]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/wireless/reg.c
d8671036c264ff287f1f0a8a12e6ecf577c7143d
[mirror_ubuntu-bionic-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 *
8 * Permission to use, copy, modify, and/or distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21
22 /**
23 * DOC: Wireless regulatory infrastructure
24 *
25 * The usual implementation is for a driver to read a device EEPROM to
26 * determine which regulatory domain it should be operating under, then
27 * looking up the allowable channels in a driver-local table and finally
28 * registering those channels in the wiphy structure.
29 *
30 * Another set of compliance enforcement is for drivers to use their
31 * own compliance limits which can be stored on the EEPROM. The host
32 * driver or firmware may ensure these are used.
33 *
34 * In addition to all this we provide an extra layer of regulatory
35 * conformance. For drivers which do not have any regulatory
36 * information CRDA provides the complete regulatory solution.
37 * For others it provides a community effort on further restrictions
38 * to enhance compliance.
39 *
40 * Note: When number of rules --> infinity we will not be able to
41 * index on alpha2 any more, instead we'll probably have to
42 * rely on some SHA1 checksum of the regdomain for example.
43 *
44 */
45
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "rdev-ops.h"
60 #include "regdb.h"
61 #include "nl80211.h"
62
63 #ifdef CONFIG_CFG80211_REG_DEBUG
64 #define REG_DBG_PRINT(format, args...) \
65 printk(KERN_DEBUG pr_fmt(format), ##args)
66 #else
67 #define REG_DBG_PRINT(args...)
68 #endif
69
70 /*
71 * Grace period we give before making sure all current interfaces reside on
72 * channels allowed by the current regulatory domain.
73 */
74 #define REG_ENFORCE_GRACE_MS 60000
75
76 /**
77 * enum reg_request_treatment - regulatory request treatment
78 *
79 * @REG_REQ_OK: continue processing the regulatory request
80 * @REG_REQ_IGNORE: ignore the regulatory request
81 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
82 * be intersected with the current one.
83 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
84 * regulatory settings, and no further processing is required.
85 */
86 enum reg_request_treatment {
87 REG_REQ_OK,
88 REG_REQ_IGNORE,
89 REG_REQ_INTERSECT,
90 REG_REQ_ALREADY_SET,
91 };
92
93 static struct regulatory_request core_request_world = {
94 .initiator = NL80211_REGDOM_SET_BY_CORE,
95 .alpha2[0] = '0',
96 .alpha2[1] = '0',
97 .intersect = false,
98 .processed = true,
99 .country_ie_env = ENVIRON_ANY,
100 };
101
102 /*
103 * Receipt of information from last regulatory request,
104 * protected by RTNL (and can be accessed with RCU protection)
105 */
106 static struct regulatory_request __rcu *last_request =
107 (void __force __rcu *)&core_request_world;
108
109 /* To trigger userspace events */
110 static struct platform_device *reg_pdev;
111
112 /*
113 * Central wireless core regulatory domains, we only need two,
114 * the current one and a world regulatory domain in case we have no
115 * information to give us an alpha2.
116 * (protected by RTNL, can be read under RCU)
117 */
118 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
119
120 /*
121 * Number of devices that registered to the core
122 * that support cellular base station regulatory hints
123 * (protected by RTNL)
124 */
125 static int reg_num_devs_support_basehint;
126
127 /*
128 * State variable indicating if the platform on which the devices
129 * are attached is operating in an indoor environment. The state variable
130 * is relevant for all registered devices.
131 */
132 static bool reg_is_indoor;
133 static spinlock_t reg_indoor_lock;
134
135 /* Used to track the userspace process controlling the indoor setting */
136 static u32 reg_is_indoor_portid;
137
138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139 {
140 return rtnl_dereference(cfg80211_regdomain);
141 }
142
143 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
144 {
145 return rtnl_dereference(wiphy->regd);
146 }
147
148 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
149 {
150 switch (dfs_region) {
151 case NL80211_DFS_UNSET:
152 return "unset";
153 case NL80211_DFS_FCC:
154 return "FCC";
155 case NL80211_DFS_ETSI:
156 return "ETSI";
157 case NL80211_DFS_JP:
158 return "JP";
159 }
160 return "Unknown";
161 }
162
163 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
164 {
165 const struct ieee80211_regdomain *regd = NULL;
166 const struct ieee80211_regdomain *wiphy_regd = NULL;
167
168 regd = get_cfg80211_regdom();
169 if (!wiphy)
170 goto out;
171
172 wiphy_regd = get_wiphy_regdom(wiphy);
173 if (!wiphy_regd)
174 goto out;
175
176 if (wiphy_regd->dfs_region == regd->dfs_region)
177 goto out;
178
179 REG_DBG_PRINT("%s: device specific dfs_region "
180 "(%s) disagrees with cfg80211's "
181 "central dfs_region (%s)\n",
182 dev_name(&wiphy->dev),
183 reg_dfs_region_str(wiphy_regd->dfs_region),
184 reg_dfs_region_str(regd->dfs_region));
185
186 out:
187 return regd->dfs_region;
188 }
189
190 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
191 {
192 if (!r)
193 return;
194 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
195 }
196
197 static struct regulatory_request *get_last_request(void)
198 {
199 return rcu_dereference_rtnl(last_request);
200 }
201
202 /* Used to queue up regulatory hints */
203 static LIST_HEAD(reg_requests_list);
204 static spinlock_t reg_requests_lock;
205
206 /* Used to queue up beacon hints for review */
207 static LIST_HEAD(reg_pending_beacons);
208 static spinlock_t reg_pending_beacons_lock;
209
210 /* Used to keep track of processed beacon hints */
211 static LIST_HEAD(reg_beacon_list);
212
213 struct reg_beacon {
214 struct list_head list;
215 struct ieee80211_channel chan;
216 };
217
218 static void reg_check_chans_work(struct work_struct *work);
219 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
220
221 static void reg_todo(struct work_struct *work);
222 static DECLARE_WORK(reg_work, reg_todo);
223
224 static void reg_timeout_work(struct work_struct *work);
225 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
226
227 /* We keep a static world regulatory domain in case of the absence of CRDA */
228 static const struct ieee80211_regdomain world_regdom = {
229 .n_reg_rules = 6,
230 .alpha2 = "00",
231 .reg_rules = {
232 /* IEEE 802.11b/g, channels 1..11 */
233 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
234 /* IEEE 802.11b/g, channels 12..13. */
235 REG_RULE(2467-10, 2472+10, 40, 6, 20,
236 NL80211_RRF_NO_IR),
237 /* IEEE 802.11 channel 14 - Only JP enables
238 * this and for 802.11b only */
239 REG_RULE(2484-10, 2484+10, 20, 6, 20,
240 NL80211_RRF_NO_IR |
241 NL80211_RRF_NO_OFDM),
242 /* IEEE 802.11a, channel 36..48 */
243 REG_RULE(5180-10, 5240+10, 160, 6, 20,
244 NL80211_RRF_NO_IR),
245
246 /* IEEE 802.11a, channel 52..64 - DFS required */
247 REG_RULE(5260-10, 5320+10, 160, 6, 20,
248 NL80211_RRF_NO_IR |
249 NL80211_RRF_DFS),
250
251 /* IEEE 802.11a, channel 100..144 - DFS required */
252 REG_RULE(5500-10, 5720+10, 160, 6, 20,
253 NL80211_RRF_NO_IR |
254 NL80211_RRF_DFS),
255
256 /* IEEE 802.11a, channel 149..165 */
257 REG_RULE(5745-10, 5825+10, 80, 6, 20,
258 NL80211_RRF_NO_IR),
259
260 /* IEEE 802.11ad (60gHz), channels 1..3 */
261 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
262 }
263 };
264
265 /* protected by RTNL */
266 static const struct ieee80211_regdomain *cfg80211_world_regdom =
267 &world_regdom;
268
269 static char *ieee80211_regdom = "00";
270 static char user_alpha2[2];
271
272 module_param(ieee80211_regdom, charp, 0444);
273 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
274
275 static void reg_free_request(struct regulatory_request *request)
276 {
277 if (request != get_last_request())
278 kfree(request);
279 }
280
281 static void reg_free_last_request(void)
282 {
283 struct regulatory_request *lr = get_last_request();
284
285 if (lr != &core_request_world && lr)
286 kfree_rcu(lr, rcu_head);
287 }
288
289 static void reg_update_last_request(struct regulatory_request *request)
290 {
291 struct regulatory_request *lr;
292
293 lr = get_last_request();
294 if (lr == request)
295 return;
296
297 reg_free_last_request();
298 rcu_assign_pointer(last_request, request);
299 }
300
301 static void reset_regdomains(bool full_reset,
302 const struct ieee80211_regdomain *new_regdom)
303 {
304 const struct ieee80211_regdomain *r;
305
306 ASSERT_RTNL();
307
308 r = get_cfg80211_regdom();
309
310 /* avoid freeing static information or freeing something twice */
311 if (r == cfg80211_world_regdom)
312 r = NULL;
313 if (cfg80211_world_regdom == &world_regdom)
314 cfg80211_world_regdom = NULL;
315 if (r == &world_regdom)
316 r = NULL;
317
318 rcu_free_regdom(r);
319 rcu_free_regdom(cfg80211_world_regdom);
320
321 cfg80211_world_regdom = &world_regdom;
322 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
323
324 if (!full_reset)
325 return;
326
327 reg_update_last_request(&core_request_world);
328 }
329
330 /*
331 * Dynamic world regulatory domain requested by the wireless
332 * core upon initialization
333 */
334 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
335 {
336 struct regulatory_request *lr;
337
338 lr = get_last_request();
339
340 WARN_ON(!lr);
341
342 reset_regdomains(false, rd);
343
344 cfg80211_world_regdom = rd;
345 }
346
347 bool is_world_regdom(const char *alpha2)
348 {
349 if (!alpha2)
350 return false;
351 return alpha2[0] == '0' && alpha2[1] == '0';
352 }
353
354 static bool is_alpha2_set(const char *alpha2)
355 {
356 if (!alpha2)
357 return false;
358 return alpha2[0] && alpha2[1];
359 }
360
361 static bool is_unknown_alpha2(const char *alpha2)
362 {
363 if (!alpha2)
364 return false;
365 /*
366 * Special case where regulatory domain was built by driver
367 * but a specific alpha2 cannot be determined
368 */
369 return alpha2[0] == '9' && alpha2[1] == '9';
370 }
371
372 static bool is_intersected_alpha2(const char *alpha2)
373 {
374 if (!alpha2)
375 return false;
376 /*
377 * Special case where regulatory domain is the
378 * result of an intersection between two regulatory domain
379 * structures
380 */
381 return alpha2[0] == '9' && alpha2[1] == '8';
382 }
383
384 static bool is_an_alpha2(const char *alpha2)
385 {
386 if (!alpha2)
387 return false;
388 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
389 }
390
391 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
392 {
393 if (!alpha2_x || !alpha2_y)
394 return false;
395 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
396 }
397
398 static bool regdom_changes(const char *alpha2)
399 {
400 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
401
402 if (!r)
403 return true;
404 return !alpha2_equal(r->alpha2, alpha2);
405 }
406
407 /*
408 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
409 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
410 * has ever been issued.
411 */
412 static bool is_user_regdom_saved(void)
413 {
414 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
415 return false;
416
417 /* This would indicate a mistake on the design */
418 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
419 "Unexpected user alpha2: %c%c\n",
420 user_alpha2[0], user_alpha2[1]))
421 return false;
422
423 return true;
424 }
425
426 static const struct ieee80211_regdomain *
427 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
428 {
429 struct ieee80211_regdomain *regd;
430 int size_of_regd;
431 unsigned int i;
432
433 size_of_regd =
434 sizeof(struct ieee80211_regdomain) +
435 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
436
437 regd = kzalloc(size_of_regd, GFP_KERNEL);
438 if (!regd)
439 return ERR_PTR(-ENOMEM);
440
441 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
442
443 for (i = 0; i < src_regd->n_reg_rules; i++)
444 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
445 sizeof(struct ieee80211_reg_rule));
446
447 return regd;
448 }
449
450 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
451 struct reg_regdb_search_request {
452 char alpha2[2];
453 struct list_head list;
454 };
455
456 static LIST_HEAD(reg_regdb_search_list);
457 static DEFINE_MUTEX(reg_regdb_search_mutex);
458
459 static void reg_regdb_search(struct work_struct *work)
460 {
461 struct reg_regdb_search_request *request;
462 const struct ieee80211_regdomain *curdom, *regdom = NULL;
463 int i;
464
465 rtnl_lock();
466
467 mutex_lock(&reg_regdb_search_mutex);
468 while (!list_empty(&reg_regdb_search_list)) {
469 request = list_first_entry(&reg_regdb_search_list,
470 struct reg_regdb_search_request,
471 list);
472 list_del(&request->list);
473
474 for (i = 0; i < reg_regdb_size; i++) {
475 curdom = reg_regdb[i];
476
477 if (alpha2_equal(request->alpha2, curdom->alpha2)) {
478 regdom = reg_copy_regd(curdom);
479 break;
480 }
481 }
482
483 kfree(request);
484 }
485 mutex_unlock(&reg_regdb_search_mutex);
486
487 if (!IS_ERR_OR_NULL(regdom))
488 set_regdom(regdom);
489
490 rtnl_unlock();
491 }
492
493 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
494
495 static void reg_regdb_query(const char *alpha2)
496 {
497 struct reg_regdb_search_request *request;
498
499 if (!alpha2)
500 return;
501
502 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
503 if (!request)
504 return;
505
506 memcpy(request->alpha2, alpha2, 2);
507
508 mutex_lock(&reg_regdb_search_mutex);
509 list_add_tail(&request->list, &reg_regdb_search_list);
510 mutex_unlock(&reg_regdb_search_mutex);
511
512 schedule_work(&reg_regdb_work);
513 }
514
515 /* Feel free to add any other sanity checks here */
516 static void reg_regdb_size_check(void)
517 {
518 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
519 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
520 }
521 #else
522 static inline void reg_regdb_size_check(void) {}
523 static inline void reg_regdb_query(const char *alpha2) {}
524 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
525
526 /*
527 * This lets us keep regulatory code which is updated on a regulatory
528 * basis in userspace.
529 */
530 static int call_crda(const char *alpha2)
531 {
532 char country[12];
533 char *env[] = { country, NULL };
534
535 snprintf(country, sizeof(country), "COUNTRY=%c%c",
536 alpha2[0], alpha2[1]);
537
538 if (!is_world_regdom((char *) alpha2))
539 pr_info("Calling CRDA for country: %c%c\n",
540 alpha2[0], alpha2[1]);
541 else
542 pr_info("Calling CRDA to update world regulatory domain\n");
543
544 /* query internal regulatory database (if it exists) */
545 reg_regdb_query(alpha2);
546
547 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
548 }
549
550 static enum reg_request_treatment
551 reg_call_crda(struct regulatory_request *request)
552 {
553 if (call_crda(request->alpha2))
554 return REG_REQ_IGNORE;
555
556 queue_delayed_work(system_power_efficient_wq,
557 &reg_timeout, msecs_to_jiffies(3142));
558 return REG_REQ_OK;
559 }
560
561 bool reg_is_valid_request(const char *alpha2)
562 {
563 struct regulatory_request *lr = get_last_request();
564
565 if (!lr || lr->processed)
566 return false;
567
568 return alpha2_equal(lr->alpha2, alpha2);
569 }
570
571 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
572 {
573 struct regulatory_request *lr = get_last_request();
574
575 /*
576 * Follow the driver's regulatory domain, if present, unless a country
577 * IE has been processed or a user wants to help complaince further
578 */
579 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
580 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
581 wiphy->regd)
582 return get_wiphy_regdom(wiphy);
583
584 return get_cfg80211_regdom();
585 }
586
587 static unsigned int
588 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
589 const struct ieee80211_reg_rule *rule)
590 {
591 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
592 const struct ieee80211_freq_range *freq_range_tmp;
593 const struct ieee80211_reg_rule *tmp;
594 u32 start_freq, end_freq, idx, no;
595
596 for (idx = 0; idx < rd->n_reg_rules; idx++)
597 if (rule == &rd->reg_rules[idx])
598 break;
599
600 if (idx == rd->n_reg_rules)
601 return 0;
602
603 /* get start_freq */
604 no = idx;
605
606 while (no) {
607 tmp = &rd->reg_rules[--no];
608 freq_range_tmp = &tmp->freq_range;
609
610 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
611 break;
612
613 freq_range = freq_range_tmp;
614 }
615
616 start_freq = freq_range->start_freq_khz;
617
618 /* get end_freq */
619 freq_range = &rule->freq_range;
620 no = idx;
621
622 while (no < rd->n_reg_rules - 1) {
623 tmp = &rd->reg_rules[++no];
624 freq_range_tmp = &tmp->freq_range;
625
626 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
627 break;
628
629 freq_range = freq_range_tmp;
630 }
631
632 end_freq = freq_range->end_freq_khz;
633
634 return end_freq - start_freq;
635 }
636
637 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
638 const struct ieee80211_reg_rule *rule)
639 {
640 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
641
642 if (rule->flags & NL80211_RRF_NO_160MHZ)
643 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
644 if (rule->flags & NL80211_RRF_NO_80MHZ)
645 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
646
647 /*
648 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
649 * are not allowed.
650 */
651 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
652 rule->flags & NL80211_RRF_NO_HT40PLUS)
653 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
654
655 return bw;
656 }
657
658 /* Sanity check on a regulatory rule */
659 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
660 {
661 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
662 u32 freq_diff;
663
664 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
665 return false;
666
667 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
668 return false;
669
670 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
671
672 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
673 freq_range->max_bandwidth_khz > freq_diff)
674 return false;
675
676 return true;
677 }
678
679 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
680 {
681 const struct ieee80211_reg_rule *reg_rule = NULL;
682 unsigned int i;
683
684 if (!rd->n_reg_rules)
685 return false;
686
687 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
688 return false;
689
690 for (i = 0; i < rd->n_reg_rules; i++) {
691 reg_rule = &rd->reg_rules[i];
692 if (!is_valid_reg_rule(reg_rule))
693 return false;
694 }
695
696 return true;
697 }
698
699 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
700 u32 center_freq_khz, u32 bw_khz)
701 {
702 u32 start_freq_khz, end_freq_khz;
703
704 start_freq_khz = center_freq_khz - (bw_khz/2);
705 end_freq_khz = center_freq_khz + (bw_khz/2);
706
707 if (start_freq_khz >= freq_range->start_freq_khz &&
708 end_freq_khz <= freq_range->end_freq_khz)
709 return true;
710
711 return false;
712 }
713
714 /**
715 * freq_in_rule_band - tells us if a frequency is in a frequency band
716 * @freq_range: frequency rule we want to query
717 * @freq_khz: frequency we are inquiring about
718 *
719 * This lets us know if a specific frequency rule is or is not relevant to
720 * a specific frequency's band. Bands are device specific and artificial
721 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
722 * however it is safe for now to assume that a frequency rule should not be
723 * part of a frequency's band if the start freq or end freq are off by more
724 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
725 * 60 GHz band.
726 * This resolution can be lowered and should be considered as we add
727 * regulatory rule support for other "bands".
728 **/
729 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
730 u32 freq_khz)
731 {
732 #define ONE_GHZ_IN_KHZ 1000000
733 /*
734 * From 802.11ad: directional multi-gigabit (DMG):
735 * Pertaining to operation in a frequency band containing a channel
736 * with the Channel starting frequency above 45 GHz.
737 */
738 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
739 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
740 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
741 return true;
742 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
743 return true;
744 return false;
745 #undef ONE_GHZ_IN_KHZ
746 }
747
748 /*
749 * Later on we can perhaps use the more restrictive DFS
750 * region but we don't have information for that yet so
751 * for now simply disallow conflicts.
752 */
753 static enum nl80211_dfs_regions
754 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
755 const enum nl80211_dfs_regions dfs_region2)
756 {
757 if (dfs_region1 != dfs_region2)
758 return NL80211_DFS_UNSET;
759 return dfs_region1;
760 }
761
762 /*
763 * Helper for regdom_intersect(), this does the real
764 * mathematical intersection fun
765 */
766 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
767 const struct ieee80211_regdomain *rd2,
768 const struct ieee80211_reg_rule *rule1,
769 const struct ieee80211_reg_rule *rule2,
770 struct ieee80211_reg_rule *intersected_rule)
771 {
772 const struct ieee80211_freq_range *freq_range1, *freq_range2;
773 struct ieee80211_freq_range *freq_range;
774 const struct ieee80211_power_rule *power_rule1, *power_rule2;
775 struct ieee80211_power_rule *power_rule;
776 u32 freq_diff, max_bandwidth1, max_bandwidth2;
777
778 freq_range1 = &rule1->freq_range;
779 freq_range2 = &rule2->freq_range;
780 freq_range = &intersected_rule->freq_range;
781
782 power_rule1 = &rule1->power_rule;
783 power_rule2 = &rule2->power_rule;
784 power_rule = &intersected_rule->power_rule;
785
786 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
787 freq_range2->start_freq_khz);
788 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
789 freq_range2->end_freq_khz);
790
791 max_bandwidth1 = freq_range1->max_bandwidth_khz;
792 max_bandwidth2 = freq_range2->max_bandwidth_khz;
793
794 if (rule1->flags & NL80211_RRF_AUTO_BW)
795 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
796 if (rule2->flags & NL80211_RRF_AUTO_BW)
797 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
798
799 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
800
801 intersected_rule->flags = rule1->flags | rule2->flags;
802
803 /*
804 * In case NL80211_RRF_AUTO_BW requested for both rules
805 * set AUTO_BW in intersected rule also. Next we will
806 * calculate BW correctly in handle_channel function.
807 * In other case remove AUTO_BW flag while we calculate
808 * maximum bandwidth correctly and auto calculation is
809 * not required.
810 */
811 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
812 (rule2->flags & NL80211_RRF_AUTO_BW))
813 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
814 else
815 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
816
817 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
818 if (freq_range->max_bandwidth_khz > freq_diff)
819 freq_range->max_bandwidth_khz = freq_diff;
820
821 power_rule->max_eirp = min(power_rule1->max_eirp,
822 power_rule2->max_eirp);
823 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
824 power_rule2->max_antenna_gain);
825
826 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
827 rule2->dfs_cac_ms);
828
829 if (!is_valid_reg_rule(intersected_rule))
830 return -EINVAL;
831
832 return 0;
833 }
834
835 /* check whether old rule contains new rule */
836 static bool rule_contains(struct ieee80211_reg_rule *r1,
837 struct ieee80211_reg_rule *r2)
838 {
839 /* for simplicity, currently consider only same flags */
840 if (r1->flags != r2->flags)
841 return false;
842
843 /* verify r1 is more restrictive */
844 if ((r1->power_rule.max_antenna_gain >
845 r2->power_rule.max_antenna_gain) ||
846 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
847 return false;
848
849 /* make sure r2's range is contained within r1 */
850 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
851 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
852 return false;
853
854 /* and finally verify that r1.max_bw >= r2.max_bw */
855 if (r1->freq_range.max_bandwidth_khz <
856 r2->freq_range.max_bandwidth_khz)
857 return false;
858
859 return true;
860 }
861
862 /* add or extend current rules. do nothing if rule is already contained */
863 static void add_rule(struct ieee80211_reg_rule *rule,
864 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
865 {
866 struct ieee80211_reg_rule *tmp_rule;
867 int i;
868
869 for (i = 0; i < *n_rules; i++) {
870 tmp_rule = &reg_rules[i];
871 /* rule is already contained - do nothing */
872 if (rule_contains(tmp_rule, rule))
873 return;
874
875 /* extend rule if possible */
876 if (rule_contains(rule, tmp_rule)) {
877 memcpy(tmp_rule, rule, sizeof(*rule));
878 return;
879 }
880 }
881
882 memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
883 (*n_rules)++;
884 }
885
886 /**
887 * regdom_intersect - do the intersection between two regulatory domains
888 * @rd1: first regulatory domain
889 * @rd2: second regulatory domain
890 *
891 * Use this function to get the intersection between two regulatory domains.
892 * Once completed we will mark the alpha2 for the rd as intersected, "98",
893 * as no one single alpha2 can represent this regulatory domain.
894 *
895 * Returns a pointer to the regulatory domain structure which will hold the
896 * resulting intersection of rules between rd1 and rd2. We will
897 * kzalloc() this structure for you.
898 */
899 static struct ieee80211_regdomain *
900 regdom_intersect(const struct ieee80211_regdomain *rd1,
901 const struct ieee80211_regdomain *rd2)
902 {
903 int r, size_of_regd;
904 unsigned int x, y;
905 unsigned int num_rules = 0;
906 const struct ieee80211_reg_rule *rule1, *rule2;
907 struct ieee80211_reg_rule intersected_rule;
908 struct ieee80211_regdomain *rd;
909
910 if (!rd1 || !rd2)
911 return NULL;
912
913 /*
914 * First we get a count of the rules we'll need, then we actually
915 * build them. This is to so we can malloc() and free() a
916 * regdomain once. The reason we use reg_rules_intersect() here
917 * is it will return -EINVAL if the rule computed makes no sense.
918 * All rules that do check out OK are valid.
919 */
920
921 for (x = 0; x < rd1->n_reg_rules; x++) {
922 rule1 = &rd1->reg_rules[x];
923 for (y = 0; y < rd2->n_reg_rules; y++) {
924 rule2 = &rd2->reg_rules[y];
925 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
926 &intersected_rule))
927 num_rules++;
928 }
929 }
930
931 if (!num_rules)
932 return NULL;
933
934 size_of_regd = sizeof(struct ieee80211_regdomain) +
935 num_rules * sizeof(struct ieee80211_reg_rule);
936
937 rd = kzalloc(size_of_regd, GFP_KERNEL);
938 if (!rd)
939 return NULL;
940
941 for (x = 0; x < rd1->n_reg_rules; x++) {
942 rule1 = &rd1->reg_rules[x];
943 for (y = 0; y < rd2->n_reg_rules; y++) {
944 rule2 = &rd2->reg_rules[y];
945 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
946 &intersected_rule);
947 /*
948 * No need to memset here the intersected rule here as
949 * we're not using the stack anymore
950 */
951 if (r)
952 continue;
953
954 add_rule(&intersected_rule, rd->reg_rules,
955 &rd->n_reg_rules);
956 }
957 }
958
959 rd->alpha2[0] = '9';
960 rd->alpha2[1] = '8';
961 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
962 rd2->dfs_region);
963
964 return rd;
965 }
966
967 /*
968 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
969 * want to just have the channel structure use these
970 */
971 static u32 map_regdom_flags(u32 rd_flags)
972 {
973 u32 channel_flags = 0;
974 if (rd_flags & NL80211_RRF_NO_IR_ALL)
975 channel_flags |= IEEE80211_CHAN_NO_IR;
976 if (rd_flags & NL80211_RRF_DFS)
977 channel_flags |= IEEE80211_CHAN_RADAR;
978 if (rd_flags & NL80211_RRF_NO_OFDM)
979 channel_flags |= IEEE80211_CHAN_NO_OFDM;
980 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
981 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
982 if (rd_flags & NL80211_RRF_GO_CONCURRENT)
983 channel_flags |= IEEE80211_CHAN_GO_CONCURRENT;
984 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
985 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
986 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
987 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
988 if (rd_flags & NL80211_RRF_NO_80MHZ)
989 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
990 if (rd_flags & NL80211_RRF_NO_160MHZ)
991 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
992 return channel_flags;
993 }
994
995 static const struct ieee80211_reg_rule *
996 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
997 const struct ieee80211_regdomain *regd)
998 {
999 int i;
1000 bool band_rule_found = false;
1001 bool bw_fits = false;
1002
1003 if (!regd)
1004 return ERR_PTR(-EINVAL);
1005
1006 for (i = 0; i < regd->n_reg_rules; i++) {
1007 const struct ieee80211_reg_rule *rr;
1008 const struct ieee80211_freq_range *fr = NULL;
1009
1010 rr = &regd->reg_rules[i];
1011 fr = &rr->freq_range;
1012
1013 /*
1014 * We only need to know if one frequency rule was
1015 * was in center_freq's band, that's enough, so lets
1016 * not overwrite it once found
1017 */
1018 if (!band_rule_found)
1019 band_rule_found = freq_in_rule_band(fr, center_freq);
1020
1021 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
1022
1023 if (band_rule_found && bw_fits)
1024 return rr;
1025 }
1026
1027 if (!band_rule_found)
1028 return ERR_PTR(-ERANGE);
1029
1030 return ERR_PTR(-EINVAL);
1031 }
1032
1033 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1034 u32 center_freq)
1035 {
1036 const struct ieee80211_regdomain *regd;
1037
1038 regd = reg_get_regdomain(wiphy);
1039
1040 return freq_reg_info_regd(wiphy, center_freq, regd);
1041 }
1042 EXPORT_SYMBOL(freq_reg_info);
1043
1044 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1045 {
1046 switch (initiator) {
1047 case NL80211_REGDOM_SET_BY_CORE:
1048 return "core";
1049 case NL80211_REGDOM_SET_BY_USER:
1050 return "user";
1051 case NL80211_REGDOM_SET_BY_DRIVER:
1052 return "driver";
1053 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1054 return "country IE";
1055 default:
1056 WARN_ON(1);
1057 return "bug";
1058 }
1059 }
1060 EXPORT_SYMBOL(reg_initiator_name);
1061
1062 #ifdef CONFIG_CFG80211_REG_DEBUG
1063 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1064 struct ieee80211_channel *chan,
1065 const struct ieee80211_reg_rule *reg_rule)
1066 {
1067 const struct ieee80211_power_rule *power_rule;
1068 const struct ieee80211_freq_range *freq_range;
1069 char max_antenna_gain[32], bw[32];
1070
1071 power_rule = &reg_rule->power_rule;
1072 freq_range = &reg_rule->freq_range;
1073
1074 if (!power_rule->max_antenna_gain)
1075 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1076 else
1077 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
1078 power_rule->max_antenna_gain);
1079
1080 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1081 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1082 freq_range->max_bandwidth_khz,
1083 reg_get_max_bandwidth(regd, reg_rule));
1084 else
1085 snprintf(bw, sizeof(bw), "%d KHz",
1086 freq_range->max_bandwidth_khz);
1087
1088 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1089 chan->center_freq);
1090
1091 REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
1092 freq_range->start_freq_khz, freq_range->end_freq_khz,
1093 bw, max_antenna_gain,
1094 power_rule->max_eirp);
1095 }
1096 #else
1097 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1098 struct ieee80211_channel *chan,
1099 const struct ieee80211_reg_rule *reg_rule)
1100 {
1101 return;
1102 }
1103 #endif
1104
1105 /*
1106 * Note that right now we assume the desired channel bandwidth
1107 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1108 * per channel, the primary and the extension channel).
1109 */
1110 static void handle_channel(struct wiphy *wiphy,
1111 enum nl80211_reg_initiator initiator,
1112 struct ieee80211_channel *chan)
1113 {
1114 u32 flags, bw_flags = 0;
1115 const struct ieee80211_reg_rule *reg_rule = NULL;
1116 const struct ieee80211_power_rule *power_rule = NULL;
1117 const struct ieee80211_freq_range *freq_range = NULL;
1118 struct wiphy *request_wiphy = NULL;
1119 struct regulatory_request *lr = get_last_request();
1120 const struct ieee80211_regdomain *regd;
1121 u32 max_bandwidth_khz;
1122
1123 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1124
1125 flags = chan->orig_flags;
1126
1127 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1128 if (IS_ERR(reg_rule)) {
1129 /*
1130 * We will disable all channels that do not match our
1131 * received regulatory rule unless the hint is coming
1132 * from a Country IE and the Country IE had no information
1133 * about a band. The IEEE 802.11 spec allows for an AP
1134 * to send only a subset of the regulatory rules allowed,
1135 * so an AP in the US that only supports 2.4 GHz may only send
1136 * a country IE with information for the 2.4 GHz band
1137 * while 5 GHz is still supported.
1138 */
1139 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1140 PTR_ERR(reg_rule) == -ERANGE)
1141 return;
1142
1143 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1144 request_wiphy && request_wiphy == wiphy &&
1145 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1146 REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1147 chan->center_freq);
1148 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1149 chan->flags = chan->orig_flags;
1150 } else {
1151 REG_DBG_PRINT("Disabling freq %d MHz\n",
1152 chan->center_freq);
1153 chan->flags |= IEEE80211_CHAN_DISABLED;
1154 }
1155 return;
1156 }
1157
1158 regd = reg_get_regdomain(wiphy);
1159 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1160
1161 power_rule = &reg_rule->power_rule;
1162 freq_range = &reg_rule->freq_range;
1163
1164 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1165 /* Check if auto calculation requested */
1166 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1167 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1168
1169 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1170 bw_flags = IEEE80211_CHAN_NO_HT40;
1171 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1172 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1173 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1174 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1175
1176 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1177 request_wiphy && request_wiphy == wiphy &&
1178 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1179 /*
1180 * This guarantees the driver's requested regulatory domain
1181 * will always be used as a base for further regulatory
1182 * settings
1183 */
1184 chan->flags = chan->orig_flags =
1185 map_regdom_flags(reg_rule->flags) | bw_flags;
1186 chan->max_antenna_gain = chan->orig_mag =
1187 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1188 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1189 (int) MBM_TO_DBM(power_rule->max_eirp);
1190
1191 if (chan->flags & IEEE80211_CHAN_RADAR) {
1192 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1193 if (reg_rule->dfs_cac_ms)
1194 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1195 }
1196
1197 return;
1198 }
1199
1200 chan->dfs_state = NL80211_DFS_USABLE;
1201 chan->dfs_state_entered = jiffies;
1202
1203 chan->beacon_found = false;
1204 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1205 chan->max_antenna_gain =
1206 min_t(int, chan->orig_mag,
1207 MBI_TO_DBI(power_rule->max_antenna_gain));
1208 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1209
1210 if (chan->flags & IEEE80211_CHAN_RADAR) {
1211 if (reg_rule->dfs_cac_ms)
1212 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1213 else
1214 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1215 }
1216
1217 if (chan->orig_mpwr) {
1218 /*
1219 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1220 * will always follow the passed country IE power settings.
1221 */
1222 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1223 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1224 chan->max_power = chan->max_reg_power;
1225 else
1226 chan->max_power = min(chan->orig_mpwr,
1227 chan->max_reg_power);
1228 } else
1229 chan->max_power = chan->max_reg_power;
1230 }
1231
1232 static void handle_band(struct wiphy *wiphy,
1233 enum nl80211_reg_initiator initiator,
1234 struct ieee80211_supported_band *sband)
1235 {
1236 unsigned int i;
1237
1238 if (!sband)
1239 return;
1240
1241 for (i = 0; i < sband->n_channels; i++)
1242 handle_channel(wiphy, initiator, &sband->channels[i]);
1243 }
1244
1245 static bool reg_request_cell_base(struct regulatory_request *request)
1246 {
1247 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1248 return false;
1249 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1250 }
1251
1252 bool reg_last_request_cell_base(void)
1253 {
1254 return reg_request_cell_base(get_last_request());
1255 }
1256
1257 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1258 /* Core specific check */
1259 static enum reg_request_treatment
1260 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1261 {
1262 struct regulatory_request *lr = get_last_request();
1263
1264 if (!reg_num_devs_support_basehint)
1265 return REG_REQ_IGNORE;
1266
1267 if (reg_request_cell_base(lr) &&
1268 !regdom_changes(pending_request->alpha2))
1269 return REG_REQ_ALREADY_SET;
1270
1271 return REG_REQ_OK;
1272 }
1273
1274 /* Device specific check */
1275 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1276 {
1277 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1278 }
1279 #else
1280 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1281 {
1282 return REG_REQ_IGNORE;
1283 }
1284
1285 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1286 {
1287 return true;
1288 }
1289 #endif
1290
1291 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1292 {
1293 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1294 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1295 return true;
1296 return false;
1297 }
1298
1299 static bool ignore_reg_update(struct wiphy *wiphy,
1300 enum nl80211_reg_initiator initiator)
1301 {
1302 struct regulatory_request *lr = get_last_request();
1303
1304 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1305 return true;
1306
1307 if (!lr) {
1308 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1309 "since last_request is not set\n",
1310 reg_initiator_name(initiator));
1311 return true;
1312 }
1313
1314 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1315 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1316 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1317 "since the driver uses its own custom "
1318 "regulatory domain\n",
1319 reg_initiator_name(initiator));
1320 return true;
1321 }
1322
1323 /*
1324 * wiphy->regd will be set once the device has its own
1325 * desired regulatory domain set
1326 */
1327 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1328 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1329 !is_world_regdom(lr->alpha2)) {
1330 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1331 "since the driver requires its own regulatory "
1332 "domain to be set first\n",
1333 reg_initiator_name(initiator));
1334 return true;
1335 }
1336
1337 if (reg_request_cell_base(lr))
1338 return reg_dev_ignore_cell_hint(wiphy);
1339
1340 return false;
1341 }
1342
1343 static bool reg_is_world_roaming(struct wiphy *wiphy)
1344 {
1345 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1346 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1347 struct regulatory_request *lr = get_last_request();
1348
1349 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1350 return true;
1351
1352 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1353 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1354 return true;
1355
1356 return false;
1357 }
1358
1359 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1360 struct reg_beacon *reg_beacon)
1361 {
1362 struct ieee80211_supported_band *sband;
1363 struct ieee80211_channel *chan;
1364 bool channel_changed = false;
1365 struct ieee80211_channel chan_before;
1366
1367 sband = wiphy->bands[reg_beacon->chan.band];
1368 chan = &sband->channels[chan_idx];
1369
1370 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1371 return;
1372
1373 if (chan->beacon_found)
1374 return;
1375
1376 chan->beacon_found = true;
1377
1378 if (!reg_is_world_roaming(wiphy))
1379 return;
1380
1381 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1382 return;
1383
1384 chan_before.center_freq = chan->center_freq;
1385 chan_before.flags = chan->flags;
1386
1387 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1388 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1389 channel_changed = true;
1390 }
1391
1392 if (channel_changed)
1393 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1394 }
1395
1396 /*
1397 * Called when a scan on a wiphy finds a beacon on
1398 * new channel
1399 */
1400 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1401 struct reg_beacon *reg_beacon)
1402 {
1403 unsigned int i;
1404 struct ieee80211_supported_band *sband;
1405
1406 if (!wiphy->bands[reg_beacon->chan.band])
1407 return;
1408
1409 sband = wiphy->bands[reg_beacon->chan.band];
1410
1411 for (i = 0; i < sband->n_channels; i++)
1412 handle_reg_beacon(wiphy, i, reg_beacon);
1413 }
1414
1415 /*
1416 * Called upon reg changes or a new wiphy is added
1417 */
1418 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1419 {
1420 unsigned int i;
1421 struct ieee80211_supported_band *sband;
1422 struct reg_beacon *reg_beacon;
1423
1424 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1425 if (!wiphy->bands[reg_beacon->chan.band])
1426 continue;
1427 sband = wiphy->bands[reg_beacon->chan.band];
1428 for (i = 0; i < sband->n_channels; i++)
1429 handle_reg_beacon(wiphy, i, reg_beacon);
1430 }
1431 }
1432
1433 /* Reap the advantages of previously found beacons */
1434 static void reg_process_beacons(struct wiphy *wiphy)
1435 {
1436 /*
1437 * Means we are just firing up cfg80211, so no beacons would
1438 * have been processed yet.
1439 */
1440 if (!last_request)
1441 return;
1442 wiphy_update_beacon_reg(wiphy);
1443 }
1444
1445 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1446 {
1447 if (!chan)
1448 return false;
1449 if (chan->flags & IEEE80211_CHAN_DISABLED)
1450 return false;
1451 /* This would happen when regulatory rules disallow HT40 completely */
1452 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1453 return false;
1454 return true;
1455 }
1456
1457 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1458 struct ieee80211_channel *channel)
1459 {
1460 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1461 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1462 unsigned int i;
1463
1464 if (!is_ht40_allowed(channel)) {
1465 channel->flags |= IEEE80211_CHAN_NO_HT40;
1466 return;
1467 }
1468
1469 /*
1470 * We need to ensure the extension channels exist to
1471 * be able to use HT40- or HT40+, this finds them (or not)
1472 */
1473 for (i = 0; i < sband->n_channels; i++) {
1474 struct ieee80211_channel *c = &sband->channels[i];
1475
1476 if (c->center_freq == (channel->center_freq - 20))
1477 channel_before = c;
1478 if (c->center_freq == (channel->center_freq + 20))
1479 channel_after = c;
1480 }
1481
1482 /*
1483 * Please note that this assumes target bandwidth is 20 MHz,
1484 * if that ever changes we also need to change the below logic
1485 * to include that as well.
1486 */
1487 if (!is_ht40_allowed(channel_before))
1488 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1489 else
1490 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1491
1492 if (!is_ht40_allowed(channel_after))
1493 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1494 else
1495 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1496 }
1497
1498 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1499 struct ieee80211_supported_band *sband)
1500 {
1501 unsigned int i;
1502
1503 if (!sband)
1504 return;
1505
1506 for (i = 0; i < sband->n_channels; i++)
1507 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1508 }
1509
1510 static void reg_process_ht_flags(struct wiphy *wiphy)
1511 {
1512 enum ieee80211_band band;
1513
1514 if (!wiphy)
1515 return;
1516
1517 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1518 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1519 }
1520
1521 static void reg_call_notifier(struct wiphy *wiphy,
1522 struct regulatory_request *request)
1523 {
1524 if (wiphy->reg_notifier)
1525 wiphy->reg_notifier(wiphy, request);
1526 }
1527
1528 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1529 {
1530 struct cfg80211_chan_def chandef;
1531 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1532 enum nl80211_iftype iftype;
1533
1534 wdev_lock(wdev);
1535 iftype = wdev->iftype;
1536
1537 /* make sure the interface is active */
1538 if (!wdev->netdev || !netif_running(wdev->netdev))
1539 goto wdev_inactive_unlock;
1540
1541 switch (iftype) {
1542 case NL80211_IFTYPE_AP:
1543 case NL80211_IFTYPE_P2P_GO:
1544 if (!wdev->beacon_interval)
1545 goto wdev_inactive_unlock;
1546 chandef = wdev->chandef;
1547 break;
1548 case NL80211_IFTYPE_ADHOC:
1549 if (!wdev->ssid_len)
1550 goto wdev_inactive_unlock;
1551 chandef = wdev->chandef;
1552 break;
1553 case NL80211_IFTYPE_STATION:
1554 case NL80211_IFTYPE_P2P_CLIENT:
1555 if (!wdev->current_bss ||
1556 !wdev->current_bss->pub.channel)
1557 goto wdev_inactive_unlock;
1558
1559 if (!rdev->ops->get_channel ||
1560 rdev_get_channel(rdev, wdev, &chandef))
1561 cfg80211_chandef_create(&chandef,
1562 wdev->current_bss->pub.channel,
1563 NL80211_CHAN_NO_HT);
1564 break;
1565 case NL80211_IFTYPE_MONITOR:
1566 case NL80211_IFTYPE_AP_VLAN:
1567 case NL80211_IFTYPE_P2P_DEVICE:
1568 /* no enforcement required */
1569 break;
1570 default:
1571 /* others not implemented for now */
1572 WARN_ON(1);
1573 break;
1574 }
1575
1576 wdev_unlock(wdev);
1577
1578 switch (iftype) {
1579 case NL80211_IFTYPE_AP:
1580 case NL80211_IFTYPE_P2P_GO:
1581 case NL80211_IFTYPE_ADHOC:
1582 return cfg80211_reg_can_beacon(wiphy, &chandef, iftype);
1583 case NL80211_IFTYPE_STATION:
1584 case NL80211_IFTYPE_P2P_CLIENT:
1585 return cfg80211_chandef_usable(wiphy, &chandef,
1586 IEEE80211_CHAN_DISABLED);
1587 default:
1588 break;
1589 }
1590
1591 return true;
1592
1593 wdev_inactive_unlock:
1594 wdev_unlock(wdev);
1595 return true;
1596 }
1597
1598 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1599 {
1600 struct wireless_dev *wdev;
1601 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1602
1603 ASSERT_RTNL();
1604
1605 list_for_each_entry(wdev, &rdev->wdev_list, list)
1606 if (!reg_wdev_chan_valid(wiphy, wdev))
1607 cfg80211_leave(rdev, wdev);
1608 }
1609
1610 static void reg_check_chans_work(struct work_struct *work)
1611 {
1612 struct cfg80211_registered_device *rdev;
1613
1614 REG_DBG_PRINT("Verifying active interfaces after reg change\n");
1615 rtnl_lock();
1616
1617 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1618 if (!(rdev->wiphy.regulatory_flags &
1619 REGULATORY_IGNORE_STALE_KICKOFF))
1620 reg_leave_invalid_chans(&rdev->wiphy);
1621
1622 rtnl_unlock();
1623 }
1624
1625 static void reg_check_channels(void)
1626 {
1627 /*
1628 * Give usermode a chance to do something nicer (move to another
1629 * channel, orderly disconnection), before forcing a disconnection.
1630 */
1631 mod_delayed_work(system_power_efficient_wq,
1632 &reg_check_chans,
1633 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1634 }
1635
1636 static void wiphy_update_regulatory(struct wiphy *wiphy,
1637 enum nl80211_reg_initiator initiator)
1638 {
1639 enum ieee80211_band band;
1640 struct regulatory_request *lr = get_last_request();
1641
1642 if (ignore_reg_update(wiphy, initiator)) {
1643 /*
1644 * Regulatory updates set by CORE are ignored for custom
1645 * regulatory cards. Let us notify the changes to the driver,
1646 * as some drivers used this to restore its orig_* reg domain.
1647 */
1648 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1649 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1650 reg_call_notifier(wiphy, lr);
1651 return;
1652 }
1653
1654 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1655
1656 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1657 handle_band(wiphy, initiator, wiphy->bands[band]);
1658
1659 reg_process_beacons(wiphy);
1660 reg_process_ht_flags(wiphy);
1661 reg_call_notifier(wiphy, lr);
1662 }
1663
1664 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1665 {
1666 struct cfg80211_registered_device *rdev;
1667 struct wiphy *wiphy;
1668
1669 ASSERT_RTNL();
1670
1671 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1672 wiphy = &rdev->wiphy;
1673 wiphy_update_regulatory(wiphy, initiator);
1674 }
1675
1676 reg_check_channels();
1677 }
1678
1679 static void handle_channel_custom(struct wiphy *wiphy,
1680 struct ieee80211_channel *chan,
1681 const struct ieee80211_regdomain *regd)
1682 {
1683 u32 bw_flags = 0;
1684 const struct ieee80211_reg_rule *reg_rule = NULL;
1685 const struct ieee80211_power_rule *power_rule = NULL;
1686 const struct ieee80211_freq_range *freq_range = NULL;
1687 u32 max_bandwidth_khz;
1688
1689 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1690 regd);
1691
1692 if (IS_ERR(reg_rule)) {
1693 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1694 chan->center_freq);
1695 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1696 chan->flags |= IEEE80211_CHAN_DISABLED;
1697 } else {
1698 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1699 chan->flags = chan->orig_flags;
1700 }
1701 return;
1702 }
1703
1704 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1705
1706 power_rule = &reg_rule->power_rule;
1707 freq_range = &reg_rule->freq_range;
1708
1709 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1710 /* Check if auto calculation requested */
1711 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1712 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1713
1714 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1715 bw_flags = IEEE80211_CHAN_NO_HT40;
1716 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1717 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1718 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1719 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1720
1721 chan->dfs_state_entered = jiffies;
1722 chan->dfs_state = NL80211_DFS_USABLE;
1723
1724 chan->beacon_found = false;
1725
1726 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1727 chan->flags = chan->orig_flags | bw_flags |
1728 map_regdom_flags(reg_rule->flags);
1729 else
1730 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1731
1732 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1733 chan->max_reg_power = chan->max_power =
1734 (int) MBM_TO_DBM(power_rule->max_eirp);
1735
1736 if (chan->flags & IEEE80211_CHAN_RADAR) {
1737 if (reg_rule->dfs_cac_ms)
1738 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1739 else
1740 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1741 }
1742
1743 chan->max_power = chan->max_reg_power;
1744 }
1745
1746 static void handle_band_custom(struct wiphy *wiphy,
1747 struct ieee80211_supported_band *sband,
1748 const struct ieee80211_regdomain *regd)
1749 {
1750 unsigned int i;
1751
1752 if (!sband)
1753 return;
1754
1755 for (i = 0; i < sband->n_channels; i++)
1756 handle_channel_custom(wiphy, &sband->channels[i], regd);
1757 }
1758
1759 /* Used by drivers prior to wiphy registration */
1760 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1761 const struct ieee80211_regdomain *regd)
1762 {
1763 enum ieee80211_band band;
1764 unsigned int bands_set = 0;
1765
1766 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1767 "wiphy should have REGULATORY_CUSTOM_REG\n");
1768 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1769
1770 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1771 if (!wiphy->bands[band])
1772 continue;
1773 handle_band_custom(wiphy, wiphy->bands[band], regd);
1774 bands_set++;
1775 }
1776
1777 /*
1778 * no point in calling this if it won't have any effect
1779 * on your device's supported bands.
1780 */
1781 WARN_ON(!bands_set);
1782 }
1783 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1784
1785 static void reg_set_request_processed(void)
1786 {
1787 bool need_more_processing = false;
1788 struct regulatory_request *lr = get_last_request();
1789
1790 lr->processed = true;
1791
1792 spin_lock(&reg_requests_lock);
1793 if (!list_empty(&reg_requests_list))
1794 need_more_processing = true;
1795 spin_unlock(&reg_requests_lock);
1796
1797 cancel_delayed_work(&reg_timeout);
1798
1799 if (need_more_processing)
1800 schedule_work(&reg_work);
1801 }
1802
1803 /**
1804 * reg_process_hint_core - process core regulatory requests
1805 * @pending_request: a pending core regulatory request
1806 *
1807 * The wireless subsystem can use this function to process
1808 * a regulatory request issued by the regulatory core.
1809 *
1810 * Returns one of the different reg request treatment values.
1811 */
1812 static enum reg_request_treatment
1813 reg_process_hint_core(struct regulatory_request *core_request)
1814 {
1815
1816 core_request->intersect = false;
1817 core_request->processed = false;
1818
1819 reg_update_last_request(core_request);
1820
1821 return reg_call_crda(core_request);
1822 }
1823
1824 static enum reg_request_treatment
1825 __reg_process_hint_user(struct regulatory_request *user_request)
1826 {
1827 struct regulatory_request *lr = get_last_request();
1828
1829 if (reg_request_cell_base(user_request))
1830 return reg_ignore_cell_hint(user_request);
1831
1832 if (reg_request_cell_base(lr))
1833 return REG_REQ_IGNORE;
1834
1835 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1836 return REG_REQ_INTERSECT;
1837 /*
1838 * If the user knows better the user should set the regdom
1839 * to their country before the IE is picked up
1840 */
1841 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1842 lr->intersect)
1843 return REG_REQ_IGNORE;
1844 /*
1845 * Process user requests only after previous user/driver/core
1846 * requests have been processed
1847 */
1848 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1849 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1850 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1851 regdom_changes(lr->alpha2))
1852 return REG_REQ_IGNORE;
1853
1854 if (!regdom_changes(user_request->alpha2))
1855 return REG_REQ_ALREADY_SET;
1856
1857 return REG_REQ_OK;
1858 }
1859
1860 /**
1861 * reg_process_hint_user - process user regulatory requests
1862 * @user_request: a pending user regulatory request
1863 *
1864 * The wireless subsystem can use this function to process
1865 * a regulatory request initiated by userspace.
1866 *
1867 * Returns one of the different reg request treatment values.
1868 */
1869 static enum reg_request_treatment
1870 reg_process_hint_user(struct regulatory_request *user_request)
1871 {
1872 enum reg_request_treatment treatment;
1873
1874 treatment = __reg_process_hint_user(user_request);
1875 if (treatment == REG_REQ_IGNORE ||
1876 treatment == REG_REQ_ALREADY_SET) {
1877 reg_free_request(user_request);
1878 return treatment;
1879 }
1880
1881 user_request->intersect = treatment == REG_REQ_INTERSECT;
1882 user_request->processed = false;
1883
1884 reg_update_last_request(user_request);
1885
1886 user_alpha2[0] = user_request->alpha2[0];
1887 user_alpha2[1] = user_request->alpha2[1];
1888
1889 return reg_call_crda(user_request);
1890 }
1891
1892 static enum reg_request_treatment
1893 __reg_process_hint_driver(struct regulatory_request *driver_request)
1894 {
1895 struct regulatory_request *lr = get_last_request();
1896
1897 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1898 if (regdom_changes(driver_request->alpha2))
1899 return REG_REQ_OK;
1900 return REG_REQ_ALREADY_SET;
1901 }
1902
1903 /*
1904 * This would happen if you unplug and plug your card
1905 * back in or if you add a new device for which the previously
1906 * loaded card also agrees on the regulatory domain.
1907 */
1908 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1909 !regdom_changes(driver_request->alpha2))
1910 return REG_REQ_ALREADY_SET;
1911
1912 return REG_REQ_INTERSECT;
1913 }
1914
1915 /**
1916 * reg_process_hint_driver - process driver regulatory requests
1917 * @driver_request: a pending driver regulatory request
1918 *
1919 * The wireless subsystem can use this function to process
1920 * a regulatory request issued by an 802.11 driver.
1921 *
1922 * Returns one of the different reg request treatment values.
1923 */
1924 static enum reg_request_treatment
1925 reg_process_hint_driver(struct wiphy *wiphy,
1926 struct regulatory_request *driver_request)
1927 {
1928 const struct ieee80211_regdomain *regd, *tmp;
1929 enum reg_request_treatment treatment;
1930
1931 treatment = __reg_process_hint_driver(driver_request);
1932
1933 switch (treatment) {
1934 case REG_REQ_OK:
1935 break;
1936 case REG_REQ_IGNORE:
1937 reg_free_request(driver_request);
1938 return treatment;
1939 case REG_REQ_INTERSECT:
1940 /* fall through */
1941 case REG_REQ_ALREADY_SET:
1942 regd = reg_copy_regd(get_cfg80211_regdom());
1943 if (IS_ERR(regd)) {
1944 reg_free_request(driver_request);
1945 return REG_REQ_IGNORE;
1946 }
1947
1948 tmp = get_wiphy_regdom(wiphy);
1949 rcu_assign_pointer(wiphy->regd, regd);
1950 rcu_free_regdom(tmp);
1951 }
1952
1953
1954 driver_request->intersect = treatment == REG_REQ_INTERSECT;
1955 driver_request->processed = false;
1956
1957 reg_update_last_request(driver_request);
1958
1959 /*
1960 * Since CRDA will not be called in this case as we already
1961 * have applied the requested regulatory domain before we just
1962 * inform userspace we have processed the request
1963 */
1964 if (treatment == REG_REQ_ALREADY_SET) {
1965 nl80211_send_reg_change_event(driver_request);
1966 reg_set_request_processed();
1967 return treatment;
1968 }
1969
1970 return reg_call_crda(driver_request);
1971 }
1972
1973 static enum reg_request_treatment
1974 __reg_process_hint_country_ie(struct wiphy *wiphy,
1975 struct regulatory_request *country_ie_request)
1976 {
1977 struct wiphy *last_wiphy = NULL;
1978 struct regulatory_request *lr = get_last_request();
1979
1980 if (reg_request_cell_base(lr)) {
1981 /* Trust a Cell base station over the AP's country IE */
1982 if (regdom_changes(country_ie_request->alpha2))
1983 return REG_REQ_IGNORE;
1984 return REG_REQ_ALREADY_SET;
1985 } else {
1986 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1987 return REG_REQ_IGNORE;
1988 }
1989
1990 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
1991 return -EINVAL;
1992
1993 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
1994 return REG_REQ_OK;
1995
1996 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1997
1998 if (last_wiphy != wiphy) {
1999 /*
2000 * Two cards with two APs claiming different
2001 * Country IE alpha2s. We could
2002 * intersect them, but that seems unlikely
2003 * to be correct. Reject second one for now.
2004 */
2005 if (regdom_changes(country_ie_request->alpha2))
2006 return REG_REQ_IGNORE;
2007 return REG_REQ_ALREADY_SET;
2008 }
2009
2010 if (regdom_changes(country_ie_request->alpha2))
2011 return REG_REQ_OK;
2012 return REG_REQ_ALREADY_SET;
2013 }
2014
2015 /**
2016 * reg_process_hint_country_ie - process regulatory requests from country IEs
2017 * @country_ie_request: a regulatory request from a country IE
2018 *
2019 * The wireless subsystem can use this function to process
2020 * a regulatory request issued by a country Information Element.
2021 *
2022 * Returns one of the different reg request treatment values.
2023 */
2024 static enum reg_request_treatment
2025 reg_process_hint_country_ie(struct wiphy *wiphy,
2026 struct regulatory_request *country_ie_request)
2027 {
2028 enum reg_request_treatment treatment;
2029
2030 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2031
2032 switch (treatment) {
2033 case REG_REQ_OK:
2034 break;
2035 case REG_REQ_IGNORE:
2036 /* fall through */
2037 case REG_REQ_ALREADY_SET:
2038 reg_free_request(country_ie_request);
2039 return treatment;
2040 case REG_REQ_INTERSECT:
2041 reg_free_request(country_ie_request);
2042 /*
2043 * This doesn't happen yet, not sure we
2044 * ever want to support it for this case.
2045 */
2046 WARN_ONCE(1, "Unexpected intersection for country IEs");
2047 return REG_REQ_IGNORE;
2048 }
2049
2050 country_ie_request->intersect = false;
2051 country_ie_request->processed = false;
2052
2053 reg_update_last_request(country_ie_request);
2054
2055 return reg_call_crda(country_ie_request);
2056 }
2057
2058 /* This processes *all* regulatory hints */
2059 static void reg_process_hint(struct regulatory_request *reg_request)
2060 {
2061 struct wiphy *wiphy = NULL;
2062 enum reg_request_treatment treatment;
2063
2064 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2065 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2066
2067 switch (reg_request->initiator) {
2068 case NL80211_REGDOM_SET_BY_CORE:
2069 reg_process_hint_core(reg_request);
2070 return;
2071 case NL80211_REGDOM_SET_BY_USER:
2072 treatment = reg_process_hint_user(reg_request);
2073 if (treatment == REG_REQ_IGNORE ||
2074 treatment == REG_REQ_ALREADY_SET)
2075 return;
2076 return;
2077 case NL80211_REGDOM_SET_BY_DRIVER:
2078 if (!wiphy)
2079 goto out_free;
2080 treatment = reg_process_hint_driver(wiphy, reg_request);
2081 break;
2082 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2083 if (!wiphy)
2084 goto out_free;
2085 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2086 break;
2087 default:
2088 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2089 goto out_free;
2090 }
2091
2092 /* This is required so that the orig_* parameters are saved */
2093 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2094 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2095 wiphy_update_regulatory(wiphy, reg_request->initiator);
2096 reg_check_channels();
2097 }
2098
2099 return;
2100
2101 out_free:
2102 reg_free_request(reg_request);
2103 }
2104
2105 static bool reg_only_self_managed_wiphys(void)
2106 {
2107 struct cfg80211_registered_device *rdev;
2108 struct wiphy *wiphy;
2109 bool self_managed_found = false;
2110
2111 ASSERT_RTNL();
2112
2113 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2114 wiphy = &rdev->wiphy;
2115 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2116 self_managed_found = true;
2117 else
2118 return false;
2119 }
2120
2121 /* make sure at least one self-managed wiphy exists */
2122 return self_managed_found;
2123 }
2124
2125 /*
2126 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2127 * Regulatory hints come on a first come first serve basis and we
2128 * must process each one atomically.
2129 */
2130 static void reg_process_pending_hints(void)
2131 {
2132 struct regulatory_request *reg_request, *lr;
2133
2134 lr = get_last_request();
2135
2136 /* When last_request->processed becomes true this will be rescheduled */
2137 if (lr && !lr->processed) {
2138 reg_process_hint(lr);
2139 return;
2140 }
2141
2142 spin_lock(&reg_requests_lock);
2143
2144 if (list_empty(&reg_requests_list)) {
2145 spin_unlock(&reg_requests_lock);
2146 return;
2147 }
2148
2149 reg_request = list_first_entry(&reg_requests_list,
2150 struct regulatory_request,
2151 list);
2152 list_del_init(&reg_request->list);
2153
2154 spin_unlock(&reg_requests_lock);
2155
2156 if (reg_only_self_managed_wiphys()) {
2157 reg_free_request(reg_request);
2158 return;
2159 }
2160
2161 reg_process_hint(reg_request);
2162 }
2163
2164 /* Processes beacon hints -- this has nothing to do with country IEs */
2165 static void reg_process_pending_beacon_hints(void)
2166 {
2167 struct cfg80211_registered_device *rdev;
2168 struct reg_beacon *pending_beacon, *tmp;
2169
2170 /* This goes through the _pending_ beacon list */
2171 spin_lock_bh(&reg_pending_beacons_lock);
2172
2173 list_for_each_entry_safe(pending_beacon, tmp,
2174 &reg_pending_beacons, list) {
2175 list_del_init(&pending_beacon->list);
2176
2177 /* Applies the beacon hint to current wiphys */
2178 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2179 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2180
2181 /* Remembers the beacon hint for new wiphys or reg changes */
2182 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2183 }
2184
2185 spin_unlock_bh(&reg_pending_beacons_lock);
2186 }
2187
2188 static void reg_process_self_managed_hints(void)
2189 {
2190 struct cfg80211_registered_device *rdev;
2191 struct wiphy *wiphy;
2192 const struct ieee80211_regdomain *tmp;
2193 const struct ieee80211_regdomain *regd;
2194 enum ieee80211_band band;
2195 struct regulatory_request request = {};
2196
2197 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2198 wiphy = &rdev->wiphy;
2199
2200 spin_lock(&reg_requests_lock);
2201 regd = rdev->requested_regd;
2202 rdev->requested_regd = NULL;
2203 spin_unlock(&reg_requests_lock);
2204
2205 if (regd == NULL)
2206 continue;
2207
2208 tmp = get_wiphy_regdom(wiphy);
2209 rcu_assign_pointer(wiphy->regd, regd);
2210 rcu_free_regdom(tmp);
2211
2212 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
2213 handle_band_custom(wiphy, wiphy->bands[band], regd);
2214
2215 reg_process_ht_flags(wiphy);
2216
2217 request.wiphy_idx = get_wiphy_idx(wiphy);
2218 request.alpha2[0] = regd->alpha2[0];
2219 request.alpha2[1] = regd->alpha2[1];
2220 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2221
2222 nl80211_send_wiphy_reg_change_event(&request);
2223 }
2224
2225 reg_check_channels();
2226 }
2227
2228 static void reg_todo(struct work_struct *work)
2229 {
2230 rtnl_lock();
2231 reg_process_pending_hints();
2232 reg_process_pending_beacon_hints();
2233 reg_process_self_managed_hints();
2234 rtnl_unlock();
2235 }
2236
2237 static void queue_regulatory_request(struct regulatory_request *request)
2238 {
2239 request->alpha2[0] = toupper(request->alpha2[0]);
2240 request->alpha2[1] = toupper(request->alpha2[1]);
2241
2242 spin_lock(&reg_requests_lock);
2243 list_add_tail(&request->list, &reg_requests_list);
2244 spin_unlock(&reg_requests_lock);
2245
2246 schedule_work(&reg_work);
2247 }
2248
2249 /*
2250 * Core regulatory hint -- happens during cfg80211_init()
2251 * and when we restore regulatory settings.
2252 */
2253 static int regulatory_hint_core(const char *alpha2)
2254 {
2255 struct regulatory_request *request;
2256
2257 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2258 if (!request)
2259 return -ENOMEM;
2260
2261 request->alpha2[0] = alpha2[0];
2262 request->alpha2[1] = alpha2[1];
2263 request->initiator = NL80211_REGDOM_SET_BY_CORE;
2264
2265 queue_regulatory_request(request);
2266
2267 return 0;
2268 }
2269
2270 /* User hints */
2271 int regulatory_hint_user(const char *alpha2,
2272 enum nl80211_user_reg_hint_type user_reg_hint_type)
2273 {
2274 struct regulatory_request *request;
2275
2276 if (WARN_ON(!alpha2))
2277 return -EINVAL;
2278
2279 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2280 if (!request)
2281 return -ENOMEM;
2282
2283 request->wiphy_idx = WIPHY_IDX_INVALID;
2284 request->alpha2[0] = alpha2[0];
2285 request->alpha2[1] = alpha2[1];
2286 request->initiator = NL80211_REGDOM_SET_BY_USER;
2287 request->user_reg_hint_type = user_reg_hint_type;
2288
2289 queue_regulatory_request(request);
2290
2291 return 0;
2292 }
2293
2294 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2295 {
2296 spin_lock(&reg_indoor_lock);
2297
2298 /* It is possible that more than one user space process is trying to
2299 * configure the indoor setting. To handle such cases, clear the indoor
2300 * setting in case that some process does not think that the device
2301 * is operating in an indoor environment. In addition, if a user space
2302 * process indicates that it is controlling the indoor setting, save its
2303 * portid, i.e., make it the owner.
2304 */
2305 reg_is_indoor = is_indoor;
2306 if (reg_is_indoor) {
2307 if (!reg_is_indoor_portid)
2308 reg_is_indoor_portid = portid;
2309 } else {
2310 reg_is_indoor_portid = 0;
2311 }
2312
2313 spin_unlock(&reg_indoor_lock);
2314
2315 if (!is_indoor)
2316 reg_check_channels();
2317
2318 return 0;
2319 }
2320
2321 void regulatory_netlink_notify(u32 portid)
2322 {
2323 spin_lock(&reg_indoor_lock);
2324
2325 if (reg_is_indoor_portid != portid) {
2326 spin_unlock(&reg_indoor_lock);
2327 return;
2328 }
2329
2330 reg_is_indoor = false;
2331 reg_is_indoor_portid = 0;
2332
2333 spin_unlock(&reg_indoor_lock);
2334
2335 reg_check_channels();
2336 }
2337
2338 /* Driver hints */
2339 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2340 {
2341 struct regulatory_request *request;
2342
2343 if (WARN_ON(!alpha2 || !wiphy))
2344 return -EINVAL;
2345
2346 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2347
2348 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2349 if (!request)
2350 return -ENOMEM;
2351
2352 request->wiphy_idx = get_wiphy_idx(wiphy);
2353
2354 request->alpha2[0] = alpha2[0];
2355 request->alpha2[1] = alpha2[1];
2356 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2357
2358 queue_regulatory_request(request);
2359
2360 return 0;
2361 }
2362 EXPORT_SYMBOL(regulatory_hint);
2363
2364 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2365 const u8 *country_ie, u8 country_ie_len)
2366 {
2367 char alpha2[2];
2368 enum environment_cap env = ENVIRON_ANY;
2369 struct regulatory_request *request = NULL, *lr;
2370
2371 /* IE len must be evenly divisible by 2 */
2372 if (country_ie_len & 0x01)
2373 return;
2374
2375 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2376 return;
2377
2378 request = kzalloc(sizeof(*request), GFP_KERNEL);
2379 if (!request)
2380 return;
2381
2382 alpha2[0] = country_ie[0];
2383 alpha2[1] = country_ie[1];
2384
2385 if (country_ie[2] == 'I')
2386 env = ENVIRON_INDOOR;
2387 else if (country_ie[2] == 'O')
2388 env = ENVIRON_OUTDOOR;
2389
2390 rcu_read_lock();
2391 lr = get_last_request();
2392
2393 if (unlikely(!lr))
2394 goto out;
2395
2396 /*
2397 * We will run this only upon a successful connection on cfg80211.
2398 * We leave conflict resolution to the workqueue, where can hold
2399 * the RTNL.
2400 */
2401 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2402 lr->wiphy_idx != WIPHY_IDX_INVALID)
2403 goto out;
2404
2405 request->wiphy_idx = get_wiphy_idx(wiphy);
2406 request->alpha2[0] = alpha2[0];
2407 request->alpha2[1] = alpha2[1];
2408 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2409 request->country_ie_env = env;
2410
2411 queue_regulatory_request(request);
2412 request = NULL;
2413 out:
2414 kfree(request);
2415 rcu_read_unlock();
2416 }
2417
2418 static void restore_alpha2(char *alpha2, bool reset_user)
2419 {
2420 /* indicates there is no alpha2 to consider for restoration */
2421 alpha2[0] = '9';
2422 alpha2[1] = '7';
2423
2424 /* The user setting has precedence over the module parameter */
2425 if (is_user_regdom_saved()) {
2426 /* Unless we're asked to ignore it and reset it */
2427 if (reset_user) {
2428 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2429 user_alpha2[0] = '9';
2430 user_alpha2[1] = '7';
2431
2432 /*
2433 * If we're ignoring user settings, we still need to
2434 * check the module parameter to ensure we put things
2435 * back as they were for a full restore.
2436 */
2437 if (!is_world_regdom(ieee80211_regdom)) {
2438 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2439 ieee80211_regdom[0], ieee80211_regdom[1]);
2440 alpha2[0] = ieee80211_regdom[0];
2441 alpha2[1] = ieee80211_regdom[1];
2442 }
2443 } else {
2444 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2445 user_alpha2[0], user_alpha2[1]);
2446 alpha2[0] = user_alpha2[0];
2447 alpha2[1] = user_alpha2[1];
2448 }
2449 } else if (!is_world_regdom(ieee80211_regdom)) {
2450 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2451 ieee80211_regdom[0], ieee80211_regdom[1]);
2452 alpha2[0] = ieee80211_regdom[0];
2453 alpha2[1] = ieee80211_regdom[1];
2454 } else
2455 REG_DBG_PRINT("Restoring regulatory settings\n");
2456 }
2457
2458 static void restore_custom_reg_settings(struct wiphy *wiphy)
2459 {
2460 struct ieee80211_supported_band *sband;
2461 enum ieee80211_band band;
2462 struct ieee80211_channel *chan;
2463 int i;
2464
2465 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2466 sband = wiphy->bands[band];
2467 if (!sband)
2468 continue;
2469 for (i = 0; i < sband->n_channels; i++) {
2470 chan = &sband->channels[i];
2471 chan->flags = chan->orig_flags;
2472 chan->max_antenna_gain = chan->orig_mag;
2473 chan->max_power = chan->orig_mpwr;
2474 chan->beacon_found = false;
2475 }
2476 }
2477 }
2478
2479 /*
2480 * Restoring regulatory settings involves ingoring any
2481 * possibly stale country IE information and user regulatory
2482 * settings if so desired, this includes any beacon hints
2483 * learned as we could have traveled outside to another country
2484 * after disconnection. To restore regulatory settings we do
2485 * exactly what we did at bootup:
2486 *
2487 * - send a core regulatory hint
2488 * - send a user regulatory hint if applicable
2489 *
2490 * Device drivers that send a regulatory hint for a specific country
2491 * keep their own regulatory domain on wiphy->regd so that does does
2492 * not need to be remembered.
2493 */
2494 static void restore_regulatory_settings(bool reset_user)
2495 {
2496 char alpha2[2];
2497 char world_alpha2[2];
2498 struct reg_beacon *reg_beacon, *btmp;
2499 LIST_HEAD(tmp_reg_req_list);
2500 struct cfg80211_registered_device *rdev;
2501
2502 ASSERT_RTNL();
2503
2504 /*
2505 * Clear the indoor setting in case that it is not controlled by user
2506 * space, as otherwise there is no guarantee that the device is still
2507 * operating in an indoor environment.
2508 */
2509 spin_lock(&reg_indoor_lock);
2510 if (reg_is_indoor && !reg_is_indoor_portid) {
2511 reg_is_indoor = false;
2512 reg_check_channels();
2513 }
2514 spin_unlock(&reg_indoor_lock);
2515
2516 reset_regdomains(true, &world_regdom);
2517 restore_alpha2(alpha2, reset_user);
2518
2519 /*
2520 * If there's any pending requests we simply
2521 * stash them to a temporary pending queue and
2522 * add then after we've restored regulatory
2523 * settings.
2524 */
2525 spin_lock(&reg_requests_lock);
2526 list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
2527 spin_unlock(&reg_requests_lock);
2528
2529 /* Clear beacon hints */
2530 spin_lock_bh(&reg_pending_beacons_lock);
2531 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2532 list_del(&reg_beacon->list);
2533 kfree(reg_beacon);
2534 }
2535 spin_unlock_bh(&reg_pending_beacons_lock);
2536
2537 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2538 list_del(&reg_beacon->list);
2539 kfree(reg_beacon);
2540 }
2541
2542 /* First restore to the basic regulatory settings */
2543 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2544 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2545
2546 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2547 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2548 continue;
2549 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2550 restore_custom_reg_settings(&rdev->wiphy);
2551 }
2552
2553 regulatory_hint_core(world_alpha2);
2554
2555 /*
2556 * This restores the ieee80211_regdom module parameter
2557 * preference or the last user requested regulatory
2558 * settings, user regulatory settings takes precedence.
2559 */
2560 if (is_an_alpha2(alpha2))
2561 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2562
2563 spin_lock(&reg_requests_lock);
2564 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2565 spin_unlock(&reg_requests_lock);
2566
2567 REG_DBG_PRINT("Kicking the queue\n");
2568
2569 schedule_work(&reg_work);
2570 }
2571
2572 void regulatory_hint_disconnect(void)
2573 {
2574 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2575 restore_regulatory_settings(false);
2576 }
2577
2578 static bool freq_is_chan_12_13_14(u16 freq)
2579 {
2580 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2581 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2582 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2583 return true;
2584 return false;
2585 }
2586
2587 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2588 {
2589 struct reg_beacon *pending_beacon;
2590
2591 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2592 if (beacon_chan->center_freq ==
2593 pending_beacon->chan.center_freq)
2594 return true;
2595 return false;
2596 }
2597
2598 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2599 struct ieee80211_channel *beacon_chan,
2600 gfp_t gfp)
2601 {
2602 struct reg_beacon *reg_beacon;
2603 bool processing;
2604
2605 if (beacon_chan->beacon_found ||
2606 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2607 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2608 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2609 return 0;
2610
2611 spin_lock_bh(&reg_pending_beacons_lock);
2612 processing = pending_reg_beacon(beacon_chan);
2613 spin_unlock_bh(&reg_pending_beacons_lock);
2614
2615 if (processing)
2616 return 0;
2617
2618 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2619 if (!reg_beacon)
2620 return -ENOMEM;
2621
2622 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2623 beacon_chan->center_freq,
2624 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2625 wiphy_name(wiphy));
2626
2627 memcpy(&reg_beacon->chan, beacon_chan,
2628 sizeof(struct ieee80211_channel));
2629
2630 /*
2631 * Since we can be called from BH or and non-BH context
2632 * we must use spin_lock_bh()
2633 */
2634 spin_lock_bh(&reg_pending_beacons_lock);
2635 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2636 spin_unlock_bh(&reg_pending_beacons_lock);
2637
2638 schedule_work(&reg_work);
2639
2640 return 0;
2641 }
2642
2643 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2644 {
2645 unsigned int i;
2646 const struct ieee80211_reg_rule *reg_rule = NULL;
2647 const struct ieee80211_freq_range *freq_range = NULL;
2648 const struct ieee80211_power_rule *power_rule = NULL;
2649 char bw[32], cac_time[32];
2650
2651 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2652
2653 for (i = 0; i < rd->n_reg_rules; i++) {
2654 reg_rule = &rd->reg_rules[i];
2655 freq_range = &reg_rule->freq_range;
2656 power_rule = &reg_rule->power_rule;
2657
2658 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2659 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2660 freq_range->max_bandwidth_khz,
2661 reg_get_max_bandwidth(rd, reg_rule));
2662 else
2663 snprintf(bw, sizeof(bw), "%d KHz",
2664 freq_range->max_bandwidth_khz);
2665
2666 if (reg_rule->flags & NL80211_RRF_DFS)
2667 scnprintf(cac_time, sizeof(cac_time), "%u s",
2668 reg_rule->dfs_cac_ms/1000);
2669 else
2670 scnprintf(cac_time, sizeof(cac_time), "N/A");
2671
2672
2673 /*
2674 * There may not be documentation for max antenna gain
2675 * in certain regions
2676 */
2677 if (power_rule->max_antenna_gain)
2678 pr_info(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2679 freq_range->start_freq_khz,
2680 freq_range->end_freq_khz,
2681 bw,
2682 power_rule->max_antenna_gain,
2683 power_rule->max_eirp,
2684 cac_time);
2685 else
2686 pr_info(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2687 freq_range->start_freq_khz,
2688 freq_range->end_freq_khz,
2689 bw,
2690 power_rule->max_eirp,
2691 cac_time);
2692 }
2693 }
2694
2695 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2696 {
2697 switch (dfs_region) {
2698 case NL80211_DFS_UNSET:
2699 case NL80211_DFS_FCC:
2700 case NL80211_DFS_ETSI:
2701 case NL80211_DFS_JP:
2702 return true;
2703 default:
2704 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2705 dfs_region);
2706 return false;
2707 }
2708 }
2709
2710 static void print_regdomain(const struct ieee80211_regdomain *rd)
2711 {
2712 struct regulatory_request *lr = get_last_request();
2713
2714 if (is_intersected_alpha2(rd->alpha2)) {
2715 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2716 struct cfg80211_registered_device *rdev;
2717 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2718 if (rdev) {
2719 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2720 rdev->country_ie_alpha2[0],
2721 rdev->country_ie_alpha2[1]);
2722 } else
2723 pr_info("Current regulatory domain intersected:\n");
2724 } else
2725 pr_info("Current regulatory domain intersected:\n");
2726 } else if (is_world_regdom(rd->alpha2)) {
2727 pr_info("World regulatory domain updated:\n");
2728 } else {
2729 if (is_unknown_alpha2(rd->alpha2))
2730 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2731 else {
2732 if (reg_request_cell_base(lr))
2733 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2734 rd->alpha2[0], rd->alpha2[1]);
2735 else
2736 pr_info("Regulatory domain changed to country: %c%c\n",
2737 rd->alpha2[0], rd->alpha2[1]);
2738 }
2739 }
2740
2741 pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2742 print_rd_rules(rd);
2743 }
2744
2745 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2746 {
2747 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2748 print_rd_rules(rd);
2749 }
2750
2751 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2752 {
2753 if (!is_world_regdom(rd->alpha2))
2754 return -EINVAL;
2755 update_world_regdomain(rd);
2756 return 0;
2757 }
2758
2759 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2760 struct regulatory_request *user_request)
2761 {
2762 const struct ieee80211_regdomain *intersected_rd = NULL;
2763
2764 if (!regdom_changes(rd->alpha2))
2765 return -EALREADY;
2766
2767 if (!is_valid_rd(rd)) {
2768 pr_err("Invalid regulatory domain detected:\n");
2769 print_regdomain_info(rd);
2770 return -EINVAL;
2771 }
2772
2773 if (!user_request->intersect) {
2774 reset_regdomains(false, rd);
2775 return 0;
2776 }
2777
2778 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2779 if (!intersected_rd)
2780 return -EINVAL;
2781
2782 kfree(rd);
2783 rd = NULL;
2784 reset_regdomains(false, intersected_rd);
2785
2786 return 0;
2787 }
2788
2789 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2790 struct regulatory_request *driver_request)
2791 {
2792 const struct ieee80211_regdomain *regd;
2793 const struct ieee80211_regdomain *intersected_rd = NULL;
2794 const struct ieee80211_regdomain *tmp;
2795 struct wiphy *request_wiphy;
2796
2797 if (is_world_regdom(rd->alpha2))
2798 return -EINVAL;
2799
2800 if (!regdom_changes(rd->alpha2))
2801 return -EALREADY;
2802
2803 if (!is_valid_rd(rd)) {
2804 pr_err("Invalid regulatory domain detected:\n");
2805 print_regdomain_info(rd);
2806 return -EINVAL;
2807 }
2808
2809 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2810 if (!request_wiphy) {
2811 queue_delayed_work(system_power_efficient_wq,
2812 &reg_timeout, 0);
2813 return -ENODEV;
2814 }
2815
2816 if (!driver_request->intersect) {
2817 if (request_wiphy->regd)
2818 return -EALREADY;
2819
2820 regd = reg_copy_regd(rd);
2821 if (IS_ERR(regd))
2822 return PTR_ERR(regd);
2823
2824 rcu_assign_pointer(request_wiphy->regd, regd);
2825 reset_regdomains(false, rd);
2826 return 0;
2827 }
2828
2829 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2830 if (!intersected_rd)
2831 return -EINVAL;
2832
2833 /*
2834 * We can trash what CRDA provided now.
2835 * However if a driver requested this specific regulatory
2836 * domain we keep it for its private use
2837 */
2838 tmp = get_wiphy_regdom(request_wiphy);
2839 rcu_assign_pointer(request_wiphy->regd, rd);
2840 rcu_free_regdom(tmp);
2841
2842 rd = NULL;
2843
2844 reset_regdomains(false, intersected_rd);
2845
2846 return 0;
2847 }
2848
2849 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2850 struct regulatory_request *country_ie_request)
2851 {
2852 struct wiphy *request_wiphy;
2853
2854 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2855 !is_unknown_alpha2(rd->alpha2))
2856 return -EINVAL;
2857
2858 /*
2859 * Lets only bother proceeding on the same alpha2 if the current
2860 * rd is non static (it means CRDA was present and was used last)
2861 * and the pending request came in from a country IE
2862 */
2863
2864 if (!is_valid_rd(rd)) {
2865 pr_err("Invalid regulatory domain detected:\n");
2866 print_regdomain_info(rd);
2867 return -EINVAL;
2868 }
2869
2870 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2871 if (!request_wiphy) {
2872 queue_delayed_work(system_power_efficient_wq,
2873 &reg_timeout, 0);
2874 return -ENODEV;
2875 }
2876
2877 if (country_ie_request->intersect)
2878 return -EINVAL;
2879
2880 reset_regdomains(false, rd);
2881 return 0;
2882 }
2883
2884 /*
2885 * Use this call to set the current regulatory domain. Conflicts with
2886 * multiple drivers can be ironed out later. Caller must've already
2887 * kmalloc'd the rd structure.
2888 */
2889 int set_regdom(const struct ieee80211_regdomain *rd)
2890 {
2891 struct regulatory_request *lr;
2892 bool user_reset = false;
2893 int r;
2894
2895 if (!reg_is_valid_request(rd->alpha2)) {
2896 kfree(rd);
2897 return -EINVAL;
2898 }
2899
2900 lr = get_last_request();
2901
2902 /* Note that this doesn't update the wiphys, this is done below */
2903 switch (lr->initiator) {
2904 case NL80211_REGDOM_SET_BY_CORE:
2905 r = reg_set_rd_core(rd);
2906 break;
2907 case NL80211_REGDOM_SET_BY_USER:
2908 r = reg_set_rd_user(rd, lr);
2909 user_reset = true;
2910 break;
2911 case NL80211_REGDOM_SET_BY_DRIVER:
2912 r = reg_set_rd_driver(rd, lr);
2913 break;
2914 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2915 r = reg_set_rd_country_ie(rd, lr);
2916 break;
2917 default:
2918 WARN(1, "invalid initiator %d\n", lr->initiator);
2919 return -EINVAL;
2920 }
2921
2922 if (r) {
2923 switch (r) {
2924 case -EALREADY:
2925 reg_set_request_processed();
2926 break;
2927 default:
2928 /* Back to world regulatory in case of errors */
2929 restore_regulatory_settings(user_reset);
2930 }
2931
2932 kfree(rd);
2933 return r;
2934 }
2935
2936 /* This would make this whole thing pointless */
2937 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2938 return -EINVAL;
2939
2940 /* update all wiphys now with the new established regulatory domain */
2941 update_all_wiphy_regulatory(lr->initiator);
2942
2943 print_regdomain(get_cfg80211_regdom());
2944
2945 nl80211_send_reg_change_event(lr);
2946
2947 reg_set_request_processed();
2948
2949 return 0;
2950 }
2951
2952 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
2953 struct ieee80211_regdomain *rd)
2954 {
2955 const struct ieee80211_regdomain *regd;
2956 const struct ieee80211_regdomain *prev_regd;
2957 struct cfg80211_registered_device *rdev;
2958
2959 if (WARN_ON(!wiphy || !rd))
2960 return -EINVAL;
2961
2962 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
2963 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
2964 return -EPERM;
2965
2966 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
2967 print_regdomain_info(rd);
2968 return -EINVAL;
2969 }
2970
2971 regd = reg_copy_regd(rd);
2972 if (IS_ERR(regd))
2973 return PTR_ERR(regd);
2974
2975 rdev = wiphy_to_rdev(wiphy);
2976
2977 spin_lock(&reg_requests_lock);
2978 prev_regd = rdev->requested_regd;
2979 rdev->requested_regd = regd;
2980 spin_unlock(&reg_requests_lock);
2981
2982 kfree(prev_regd);
2983 return 0;
2984 }
2985
2986 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
2987 struct ieee80211_regdomain *rd)
2988 {
2989 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
2990
2991 if (ret)
2992 return ret;
2993
2994 schedule_work(&reg_work);
2995 return 0;
2996 }
2997 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
2998
2999 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3000 struct ieee80211_regdomain *rd)
3001 {
3002 int ret;
3003
3004 ASSERT_RTNL();
3005
3006 ret = __regulatory_set_wiphy_regd(wiphy, rd);
3007 if (ret)
3008 return ret;
3009
3010 /* process the request immediately */
3011 reg_process_self_managed_hints();
3012 return 0;
3013 }
3014 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3015
3016 void wiphy_regulatory_register(struct wiphy *wiphy)
3017 {
3018 struct regulatory_request *lr;
3019
3020 /* self-managed devices ignore external hints */
3021 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3022 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3023 REGULATORY_COUNTRY_IE_IGNORE;
3024
3025 if (!reg_dev_ignore_cell_hint(wiphy))
3026 reg_num_devs_support_basehint++;
3027
3028 lr = get_last_request();
3029 wiphy_update_regulatory(wiphy, lr->initiator);
3030 }
3031
3032 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3033 {
3034 struct wiphy *request_wiphy = NULL;
3035 struct regulatory_request *lr;
3036
3037 lr = get_last_request();
3038
3039 if (!reg_dev_ignore_cell_hint(wiphy))
3040 reg_num_devs_support_basehint--;
3041
3042 rcu_free_regdom(get_wiphy_regdom(wiphy));
3043 RCU_INIT_POINTER(wiphy->regd, NULL);
3044
3045 if (lr)
3046 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3047
3048 if (!request_wiphy || request_wiphy != wiphy)
3049 return;
3050
3051 lr->wiphy_idx = WIPHY_IDX_INVALID;
3052 lr->country_ie_env = ENVIRON_ANY;
3053 }
3054
3055 static void reg_timeout_work(struct work_struct *work)
3056 {
3057 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
3058 rtnl_lock();
3059 restore_regulatory_settings(true);
3060 rtnl_unlock();
3061 }
3062
3063 /*
3064 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3065 * UNII band definitions
3066 */
3067 int cfg80211_get_unii(int freq)
3068 {
3069 /* UNII-1 */
3070 if (freq >= 5150 && freq <= 5250)
3071 return 0;
3072
3073 /* UNII-2A */
3074 if (freq > 5250 && freq <= 5350)
3075 return 1;
3076
3077 /* UNII-2B */
3078 if (freq > 5350 && freq <= 5470)
3079 return 2;
3080
3081 /* UNII-2C */
3082 if (freq > 5470 && freq <= 5725)
3083 return 3;
3084
3085 /* UNII-3 */
3086 if (freq > 5725 && freq <= 5825)
3087 return 4;
3088
3089 return -EINVAL;
3090 }
3091
3092 bool regulatory_indoor_allowed(void)
3093 {
3094 return reg_is_indoor;
3095 }
3096
3097 int __init regulatory_init(void)
3098 {
3099 int err = 0;
3100
3101 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3102 if (IS_ERR(reg_pdev))
3103 return PTR_ERR(reg_pdev);
3104
3105 spin_lock_init(&reg_requests_lock);
3106 spin_lock_init(&reg_pending_beacons_lock);
3107 spin_lock_init(&reg_indoor_lock);
3108
3109 reg_regdb_size_check();
3110
3111 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3112
3113 user_alpha2[0] = '9';
3114 user_alpha2[1] = '7';
3115
3116 /* We always try to get an update for the static regdomain */
3117 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3118 if (err) {
3119 if (err == -ENOMEM)
3120 return err;
3121 /*
3122 * N.B. kobject_uevent_env() can fail mainly for when we're out
3123 * memory which is handled and propagated appropriately above
3124 * but it can also fail during a netlink_broadcast() or during
3125 * early boot for call_usermodehelper(). For now treat these
3126 * errors as non-fatal.
3127 */
3128 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3129 }
3130
3131 /*
3132 * Finally, if the user set the module parameter treat it
3133 * as a user hint.
3134 */
3135 if (!is_world_regdom(ieee80211_regdom))
3136 regulatory_hint_user(ieee80211_regdom,
3137 NL80211_USER_REG_HINT_USER);
3138
3139 return 0;
3140 }
3141
3142 void regulatory_exit(void)
3143 {
3144 struct regulatory_request *reg_request, *tmp;
3145 struct reg_beacon *reg_beacon, *btmp;
3146
3147 cancel_work_sync(&reg_work);
3148 cancel_delayed_work_sync(&reg_timeout);
3149 cancel_delayed_work_sync(&reg_check_chans);
3150
3151 /* Lock to suppress warnings */
3152 rtnl_lock();
3153 reset_regdomains(true, NULL);
3154 rtnl_unlock();
3155
3156 dev_set_uevent_suppress(&reg_pdev->dev, true);
3157
3158 platform_device_unregister(reg_pdev);
3159
3160 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3161 list_del(&reg_beacon->list);
3162 kfree(reg_beacon);
3163 }
3164
3165 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3166 list_del(&reg_beacon->list);
3167 kfree(reg_beacon);
3168 }
3169
3170 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3171 list_del(&reg_request->list);
3172 kfree(reg_request);
3173 }
3174 }