]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/wireless/reg.c
Merge tag 'gpio-updates-for-v5.14-rc5' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 - 2021 Intel Corporation
9 *
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23
24 /**
25 * DOC: Wireless regulatory infrastructure
26 *
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
31 *
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
35 *
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
41 *
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
45 *
46 */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
69 */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73 * enum reg_request_treatment - regulatory request treatment
74 *
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
81 */
82 enum reg_request_treatment {
83 REG_REQ_OK,
84 REG_REQ_IGNORE,
85 REG_REQ_INTERSECT,
86 REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90 .initiator = NL80211_REGDOM_SET_BY_CORE,
91 .alpha2[0] = '0',
92 .alpha2[1] = '0',
93 .intersect = false,
94 .processed = true,
95 .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
101 */
102 static struct regulatory_request __rcu *last_request =
103 (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
113 */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
120 */
121 static int reg_num_devs_support_basehint;
122
123 /*
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
127 */
128 static bool reg_is_indoor;
129 static DEFINE_SPINLOCK(reg_indoor_lock);
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136
137 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
138 {
139 return rcu_dereference_rtnl(cfg80211_regdomain);
140 }
141
142 /*
143 * Returns the regulatory domain associated with the wiphy.
144 *
145 * Requires any of RTNL, wiphy mutex or RCU protection.
146 */
147 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
148 {
149 return rcu_dereference_check(wiphy->regd,
150 lockdep_is_held(&wiphy->mtx) ||
151 lockdep_rtnl_is_held());
152 }
153 EXPORT_SYMBOL(get_wiphy_regdom);
154
155 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
156 {
157 switch (dfs_region) {
158 case NL80211_DFS_UNSET:
159 return "unset";
160 case NL80211_DFS_FCC:
161 return "FCC";
162 case NL80211_DFS_ETSI:
163 return "ETSI";
164 case NL80211_DFS_JP:
165 return "JP";
166 }
167 return "Unknown";
168 }
169
170 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
171 {
172 const struct ieee80211_regdomain *regd = NULL;
173 const struct ieee80211_regdomain *wiphy_regd = NULL;
174
175 rcu_read_lock();
176 regd = get_cfg80211_regdom();
177
178 if (!wiphy)
179 goto out;
180
181 wiphy_regd = get_wiphy_regdom(wiphy);
182 if (!wiphy_regd)
183 goto out;
184
185 if (wiphy_regd->dfs_region == regd->dfs_region)
186 goto out;
187
188 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
189 dev_name(&wiphy->dev),
190 reg_dfs_region_str(wiphy_regd->dfs_region),
191 reg_dfs_region_str(regd->dfs_region));
192
193 out:
194 rcu_read_unlock();
195
196 return regd->dfs_region;
197 }
198
199 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
200 {
201 if (!r)
202 return;
203 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
204 }
205
206 static struct regulatory_request *get_last_request(void)
207 {
208 return rcu_dereference_rtnl(last_request);
209 }
210
211 /* Used to queue up regulatory hints */
212 static LIST_HEAD(reg_requests_list);
213 static DEFINE_SPINLOCK(reg_requests_lock);
214
215 /* Used to queue up beacon hints for review */
216 static LIST_HEAD(reg_pending_beacons);
217 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
218
219 /* Used to keep track of processed beacon hints */
220 static LIST_HEAD(reg_beacon_list);
221
222 struct reg_beacon {
223 struct list_head list;
224 struct ieee80211_channel chan;
225 };
226
227 static void reg_check_chans_work(struct work_struct *work);
228 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
229
230 static void reg_todo(struct work_struct *work);
231 static DECLARE_WORK(reg_work, reg_todo);
232
233 /* We keep a static world regulatory domain in case of the absence of CRDA */
234 static const struct ieee80211_regdomain world_regdom = {
235 .n_reg_rules = 8,
236 .alpha2 = "00",
237 .reg_rules = {
238 /* IEEE 802.11b/g, channels 1..11 */
239 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
240 /* IEEE 802.11b/g, channels 12..13. */
241 REG_RULE(2467-10, 2472+10, 20, 6, 20,
242 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
243 /* IEEE 802.11 channel 14 - Only JP enables
244 * this and for 802.11b only */
245 REG_RULE(2484-10, 2484+10, 20, 6, 20,
246 NL80211_RRF_NO_IR |
247 NL80211_RRF_NO_OFDM),
248 /* IEEE 802.11a, channel 36..48 */
249 REG_RULE(5180-10, 5240+10, 80, 6, 20,
250 NL80211_RRF_NO_IR |
251 NL80211_RRF_AUTO_BW),
252
253 /* IEEE 802.11a, channel 52..64 - DFS required */
254 REG_RULE(5260-10, 5320+10, 80, 6, 20,
255 NL80211_RRF_NO_IR |
256 NL80211_RRF_AUTO_BW |
257 NL80211_RRF_DFS),
258
259 /* IEEE 802.11a, channel 100..144 - DFS required */
260 REG_RULE(5500-10, 5720+10, 160, 6, 20,
261 NL80211_RRF_NO_IR |
262 NL80211_RRF_DFS),
263
264 /* IEEE 802.11a, channel 149..165 */
265 REG_RULE(5745-10, 5825+10, 80, 6, 20,
266 NL80211_RRF_NO_IR),
267
268 /* IEEE 802.11ad (60GHz), channels 1..3 */
269 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
270 }
271 };
272
273 /* protected by RTNL */
274 static const struct ieee80211_regdomain *cfg80211_world_regdom =
275 &world_regdom;
276
277 static char *ieee80211_regdom = "00";
278 static char user_alpha2[2];
279 static const struct ieee80211_regdomain *cfg80211_user_regdom;
280
281 module_param(ieee80211_regdom, charp, 0444);
282 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
283
284 static void reg_free_request(struct regulatory_request *request)
285 {
286 if (request == &core_request_world)
287 return;
288
289 if (request != get_last_request())
290 kfree(request);
291 }
292
293 static void reg_free_last_request(void)
294 {
295 struct regulatory_request *lr = get_last_request();
296
297 if (lr != &core_request_world && lr)
298 kfree_rcu(lr, rcu_head);
299 }
300
301 static void reg_update_last_request(struct regulatory_request *request)
302 {
303 struct regulatory_request *lr;
304
305 lr = get_last_request();
306 if (lr == request)
307 return;
308
309 reg_free_last_request();
310 rcu_assign_pointer(last_request, request);
311 }
312
313 static void reset_regdomains(bool full_reset,
314 const struct ieee80211_regdomain *new_regdom)
315 {
316 const struct ieee80211_regdomain *r;
317
318 ASSERT_RTNL();
319
320 r = get_cfg80211_regdom();
321
322 /* avoid freeing static information or freeing something twice */
323 if (r == cfg80211_world_regdom)
324 r = NULL;
325 if (cfg80211_world_regdom == &world_regdom)
326 cfg80211_world_regdom = NULL;
327 if (r == &world_regdom)
328 r = NULL;
329
330 rcu_free_regdom(r);
331 rcu_free_regdom(cfg80211_world_regdom);
332
333 cfg80211_world_regdom = &world_regdom;
334 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
335
336 if (!full_reset)
337 return;
338
339 reg_update_last_request(&core_request_world);
340 }
341
342 /*
343 * Dynamic world regulatory domain requested by the wireless
344 * core upon initialization
345 */
346 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
347 {
348 struct regulatory_request *lr;
349
350 lr = get_last_request();
351
352 WARN_ON(!lr);
353
354 reset_regdomains(false, rd);
355
356 cfg80211_world_regdom = rd;
357 }
358
359 bool is_world_regdom(const char *alpha2)
360 {
361 if (!alpha2)
362 return false;
363 return alpha2[0] == '0' && alpha2[1] == '0';
364 }
365
366 static bool is_alpha2_set(const char *alpha2)
367 {
368 if (!alpha2)
369 return false;
370 return alpha2[0] && alpha2[1];
371 }
372
373 static bool is_unknown_alpha2(const char *alpha2)
374 {
375 if (!alpha2)
376 return false;
377 /*
378 * Special case where regulatory domain was built by driver
379 * but a specific alpha2 cannot be determined
380 */
381 return alpha2[0] == '9' && alpha2[1] == '9';
382 }
383
384 static bool is_intersected_alpha2(const char *alpha2)
385 {
386 if (!alpha2)
387 return false;
388 /*
389 * Special case where regulatory domain is the
390 * result of an intersection between two regulatory domain
391 * structures
392 */
393 return alpha2[0] == '9' && alpha2[1] == '8';
394 }
395
396 static bool is_an_alpha2(const char *alpha2)
397 {
398 if (!alpha2)
399 return false;
400 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
401 }
402
403 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
404 {
405 if (!alpha2_x || !alpha2_y)
406 return false;
407 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
408 }
409
410 static bool regdom_changes(const char *alpha2)
411 {
412 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
413
414 if (!r)
415 return true;
416 return !alpha2_equal(r->alpha2, alpha2);
417 }
418
419 /*
420 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
421 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
422 * has ever been issued.
423 */
424 static bool is_user_regdom_saved(void)
425 {
426 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
427 return false;
428
429 /* This would indicate a mistake on the design */
430 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
431 "Unexpected user alpha2: %c%c\n",
432 user_alpha2[0], user_alpha2[1]))
433 return false;
434
435 return true;
436 }
437
438 static const struct ieee80211_regdomain *
439 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
440 {
441 struct ieee80211_regdomain *regd;
442 unsigned int i;
443
444 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
445 GFP_KERNEL);
446 if (!regd)
447 return ERR_PTR(-ENOMEM);
448
449 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
450
451 for (i = 0; i < src_regd->n_reg_rules; i++)
452 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
453 sizeof(struct ieee80211_reg_rule));
454
455 return regd;
456 }
457
458 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
459 {
460 ASSERT_RTNL();
461
462 if (!IS_ERR(cfg80211_user_regdom))
463 kfree(cfg80211_user_regdom);
464 cfg80211_user_regdom = reg_copy_regd(rd);
465 }
466
467 struct reg_regdb_apply_request {
468 struct list_head list;
469 const struct ieee80211_regdomain *regdom;
470 };
471
472 static LIST_HEAD(reg_regdb_apply_list);
473 static DEFINE_MUTEX(reg_regdb_apply_mutex);
474
475 static void reg_regdb_apply(struct work_struct *work)
476 {
477 struct reg_regdb_apply_request *request;
478
479 rtnl_lock();
480
481 mutex_lock(&reg_regdb_apply_mutex);
482 while (!list_empty(&reg_regdb_apply_list)) {
483 request = list_first_entry(&reg_regdb_apply_list,
484 struct reg_regdb_apply_request,
485 list);
486 list_del(&request->list);
487
488 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
489 kfree(request);
490 }
491 mutex_unlock(&reg_regdb_apply_mutex);
492
493 rtnl_unlock();
494 }
495
496 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
497
498 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
499 {
500 struct reg_regdb_apply_request *request;
501
502 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
503 if (!request) {
504 kfree(regdom);
505 return -ENOMEM;
506 }
507
508 request->regdom = regdom;
509
510 mutex_lock(&reg_regdb_apply_mutex);
511 list_add_tail(&request->list, &reg_regdb_apply_list);
512 mutex_unlock(&reg_regdb_apply_mutex);
513
514 schedule_work(&reg_regdb_work);
515 return 0;
516 }
517
518 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
519 /* Max number of consecutive attempts to communicate with CRDA */
520 #define REG_MAX_CRDA_TIMEOUTS 10
521
522 static u32 reg_crda_timeouts;
523
524 static void crda_timeout_work(struct work_struct *work);
525 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
526
527 static void crda_timeout_work(struct work_struct *work)
528 {
529 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
530 rtnl_lock();
531 reg_crda_timeouts++;
532 restore_regulatory_settings(true, false);
533 rtnl_unlock();
534 }
535
536 static void cancel_crda_timeout(void)
537 {
538 cancel_delayed_work(&crda_timeout);
539 }
540
541 static void cancel_crda_timeout_sync(void)
542 {
543 cancel_delayed_work_sync(&crda_timeout);
544 }
545
546 static void reset_crda_timeouts(void)
547 {
548 reg_crda_timeouts = 0;
549 }
550
551 /*
552 * This lets us keep regulatory code which is updated on a regulatory
553 * basis in userspace.
554 */
555 static int call_crda(const char *alpha2)
556 {
557 char country[12];
558 char *env[] = { country, NULL };
559 int ret;
560
561 snprintf(country, sizeof(country), "COUNTRY=%c%c",
562 alpha2[0], alpha2[1]);
563
564 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
565 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
566 return -EINVAL;
567 }
568
569 if (!is_world_regdom((char *) alpha2))
570 pr_debug("Calling CRDA for country: %c%c\n",
571 alpha2[0], alpha2[1]);
572 else
573 pr_debug("Calling CRDA to update world regulatory domain\n");
574
575 ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
576 if (ret)
577 return ret;
578
579 queue_delayed_work(system_power_efficient_wq,
580 &crda_timeout, msecs_to_jiffies(3142));
581 return 0;
582 }
583 #else
584 static inline void cancel_crda_timeout(void) {}
585 static inline void cancel_crda_timeout_sync(void) {}
586 static inline void reset_crda_timeouts(void) {}
587 static inline int call_crda(const char *alpha2)
588 {
589 return -ENODATA;
590 }
591 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
592
593 /* code to directly load a firmware database through request_firmware */
594 static const struct fwdb_header *regdb;
595
596 struct fwdb_country {
597 u8 alpha2[2];
598 __be16 coll_ptr;
599 /* this struct cannot be extended */
600 } __packed __aligned(4);
601
602 struct fwdb_collection {
603 u8 len;
604 u8 n_rules;
605 u8 dfs_region;
606 /* no optional data yet */
607 /* aligned to 2, then followed by __be16 array of rule pointers */
608 } __packed __aligned(4);
609
610 enum fwdb_flags {
611 FWDB_FLAG_NO_OFDM = BIT(0),
612 FWDB_FLAG_NO_OUTDOOR = BIT(1),
613 FWDB_FLAG_DFS = BIT(2),
614 FWDB_FLAG_NO_IR = BIT(3),
615 FWDB_FLAG_AUTO_BW = BIT(4),
616 };
617
618 struct fwdb_wmm_ac {
619 u8 ecw;
620 u8 aifsn;
621 __be16 cot;
622 } __packed;
623
624 struct fwdb_wmm_rule {
625 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
626 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
627 } __packed;
628
629 struct fwdb_rule {
630 u8 len;
631 u8 flags;
632 __be16 max_eirp;
633 __be32 start, end, max_bw;
634 /* start of optional data */
635 __be16 cac_timeout;
636 __be16 wmm_ptr;
637 } __packed __aligned(4);
638
639 #define FWDB_MAGIC 0x52474442
640 #define FWDB_VERSION 20
641
642 struct fwdb_header {
643 __be32 magic;
644 __be32 version;
645 struct fwdb_country country[];
646 } __packed __aligned(4);
647
648 static int ecw2cw(int ecw)
649 {
650 return (1 << ecw) - 1;
651 }
652
653 static bool valid_wmm(struct fwdb_wmm_rule *rule)
654 {
655 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
656 int i;
657
658 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
659 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
660 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
661 u8 aifsn = ac[i].aifsn;
662
663 if (cw_min >= cw_max)
664 return false;
665
666 if (aifsn < 1)
667 return false;
668 }
669
670 return true;
671 }
672
673 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
674 {
675 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
676
677 if ((u8 *)rule + sizeof(rule->len) > data + size)
678 return false;
679
680 /* mandatory fields */
681 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
682 return false;
683 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
684 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
685 struct fwdb_wmm_rule *wmm;
686
687 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
688 return false;
689
690 wmm = (void *)(data + wmm_ptr);
691
692 if (!valid_wmm(wmm))
693 return false;
694 }
695 return true;
696 }
697
698 static bool valid_country(const u8 *data, unsigned int size,
699 const struct fwdb_country *country)
700 {
701 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
702 struct fwdb_collection *coll = (void *)(data + ptr);
703 __be16 *rules_ptr;
704 unsigned int i;
705
706 /* make sure we can read len/n_rules */
707 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
708 return false;
709
710 /* make sure base struct and all rules fit */
711 if ((u8 *)coll + ALIGN(coll->len, 2) +
712 (coll->n_rules * 2) > data + size)
713 return false;
714
715 /* mandatory fields must exist */
716 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
717 return false;
718
719 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
720
721 for (i = 0; i < coll->n_rules; i++) {
722 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
723
724 if (!valid_rule(data, size, rule_ptr))
725 return false;
726 }
727
728 return true;
729 }
730
731 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
732 static struct key *builtin_regdb_keys;
733
734 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
735 {
736 const u8 *end = p + buflen;
737 size_t plen;
738 key_ref_t key;
739
740 while (p < end) {
741 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
742 * than 256 bytes in size.
743 */
744 if (end - p < 4)
745 goto dodgy_cert;
746 if (p[0] != 0x30 &&
747 p[1] != 0x82)
748 goto dodgy_cert;
749 plen = (p[2] << 8) | p[3];
750 plen += 4;
751 if (plen > end - p)
752 goto dodgy_cert;
753
754 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
755 "asymmetric", NULL, p, plen,
756 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
757 KEY_USR_VIEW | KEY_USR_READ),
758 KEY_ALLOC_NOT_IN_QUOTA |
759 KEY_ALLOC_BUILT_IN |
760 KEY_ALLOC_BYPASS_RESTRICTION);
761 if (IS_ERR(key)) {
762 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
763 PTR_ERR(key));
764 } else {
765 pr_notice("Loaded X.509 cert '%s'\n",
766 key_ref_to_ptr(key)->description);
767 key_ref_put(key);
768 }
769 p += plen;
770 }
771
772 return;
773
774 dodgy_cert:
775 pr_err("Problem parsing in-kernel X.509 certificate list\n");
776 }
777
778 static int __init load_builtin_regdb_keys(void)
779 {
780 builtin_regdb_keys =
781 keyring_alloc(".builtin_regdb_keys",
782 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
783 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
784 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
785 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
786 if (IS_ERR(builtin_regdb_keys))
787 return PTR_ERR(builtin_regdb_keys);
788
789 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
790
791 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
792 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
793 #endif
794 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
795 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
796 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
797 #endif
798
799 return 0;
800 }
801
802 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
803 {
804 const struct firmware *sig;
805 bool result;
806
807 if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
808 return false;
809
810 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
811 builtin_regdb_keys,
812 VERIFYING_UNSPECIFIED_SIGNATURE,
813 NULL, NULL) == 0;
814
815 release_firmware(sig);
816
817 return result;
818 }
819
820 static void free_regdb_keyring(void)
821 {
822 key_put(builtin_regdb_keys);
823 }
824 #else
825 static int load_builtin_regdb_keys(void)
826 {
827 return 0;
828 }
829
830 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
831 {
832 return true;
833 }
834
835 static void free_regdb_keyring(void)
836 {
837 }
838 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
839
840 static bool valid_regdb(const u8 *data, unsigned int size)
841 {
842 const struct fwdb_header *hdr = (void *)data;
843 const struct fwdb_country *country;
844
845 if (size < sizeof(*hdr))
846 return false;
847
848 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
849 return false;
850
851 if (hdr->version != cpu_to_be32(FWDB_VERSION))
852 return false;
853
854 if (!regdb_has_valid_signature(data, size))
855 return false;
856
857 country = &hdr->country[0];
858 while ((u8 *)(country + 1) <= data + size) {
859 if (!country->coll_ptr)
860 break;
861 if (!valid_country(data, size, country))
862 return false;
863 country++;
864 }
865
866 return true;
867 }
868
869 static void set_wmm_rule(const struct fwdb_header *db,
870 const struct fwdb_country *country,
871 const struct fwdb_rule *rule,
872 struct ieee80211_reg_rule *rrule)
873 {
874 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
875 struct fwdb_wmm_rule *wmm;
876 unsigned int i, wmm_ptr;
877
878 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
879 wmm = (void *)((u8 *)db + wmm_ptr);
880
881 if (!valid_wmm(wmm)) {
882 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
883 be32_to_cpu(rule->start), be32_to_cpu(rule->end),
884 country->alpha2[0], country->alpha2[1]);
885 return;
886 }
887
888 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
889 wmm_rule->client[i].cw_min =
890 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
891 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
892 wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
893 wmm_rule->client[i].cot =
894 1000 * be16_to_cpu(wmm->client[i].cot);
895 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
896 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
897 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
898 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
899 }
900
901 rrule->has_wmm = true;
902 }
903
904 static int __regdb_query_wmm(const struct fwdb_header *db,
905 const struct fwdb_country *country, int freq,
906 struct ieee80211_reg_rule *rrule)
907 {
908 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
909 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
910 int i;
911
912 for (i = 0; i < coll->n_rules; i++) {
913 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
914 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
915 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
916
917 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
918 continue;
919
920 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
921 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
922 set_wmm_rule(db, country, rule, rrule);
923 return 0;
924 }
925 }
926
927 return -ENODATA;
928 }
929
930 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
931 {
932 const struct fwdb_header *hdr = regdb;
933 const struct fwdb_country *country;
934
935 if (!regdb)
936 return -ENODATA;
937
938 if (IS_ERR(regdb))
939 return PTR_ERR(regdb);
940
941 country = &hdr->country[0];
942 while (country->coll_ptr) {
943 if (alpha2_equal(alpha2, country->alpha2))
944 return __regdb_query_wmm(regdb, country, freq, rule);
945
946 country++;
947 }
948
949 return -ENODATA;
950 }
951 EXPORT_SYMBOL(reg_query_regdb_wmm);
952
953 static int regdb_query_country(const struct fwdb_header *db,
954 const struct fwdb_country *country)
955 {
956 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
957 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
958 struct ieee80211_regdomain *regdom;
959 unsigned int i;
960
961 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
962 GFP_KERNEL);
963 if (!regdom)
964 return -ENOMEM;
965
966 regdom->n_reg_rules = coll->n_rules;
967 regdom->alpha2[0] = country->alpha2[0];
968 regdom->alpha2[1] = country->alpha2[1];
969 regdom->dfs_region = coll->dfs_region;
970
971 for (i = 0; i < regdom->n_reg_rules; i++) {
972 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
973 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
974 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
975 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
976
977 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
978 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
979 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
980
981 rrule->power_rule.max_antenna_gain = 0;
982 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
983
984 rrule->flags = 0;
985 if (rule->flags & FWDB_FLAG_NO_OFDM)
986 rrule->flags |= NL80211_RRF_NO_OFDM;
987 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
988 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
989 if (rule->flags & FWDB_FLAG_DFS)
990 rrule->flags |= NL80211_RRF_DFS;
991 if (rule->flags & FWDB_FLAG_NO_IR)
992 rrule->flags |= NL80211_RRF_NO_IR;
993 if (rule->flags & FWDB_FLAG_AUTO_BW)
994 rrule->flags |= NL80211_RRF_AUTO_BW;
995
996 rrule->dfs_cac_ms = 0;
997
998 /* handle optional data */
999 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
1000 rrule->dfs_cac_ms =
1001 1000 * be16_to_cpu(rule->cac_timeout);
1002 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
1003 set_wmm_rule(db, country, rule, rrule);
1004 }
1005
1006 return reg_schedule_apply(regdom);
1007 }
1008
1009 static int query_regdb(const char *alpha2)
1010 {
1011 const struct fwdb_header *hdr = regdb;
1012 const struct fwdb_country *country;
1013
1014 ASSERT_RTNL();
1015
1016 if (IS_ERR(regdb))
1017 return PTR_ERR(regdb);
1018
1019 country = &hdr->country[0];
1020 while (country->coll_ptr) {
1021 if (alpha2_equal(alpha2, country->alpha2))
1022 return regdb_query_country(regdb, country);
1023 country++;
1024 }
1025
1026 return -ENODATA;
1027 }
1028
1029 static void regdb_fw_cb(const struct firmware *fw, void *context)
1030 {
1031 int set_error = 0;
1032 bool restore = true;
1033 void *db;
1034
1035 if (!fw) {
1036 pr_info("failed to load regulatory.db\n");
1037 set_error = -ENODATA;
1038 } else if (!valid_regdb(fw->data, fw->size)) {
1039 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1040 set_error = -EINVAL;
1041 }
1042
1043 rtnl_lock();
1044 if (regdb && !IS_ERR(regdb)) {
1045 /* negative case - a bug
1046 * positive case - can happen due to race in case of multiple cb's in
1047 * queue, due to usage of asynchronous callback
1048 *
1049 * Either case, just restore and free new db.
1050 */
1051 } else if (set_error) {
1052 regdb = ERR_PTR(set_error);
1053 } else if (fw) {
1054 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1055 if (db) {
1056 regdb = db;
1057 restore = context && query_regdb(context);
1058 } else {
1059 restore = true;
1060 }
1061 }
1062
1063 if (restore)
1064 restore_regulatory_settings(true, false);
1065
1066 rtnl_unlock();
1067
1068 kfree(context);
1069
1070 release_firmware(fw);
1071 }
1072
1073 static int query_regdb_file(const char *alpha2)
1074 {
1075 ASSERT_RTNL();
1076
1077 if (regdb)
1078 return query_regdb(alpha2);
1079
1080 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1081 if (!alpha2)
1082 return -ENOMEM;
1083
1084 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1085 &reg_pdev->dev, GFP_KERNEL,
1086 (void *)alpha2, regdb_fw_cb);
1087 }
1088
1089 int reg_reload_regdb(void)
1090 {
1091 const struct firmware *fw;
1092 void *db;
1093 int err;
1094
1095 err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1096 if (err)
1097 return err;
1098
1099 if (!valid_regdb(fw->data, fw->size)) {
1100 err = -ENODATA;
1101 goto out;
1102 }
1103
1104 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1105 if (!db) {
1106 err = -ENOMEM;
1107 goto out;
1108 }
1109
1110 rtnl_lock();
1111 if (!IS_ERR_OR_NULL(regdb))
1112 kfree(regdb);
1113 regdb = db;
1114 rtnl_unlock();
1115
1116 out:
1117 release_firmware(fw);
1118 return err;
1119 }
1120
1121 static bool reg_query_database(struct regulatory_request *request)
1122 {
1123 if (query_regdb_file(request->alpha2) == 0)
1124 return true;
1125
1126 if (call_crda(request->alpha2) == 0)
1127 return true;
1128
1129 return false;
1130 }
1131
1132 bool reg_is_valid_request(const char *alpha2)
1133 {
1134 struct regulatory_request *lr = get_last_request();
1135
1136 if (!lr || lr->processed)
1137 return false;
1138
1139 return alpha2_equal(lr->alpha2, alpha2);
1140 }
1141
1142 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1143 {
1144 struct regulatory_request *lr = get_last_request();
1145
1146 /*
1147 * Follow the driver's regulatory domain, if present, unless a country
1148 * IE has been processed or a user wants to help complaince further
1149 */
1150 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1151 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1152 wiphy->regd)
1153 return get_wiphy_regdom(wiphy);
1154
1155 return get_cfg80211_regdom();
1156 }
1157
1158 static unsigned int
1159 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1160 const struct ieee80211_reg_rule *rule)
1161 {
1162 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1163 const struct ieee80211_freq_range *freq_range_tmp;
1164 const struct ieee80211_reg_rule *tmp;
1165 u32 start_freq, end_freq, idx, no;
1166
1167 for (idx = 0; idx < rd->n_reg_rules; idx++)
1168 if (rule == &rd->reg_rules[idx])
1169 break;
1170
1171 if (idx == rd->n_reg_rules)
1172 return 0;
1173
1174 /* get start_freq */
1175 no = idx;
1176
1177 while (no) {
1178 tmp = &rd->reg_rules[--no];
1179 freq_range_tmp = &tmp->freq_range;
1180
1181 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1182 break;
1183
1184 freq_range = freq_range_tmp;
1185 }
1186
1187 start_freq = freq_range->start_freq_khz;
1188
1189 /* get end_freq */
1190 freq_range = &rule->freq_range;
1191 no = idx;
1192
1193 while (no < rd->n_reg_rules - 1) {
1194 tmp = &rd->reg_rules[++no];
1195 freq_range_tmp = &tmp->freq_range;
1196
1197 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1198 break;
1199
1200 freq_range = freq_range_tmp;
1201 }
1202
1203 end_freq = freq_range->end_freq_khz;
1204
1205 return end_freq - start_freq;
1206 }
1207
1208 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1209 const struct ieee80211_reg_rule *rule)
1210 {
1211 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1212
1213 if (rule->flags & NL80211_RRF_NO_160MHZ)
1214 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1215 if (rule->flags & NL80211_RRF_NO_80MHZ)
1216 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1217
1218 /*
1219 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1220 * are not allowed.
1221 */
1222 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1223 rule->flags & NL80211_RRF_NO_HT40PLUS)
1224 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1225
1226 return bw;
1227 }
1228
1229 /* Sanity check on a regulatory rule */
1230 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1231 {
1232 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1233 u32 freq_diff;
1234
1235 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1236 return false;
1237
1238 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1239 return false;
1240
1241 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1242
1243 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1244 freq_range->max_bandwidth_khz > freq_diff)
1245 return false;
1246
1247 return true;
1248 }
1249
1250 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1251 {
1252 const struct ieee80211_reg_rule *reg_rule = NULL;
1253 unsigned int i;
1254
1255 if (!rd->n_reg_rules)
1256 return false;
1257
1258 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1259 return false;
1260
1261 for (i = 0; i < rd->n_reg_rules; i++) {
1262 reg_rule = &rd->reg_rules[i];
1263 if (!is_valid_reg_rule(reg_rule))
1264 return false;
1265 }
1266
1267 return true;
1268 }
1269
1270 /**
1271 * freq_in_rule_band - tells us if a frequency is in a frequency band
1272 * @freq_range: frequency rule we want to query
1273 * @freq_khz: frequency we are inquiring about
1274 *
1275 * This lets us know if a specific frequency rule is or is not relevant to
1276 * a specific frequency's band. Bands are device specific and artificial
1277 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1278 * however it is safe for now to assume that a frequency rule should not be
1279 * part of a frequency's band if the start freq or end freq are off by more
1280 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1281 * 60 GHz band.
1282 * This resolution can be lowered and should be considered as we add
1283 * regulatory rule support for other "bands".
1284 **/
1285 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1286 u32 freq_khz)
1287 {
1288 #define ONE_GHZ_IN_KHZ 1000000
1289 /*
1290 * From 802.11ad: directional multi-gigabit (DMG):
1291 * Pertaining to operation in a frequency band containing a channel
1292 * with the Channel starting frequency above 45 GHz.
1293 */
1294 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1295 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1296 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1297 return true;
1298 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1299 return true;
1300 return false;
1301 #undef ONE_GHZ_IN_KHZ
1302 }
1303
1304 /*
1305 * Later on we can perhaps use the more restrictive DFS
1306 * region but we don't have information for that yet so
1307 * for now simply disallow conflicts.
1308 */
1309 static enum nl80211_dfs_regions
1310 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1311 const enum nl80211_dfs_regions dfs_region2)
1312 {
1313 if (dfs_region1 != dfs_region2)
1314 return NL80211_DFS_UNSET;
1315 return dfs_region1;
1316 }
1317
1318 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1319 const struct ieee80211_wmm_ac *wmm_ac2,
1320 struct ieee80211_wmm_ac *intersect)
1321 {
1322 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1323 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1324 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1325 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1326 }
1327
1328 /*
1329 * Helper for regdom_intersect(), this does the real
1330 * mathematical intersection fun
1331 */
1332 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1333 const struct ieee80211_regdomain *rd2,
1334 const struct ieee80211_reg_rule *rule1,
1335 const struct ieee80211_reg_rule *rule2,
1336 struct ieee80211_reg_rule *intersected_rule)
1337 {
1338 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1339 struct ieee80211_freq_range *freq_range;
1340 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1341 struct ieee80211_power_rule *power_rule;
1342 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1343 struct ieee80211_wmm_rule *wmm_rule;
1344 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1345
1346 freq_range1 = &rule1->freq_range;
1347 freq_range2 = &rule2->freq_range;
1348 freq_range = &intersected_rule->freq_range;
1349
1350 power_rule1 = &rule1->power_rule;
1351 power_rule2 = &rule2->power_rule;
1352 power_rule = &intersected_rule->power_rule;
1353
1354 wmm_rule1 = &rule1->wmm_rule;
1355 wmm_rule2 = &rule2->wmm_rule;
1356 wmm_rule = &intersected_rule->wmm_rule;
1357
1358 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1359 freq_range2->start_freq_khz);
1360 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1361 freq_range2->end_freq_khz);
1362
1363 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1364 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1365
1366 if (rule1->flags & NL80211_RRF_AUTO_BW)
1367 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1368 if (rule2->flags & NL80211_RRF_AUTO_BW)
1369 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1370
1371 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1372
1373 intersected_rule->flags = rule1->flags | rule2->flags;
1374
1375 /*
1376 * In case NL80211_RRF_AUTO_BW requested for both rules
1377 * set AUTO_BW in intersected rule also. Next we will
1378 * calculate BW correctly in handle_channel function.
1379 * In other case remove AUTO_BW flag while we calculate
1380 * maximum bandwidth correctly and auto calculation is
1381 * not required.
1382 */
1383 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1384 (rule2->flags & NL80211_RRF_AUTO_BW))
1385 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1386 else
1387 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1388
1389 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1390 if (freq_range->max_bandwidth_khz > freq_diff)
1391 freq_range->max_bandwidth_khz = freq_diff;
1392
1393 power_rule->max_eirp = min(power_rule1->max_eirp,
1394 power_rule2->max_eirp);
1395 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1396 power_rule2->max_antenna_gain);
1397
1398 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1399 rule2->dfs_cac_ms);
1400
1401 if (rule1->has_wmm && rule2->has_wmm) {
1402 u8 ac;
1403
1404 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1405 reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1406 &wmm_rule2->client[ac],
1407 &wmm_rule->client[ac]);
1408 reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1409 &wmm_rule2->ap[ac],
1410 &wmm_rule->ap[ac]);
1411 }
1412
1413 intersected_rule->has_wmm = true;
1414 } else if (rule1->has_wmm) {
1415 *wmm_rule = *wmm_rule1;
1416 intersected_rule->has_wmm = true;
1417 } else if (rule2->has_wmm) {
1418 *wmm_rule = *wmm_rule2;
1419 intersected_rule->has_wmm = true;
1420 } else {
1421 intersected_rule->has_wmm = false;
1422 }
1423
1424 if (!is_valid_reg_rule(intersected_rule))
1425 return -EINVAL;
1426
1427 return 0;
1428 }
1429
1430 /* check whether old rule contains new rule */
1431 static bool rule_contains(struct ieee80211_reg_rule *r1,
1432 struct ieee80211_reg_rule *r2)
1433 {
1434 /* for simplicity, currently consider only same flags */
1435 if (r1->flags != r2->flags)
1436 return false;
1437
1438 /* verify r1 is more restrictive */
1439 if ((r1->power_rule.max_antenna_gain >
1440 r2->power_rule.max_antenna_gain) ||
1441 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1442 return false;
1443
1444 /* make sure r2's range is contained within r1 */
1445 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1446 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1447 return false;
1448
1449 /* and finally verify that r1.max_bw >= r2.max_bw */
1450 if (r1->freq_range.max_bandwidth_khz <
1451 r2->freq_range.max_bandwidth_khz)
1452 return false;
1453
1454 return true;
1455 }
1456
1457 /* add or extend current rules. do nothing if rule is already contained */
1458 static void add_rule(struct ieee80211_reg_rule *rule,
1459 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1460 {
1461 struct ieee80211_reg_rule *tmp_rule;
1462 int i;
1463
1464 for (i = 0; i < *n_rules; i++) {
1465 tmp_rule = &reg_rules[i];
1466 /* rule is already contained - do nothing */
1467 if (rule_contains(tmp_rule, rule))
1468 return;
1469
1470 /* extend rule if possible */
1471 if (rule_contains(rule, tmp_rule)) {
1472 memcpy(tmp_rule, rule, sizeof(*rule));
1473 return;
1474 }
1475 }
1476
1477 memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1478 (*n_rules)++;
1479 }
1480
1481 /**
1482 * regdom_intersect - do the intersection between two regulatory domains
1483 * @rd1: first regulatory domain
1484 * @rd2: second regulatory domain
1485 *
1486 * Use this function to get the intersection between two regulatory domains.
1487 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1488 * as no one single alpha2 can represent this regulatory domain.
1489 *
1490 * Returns a pointer to the regulatory domain structure which will hold the
1491 * resulting intersection of rules between rd1 and rd2. We will
1492 * kzalloc() this structure for you.
1493 */
1494 static struct ieee80211_regdomain *
1495 regdom_intersect(const struct ieee80211_regdomain *rd1,
1496 const struct ieee80211_regdomain *rd2)
1497 {
1498 int r;
1499 unsigned int x, y;
1500 unsigned int num_rules = 0;
1501 const struct ieee80211_reg_rule *rule1, *rule2;
1502 struct ieee80211_reg_rule intersected_rule;
1503 struct ieee80211_regdomain *rd;
1504
1505 if (!rd1 || !rd2)
1506 return NULL;
1507
1508 /*
1509 * First we get a count of the rules we'll need, then we actually
1510 * build them. This is to so we can malloc() and free() a
1511 * regdomain once. The reason we use reg_rules_intersect() here
1512 * is it will return -EINVAL if the rule computed makes no sense.
1513 * All rules that do check out OK are valid.
1514 */
1515
1516 for (x = 0; x < rd1->n_reg_rules; x++) {
1517 rule1 = &rd1->reg_rules[x];
1518 for (y = 0; y < rd2->n_reg_rules; y++) {
1519 rule2 = &rd2->reg_rules[y];
1520 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1521 &intersected_rule))
1522 num_rules++;
1523 }
1524 }
1525
1526 if (!num_rules)
1527 return NULL;
1528
1529 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1530 if (!rd)
1531 return NULL;
1532
1533 for (x = 0; x < rd1->n_reg_rules; x++) {
1534 rule1 = &rd1->reg_rules[x];
1535 for (y = 0; y < rd2->n_reg_rules; y++) {
1536 rule2 = &rd2->reg_rules[y];
1537 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1538 &intersected_rule);
1539 /*
1540 * No need to memset here the intersected rule here as
1541 * we're not using the stack anymore
1542 */
1543 if (r)
1544 continue;
1545
1546 add_rule(&intersected_rule, rd->reg_rules,
1547 &rd->n_reg_rules);
1548 }
1549 }
1550
1551 rd->alpha2[0] = '9';
1552 rd->alpha2[1] = '8';
1553 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1554 rd2->dfs_region);
1555
1556 return rd;
1557 }
1558
1559 /*
1560 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1561 * want to just have the channel structure use these
1562 */
1563 static u32 map_regdom_flags(u32 rd_flags)
1564 {
1565 u32 channel_flags = 0;
1566 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1567 channel_flags |= IEEE80211_CHAN_NO_IR;
1568 if (rd_flags & NL80211_RRF_DFS)
1569 channel_flags |= IEEE80211_CHAN_RADAR;
1570 if (rd_flags & NL80211_RRF_NO_OFDM)
1571 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1572 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1573 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1574 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1575 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1576 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1577 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1578 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1579 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1580 if (rd_flags & NL80211_RRF_NO_80MHZ)
1581 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1582 if (rd_flags & NL80211_RRF_NO_160MHZ)
1583 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1584 if (rd_flags & NL80211_RRF_NO_HE)
1585 channel_flags |= IEEE80211_CHAN_NO_HE;
1586 return channel_flags;
1587 }
1588
1589 static const struct ieee80211_reg_rule *
1590 freq_reg_info_regd(u32 center_freq,
1591 const struct ieee80211_regdomain *regd, u32 bw)
1592 {
1593 int i;
1594 bool band_rule_found = false;
1595 bool bw_fits = false;
1596
1597 if (!regd)
1598 return ERR_PTR(-EINVAL);
1599
1600 for (i = 0; i < regd->n_reg_rules; i++) {
1601 const struct ieee80211_reg_rule *rr;
1602 const struct ieee80211_freq_range *fr = NULL;
1603
1604 rr = &regd->reg_rules[i];
1605 fr = &rr->freq_range;
1606
1607 /*
1608 * We only need to know if one frequency rule was
1609 * in center_freq's band, that's enough, so let's
1610 * not overwrite it once found
1611 */
1612 if (!band_rule_found)
1613 band_rule_found = freq_in_rule_band(fr, center_freq);
1614
1615 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1616
1617 if (band_rule_found && bw_fits)
1618 return rr;
1619 }
1620
1621 if (!band_rule_found)
1622 return ERR_PTR(-ERANGE);
1623
1624 return ERR_PTR(-EINVAL);
1625 }
1626
1627 static const struct ieee80211_reg_rule *
1628 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1629 {
1630 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1631 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1632 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1633 int i = ARRAY_SIZE(bws) - 1;
1634 u32 bw;
1635
1636 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1637 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1638 if (!IS_ERR(reg_rule))
1639 return reg_rule;
1640 }
1641
1642 return reg_rule;
1643 }
1644
1645 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1646 u32 center_freq)
1647 {
1648 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1649
1650 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1651 }
1652 EXPORT_SYMBOL(freq_reg_info);
1653
1654 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1655 {
1656 switch (initiator) {
1657 case NL80211_REGDOM_SET_BY_CORE:
1658 return "core";
1659 case NL80211_REGDOM_SET_BY_USER:
1660 return "user";
1661 case NL80211_REGDOM_SET_BY_DRIVER:
1662 return "driver";
1663 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1664 return "country element";
1665 default:
1666 WARN_ON(1);
1667 return "bug";
1668 }
1669 }
1670 EXPORT_SYMBOL(reg_initiator_name);
1671
1672 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1673 const struct ieee80211_reg_rule *reg_rule,
1674 const struct ieee80211_channel *chan)
1675 {
1676 const struct ieee80211_freq_range *freq_range = NULL;
1677 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1678 bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1679
1680 freq_range = &reg_rule->freq_range;
1681
1682 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1683 center_freq_khz = ieee80211_channel_to_khz(chan);
1684 /* Check if auto calculation requested */
1685 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1686 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1687
1688 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1689 if (!cfg80211_does_bw_fit_range(freq_range,
1690 center_freq_khz,
1691 MHZ_TO_KHZ(10)))
1692 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1693 if (!cfg80211_does_bw_fit_range(freq_range,
1694 center_freq_khz,
1695 MHZ_TO_KHZ(20)))
1696 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1697
1698 if (is_s1g) {
1699 /* S1G is strict about non overlapping channels. We can
1700 * calculate which bandwidth is allowed per channel by finding
1701 * the largest bandwidth which cleanly divides the freq_range.
1702 */
1703 int edge_offset;
1704 int ch_bw = max_bandwidth_khz;
1705
1706 while (ch_bw) {
1707 edge_offset = (center_freq_khz - ch_bw / 2) -
1708 freq_range->start_freq_khz;
1709 if (edge_offset % ch_bw == 0) {
1710 switch (KHZ_TO_MHZ(ch_bw)) {
1711 case 1:
1712 bw_flags |= IEEE80211_CHAN_1MHZ;
1713 break;
1714 case 2:
1715 bw_flags |= IEEE80211_CHAN_2MHZ;
1716 break;
1717 case 4:
1718 bw_flags |= IEEE80211_CHAN_4MHZ;
1719 break;
1720 case 8:
1721 bw_flags |= IEEE80211_CHAN_8MHZ;
1722 break;
1723 case 16:
1724 bw_flags |= IEEE80211_CHAN_16MHZ;
1725 break;
1726 default:
1727 /* If we got here, no bandwidths fit on
1728 * this frequency, ie. band edge.
1729 */
1730 bw_flags |= IEEE80211_CHAN_DISABLED;
1731 break;
1732 }
1733 break;
1734 }
1735 ch_bw /= 2;
1736 }
1737 } else {
1738 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1739 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1740 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1741 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1742 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1743 bw_flags |= IEEE80211_CHAN_NO_HT40;
1744 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1745 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1746 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1747 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1748 }
1749 return bw_flags;
1750 }
1751
1752 static void handle_channel_single_rule(struct wiphy *wiphy,
1753 enum nl80211_reg_initiator initiator,
1754 struct ieee80211_channel *chan,
1755 u32 flags,
1756 struct regulatory_request *lr,
1757 struct wiphy *request_wiphy,
1758 const struct ieee80211_reg_rule *reg_rule)
1759 {
1760 u32 bw_flags = 0;
1761 const struct ieee80211_power_rule *power_rule = NULL;
1762 const struct ieee80211_regdomain *regd;
1763
1764 regd = reg_get_regdomain(wiphy);
1765
1766 power_rule = &reg_rule->power_rule;
1767 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1768
1769 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1770 request_wiphy && request_wiphy == wiphy &&
1771 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1772 /*
1773 * This guarantees the driver's requested regulatory domain
1774 * will always be used as a base for further regulatory
1775 * settings
1776 */
1777 chan->flags = chan->orig_flags =
1778 map_regdom_flags(reg_rule->flags) | bw_flags;
1779 chan->max_antenna_gain = chan->orig_mag =
1780 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1781 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1782 (int) MBM_TO_DBM(power_rule->max_eirp);
1783
1784 if (chan->flags & IEEE80211_CHAN_RADAR) {
1785 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1786 if (reg_rule->dfs_cac_ms)
1787 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1788 }
1789
1790 return;
1791 }
1792
1793 chan->dfs_state = NL80211_DFS_USABLE;
1794 chan->dfs_state_entered = jiffies;
1795
1796 chan->beacon_found = false;
1797 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1798 chan->max_antenna_gain =
1799 min_t(int, chan->orig_mag,
1800 MBI_TO_DBI(power_rule->max_antenna_gain));
1801 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1802
1803 if (chan->flags & IEEE80211_CHAN_RADAR) {
1804 if (reg_rule->dfs_cac_ms)
1805 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1806 else
1807 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1808 }
1809
1810 if (chan->orig_mpwr) {
1811 /*
1812 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1813 * will always follow the passed country IE power settings.
1814 */
1815 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1816 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1817 chan->max_power = chan->max_reg_power;
1818 else
1819 chan->max_power = min(chan->orig_mpwr,
1820 chan->max_reg_power);
1821 } else
1822 chan->max_power = chan->max_reg_power;
1823 }
1824
1825 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1826 enum nl80211_reg_initiator initiator,
1827 struct ieee80211_channel *chan,
1828 u32 flags,
1829 struct regulatory_request *lr,
1830 struct wiphy *request_wiphy,
1831 const struct ieee80211_reg_rule *rrule1,
1832 const struct ieee80211_reg_rule *rrule2,
1833 struct ieee80211_freq_range *comb_range)
1834 {
1835 u32 bw_flags1 = 0;
1836 u32 bw_flags2 = 0;
1837 const struct ieee80211_power_rule *power_rule1 = NULL;
1838 const struct ieee80211_power_rule *power_rule2 = NULL;
1839 const struct ieee80211_regdomain *regd;
1840
1841 regd = reg_get_regdomain(wiphy);
1842
1843 power_rule1 = &rrule1->power_rule;
1844 power_rule2 = &rrule2->power_rule;
1845 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1846 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1847
1848 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1849 request_wiphy && request_wiphy == wiphy &&
1850 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1851 /* This guarantees the driver's requested regulatory domain
1852 * will always be used as a base for further regulatory
1853 * settings
1854 */
1855 chan->flags =
1856 map_regdom_flags(rrule1->flags) |
1857 map_regdom_flags(rrule2->flags) |
1858 bw_flags1 |
1859 bw_flags2;
1860 chan->orig_flags = chan->flags;
1861 chan->max_antenna_gain =
1862 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1863 MBI_TO_DBI(power_rule2->max_antenna_gain));
1864 chan->orig_mag = chan->max_antenna_gain;
1865 chan->max_reg_power =
1866 min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1867 MBM_TO_DBM(power_rule2->max_eirp));
1868 chan->max_power = chan->max_reg_power;
1869 chan->orig_mpwr = chan->max_reg_power;
1870
1871 if (chan->flags & IEEE80211_CHAN_RADAR) {
1872 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1873 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1874 chan->dfs_cac_ms = max_t(unsigned int,
1875 rrule1->dfs_cac_ms,
1876 rrule2->dfs_cac_ms);
1877 }
1878
1879 return;
1880 }
1881
1882 chan->dfs_state = NL80211_DFS_USABLE;
1883 chan->dfs_state_entered = jiffies;
1884
1885 chan->beacon_found = false;
1886 chan->flags = flags | bw_flags1 | bw_flags2 |
1887 map_regdom_flags(rrule1->flags) |
1888 map_regdom_flags(rrule2->flags);
1889
1890 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1891 * (otherwise no adj. rule case), recheck therefore
1892 */
1893 if (cfg80211_does_bw_fit_range(comb_range,
1894 ieee80211_channel_to_khz(chan),
1895 MHZ_TO_KHZ(10)))
1896 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1897 if (cfg80211_does_bw_fit_range(comb_range,
1898 ieee80211_channel_to_khz(chan),
1899 MHZ_TO_KHZ(20)))
1900 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1901
1902 chan->max_antenna_gain =
1903 min_t(int, chan->orig_mag,
1904 min_t(int,
1905 MBI_TO_DBI(power_rule1->max_antenna_gain),
1906 MBI_TO_DBI(power_rule2->max_antenna_gain)));
1907 chan->max_reg_power = min_t(int,
1908 MBM_TO_DBM(power_rule1->max_eirp),
1909 MBM_TO_DBM(power_rule2->max_eirp));
1910
1911 if (chan->flags & IEEE80211_CHAN_RADAR) {
1912 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1913 chan->dfs_cac_ms = max_t(unsigned int,
1914 rrule1->dfs_cac_ms,
1915 rrule2->dfs_cac_ms);
1916 else
1917 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1918 }
1919
1920 if (chan->orig_mpwr) {
1921 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1922 * will always follow the passed country IE power settings.
1923 */
1924 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1925 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1926 chan->max_power = chan->max_reg_power;
1927 else
1928 chan->max_power = min(chan->orig_mpwr,
1929 chan->max_reg_power);
1930 } else {
1931 chan->max_power = chan->max_reg_power;
1932 }
1933 }
1934
1935 /* Note that right now we assume the desired channel bandwidth
1936 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1937 * per channel, the primary and the extension channel).
1938 */
1939 static void handle_channel(struct wiphy *wiphy,
1940 enum nl80211_reg_initiator initiator,
1941 struct ieee80211_channel *chan)
1942 {
1943 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1944 struct regulatory_request *lr = get_last_request();
1945 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1946 const struct ieee80211_reg_rule *rrule = NULL;
1947 const struct ieee80211_reg_rule *rrule1 = NULL;
1948 const struct ieee80211_reg_rule *rrule2 = NULL;
1949
1950 u32 flags = chan->orig_flags;
1951
1952 rrule = freq_reg_info(wiphy, orig_chan_freq);
1953 if (IS_ERR(rrule)) {
1954 /* check for adjacent match, therefore get rules for
1955 * chan - 20 MHz and chan + 20 MHz and test
1956 * if reg rules are adjacent
1957 */
1958 rrule1 = freq_reg_info(wiphy,
1959 orig_chan_freq - MHZ_TO_KHZ(20));
1960 rrule2 = freq_reg_info(wiphy,
1961 orig_chan_freq + MHZ_TO_KHZ(20));
1962 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1963 struct ieee80211_freq_range comb_range;
1964
1965 if (rrule1->freq_range.end_freq_khz !=
1966 rrule2->freq_range.start_freq_khz)
1967 goto disable_chan;
1968
1969 comb_range.start_freq_khz =
1970 rrule1->freq_range.start_freq_khz;
1971 comb_range.end_freq_khz =
1972 rrule2->freq_range.end_freq_khz;
1973 comb_range.max_bandwidth_khz =
1974 min_t(u32,
1975 rrule1->freq_range.max_bandwidth_khz,
1976 rrule2->freq_range.max_bandwidth_khz);
1977
1978 if (!cfg80211_does_bw_fit_range(&comb_range,
1979 orig_chan_freq,
1980 MHZ_TO_KHZ(20)))
1981 goto disable_chan;
1982
1983 handle_channel_adjacent_rules(wiphy, initiator, chan,
1984 flags, lr, request_wiphy,
1985 rrule1, rrule2,
1986 &comb_range);
1987 return;
1988 }
1989
1990 disable_chan:
1991 /* We will disable all channels that do not match our
1992 * received regulatory rule unless the hint is coming
1993 * from a Country IE and the Country IE had no information
1994 * about a band. The IEEE 802.11 spec allows for an AP
1995 * to send only a subset of the regulatory rules allowed,
1996 * so an AP in the US that only supports 2.4 GHz may only send
1997 * a country IE with information for the 2.4 GHz band
1998 * while 5 GHz is still supported.
1999 */
2000 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2001 PTR_ERR(rrule) == -ERANGE)
2002 return;
2003
2004 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2005 request_wiphy && request_wiphy == wiphy &&
2006 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2007 pr_debug("Disabling freq %d.%03d MHz for good\n",
2008 chan->center_freq, chan->freq_offset);
2009 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2010 chan->flags = chan->orig_flags;
2011 } else {
2012 pr_debug("Disabling freq %d.%03d MHz\n",
2013 chan->center_freq, chan->freq_offset);
2014 chan->flags |= IEEE80211_CHAN_DISABLED;
2015 }
2016 return;
2017 }
2018
2019 handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2020 request_wiphy, rrule);
2021 }
2022
2023 static void handle_band(struct wiphy *wiphy,
2024 enum nl80211_reg_initiator initiator,
2025 struct ieee80211_supported_band *sband)
2026 {
2027 unsigned int i;
2028
2029 if (!sband)
2030 return;
2031
2032 for (i = 0; i < sband->n_channels; i++)
2033 handle_channel(wiphy, initiator, &sband->channels[i]);
2034 }
2035
2036 static bool reg_request_cell_base(struct regulatory_request *request)
2037 {
2038 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2039 return false;
2040 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2041 }
2042
2043 bool reg_last_request_cell_base(void)
2044 {
2045 return reg_request_cell_base(get_last_request());
2046 }
2047
2048 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2049 /* Core specific check */
2050 static enum reg_request_treatment
2051 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2052 {
2053 struct regulatory_request *lr = get_last_request();
2054
2055 if (!reg_num_devs_support_basehint)
2056 return REG_REQ_IGNORE;
2057
2058 if (reg_request_cell_base(lr) &&
2059 !regdom_changes(pending_request->alpha2))
2060 return REG_REQ_ALREADY_SET;
2061
2062 return REG_REQ_OK;
2063 }
2064
2065 /* Device specific check */
2066 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2067 {
2068 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2069 }
2070 #else
2071 static enum reg_request_treatment
2072 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2073 {
2074 return REG_REQ_IGNORE;
2075 }
2076
2077 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2078 {
2079 return true;
2080 }
2081 #endif
2082
2083 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2084 {
2085 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2086 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2087 return true;
2088 return false;
2089 }
2090
2091 static bool ignore_reg_update(struct wiphy *wiphy,
2092 enum nl80211_reg_initiator initiator)
2093 {
2094 struct regulatory_request *lr = get_last_request();
2095
2096 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2097 return true;
2098
2099 if (!lr) {
2100 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2101 reg_initiator_name(initiator));
2102 return true;
2103 }
2104
2105 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2106 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2107 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2108 reg_initiator_name(initiator));
2109 return true;
2110 }
2111
2112 /*
2113 * wiphy->regd will be set once the device has its own
2114 * desired regulatory domain set
2115 */
2116 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2117 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2118 !is_world_regdom(lr->alpha2)) {
2119 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2120 reg_initiator_name(initiator));
2121 return true;
2122 }
2123
2124 if (reg_request_cell_base(lr))
2125 return reg_dev_ignore_cell_hint(wiphy);
2126
2127 return false;
2128 }
2129
2130 static bool reg_is_world_roaming(struct wiphy *wiphy)
2131 {
2132 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2133 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2134 struct regulatory_request *lr = get_last_request();
2135
2136 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2137 return true;
2138
2139 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2140 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2141 return true;
2142
2143 return false;
2144 }
2145
2146 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2147 struct reg_beacon *reg_beacon)
2148 {
2149 struct ieee80211_supported_band *sband;
2150 struct ieee80211_channel *chan;
2151 bool channel_changed = false;
2152 struct ieee80211_channel chan_before;
2153
2154 sband = wiphy->bands[reg_beacon->chan.band];
2155 chan = &sband->channels[chan_idx];
2156
2157 if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2158 return;
2159
2160 if (chan->beacon_found)
2161 return;
2162
2163 chan->beacon_found = true;
2164
2165 if (!reg_is_world_roaming(wiphy))
2166 return;
2167
2168 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2169 return;
2170
2171 chan_before = *chan;
2172
2173 if (chan->flags & IEEE80211_CHAN_NO_IR) {
2174 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2175 channel_changed = true;
2176 }
2177
2178 if (channel_changed)
2179 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2180 }
2181
2182 /*
2183 * Called when a scan on a wiphy finds a beacon on
2184 * new channel
2185 */
2186 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2187 struct reg_beacon *reg_beacon)
2188 {
2189 unsigned int i;
2190 struct ieee80211_supported_band *sband;
2191
2192 if (!wiphy->bands[reg_beacon->chan.band])
2193 return;
2194
2195 sband = wiphy->bands[reg_beacon->chan.band];
2196
2197 for (i = 0; i < sband->n_channels; i++)
2198 handle_reg_beacon(wiphy, i, reg_beacon);
2199 }
2200
2201 /*
2202 * Called upon reg changes or a new wiphy is added
2203 */
2204 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2205 {
2206 unsigned int i;
2207 struct ieee80211_supported_band *sband;
2208 struct reg_beacon *reg_beacon;
2209
2210 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2211 if (!wiphy->bands[reg_beacon->chan.band])
2212 continue;
2213 sband = wiphy->bands[reg_beacon->chan.band];
2214 for (i = 0; i < sband->n_channels; i++)
2215 handle_reg_beacon(wiphy, i, reg_beacon);
2216 }
2217 }
2218
2219 /* Reap the advantages of previously found beacons */
2220 static void reg_process_beacons(struct wiphy *wiphy)
2221 {
2222 /*
2223 * Means we are just firing up cfg80211, so no beacons would
2224 * have been processed yet.
2225 */
2226 if (!last_request)
2227 return;
2228 wiphy_update_beacon_reg(wiphy);
2229 }
2230
2231 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2232 {
2233 if (!chan)
2234 return false;
2235 if (chan->flags & IEEE80211_CHAN_DISABLED)
2236 return false;
2237 /* This would happen when regulatory rules disallow HT40 completely */
2238 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2239 return false;
2240 return true;
2241 }
2242
2243 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2244 struct ieee80211_channel *channel)
2245 {
2246 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2247 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2248 const struct ieee80211_regdomain *regd;
2249 unsigned int i;
2250 u32 flags;
2251
2252 if (!is_ht40_allowed(channel)) {
2253 channel->flags |= IEEE80211_CHAN_NO_HT40;
2254 return;
2255 }
2256
2257 /*
2258 * We need to ensure the extension channels exist to
2259 * be able to use HT40- or HT40+, this finds them (or not)
2260 */
2261 for (i = 0; i < sband->n_channels; i++) {
2262 struct ieee80211_channel *c = &sband->channels[i];
2263
2264 if (c->center_freq == (channel->center_freq - 20))
2265 channel_before = c;
2266 if (c->center_freq == (channel->center_freq + 20))
2267 channel_after = c;
2268 }
2269
2270 flags = 0;
2271 regd = get_wiphy_regdom(wiphy);
2272 if (regd) {
2273 const struct ieee80211_reg_rule *reg_rule =
2274 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2275 regd, MHZ_TO_KHZ(20));
2276
2277 if (!IS_ERR(reg_rule))
2278 flags = reg_rule->flags;
2279 }
2280
2281 /*
2282 * Please note that this assumes target bandwidth is 20 MHz,
2283 * if that ever changes we also need to change the below logic
2284 * to include that as well.
2285 */
2286 if (!is_ht40_allowed(channel_before) ||
2287 flags & NL80211_RRF_NO_HT40MINUS)
2288 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2289 else
2290 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2291
2292 if (!is_ht40_allowed(channel_after) ||
2293 flags & NL80211_RRF_NO_HT40PLUS)
2294 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2295 else
2296 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2297 }
2298
2299 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2300 struct ieee80211_supported_band *sband)
2301 {
2302 unsigned int i;
2303
2304 if (!sband)
2305 return;
2306
2307 for (i = 0; i < sband->n_channels; i++)
2308 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2309 }
2310
2311 static void reg_process_ht_flags(struct wiphy *wiphy)
2312 {
2313 enum nl80211_band band;
2314
2315 if (!wiphy)
2316 return;
2317
2318 for (band = 0; band < NUM_NL80211_BANDS; band++)
2319 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2320 }
2321
2322 static void reg_call_notifier(struct wiphy *wiphy,
2323 struct regulatory_request *request)
2324 {
2325 if (wiphy->reg_notifier)
2326 wiphy->reg_notifier(wiphy, request);
2327 }
2328
2329 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2330 {
2331 struct cfg80211_chan_def chandef = {};
2332 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2333 enum nl80211_iftype iftype;
2334
2335 wdev_lock(wdev);
2336 iftype = wdev->iftype;
2337
2338 /* make sure the interface is active */
2339 if (!wdev->netdev || !netif_running(wdev->netdev))
2340 goto wdev_inactive_unlock;
2341
2342 switch (iftype) {
2343 case NL80211_IFTYPE_AP:
2344 case NL80211_IFTYPE_P2P_GO:
2345 if (!wdev->beacon_interval)
2346 goto wdev_inactive_unlock;
2347 chandef = wdev->chandef;
2348 break;
2349 case NL80211_IFTYPE_ADHOC:
2350 if (!wdev->ssid_len)
2351 goto wdev_inactive_unlock;
2352 chandef = wdev->chandef;
2353 break;
2354 case NL80211_IFTYPE_STATION:
2355 case NL80211_IFTYPE_P2P_CLIENT:
2356 if (!wdev->current_bss ||
2357 !wdev->current_bss->pub.channel)
2358 goto wdev_inactive_unlock;
2359
2360 if (!rdev->ops->get_channel ||
2361 rdev_get_channel(rdev, wdev, &chandef))
2362 cfg80211_chandef_create(&chandef,
2363 wdev->current_bss->pub.channel,
2364 NL80211_CHAN_NO_HT);
2365 break;
2366 case NL80211_IFTYPE_MONITOR:
2367 case NL80211_IFTYPE_AP_VLAN:
2368 case NL80211_IFTYPE_P2P_DEVICE:
2369 /* no enforcement required */
2370 break;
2371 default:
2372 /* others not implemented for now */
2373 WARN_ON(1);
2374 break;
2375 }
2376
2377 wdev_unlock(wdev);
2378
2379 switch (iftype) {
2380 case NL80211_IFTYPE_AP:
2381 case NL80211_IFTYPE_P2P_GO:
2382 case NL80211_IFTYPE_ADHOC:
2383 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2384 case NL80211_IFTYPE_STATION:
2385 case NL80211_IFTYPE_P2P_CLIENT:
2386 return cfg80211_chandef_usable(wiphy, &chandef,
2387 IEEE80211_CHAN_DISABLED);
2388 default:
2389 break;
2390 }
2391
2392 return true;
2393
2394 wdev_inactive_unlock:
2395 wdev_unlock(wdev);
2396 return true;
2397 }
2398
2399 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2400 {
2401 struct wireless_dev *wdev;
2402 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2403
2404 ASSERT_RTNL();
2405
2406 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2407 if (!reg_wdev_chan_valid(wiphy, wdev))
2408 cfg80211_leave(rdev, wdev);
2409 }
2410
2411 static void reg_check_chans_work(struct work_struct *work)
2412 {
2413 struct cfg80211_registered_device *rdev;
2414
2415 pr_debug("Verifying active interfaces after reg change\n");
2416 rtnl_lock();
2417
2418 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2419 if (!(rdev->wiphy.regulatory_flags &
2420 REGULATORY_IGNORE_STALE_KICKOFF))
2421 reg_leave_invalid_chans(&rdev->wiphy);
2422
2423 rtnl_unlock();
2424 }
2425
2426 static void reg_check_channels(void)
2427 {
2428 /*
2429 * Give usermode a chance to do something nicer (move to another
2430 * channel, orderly disconnection), before forcing a disconnection.
2431 */
2432 mod_delayed_work(system_power_efficient_wq,
2433 &reg_check_chans,
2434 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2435 }
2436
2437 static void wiphy_update_regulatory(struct wiphy *wiphy,
2438 enum nl80211_reg_initiator initiator)
2439 {
2440 enum nl80211_band band;
2441 struct regulatory_request *lr = get_last_request();
2442
2443 if (ignore_reg_update(wiphy, initiator)) {
2444 /*
2445 * Regulatory updates set by CORE are ignored for custom
2446 * regulatory cards. Let us notify the changes to the driver,
2447 * as some drivers used this to restore its orig_* reg domain.
2448 */
2449 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2450 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2451 !(wiphy->regulatory_flags &
2452 REGULATORY_WIPHY_SELF_MANAGED))
2453 reg_call_notifier(wiphy, lr);
2454 return;
2455 }
2456
2457 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2458
2459 for (band = 0; band < NUM_NL80211_BANDS; band++)
2460 handle_band(wiphy, initiator, wiphy->bands[band]);
2461
2462 reg_process_beacons(wiphy);
2463 reg_process_ht_flags(wiphy);
2464 reg_call_notifier(wiphy, lr);
2465 }
2466
2467 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2468 {
2469 struct cfg80211_registered_device *rdev;
2470 struct wiphy *wiphy;
2471
2472 ASSERT_RTNL();
2473
2474 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2475 wiphy = &rdev->wiphy;
2476 wiphy_update_regulatory(wiphy, initiator);
2477 }
2478
2479 reg_check_channels();
2480 }
2481
2482 static void handle_channel_custom(struct wiphy *wiphy,
2483 struct ieee80211_channel *chan,
2484 const struct ieee80211_regdomain *regd,
2485 u32 min_bw)
2486 {
2487 u32 bw_flags = 0;
2488 const struct ieee80211_reg_rule *reg_rule = NULL;
2489 const struct ieee80211_power_rule *power_rule = NULL;
2490 u32 bw, center_freq_khz;
2491
2492 center_freq_khz = ieee80211_channel_to_khz(chan);
2493 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2494 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2495 if (!IS_ERR(reg_rule))
2496 break;
2497 }
2498
2499 if (IS_ERR_OR_NULL(reg_rule)) {
2500 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2501 chan->center_freq, chan->freq_offset);
2502 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2503 chan->flags |= IEEE80211_CHAN_DISABLED;
2504 } else {
2505 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2506 chan->flags = chan->orig_flags;
2507 }
2508 return;
2509 }
2510
2511 power_rule = &reg_rule->power_rule;
2512 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2513
2514 chan->dfs_state_entered = jiffies;
2515 chan->dfs_state = NL80211_DFS_USABLE;
2516
2517 chan->beacon_found = false;
2518
2519 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2520 chan->flags = chan->orig_flags | bw_flags |
2521 map_regdom_flags(reg_rule->flags);
2522 else
2523 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2524
2525 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2526 chan->max_reg_power = chan->max_power =
2527 (int) MBM_TO_DBM(power_rule->max_eirp);
2528
2529 if (chan->flags & IEEE80211_CHAN_RADAR) {
2530 if (reg_rule->dfs_cac_ms)
2531 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2532 else
2533 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2534 }
2535
2536 chan->max_power = chan->max_reg_power;
2537 }
2538
2539 static void handle_band_custom(struct wiphy *wiphy,
2540 struct ieee80211_supported_band *sband,
2541 const struct ieee80211_regdomain *regd)
2542 {
2543 unsigned int i;
2544
2545 if (!sband)
2546 return;
2547
2548 /*
2549 * We currently assume that you always want at least 20 MHz,
2550 * otherwise channel 12 might get enabled if this rule is
2551 * compatible to US, which permits 2402 - 2472 MHz.
2552 */
2553 for (i = 0; i < sband->n_channels; i++)
2554 handle_channel_custom(wiphy, &sband->channels[i], regd,
2555 MHZ_TO_KHZ(20));
2556 }
2557
2558 /* Used by drivers prior to wiphy registration */
2559 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2560 const struct ieee80211_regdomain *regd)
2561 {
2562 const struct ieee80211_regdomain *new_regd, *tmp;
2563 enum nl80211_band band;
2564 unsigned int bands_set = 0;
2565
2566 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2567 "wiphy should have REGULATORY_CUSTOM_REG\n");
2568 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2569
2570 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2571 if (!wiphy->bands[band])
2572 continue;
2573 handle_band_custom(wiphy, wiphy->bands[band], regd);
2574 bands_set++;
2575 }
2576
2577 /*
2578 * no point in calling this if it won't have any effect
2579 * on your device's supported bands.
2580 */
2581 WARN_ON(!bands_set);
2582 new_regd = reg_copy_regd(regd);
2583 if (IS_ERR(new_regd))
2584 return;
2585
2586 rtnl_lock();
2587 wiphy_lock(wiphy);
2588
2589 tmp = get_wiphy_regdom(wiphy);
2590 rcu_assign_pointer(wiphy->regd, new_regd);
2591 rcu_free_regdom(tmp);
2592
2593 wiphy_unlock(wiphy);
2594 rtnl_unlock();
2595 }
2596 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2597
2598 static void reg_set_request_processed(void)
2599 {
2600 bool need_more_processing = false;
2601 struct regulatory_request *lr = get_last_request();
2602
2603 lr->processed = true;
2604
2605 spin_lock(&reg_requests_lock);
2606 if (!list_empty(&reg_requests_list))
2607 need_more_processing = true;
2608 spin_unlock(&reg_requests_lock);
2609
2610 cancel_crda_timeout();
2611
2612 if (need_more_processing)
2613 schedule_work(&reg_work);
2614 }
2615
2616 /**
2617 * reg_process_hint_core - process core regulatory requests
2618 * @core_request: a pending core regulatory request
2619 *
2620 * The wireless subsystem can use this function to process
2621 * a regulatory request issued by the regulatory core.
2622 */
2623 static enum reg_request_treatment
2624 reg_process_hint_core(struct regulatory_request *core_request)
2625 {
2626 if (reg_query_database(core_request)) {
2627 core_request->intersect = false;
2628 core_request->processed = false;
2629 reg_update_last_request(core_request);
2630 return REG_REQ_OK;
2631 }
2632
2633 return REG_REQ_IGNORE;
2634 }
2635
2636 static enum reg_request_treatment
2637 __reg_process_hint_user(struct regulatory_request *user_request)
2638 {
2639 struct regulatory_request *lr = get_last_request();
2640
2641 if (reg_request_cell_base(user_request))
2642 return reg_ignore_cell_hint(user_request);
2643
2644 if (reg_request_cell_base(lr))
2645 return REG_REQ_IGNORE;
2646
2647 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2648 return REG_REQ_INTERSECT;
2649 /*
2650 * If the user knows better the user should set the regdom
2651 * to their country before the IE is picked up
2652 */
2653 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2654 lr->intersect)
2655 return REG_REQ_IGNORE;
2656 /*
2657 * Process user requests only after previous user/driver/core
2658 * requests have been processed
2659 */
2660 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2661 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2662 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2663 regdom_changes(lr->alpha2))
2664 return REG_REQ_IGNORE;
2665
2666 if (!regdom_changes(user_request->alpha2))
2667 return REG_REQ_ALREADY_SET;
2668
2669 return REG_REQ_OK;
2670 }
2671
2672 /**
2673 * reg_process_hint_user - process user regulatory requests
2674 * @user_request: a pending user regulatory request
2675 *
2676 * The wireless subsystem can use this function to process
2677 * a regulatory request initiated by userspace.
2678 */
2679 static enum reg_request_treatment
2680 reg_process_hint_user(struct regulatory_request *user_request)
2681 {
2682 enum reg_request_treatment treatment;
2683
2684 treatment = __reg_process_hint_user(user_request);
2685 if (treatment == REG_REQ_IGNORE ||
2686 treatment == REG_REQ_ALREADY_SET)
2687 return REG_REQ_IGNORE;
2688
2689 user_request->intersect = treatment == REG_REQ_INTERSECT;
2690 user_request->processed = false;
2691
2692 if (reg_query_database(user_request)) {
2693 reg_update_last_request(user_request);
2694 user_alpha2[0] = user_request->alpha2[0];
2695 user_alpha2[1] = user_request->alpha2[1];
2696 return REG_REQ_OK;
2697 }
2698
2699 return REG_REQ_IGNORE;
2700 }
2701
2702 static enum reg_request_treatment
2703 __reg_process_hint_driver(struct regulatory_request *driver_request)
2704 {
2705 struct regulatory_request *lr = get_last_request();
2706
2707 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2708 if (regdom_changes(driver_request->alpha2))
2709 return REG_REQ_OK;
2710 return REG_REQ_ALREADY_SET;
2711 }
2712
2713 /*
2714 * This would happen if you unplug and plug your card
2715 * back in or if you add a new device for which the previously
2716 * loaded card also agrees on the regulatory domain.
2717 */
2718 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2719 !regdom_changes(driver_request->alpha2))
2720 return REG_REQ_ALREADY_SET;
2721
2722 return REG_REQ_INTERSECT;
2723 }
2724
2725 /**
2726 * reg_process_hint_driver - process driver regulatory requests
2727 * @wiphy: the wireless device for the regulatory request
2728 * @driver_request: a pending driver regulatory request
2729 *
2730 * The wireless subsystem can use this function to process
2731 * a regulatory request issued by an 802.11 driver.
2732 *
2733 * Returns one of the different reg request treatment values.
2734 */
2735 static enum reg_request_treatment
2736 reg_process_hint_driver(struct wiphy *wiphy,
2737 struct regulatory_request *driver_request)
2738 {
2739 const struct ieee80211_regdomain *regd, *tmp;
2740 enum reg_request_treatment treatment;
2741
2742 treatment = __reg_process_hint_driver(driver_request);
2743
2744 switch (treatment) {
2745 case REG_REQ_OK:
2746 break;
2747 case REG_REQ_IGNORE:
2748 return REG_REQ_IGNORE;
2749 case REG_REQ_INTERSECT:
2750 case REG_REQ_ALREADY_SET:
2751 regd = reg_copy_regd(get_cfg80211_regdom());
2752 if (IS_ERR(regd))
2753 return REG_REQ_IGNORE;
2754
2755 tmp = get_wiphy_regdom(wiphy);
2756 ASSERT_RTNL();
2757 wiphy_lock(wiphy);
2758 rcu_assign_pointer(wiphy->regd, regd);
2759 wiphy_unlock(wiphy);
2760 rcu_free_regdom(tmp);
2761 }
2762
2763
2764 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2765 driver_request->processed = false;
2766
2767 /*
2768 * Since CRDA will not be called in this case as we already
2769 * have applied the requested regulatory domain before we just
2770 * inform userspace we have processed the request
2771 */
2772 if (treatment == REG_REQ_ALREADY_SET) {
2773 nl80211_send_reg_change_event(driver_request);
2774 reg_update_last_request(driver_request);
2775 reg_set_request_processed();
2776 return REG_REQ_ALREADY_SET;
2777 }
2778
2779 if (reg_query_database(driver_request)) {
2780 reg_update_last_request(driver_request);
2781 return REG_REQ_OK;
2782 }
2783
2784 return REG_REQ_IGNORE;
2785 }
2786
2787 static enum reg_request_treatment
2788 __reg_process_hint_country_ie(struct wiphy *wiphy,
2789 struct regulatory_request *country_ie_request)
2790 {
2791 struct wiphy *last_wiphy = NULL;
2792 struct regulatory_request *lr = get_last_request();
2793
2794 if (reg_request_cell_base(lr)) {
2795 /* Trust a Cell base station over the AP's country IE */
2796 if (regdom_changes(country_ie_request->alpha2))
2797 return REG_REQ_IGNORE;
2798 return REG_REQ_ALREADY_SET;
2799 } else {
2800 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2801 return REG_REQ_IGNORE;
2802 }
2803
2804 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2805 return -EINVAL;
2806
2807 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2808 return REG_REQ_OK;
2809
2810 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2811
2812 if (last_wiphy != wiphy) {
2813 /*
2814 * Two cards with two APs claiming different
2815 * Country IE alpha2s. We could
2816 * intersect them, but that seems unlikely
2817 * to be correct. Reject second one for now.
2818 */
2819 if (regdom_changes(country_ie_request->alpha2))
2820 return REG_REQ_IGNORE;
2821 return REG_REQ_ALREADY_SET;
2822 }
2823
2824 if (regdom_changes(country_ie_request->alpha2))
2825 return REG_REQ_OK;
2826 return REG_REQ_ALREADY_SET;
2827 }
2828
2829 /**
2830 * reg_process_hint_country_ie - process regulatory requests from country IEs
2831 * @wiphy: the wireless device for the regulatory request
2832 * @country_ie_request: a regulatory request from a country IE
2833 *
2834 * The wireless subsystem can use this function to process
2835 * a regulatory request issued by a country Information Element.
2836 *
2837 * Returns one of the different reg request treatment values.
2838 */
2839 static enum reg_request_treatment
2840 reg_process_hint_country_ie(struct wiphy *wiphy,
2841 struct regulatory_request *country_ie_request)
2842 {
2843 enum reg_request_treatment treatment;
2844
2845 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2846
2847 switch (treatment) {
2848 case REG_REQ_OK:
2849 break;
2850 case REG_REQ_IGNORE:
2851 return REG_REQ_IGNORE;
2852 case REG_REQ_ALREADY_SET:
2853 reg_free_request(country_ie_request);
2854 return REG_REQ_ALREADY_SET;
2855 case REG_REQ_INTERSECT:
2856 /*
2857 * This doesn't happen yet, not sure we
2858 * ever want to support it for this case.
2859 */
2860 WARN_ONCE(1, "Unexpected intersection for country elements");
2861 return REG_REQ_IGNORE;
2862 }
2863
2864 country_ie_request->intersect = false;
2865 country_ie_request->processed = false;
2866
2867 if (reg_query_database(country_ie_request)) {
2868 reg_update_last_request(country_ie_request);
2869 return REG_REQ_OK;
2870 }
2871
2872 return REG_REQ_IGNORE;
2873 }
2874
2875 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2876 {
2877 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2878 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2879 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2880 bool dfs_domain_same;
2881
2882 rcu_read_lock();
2883
2884 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2885 wiphy1_regd = rcu_dereference(wiphy1->regd);
2886 if (!wiphy1_regd)
2887 wiphy1_regd = cfg80211_regd;
2888
2889 wiphy2_regd = rcu_dereference(wiphy2->regd);
2890 if (!wiphy2_regd)
2891 wiphy2_regd = cfg80211_regd;
2892
2893 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2894
2895 rcu_read_unlock();
2896
2897 return dfs_domain_same;
2898 }
2899
2900 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2901 struct ieee80211_channel *src_chan)
2902 {
2903 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2904 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2905 return;
2906
2907 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2908 src_chan->flags & IEEE80211_CHAN_DISABLED)
2909 return;
2910
2911 if (src_chan->center_freq == dst_chan->center_freq &&
2912 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2913 dst_chan->dfs_state = src_chan->dfs_state;
2914 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2915 }
2916 }
2917
2918 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2919 struct wiphy *src_wiphy)
2920 {
2921 struct ieee80211_supported_band *src_sband, *dst_sband;
2922 struct ieee80211_channel *src_chan, *dst_chan;
2923 int i, j, band;
2924
2925 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2926 return;
2927
2928 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2929 dst_sband = dst_wiphy->bands[band];
2930 src_sband = src_wiphy->bands[band];
2931 if (!dst_sband || !src_sband)
2932 continue;
2933
2934 for (i = 0; i < dst_sband->n_channels; i++) {
2935 dst_chan = &dst_sband->channels[i];
2936 for (j = 0; j < src_sband->n_channels; j++) {
2937 src_chan = &src_sband->channels[j];
2938 reg_copy_dfs_chan_state(dst_chan, src_chan);
2939 }
2940 }
2941 }
2942 }
2943
2944 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2945 {
2946 struct cfg80211_registered_device *rdev;
2947
2948 ASSERT_RTNL();
2949
2950 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2951 if (wiphy == &rdev->wiphy)
2952 continue;
2953 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2954 }
2955 }
2956
2957 /* This processes *all* regulatory hints */
2958 static void reg_process_hint(struct regulatory_request *reg_request)
2959 {
2960 struct wiphy *wiphy = NULL;
2961 enum reg_request_treatment treatment;
2962 enum nl80211_reg_initiator initiator = reg_request->initiator;
2963
2964 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2965 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2966
2967 switch (initiator) {
2968 case NL80211_REGDOM_SET_BY_CORE:
2969 treatment = reg_process_hint_core(reg_request);
2970 break;
2971 case NL80211_REGDOM_SET_BY_USER:
2972 treatment = reg_process_hint_user(reg_request);
2973 break;
2974 case NL80211_REGDOM_SET_BY_DRIVER:
2975 if (!wiphy)
2976 goto out_free;
2977 treatment = reg_process_hint_driver(wiphy, reg_request);
2978 break;
2979 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2980 if (!wiphy)
2981 goto out_free;
2982 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2983 break;
2984 default:
2985 WARN(1, "invalid initiator %d\n", initiator);
2986 goto out_free;
2987 }
2988
2989 if (treatment == REG_REQ_IGNORE)
2990 goto out_free;
2991
2992 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2993 "unexpected treatment value %d\n", treatment);
2994
2995 /* This is required so that the orig_* parameters are saved.
2996 * NOTE: treatment must be set for any case that reaches here!
2997 */
2998 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2999 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3000 wiphy_update_regulatory(wiphy, initiator);
3001 wiphy_all_share_dfs_chan_state(wiphy);
3002 reg_check_channels();
3003 }
3004
3005 return;
3006
3007 out_free:
3008 reg_free_request(reg_request);
3009 }
3010
3011 static void notify_self_managed_wiphys(struct regulatory_request *request)
3012 {
3013 struct cfg80211_registered_device *rdev;
3014 struct wiphy *wiphy;
3015
3016 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3017 wiphy = &rdev->wiphy;
3018 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3019 request->initiator == NL80211_REGDOM_SET_BY_USER)
3020 reg_call_notifier(wiphy, request);
3021 }
3022 }
3023
3024 /*
3025 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3026 * Regulatory hints come on a first come first serve basis and we
3027 * must process each one atomically.
3028 */
3029 static void reg_process_pending_hints(void)
3030 {
3031 struct regulatory_request *reg_request, *lr;
3032
3033 lr = get_last_request();
3034
3035 /* When last_request->processed becomes true this will be rescheduled */
3036 if (lr && !lr->processed) {
3037 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3038 return;
3039 }
3040
3041 spin_lock(&reg_requests_lock);
3042
3043 if (list_empty(&reg_requests_list)) {
3044 spin_unlock(&reg_requests_lock);
3045 return;
3046 }
3047
3048 reg_request = list_first_entry(&reg_requests_list,
3049 struct regulatory_request,
3050 list);
3051 list_del_init(&reg_request->list);
3052
3053 spin_unlock(&reg_requests_lock);
3054
3055 notify_self_managed_wiphys(reg_request);
3056
3057 reg_process_hint(reg_request);
3058
3059 lr = get_last_request();
3060
3061 spin_lock(&reg_requests_lock);
3062 if (!list_empty(&reg_requests_list) && lr && lr->processed)
3063 schedule_work(&reg_work);
3064 spin_unlock(&reg_requests_lock);
3065 }
3066
3067 /* Processes beacon hints -- this has nothing to do with country IEs */
3068 static void reg_process_pending_beacon_hints(void)
3069 {
3070 struct cfg80211_registered_device *rdev;
3071 struct reg_beacon *pending_beacon, *tmp;
3072
3073 /* This goes through the _pending_ beacon list */
3074 spin_lock_bh(&reg_pending_beacons_lock);
3075
3076 list_for_each_entry_safe(pending_beacon, tmp,
3077 &reg_pending_beacons, list) {
3078 list_del_init(&pending_beacon->list);
3079
3080 /* Applies the beacon hint to current wiphys */
3081 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3082 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3083
3084 /* Remembers the beacon hint for new wiphys or reg changes */
3085 list_add_tail(&pending_beacon->list, &reg_beacon_list);
3086 }
3087
3088 spin_unlock_bh(&reg_pending_beacons_lock);
3089 }
3090
3091 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3092 {
3093 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3094 const struct ieee80211_regdomain *tmp;
3095 const struct ieee80211_regdomain *regd;
3096 enum nl80211_band band;
3097 struct regulatory_request request = {};
3098
3099 ASSERT_RTNL();
3100 lockdep_assert_wiphy(wiphy);
3101
3102 spin_lock(&reg_requests_lock);
3103 regd = rdev->requested_regd;
3104 rdev->requested_regd = NULL;
3105 spin_unlock(&reg_requests_lock);
3106
3107 if (!regd)
3108 return;
3109
3110 tmp = get_wiphy_regdom(wiphy);
3111 rcu_assign_pointer(wiphy->regd, regd);
3112 rcu_free_regdom(tmp);
3113
3114 for (band = 0; band < NUM_NL80211_BANDS; band++)
3115 handle_band_custom(wiphy, wiphy->bands[band], regd);
3116
3117 reg_process_ht_flags(wiphy);
3118
3119 request.wiphy_idx = get_wiphy_idx(wiphy);
3120 request.alpha2[0] = regd->alpha2[0];
3121 request.alpha2[1] = regd->alpha2[1];
3122 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3123
3124 nl80211_send_wiphy_reg_change_event(&request);
3125 }
3126
3127 static void reg_process_self_managed_hints(void)
3128 {
3129 struct cfg80211_registered_device *rdev;
3130
3131 ASSERT_RTNL();
3132
3133 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3134 wiphy_lock(&rdev->wiphy);
3135 reg_process_self_managed_hint(&rdev->wiphy);
3136 wiphy_unlock(&rdev->wiphy);
3137 }
3138
3139 reg_check_channels();
3140 }
3141
3142 static void reg_todo(struct work_struct *work)
3143 {
3144 rtnl_lock();
3145 reg_process_pending_hints();
3146 reg_process_pending_beacon_hints();
3147 reg_process_self_managed_hints();
3148 rtnl_unlock();
3149 }
3150
3151 static void queue_regulatory_request(struct regulatory_request *request)
3152 {
3153 request->alpha2[0] = toupper(request->alpha2[0]);
3154 request->alpha2[1] = toupper(request->alpha2[1]);
3155
3156 spin_lock(&reg_requests_lock);
3157 list_add_tail(&request->list, &reg_requests_list);
3158 spin_unlock(&reg_requests_lock);
3159
3160 schedule_work(&reg_work);
3161 }
3162
3163 /*
3164 * Core regulatory hint -- happens during cfg80211_init()
3165 * and when we restore regulatory settings.
3166 */
3167 static int regulatory_hint_core(const char *alpha2)
3168 {
3169 struct regulatory_request *request;
3170
3171 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3172 if (!request)
3173 return -ENOMEM;
3174
3175 request->alpha2[0] = alpha2[0];
3176 request->alpha2[1] = alpha2[1];
3177 request->initiator = NL80211_REGDOM_SET_BY_CORE;
3178 request->wiphy_idx = WIPHY_IDX_INVALID;
3179
3180 queue_regulatory_request(request);
3181
3182 return 0;
3183 }
3184
3185 /* User hints */
3186 int regulatory_hint_user(const char *alpha2,
3187 enum nl80211_user_reg_hint_type user_reg_hint_type)
3188 {
3189 struct regulatory_request *request;
3190
3191 if (WARN_ON(!alpha2))
3192 return -EINVAL;
3193
3194 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3195 return -EINVAL;
3196
3197 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3198 if (!request)
3199 return -ENOMEM;
3200
3201 request->wiphy_idx = WIPHY_IDX_INVALID;
3202 request->alpha2[0] = alpha2[0];
3203 request->alpha2[1] = alpha2[1];
3204 request->initiator = NL80211_REGDOM_SET_BY_USER;
3205 request->user_reg_hint_type = user_reg_hint_type;
3206
3207 /* Allow calling CRDA again */
3208 reset_crda_timeouts();
3209
3210 queue_regulatory_request(request);
3211
3212 return 0;
3213 }
3214
3215 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3216 {
3217 spin_lock(&reg_indoor_lock);
3218
3219 /* It is possible that more than one user space process is trying to
3220 * configure the indoor setting. To handle such cases, clear the indoor
3221 * setting in case that some process does not think that the device
3222 * is operating in an indoor environment. In addition, if a user space
3223 * process indicates that it is controlling the indoor setting, save its
3224 * portid, i.e., make it the owner.
3225 */
3226 reg_is_indoor = is_indoor;
3227 if (reg_is_indoor) {
3228 if (!reg_is_indoor_portid)
3229 reg_is_indoor_portid = portid;
3230 } else {
3231 reg_is_indoor_portid = 0;
3232 }
3233
3234 spin_unlock(&reg_indoor_lock);
3235
3236 if (!is_indoor)
3237 reg_check_channels();
3238
3239 return 0;
3240 }
3241
3242 void regulatory_netlink_notify(u32 portid)
3243 {
3244 spin_lock(&reg_indoor_lock);
3245
3246 if (reg_is_indoor_portid != portid) {
3247 spin_unlock(&reg_indoor_lock);
3248 return;
3249 }
3250
3251 reg_is_indoor = false;
3252 reg_is_indoor_portid = 0;
3253
3254 spin_unlock(&reg_indoor_lock);
3255
3256 reg_check_channels();
3257 }
3258
3259 /* Driver hints */
3260 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3261 {
3262 struct regulatory_request *request;
3263
3264 if (WARN_ON(!alpha2 || !wiphy))
3265 return -EINVAL;
3266
3267 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3268
3269 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3270 if (!request)
3271 return -ENOMEM;
3272
3273 request->wiphy_idx = get_wiphy_idx(wiphy);
3274
3275 request->alpha2[0] = alpha2[0];
3276 request->alpha2[1] = alpha2[1];
3277 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3278
3279 /* Allow calling CRDA again */
3280 reset_crda_timeouts();
3281
3282 queue_regulatory_request(request);
3283
3284 return 0;
3285 }
3286 EXPORT_SYMBOL(regulatory_hint);
3287
3288 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3289 const u8 *country_ie, u8 country_ie_len)
3290 {
3291 char alpha2[2];
3292 enum environment_cap env = ENVIRON_ANY;
3293 struct regulatory_request *request = NULL, *lr;
3294
3295 /* IE len must be evenly divisible by 2 */
3296 if (country_ie_len & 0x01)
3297 return;
3298
3299 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3300 return;
3301
3302 request = kzalloc(sizeof(*request), GFP_KERNEL);
3303 if (!request)
3304 return;
3305
3306 alpha2[0] = country_ie[0];
3307 alpha2[1] = country_ie[1];
3308
3309 if (country_ie[2] == 'I')
3310 env = ENVIRON_INDOOR;
3311 else if (country_ie[2] == 'O')
3312 env = ENVIRON_OUTDOOR;
3313
3314 rcu_read_lock();
3315 lr = get_last_request();
3316
3317 if (unlikely(!lr))
3318 goto out;
3319
3320 /*
3321 * We will run this only upon a successful connection on cfg80211.
3322 * We leave conflict resolution to the workqueue, where can hold
3323 * the RTNL.
3324 */
3325 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3326 lr->wiphy_idx != WIPHY_IDX_INVALID)
3327 goto out;
3328
3329 request->wiphy_idx = get_wiphy_idx(wiphy);
3330 request->alpha2[0] = alpha2[0];
3331 request->alpha2[1] = alpha2[1];
3332 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3333 request->country_ie_env = env;
3334
3335 /* Allow calling CRDA again */
3336 reset_crda_timeouts();
3337
3338 queue_regulatory_request(request);
3339 request = NULL;
3340 out:
3341 kfree(request);
3342 rcu_read_unlock();
3343 }
3344
3345 static void restore_alpha2(char *alpha2, bool reset_user)
3346 {
3347 /* indicates there is no alpha2 to consider for restoration */
3348 alpha2[0] = '9';
3349 alpha2[1] = '7';
3350
3351 /* The user setting has precedence over the module parameter */
3352 if (is_user_regdom_saved()) {
3353 /* Unless we're asked to ignore it and reset it */
3354 if (reset_user) {
3355 pr_debug("Restoring regulatory settings including user preference\n");
3356 user_alpha2[0] = '9';
3357 user_alpha2[1] = '7';
3358
3359 /*
3360 * If we're ignoring user settings, we still need to
3361 * check the module parameter to ensure we put things
3362 * back as they were for a full restore.
3363 */
3364 if (!is_world_regdom(ieee80211_regdom)) {
3365 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3366 ieee80211_regdom[0], ieee80211_regdom[1]);
3367 alpha2[0] = ieee80211_regdom[0];
3368 alpha2[1] = ieee80211_regdom[1];
3369 }
3370 } else {
3371 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3372 user_alpha2[0], user_alpha2[1]);
3373 alpha2[0] = user_alpha2[0];
3374 alpha2[1] = user_alpha2[1];
3375 }
3376 } else if (!is_world_regdom(ieee80211_regdom)) {
3377 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3378 ieee80211_regdom[0], ieee80211_regdom[1]);
3379 alpha2[0] = ieee80211_regdom[0];
3380 alpha2[1] = ieee80211_regdom[1];
3381 } else
3382 pr_debug("Restoring regulatory settings\n");
3383 }
3384
3385 static void restore_custom_reg_settings(struct wiphy *wiphy)
3386 {
3387 struct ieee80211_supported_band *sband;
3388 enum nl80211_band band;
3389 struct ieee80211_channel *chan;
3390 int i;
3391
3392 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3393 sband = wiphy->bands[band];
3394 if (!sband)
3395 continue;
3396 for (i = 0; i < sband->n_channels; i++) {
3397 chan = &sband->channels[i];
3398 chan->flags = chan->orig_flags;
3399 chan->max_antenna_gain = chan->orig_mag;
3400 chan->max_power = chan->orig_mpwr;
3401 chan->beacon_found = false;
3402 }
3403 }
3404 }
3405
3406 /*
3407 * Restoring regulatory settings involves ignoring any
3408 * possibly stale country IE information and user regulatory
3409 * settings if so desired, this includes any beacon hints
3410 * learned as we could have traveled outside to another country
3411 * after disconnection. To restore regulatory settings we do
3412 * exactly what we did at bootup:
3413 *
3414 * - send a core regulatory hint
3415 * - send a user regulatory hint if applicable
3416 *
3417 * Device drivers that send a regulatory hint for a specific country
3418 * keep their own regulatory domain on wiphy->regd so that does
3419 * not need to be remembered.
3420 */
3421 static void restore_regulatory_settings(bool reset_user, bool cached)
3422 {
3423 char alpha2[2];
3424 char world_alpha2[2];
3425 struct reg_beacon *reg_beacon, *btmp;
3426 LIST_HEAD(tmp_reg_req_list);
3427 struct cfg80211_registered_device *rdev;
3428
3429 ASSERT_RTNL();
3430
3431 /*
3432 * Clear the indoor setting in case that it is not controlled by user
3433 * space, as otherwise there is no guarantee that the device is still
3434 * operating in an indoor environment.
3435 */
3436 spin_lock(&reg_indoor_lock);
3437 if (reg_is_indoor && !reg_is_indoor_portid) {
3438 reg_is_indoor = false;
3439 reg_check_channels();
3440 }
3441 spin_unlock(&reg_indoor_lock);
3442
3443 reset_regdomains(true, &world_regdom);
3444 restore_alpha2(alpha2, reset_user);
3445
3446 /*
3447 * If there's any pending requests we simply
3448 * stash them to a temporary pending queue and
3449 * add then after we've restored regulatory
3450 * settings.
3451 */
3452 spin_lock(&reg_requests_lock);
3453 list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3454 spin_unlock(&reg_requests_lock);
3455
3456 /* Clear beacon hints */
3457 spin_lock_bh(&reg_pending_beacons_lock);
3458 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3459 list_del(&reg_beacon->list);
3460 kfree(reg_beacon);
3461 }
3462 spin_unlock_bh(&reg_pending_beacons_lock);
3463
3464 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3465 list_del(&reg_beacon->list);
3466 kfree(reg_beacon);
3467 }
3468
3469 /* First restore to the basic regulatory settings */
3470 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3471 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3472
3473 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3474 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3475 continue;
3476 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3477 restore_custom_reg_settings(&rdev->wiphy);
3478 }
3479
3480 if (cached && (!is_an_alpha2(alpha2) ||
3481 !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3482 reset_regdomains(false, cfg80211_world_regdom);
3483 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3484 print_regdomain(get_cfg80211_regdom());
3485 nl80211_send_reg_change_event(&core_request_world);
3486 reg_set_request_processed();
3487
3488 if (is_an_alpha2(alpha2) &&
3489 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3490 struct regulatory_request *ureq;
3491
3492 spin_lock(&reg_requests_lock);
3493 ureq = list_last_entry(&reg_requests_list,
3494 struct regulatory_request,
3495 list);
3496 list_del(&ureq->list);
3497 spin_unlock(&reg_requests_lock);
3498
3499 notify_self_managed_wiphys(ureq);
3500 reg_update_last_request(ureq);
3501 set_regdom(reg_copy_regd(cfg80211_user_regdom),
3502 REGD_SOURCE_CACHED);
3503 }
3504 } else {
3505 regulatory_hint_core(world_alpha2);
3506
3507 /*
3508 * This restores the ieee80211_regdom module parameter
3509 * preference or the last user requested regulatory
3510 * settings, user regulatory settings takes precedence.
3511 */
3512 if (is_an_alpha2(alpha2))
3513 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3514 }
3515
3516 spin_lock(&reg_requests_lock);
3517 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3518 spin_unlock(&reg_requests_lock);
3519
3520 pr_debug("Kicking the queue\n");
3521
3522 schedule_work(&reg_work);
3523 }
3524
3525 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3526 {
3527 struct cfg80211_registered_device *rdev;
3528 struct wireless_dev *wdev;
3529
3530 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3531 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3532 wdev_lock(wdev);
3533 if (!(wdev->wiphy->regulatory_flags & flag)) {
3534 wdev_unlock(wdev);
3535 return false;
3536 }
3537 wdev_unlock(wdev);
3538 }
3539 }
3540
3541 return true;
3542 }
3543
3544 void regulatory_hint_disconnect(void)
3545 {
3546 /* Restore of regulatory settings is not required when wiphy(s)
3547 * ignore IE from connected access point but clearance of beacon hints
3548 * is required when wiphy(s) supports beacon hints.
3549 */
3550 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3551 struct reg_beacon *reg_beacon, *btmp;
3552
3553 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3554 return;
3555
3556 spin_lock_bh(&reg_pending_beacons_lock);
3557 list_for_each_entry_safe(reg_beacon, btmp,
3558 &reg_pending_beacons, list) {
3559 list_del(&reg_beacon->list);
3560 kfree(reg_beacon);
3561 }
3562 spin_unlock_bh(&reg_pending_beacons_lock);
3563
3564 list_for_each_entry_safe(reg_beacon, btmp,
3565 &reg_beacon_list, list) {
3566 list_del(&reg_beacon->list);
3567 kfree(reg_beacon);
3568 }
3569
3570 return;
3571 }
3572
3573 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3574 restore_regulatory_settings(false, true);
3575 }
3576
3577 static bool freq_is_chan_12_13_14(u32 freq)
3578 {
3579 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3580 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3581 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3582 return true;
3583 return false;
3584 }
3585
3586 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3587 {
3588 struct reg_beacon *pending_beacon;
3589
3590 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3591 if (ieee80211_channel_equal(beacon_chan,
3592 &pending_beacon->chan))
3593 return true;
3594 return false;
3595 }
3596
3597 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3598 struct ieee80211_channel *beacon_chan,
3599 gfp_t gfp)
3600 {
3601 struct reg_beacon *reg_beacon;
3602 bool processing;
3603
3604 if (beacon_chan->beacon_found ||
3605 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3606 (beacon_chan->band == NL80211_BAND_2GHZ &&
3607 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3608 return 0;
3609
3610 spin_lock_bh(&reg_pending_beacons_lock);
3611 processing = pending_reg_beacon(beacon_chan);
3612 spin_unlock_bh(&reg_pending_beacons_lock);
3613
3614 if (processing)
3615 return 0;
3616
3617 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3618 if (!reg_beacon)
3619 return -ENOMEM;
3620
3621 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3622 beacon_chan->center_freq, beacon_chan->freq_offset,
3623 ieee80211_freq_khz_to_channel(
3624 ieee80211_channel_to_khz(beacon_chan)),
3625 wiphy_name(wiphy));
3626
3627 memcpy(&reg_beacon->chan, beacon_chan,
3628 sizeof(struct ieee80211_channel));
3629
3630 /*
3631 * Since we can be called from BH or and non-BH context
3632 * we must use spin_lock_bh()
3633 */
3634 spin_lock_bh(&reg_pending_beacons_lock);
3635 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3636 spin_unlock_bh(&reg_pending_beacons_lock);
3637
3638 schedule_work(&reg_work);
3639
3640 return 0;
3641 }
3642
3643 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3644 {
3645 unsigned int i;
3646 const struct ieee80211_reg_rule *reg_rule = NULL;
3647 const struct ieee80211_freq_range *freq_range = NULL;
3648 const struct ieee80211_power_rule *power_rule = NULL;
3649 char bw[32], cac_time[32];
3650
3651 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3652
3653 for (i = 0; i < rd->n_reg_rules; i++) {
3654 reg_rule = &rd->reg_rules[i];
3655 freq_range = &reg_rule->freq_range;
3656 power_rule = &reg_rule->power_rule;
3657
3658 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3659 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3660 freq_range->max_bandwidth_khz,
3661 reg_get_max_bandwidth(rd, reg_rule));
3662 else
3663 snprintf(bw, sizeof(bw), "%d KHz",
3664 freq_range->max_bandwidth_khz);
3665
3666 if (reg_rule->flags & NL80211_RRF_DFS)
3667 scnprintf(cac_time, sizeof(cac_time), "%u s",
3668 reg_rule->dfs_cac_ms/1000);
3669 else
3670 scnprintf(cac_time, sizeof(cac_time), "N/A");
3671
3672
3673 /*
3674 * There may not be documentation for max antenna gain
3675 * in certain regions
3676 */
3677 if (power_rule->max_antenna_gain)
3678 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3679 freq_range->start_freq_khz,
3680 freq_range->end_freq_khz,
3681 bw,
3682 power_rule->max_antenna_gain,
3683 power_rule->max_eirp,
3684 cac_time);
3685 else
3686 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3687 freq_range->start_freq_khz,
3688 freq_range->end_freq_khz,
3689 bw,
3690 power_rule->max_eirp,
3691 cac_time);
3692 }
3693 }
3694
3695 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3696 {
3697 switch (dfs_region) {
3698 case NL80211_DFS_UNSET:
3699 case NL80211_DFS_FCC:
3700 case NL80211_DFS_ETSI:
3701 case NL80211_DFS_JP:
3702 return true;
3703 default:
3704 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3705 return false;
3706 }
3707 }
3708
3709 static void print_regdomain(const struct ieee80211_regdomain *rd)
3710 {
3711 struct regulatory_request *lr = get_last_request();
3712
3713 if (is_intersected_alpha2(rd->alpha2)) {
3714 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3715 struct cfg80211_registered_device *rdev;
3716 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3717 if (rdev) {
3718 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3719 rdev->country_ie_alpha2[0],
3720 rdev->country_ie_alpha2[1]);
3721 } else
3722 pr_debug("Current regulatory domain intersected:\n");
3723 } else
3724 pr_debug("Current regulatory domain intersected:\n");
3725 } else if (is_world_regdom(rd->alpha2)) {
3726 pr_debug("World regulatory domain updated:\n");
3727 } else {
3728 if (is_unknown_alpha2(rd->alpha2))
3729 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3730 else {
3731 if (reg_request_cell_base(lr))
3732 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3733 rd->alpha2[0], rd->alpha2[1]);
3734 else
3735 pr_debug("Regulatory domain changed to country: %c%c\n",
3736 rd->alpha2[0], rd->alpha2[1]);
3737 }
3738 }
3739
3740 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3741 print_rd_rules(rd);
3742 }
3743
3744 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3745 {
3746 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3747 print_rd_rules(rd);
3748 }
3749
3750 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3751 {
3752 if (!is_world_regdom(rd->alpha2))
3753 return -EINVAL;
3754 update_world_regdomain(rd);
3755 return 0;
3756 }
3757
3758 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3759 struct regulatory_request *user_request)
3760 {
3761 const struct ieee80211_regdomain *intersected_rd = NULL;
3762
3763 if (!regdom_changes(rd->alpha2))
3764 return -EALREADY;
3765
3766 if (!is_valid_rd(rd)) {
3767 pr_err("Invalid regulatory domain detected: %c%c\n",
3768 rd->alpha2[0], rd->alpha2[1]);
3769 print_regdomain_info(rd);
3770 return -EINVAL;
3771 }
3772
3773 if (!user_request->intersect) {
3774 reset_regdomains(false, rd);
3775 return 0;
3776 }
3777
3778 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3779 if (!intersected_rd)
3780 return -EINVAL;
3781
3782 kfree(rd);
3783 rd = NULL;
3784 reset_regdomains(false, intersected_rd);
3785
3786 return 0;
3787 }
3788
3789 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3790 struct regulatory_request *driver_request)
3791 {
3792 const struct ieee80211_regdomain *regd;
3793 const struct ieee80211_regdomain *intersected_rd = NULL;
3794 const struct ieee80211_regdomain *tmp;
3795 struct wiphy *request_wiphy;
3796
3797 if (is_world_regdom(rd->alpha2))
3798 return -EINVAL;
3799
3800 if (!regdom_changes(rd->alpha2))
3801 return -EALREADY;
3802
3803 if (!is_valid_rd(rd)) {
3804 pr_err("Invalid regulatory domain detected: %c%c\n",
3805 rd->alpha2[0], rd->alpha2[1]);
3806 print_regdomain_info(rd);
3807 return -EINVAL;
3808 }
3809
3810 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3811 if (!request_wiphy)
3812 return -ENODEV;
3813
3814 if (!driver_request->intersect) {
3815 ASSERT_RTNL();
3816 wiphy_lock(request_wiphy);
3817 if (request_wiphy->regd) {
3818 wiphy_unlock(request_wiphy);
3819 return -EALREADY;
3820 }
3821
3822 regd = reg_copy_regd(rd);
3823 if (IS_ERR(regd)) {
3824 wiphy_unlock(request_wiphy);
3825 return PTR_ERR(regd);
3826 }
3827
3828 rcu_assign_pointer(request_wiphy->regd, regd);
3829 wiphy_unlock(request_wiphy);
3830 reset_regdomains(false, rd);
3831 return 0;
3832 }
3833
3834 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3835 if (!intersected_rd)
3836 return -EINVAL;
3837
3838 /*
3839 * We can trash what CRDA provided now.
3840 * However if a driver requested this specific regulatory
3841 * domain we keep it for its private use
3842 */
3843 tmp = get_wiphy_regdom(request_wiphy);
3844 rcu_assign_pointer(request_wiphy->regd, rd);
3845 rcu_free_regdom(tmp);
3846
3847 rd = NULL;
3848
3849 reset_regdomains(false, intersected_rd);
3850
3851 return 0;
3852 }
3853
3854 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3855 struct regulatory_request *country_ie_request)
3856 {
3857 struct wiphy *request_wiphy;
3858
3859 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3860 !is_unknown_alpha2(rd->alpha2))
3861 return -EINVAL;
3862
3863 /*
3864 * Lets only bother proceeding on the same alpha2 if the current
3865 * rd is non static (it means CRDA was present and was used last)
3866 * and the pending request came in from a country IE
3867 */
3868
3869 if (!is_valid_rd(rd)) {
3870 pr_err("Invalid regulatory domain detected: %c%c\n",
3871 rd->alpha2[0], rd->alpha2[1]);
3872 print_regdomain_info(rd);
3873 return -EINVAL;
3874 }
3875
3876 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3877 if (!request_wiphy)
3878 return -ENODEV;
3879
3880 if (country_ie_request->intersect)
3881 return -EINVAL;
3882
3883 reset_regdomains(false, rd);
3884 return 0;
3885 }
3886
3887 /*
3888 * Use this call to set the current regulatory domain. Conflicts with
3889 * multiple drivers can be ironed out later. Caller must've already
3890 * kmalloc'd the rd structure.
3891 */
3892 int set_regdom(const struct ieee80211_regdomain *rd,
3893 enum ieee80211_regd_source regd_src)
3894 {
3895 struct regulatory_request *lr;
3896 bool user_reset = false;
3897 int r;
3898
3899 if (IS_ERR_OR_NULL(rd))
3900 return -ENODATA;
3901
3902 if (!reg_is_valid_request(rd->alpha2)) {
3903 kfree(rd);
3904 return -EINVAL;
3905 }
3906
3907 if (regd_src == REGD_SOURCE_CRDA)
3908 reset_crda_timeouts();
3909
3910 lr = get_last_request();
3911
3912 /* Note that this doesn't update the wiphys, this is done below */
3913 switch (lr->initiator) {
3914 case NL80211_REGDOM_SET_BY_CORE:
3915 r = reg_set_rd_core(rd);
3916 break;
3917 case NL80211_REGDOM_SET_BY_USER:
3918 cfg80211_save_user_regdom(rd);
3919 r = reg_set_rd_user(rd, lr);
3920 user_reset = true;
3921 break;
3922 case NL80211_REGDOM_SET_BY_DRIVER:
3923 r = reg_set_rd_driver(rd, lr);
3924 break;
3925 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3926 r = reg_set_rd_country_ie(rd, lr);
3927 break;
3928 default:
3929 WARN(1, "invalid initiator %d\n", lr->initiator);
3930 kfree(rd);
3931 return -EINVAL;
3932 }
3933
3934 if (r) {
3935 switch (r) {
3936 case -EALREADY:
3937 reg_set_request_processed();
3938 break;
3939 default:
3940 /* Back to world regulatory in case of errors */
3941 restore_regulatory_settings(user_reset, false);
3942 }
3943
3944 kfree(rd);
3945 return r;
3946 }
3947
3948 /* This would make this whole thing pointless */
3949 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3950 return -EINVAL;
3951
3952 /* update all wiphys now with the new established regulatory domain */
3953 update_all_wiphy_regulatory(lr->initiator);
3954
3955 print_regdomain(get_cfg80211_regdom());
3956
3957 nl80211_send_reg_change_event(lr);
3958
3959 reg_set_request_processed();
3960
3961 return 0;
3962 }
3963
3964 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3965 struct ieee80211_regdomain *rd)
3966 {
3967 const struct ieee80211_regdomain *regd;
3968 const struct ieee80211_regdomain *prev_regd;
3969 struct cfg80211_registered_device *rdev;
3970
3971 if (WARN_ON(!wiphy || !rd))
3972 return -EINVAL;
3973
3974 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3975 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3976 return -EPERM;
3977
3978 if (WARN(!is_valid_rd(rd),
3979 "Invalid regulatory domain detected: %c%c\n",
3980 rd->alpha2[0], rd->alpha2[1])) {
3981 print_regdomain_info(rd);
3982 return -EINVAL;
3983 }
3984
3985 regd = reg_copy_regd(rd);
3986 if (IS_ERR(regd))
3987 return PTR_ERR(regd);
3988
3989 rdev = wiphy_to_rdev(wiphy);
3990
3991 spin_lock(&reg_requests_lock);
3992 prev_regd = rdev->requested_regd;
3993 rdev->requested_regd = regd;
3994 spin_unlock(&reg_requests_lock);
3995
3996 kfree(prev_regd);
3997 return 0;
3998 }
3999
4000 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4001 struct ieee80211_regdomain *rd)
4002 {
4003 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4004
4005 if (ret)
4006 return ret;
4007
4008 schedule_work(&reg_work);
4009 return 0;
4010 }
4011 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4012
4013 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4014 struct ieee80211_regdomain *rd)
4015 {
4016 int ret;
4017
4018 ASSERT_RTNL();
4019
4020 ret = __regulatory_set_wiphy_regd(wiphy, rd);
4021 if (ret)
4022 return ret;
4023
4024 /* process the request immediately */
4025 reg_process_self_managed_hint(wiphy);
4026 reg_check_channels();
4027 return 0;
4028 }
4029 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4030
4031 void wiphy_regulatory_register(struct wiphy *wiphy)
4032 {
4033 struct regulatory_request *lr = get_last_request();
4034
4035 /* self-managed devices ignore beacon hints and country IE */
4036 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4037 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4038 REGULATORY_COUNTRY_IE_IGNORE;
4039
4040 /*
4041 * The last request may have been received before this
4042 * registration call. Call the driver notifier if
4043 * initiator is USER.
4044 */
4045 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4046 reg_call_notifier(wiphy, lr);
4047 }
4048
4049 if (!reg_dev_ignore_cell_hint(wiphy))
4050 reg_num_devs_support_basehint++;
4051
4052 wiphy_update_regulatory(wiphy, lr->initiator);
4053 wiphy_all_share_dfs_chan_state(wiphy);
4054 reg_process_self_managed_hints();
4055 }
4056
4057 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4058 {
4059 struct wiphy *request_wiphy = NULL;
4060 struct regulatory_request *lr;
4061
4062 lr = get_last_request();
4063
4064 if (!reg_dev_ignore_cell_hint(wiphy))
4065 reg_num_devs_support_basehint--;
4066
4067 rcu_free_regdom(get_wiphy_regdom(wiphy));
4068 RCU_INIT_POINTER(wiphy->regd, NULL);
4069
4070 if (lr)
4071 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4072
4073 if (!request_wiphy || request_wiphy != wiphy)
4074 return;
4075
4076 lr->wiphy_idx = WIPHY_IDX_INVALID;
4077 lr->country_ie_env = ENVIRON_ANY;
4078 }
4079
4080 /*
4081 * See FCC notices for UNII band definitions
4082 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4083 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4084 */
4085 int cfg80211_get_unii(int freq)
4086 {
4087 /* UNII-1 */
4088 if (freq >= 5150 && freq <= 5250)
4089 return 0;
4090
4091 /* UNII-2A */
4092 if (freq > 5250 && freq <= 5350)
4093 return 1;
4094
4095 /* UNII-2B */
4096 if (freq > 5350 && freq <= 5470)
4097 return 2;
4098
4099 /* UNII-2C */
4100 if (freq > 5470 && freq <= 5725)
4101 return 3;
4102
4103 /* UNII-3 */
4104 if (freq > 5725 && freq <= 5825)
4105 return 4;
4106
4107 /* UNII-5 */
4108 if (freq > 5925 && freq <= 6425)
4109 return 5;
4110
4111 /* UNII-6 */
4112 if (freq > 6425 && freq <= 6525)
4113 return 6;
4114
4115 /* UNII-7 */
4116 if (freq > 6525 && freq <= 6875)
4117 return 7;
4118
4119 /* UNII-8 */
4120 if (freq > 6875 && freq <= 7125)
4121 return 8;
4122
4123 return -EINVAL;
4124 }
4125
4126 bool regulatory_indoor_allowed(void)
4127 {
4128 return reg_is_indoor;
4129 }
4130
4131 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4132 {
4133 const struct ieee80211_regdomain *regd = NULL;
4134 const struct ieee80211_regdomain *wiphy_regd = NULL;
4135 bool pre_cac_allowed = false;
4136
4137 rcu_read_lock();
4138
4139 regd = rcu_dereference(cfg80211_regdomain);
4140 wiphy_regd = rcu_dereference(wiphy->regd);
4141 if (!wiphy_regd) {
4142 if (regd->dfs_region == NL80211_DFS_ETSI)
4143 pre_cac_allowed = true;
4144
4145 rcu_read_unlock();
4146
4147 return pre_cac_allowed;
4148 }
4149
4150 if (regd->dfs_region == wiphy_regd->dfs_region &&
4151 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4152 pre_cac_allowed = true;
4153
4154 rcu_read_unlock();
4155
4156 return pre_cac_allowed;
4157 }
4158 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4159
4160 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4161 {
4162 struct wireless_dev *wdev;
4163 /* If we finished CAC or received radar, we should end any
4164 * CAC running on the same channels.
4165 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4166 * either all channels are available - those the CAC_FINISHED
4167 * event has effected another wdev state, or there is a channel
4168 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4169 * event has effected another wdev state.
4170 * In both cases we should end the CAC on the wdev.
4171 */
4172 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4173 if (wdev->cac_started &&
4174 !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef))
4175 rdev_end_cac(rdev, wdev->netdev);
4176 }
4177 }
4178
4179 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4180 struct cfg80211_chan_def *chandef,
4181 enum nl80211_dfs_state dfs_state,
4182 enum nl80211_radar_event event)
4183 {
4184 struct cfg80211_registered_device *rdev;
4185
4186 ASSERT_RTNL();
4187
4188 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4189 return;
4190
4191 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4192 if (wiphy == &rdev->wiphy)
4193 continue;
4194
4195 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4196 continue;
4197
4198 if (!ieee80211_get_channel(&rdev->wiphy,
4199 chandef->chan->center_freq))
4200 continue;
4201
4202 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4203
4204 if (event == NL80211_RADAR_DETECTED ||
4205 event == NL80211_RADAR_CAC_FINISHED) {
4206 cfg80211_sched_dfs_chan_update(rdev);
4207 cfg80211_check_and_end_cac(rdev);
4208 }
4209
4210 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4211 }
4212 }
4213
4214 static int __init regulatory_init_db(void)
4215 {
4216 int err;
4217
4218 /*
4219 * It's possible that - due to other bugs/issues - cfg80211
4220 * never called regulatory_init() below, or that it failed;
4221 * in that case, don't try to do any further work here as
4222 * it's doomed to lead to crashes.
4223 */
4224 if (IS_ERR_OR_NULL(reg_pdev))
4225 return -EINVAL;
4226
4227 err = load_builtin_regdb_keys();
4228 if (err)
4229 return err;
4230
4231 /* We always try to get an update for the static regdomain */
4232 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4233 if (err) {
4234 if (err == -ENOMEM) {
4235 platform_device_unregister(reg_pdev);
4236 return err;
4237 }
4238 /*
4239 * N.B. kobject_uevent_env() can fail mainly for when we're out
4240 * memory which is handled and propagated appropriately above
4241 * but it can also fail during a netlink_broadcast() or during
4242 * early boot for call_usermodehelper(). For now treat these
4243 * errors as non-fatal.
4244 */
4245 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4246 }
4247
4248 /*
4249 * Finally, if the user set the module parameter treat it
4250 * as a user hint.
4251 */
4252 if (!is_world_regdom(ieee80211_regdom))
4253 regulatory_hint_user(ieee80211_regdom,
4254 NL80211_USER_REG_HINT_USER);
4255
4256 return 0;
4257 }
4258 #ifndef MODULE
4259 late_initcall(regulatory_init_db);
4260 #endif
4261
4262 int __init regulatory_init(void)
4263 {
4264 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4265 if (IS_ERR(reg_pdev))
4266 return PTR_ERR(reg_pdev);
4267
4268 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4269
4270 user_alpha2[0] = '9';
4271 user_alpha2[1] = '7';
4272
4273 #ifdef MODULE
4274 return regulatory_init_db();
4275 #else
4276 return 0;
4277 #endif
4278 }
4279
4280 void regulatory_exit(void)
4281 {
4282 struct regulatory_request *reg_request, *tmp;
4283 struct reg_beacon *reg_beacon, *btmp;
4284
4285 cancel_work_sync(&reg_work);
4286 cancel_crda_timeout_sync();
4287 cancel_delayed_work_sync(&reg_check_chans);
4288
4289 /* Lock to suppress warnings */
4290 rtnl_lock();
4291 reset_regdomains(true, NULL);
4292 rtnl_unlock();
4293
4294 dev_set_uevent_suppress(&reg_pdev->dev, true);
4295
4296 platform_device_unregister(reg_pdev);
4297
4298 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4299 list_del(&reg_beacon->list);
4300 kfree(reg_beacon);
4301 }
4302
4303 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4304 list_del(&reg_beacon->list);
4305 kfree(reg_beacon);
4306 }
4307
4308 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4309 list_del(&reg_request->list);
4310 kfree(reg_request);
4311 }
4312
4313 if (!IS_ERR_OR_NULL(regdb))
4314 kfree(regdb);
4315 if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4316 kfree(cfg80211_user_regdom);
4317
4318 free_regdb_keyring();
4319 }