -ENOMEM;
2045
2046 REG_DBG_PRINT("Found new beacon on "
2047 "frequency: %d MHz (Ch %d) on %s\n",
2048 beacon_chan->center_freq,
2049 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2050 wiphy_name(wiphy));
2051
2052 memcpy(&reg_beacon->chan, beacon_chan,
2053 sizeof(struct ieee80211_channel));
2054
2055
2056 /*
2057 * Since we can be called from BH or and non-BH context
2058 * we must use spin_lock_bh()
2059 */
2060 spin_lock_bh(&reg_pending_beacons_lock);
2061 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2062 spin_unlock_bh(&reg_pending_beacons_lock);
2063
2064 schedule_work(&reg_work);
2065
2066 return 0;
2067 }
2068
2069 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2070 {
2071 unsigned int i;
2072 const struct ieee80211_reg_rule *reg_rule = NULL;
2073 const struct ieee80211_freq_range *freq_range = NULL;
2074 const struct ieee80211_power_rule *power_rule = NULL;
2075
2076 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2077
2078 for (i = 0; i < rd->n_reg_rules; i++) {
2079 reg_rule = &rd->reg_rules[i];
2080 freq_range = &reg_rule->freq_range;
2081 power_rule = &reg_rule->power_rule;
2082
2083 /*
2084 * There may not be documentation for max antenna gain
2085 * in certain regions
2086 */
2087 if (power_rule->max_antenna_gain)
2088 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2089 freq_range->start_freq_khz,
2090 freq_range->end_freq_khz,
2091 freq_range->max_bandwidth_khz,
2092 power_rule->max_antenna_gain,
2093 power_rule->max_eirp);
2094 else
2095 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2096 freq_range->start_freq_khz,
2097 freq_range->end_freq_khz,
2098 freq_range->max_bandwidth_khz,
2099 power_rule->max_eirp);
2100 }
2101 }
2102
2103 bool reg_supported_dfs_region(u8 dfs_region)
2104 {
2105 switch (dfs_region) {
2106 case NL80211_DFS_UNSET:
2107 case NL80211_DFS_FCC:
2108 case NL80211_DFS_ETSI:
2109 case NL80211_DFS_JP:
2110 return true;
2111 default:
2112 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2113 dfs_region);
2114 return false;
2115 }
2116 }
2117
2118 static void print_dfs_region(u8 dfs_region)
2119 {
2120 if (!dfs_region)
2121 return;
2122
2123 switch (dfs_region) {
2124 case NL80211_DFS_FCC:
2125 pr_info(" DFS Master region FCC");
2126 break;
2127 case NL80211_DFS_ETSI:
2128 pr_info(" DFS Master region ETSI");
2129 break;
2130 case NL80211_DFS_JP:
2131 pr_info(" DFS Master region JP");
2132 break;
2133 default:
2134 pr_info(" DFS Master region Uknown");
2135 break;
2136 }
2137 }
2138
2139 static void print_regdomain(const struct ieee80211_regdomain *rd)
2140 {
2141
2142 if (is_intersected_alpha2(rd->alpha2)) {
2143
2144 if (last_request->initiator ==
2145 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2146 struct cfg80211_registered_device *rdev;
2147 rdev = cfg80211_rdev_by_wiphy_idx(
2148 last_request->wiphy_idx);
2149 if (rdev) {
2150 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2151 rdev->country_ie_alpha2[0],
2152 rdev->country_ie_alpha2[1]);
2153 } else
2154 pr_info("Current regulatory domain intersected:\n");
2155 } else
2156 pr_info("Current regulatory domain intersected:\n");
2157 } else if (is_world_regdom(rd->alpha2))
2158 pr_info("World regulatory domain updated:\n");
2159 else {
2160 if (is_unknown_alpha2(rd->alpha2))
2161 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2162 else {
2163 if (reg_request_cell_base(last_request))
2164 pr_info("Regulatory domain changed "
2165 "to country: %c%c by Cell Station\n",
2166 rd->alpha2[0], rd->alpha2[1]);
2167 else
2168 pr_info("Regulatory domain changed "
2169 "to country: %c%c\n",
2170 rd->alpha2[0], rd->alpha2[1]);
2171 }
2172 }
2173 print_dfs_region(rd->dfs_region);
2174 print_rd_rules(rd);
2175 }
2176
2177 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2178 {
2179 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2180 print_rd_rules(rd);
2181 }
2182
2183 /* Takes ownership of rd only if it doesn't fail */
2184 static int __set_regdom(const struct ieee80211_regdomain *rd)
2185 {
2186 const struct ieee80211_regdomain *intersected_rd = NULL;
2187 struct cfg80211_registered_device *rdev = NULL;
2188 struct wiphy *request_wiphy;
2189 /* Some basic sanity checks first */
2190
2191 if (is_world_regdom(rd->alpha2)) {
2192 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2193 return -EINVAL;
2194 update_world_regdomain(rd);
2195 return 0;
2196 }
2197
2198 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2199 !is_unknown_alpha2(rd->alpha2))
2200 return -EINVAL;
2201
2202 if (!last_request)
2203 return -EINVAL;
2204
2205 /*
2206 * Lets only bother proceeding on the same alpha2 if the current
2207 * rd is non static (it means CRDA was present and was used last)
2208 * and the pending request came in from a country IE
2209 */
2210 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2211 /*
2212 * If someone else asked us to change the rd lets only bother
2213 * checking if the alpha2 changes if CRDA was already called
2214 */
2215 if (!regdom_changes(rd->alpha2))
2216 return -EALREADY;
2217 }
2218
2219 /*
2220 * Now lets set the regulatory domain, update all driver channels
2221 * and finally inform them of what we have done, in case they want
2222 * to review or adjust their own settings based on their own
2223 * internal EEPROM data
2224 */
2225
2226 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2227 return -EINVAL;
2228
2229 if (!is_valid_rd(rd)) {
2230 pr_err("Invalid regulatory domain detected:\n");
2231 print_regdomain_info(rd);
2232 return -EINVAL;
2233 }
2234
2235 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2236 if (!request_wiphy &&
2237 (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2238 last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2239 schedule_delayed_work(&reg_timeout, 0);
2240 return -ENODEV;
2241 }
2242
2243 if (!last_request->intersect) {
2244 int r;
2245
2246 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2247 reset_regdomains(false);
2248 cfg80211_regdomain = rd;
2249 return 0;
2250 }
2251
2252 /*
2253 * For a driver hint, lets copy the regulatory domain the
2254 * driver wanted to the wiphy to deal with conflicts
2255 */
2256
2257 /*
2258 * Userspace could have sent two replies with only
2259 * one kernel request.
2260 */
2261 if (request_wiphy->regd)
2262 return -EALREADY;
2263
2264 r = reg_copy_regd(&request_wiphy->regd, rd);
2265 if (r)
2266 return r;
2267
2268 reset_regdomains(false);
2269 cfg80211_regdomain = rd;
2270 return 0;
2271 }
2272
2273 /* Intersection requires a bit more work */
2274
2275 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2276
2277 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2278 if (!intersected_rd)
2279 return -EINVAL;
2280
2281 /*
2282 * We can trash what CRDA provided now.
2283 * However if a driver requested this specific regulatory
2284 * domain we keep it for its private use
2285 */
2286 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2287 request_wiphy->regd = rd;
2288 else
2289 kfree(rd);
2290
2291 rd = NULL;
2292
2293 reset_regdomains(false);
2294 cfg80211_regdomain = intersected_rd;
2295
2296 return 0;
2297 }
2298
2299 if (!intersected_rd)
2300 return -EINVAL;
2301
2302 rdev = wiphy_to_dev(request_wiphy);
2303
2304 rdev->country_ie_alpha2[0] = rd->alpha2[0];
2305 rdev->country_ie_alpha2[1] = rd->alpha2[1];
2306 rdev->env = last_request->country_ie_env;
2307
2308 BUG_ON(intersected_rd == rd);
2309
2310 kfree(rd);
2311 rd = NULL;
2312
2313 reset_regdomains(false);
2314 cfg80211_regdomain = intersected_rd;
2315
2316 return 0;
2317 }
2318
2319
2320 /*
2321 * Use this call to set the current regulatory domain. Conflicts with
2322 * multiple drivers can be ironed out later. Caller must've already
2323 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2324 */
2325 int set_regdom(const struct ieee80211_regdomain *rd)
2326 {
2327 int r;
2328
2329 assert_cfg80211_lock();
2330
2331 mutex_lock(&reg_mutex);
2332
2333 /* Note that this doesn't update the wiphys, this is done below */
2334 r = __set_regdom(rd);
2335 if (r) {
2336 if (r == -EALREADY)
2337 reg_set_request_processed();
2338
2339 kfree(rd);
2340 mutex_unlock(&reg_mutex);
2341 return r;
2342 }
2343
2344 /* This would make this whole thing pointless */
2345 if (!last_request->intersect)
2346 BUG_ON(rd != cfg80211_regdomain);
2347
2348 /* update all wiphys now with the new established regulatory domain */
2349 update_all_wiphy_regulatory(last_request->initiator);
2350
2351 print_regdomain(cfg80211_regdomain);
2352
2353 nl80211_send_reg_change_event(last_request);
2354
2355 reg_set_request_processed();
2356
2357 mutex_unlock(&reg_mutex);
2358
2359 return r;
2360 }
2361
2362 #ifdef CONFIG_HOTPLUG
2363 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2364 {
2365 if (last_request && !last_request->processed) {
2366 if (add_uevent_var(env, "COUNTRY=%c%c",
2367 last_request->alpha2[0],
2368 last_request->alpha2[1]))
2369 return -ENOMEM;
2370 }
2371
2372 return 0;
2373 }
2374 #else
2375 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2376 {
2377 return -ENODEV;
2378 }
2379 #endif /* CONFIG_HOTPLUG */
2380
2381 void wiphy_regulatory_register(struct wiphy *wiphy)
2382 {
2383 assert_cfg80211_lock();
2384
2385 mutex_lock(&reg_mutex);
2386
2387 if (!reg_dev_ignore_cell_hint(wiphy))
2388 reg_num_devs_support_basehint++;
2389
2390 mutex_unlock(&reg_mutex);
2391 }
2392
2393 /* Caller must hold cfg80211_mutex */
2394 void reg_device_remove(struct wiphy *wiphy)
2395 {
2396 struct wiphy *request_wiphy = NULL;
2397
2398 assert_cfg80211_lock();
2399
2400 mutex_lock(&reg_mutex);
2401
2402 if (!reg_dev_ignore_cell_hint(wiphy))
2403 reg_num_devs_support_basehint--;
2404
2405 kfree(wiphy->regd);
2406
2407 if (last_request)
2408 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2409
2410 if (!request_wiphy || request_wiphy != wiphy)
2411 goto out;
2412
2413 last_request->wiphy_idx = WIPHY_IDX_STALE;
2414 last_request->country_ie_env = ENVIRON_ANY;
2415 out:
2416 mutex_unlock(&reg_mutex);
2417 }
2418
2419 static void reg_timeout_work(struct work_struct *work)
2420 {
2421 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2422 "restoring regulatory settings\n");
2423 restore_regulatory_settings(true);
2424 }
2425
2426 int __init regulatory_init(void)
2427 {
2428 int err = 0;
2429
2430 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2431 if (IS_ERR(reg_pdev))
2432 return PTR_ERR(reg_pdev);
2433
2434 reg_pdev->dev.type = &reg_device_type;
2435
2436 spin_lock_init(&reg_requests_lock);
2437 spin_lock_init(&reg_pending_beacons_lock);
2438
2439 reg_regdb_size_check();
2440
2441 cfg80211_regdomain = cfg80211_world_regdom;
2442
2443 user_alpha2[0] = '9';
2444 user_alpha2[1] = '7';
2445
2446 /* We always try to get an update for the static regdomain */
2447 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2448 if (err) {
2449 if (err == -ENOMEM)
2450 return err;
2451 /*
2452 * N.B. kobject_uevent_env() can fail mainly for when we're out
2453 * memory which is handled and propagated appropriately above
2454 * but it can also fail during a netlink_broadcast() or during
2455 * early boot for call_usermodehelper(). For now treat these
2456 * errors as non-fatal.
2457 */
2458 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2459 #ifdef CONFIG_CFG80211_REG_DEBUG
2460 /* We want to find out exactly why when debugging */
2461 WARN_ON(err);
2462 #endif
2463 }
2464
2465 /*
2466 * Finally, if the user set the module parameter treat it
2467 * as a user hint.
2468 */
2469 if (!is_world_regdom(ieee80211_regdom))
2470 regulatory_hint_user(ieee80211_regdom,
2471 NL80211_USER_REG_HINT_USER);
2472
2473 return 0;
2474 }
2475
2476 void /* __init_or_exit */ regulatory_exit(void)
2477 {
2478 struct regulatory_request *reg_request, *tmp;
2479 struct reg_beacon *reg_beacon, *btmp;
2480
2481 cancel_work_sync(&reg_work);
2482 cancel_delayed_work_sync(&reg_timeout);
2483
2484 mutex_lock(&cfg80211_mutex);
2485 mutex_lock(&reg_mutex);
2486
2487 reset_regdomains(true);
2488
2489 dev_set_uevent_suppress(&reg_pdev->dev, true);
2490
2491 platform_device_unregister(reg_pdev);
2492
2493 spin_lock_bh(&reg_pending_beacons_lock);
2494 if (!list_empty(&reg_pending_beacons)) {
2495 list_for_each_entry_safe(reg_beacon, btmp,
2496 &reg_pending_beacons, list) {
2497 list_del(&reg_beacon->list);
2498 kfree(reg_beacon);
2499 }
2500 }
2501 spin_unlock_bh(&reg_pending_beacons_lock);
2502
2503 if (!list_empty(&reg_beacon_list)) {
2504 list_for_each_entry_safe(reg_beacon, btmp,
2505 &reg_beacon_list, list) {
2506 list_del(&reg_beacon->list);
2507 kfree(reg_beacon);
2508 }
2509 }
2510
2511 spin_lock(&reg_requests_lock);
2512 if (!list_empty(&reg_requests_list)) {
2513 list_for_each_entry_safe(reg_request, tmp,
2514 &reg_requests_list, list) {
2515 list_del(&reg_request->list);
2516 kfree(reg_request);
2517 }
2518 }
2519 spin_unlock(&reg_requests_lock);
2520
2521 mutex_unlock(&reg_mutex);
2522 mutex_unlock(&cfg80211_mutex);
2523 }