]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/wireless/reg.c
f256dfffbf46ad0f30b259f7e1a3e8c2b7aa03d2
[mirror_ubuntu-artful-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 /**
13 * DOC: Wireless regulatory infrastructure
14 *
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
19 *
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
23 *
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
29 *
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
33 *
34 */
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/random.h>
38 #include <linux/nl80211.h>
39 #include <linux/platform_device.h>
40 #include <net/cfg80211.h>
41 #include "core.h"
42 #include "reg.h"
43 #include "nl80211.h"
44
45 /* Receipt of information from last regulatory request */
46 static struct regulatory_request *last_request;
47
48 /* To trigger userspace events */
49 static struct platform_device *reg_pdev;
50
51 /*
52 * Central wireless core regulatory domains, we only need two,
53 * the current one and a world regulatory domain in case we have no
54 * information to give us an alpha2
55 */
56 const struct ieee80211_regdomain *cfg80211_regdomain;
57
58 /*
59 * We use this as a place for the rd structure built from the
60 * last parsed country IE to rest until CRDA gets back to us with
61 * what it thinks should apply for the same country
62 */
63 static const struct ieee80211_regdomain *country_ie_regdomain;
64
65 /*
66 * Protects static reg.c components:
67 * - cfg80211_world_regdom
68 * - cfg80211_regdom
69 * - country_ie_regdomain
70 * - last_request
71 */
72 DEFINE_MUTEX(reg_mutex);
73 #define assert_reg_lock() WARN_ON(!mutex_is_locked(&reg_mutex))
74
75 /* Used to queue up regulatory hints */
76 static LIST_HEAD(reg_requests_list);
77 static spinlock_t reg_requests_lock;
78
79 /* Used to queue up beacon hints for review */
80 static LIST_HEAD(reg_pending_beacons);
81 static spinlock_t reg_pending_beacons_lock;
82
83 /* Used to keep track of processed beacon hints */
84 static LIST_HEAD(reg_beacon_list);
85
86 struct reg_beacon {
87 struct list_head list;
88 struct ieee80211_channel chan;
89 };
90
91 /* We keep a static world regulatory domain in case of the absence of CRDA */
92 static const struct ieee80211_regdomain world_regdom = {
93 .n_reg_rules = 5,
94 .alpha2 = "00",
95 .reg_rules = {
96 /* IEEE 802.11b/g, channels 1..11 */
97 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
98 /* IEEE 802.11b/g, channels 12..13. No HT40
99 * channel fits here. */
100 REG_RULE(2467-10, 2472+10, 20, 6, 20,
101 NL80211_RRF_PASSIVE_SCAN |
102 NL80211_RRF_NO_IBSS),
103 /* IEEE 802.11 channel 14 - Only JP enables
104 * this and for 802.11b only */
105 REG_RULE(2484-10, 2484+10, 20, 6, 20,
106 NL80211_RRF_PASSIVE_SCAN |
107 NL80211_RRF_NO_IBSS |
108 NL80211_RRF_NO_OFDM),
109 /* IEEE 802.11a, channel 36..48 */
110 REG_RULE(5180-10, 5240+10, 40, 6, 20,
111 NL80211_RRF_PASSIVE_SCAN |
112 NL80211_RRF_NO_IBSS),
113
114 /* NB: 5260 MHz - 5700 MHz requies DFS */
115
116 /* IEEE 802.11a, channel 149..165 */
117 REG_RULE(5745-10, 5825+10, 40, 6, 20,
118 NL80211_RRF_PASSIVE_SCAN |
119 NL80211_RRF_NO_IBSS),
120 }
121 };
122
123 static const struct ieee80211_regdomain *cfg80211_world_regdom =
124 &world_regdom;
125
126 static char *ieee80211_regdom = "00";
127
128 module_param(ieee80211_regdom, charp, 0444);
129 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
130
131 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
132 /*
133 * We assume 40 MHz bandwidth for the old regulatory work.
134 * We make emphasis we are using the exact same frequencies
135 * as before
136 */
137
138 static const struct ieee80211_regdomain us_regdom = {
139 .n_reg_rules = 6,
140 .alpha2 = "US",
141 .reg_rules = {
142 /* IEEE 802.11b/g, channels 1..11 */
143 REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
144 /* IEEE 802.11a, channel 36 */
145 REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
146 /* IEEE 802.11a, channel 40 */
147 REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
148 /* IEEE 802.11a, channel 44 */
149 REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
150 /* IEEE 802.11a, channels 48..64 */
151 REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
152 /* IEEE 802.11a, channels 149..165, outdoor */
153 REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
154 }
155 };
156
157 static const struct ieee80211_regdomain jp_regdom = {
158 .n_reg_rules = 3,
159 .alpha2 = "JP",
160 .reg_rules = {
161 /* IEEE 802.11b/g, channels 1..14 */
162 REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
163 /* IEEE 802.11a, channels 34..48 */
164 REG_RULE(5170-10, 5240+10, 40, 6, 20,
165 NL80211_RRF_PASSIVE_SCAN),
166 /* IEEE 802.11a, channels 52..64 */
167 REG_RULE(5260-10, 5320+10, 40, 6, 20,
168 NL80211_RRF_NO_IBSS |
169 NL80211_RRF_DFS),
170 }
171 };
172
173 static const struct ieee80211_regdomain eu_regdom = {
174 .n_reg_rules = 6,
175 /*
176 * This alpha2 is bogus, we leave it here just for stupid
177 * backward compatibility
178 */
179 .alpha2 = "EU",
180 .reg_rules = {
181 /* IEEE 802.11b/g, channels 1..13 */
182 REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
183 /* IEEE 802.11a, channel 36 */
184 REG_RULE(5180-10, 5180+10, 40, 6, 23,
185 NL80211_RRF_PASSIVE_SCAN),
186 /* IEEE 802.11a, channel 40 */
187 REG_RULE(5200-10, 5200+10, 40, 6, 23,
188 NL80211_RRF_PASSIVE_SCAN),
189 /* IEEE 802.11a, channel 44 */
190 REG_RULE(5220-10, 5220+10, 40, 6, 23,
191 NL80211_RRF_PASSIVE_SCAN),
192 /* IEEE 802.11a, channels 48..64 */
193 REG_RULE(5240-10, 5320+10, 40, 6, 20,
194 NL80211_RRF_NO_IBSS |
195 NL80211_RRF_DFS),
196 /* IEEE 802.11a, channels 100..140 */
197 REG_RULE(5500-10, 5700+10, 40, 6, 30,
198 NL80211_RRF_NO_IBSS |
199 NL80211_RRF_DFS),
200 }
201 };
202
203 static const struct ieee80211_regdomain *static_regdom(char *alpha2)
204 {
205 if (alpha2[0] == 'U' && alpha2[1] == 'S')
206 return &us_regdom;
207 if (alpha2[0] == 'J' && alpha2[1] == 'P')
208 return &jp_regdom;
209 if (alpha2[0] == 'E' && alpha2[1] == 'U')
210 return &eu_regdom;
211 /* Default, as per the old rules */
212 return &us_regdom;
213 }
214
215 static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
216 {
217 if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
218 return true;
219 return false;
220 }
221 #else
222 static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
223 {
224 return false;
225 }
226 #endif
227
228 static void reset_regdomains(void)
229 {
230 /* avoid freeing static information or freeing something twice */
231 if (cfg80211_regdomain == cfg80211_world_regdom)
232 cfg80211_regdomain = NULL;
233 if (cfg80211_world_regdom == &world_regdom)
234 cfg80211_world_regdom = NULL;
235 if (cfg80211_regdomain == &world_regdom)
236 cfg80211_regdomain = NULL;
237 if (is_old_static_regdom(cfg80211_regdomain))
238 cfg80211_regdomain = NULL;
239
240 kfree(cfg80211_regdomain);
241 kfree(cfg80211_world_regdom);
242
243 cfg80211_world_regdom = &world_regdom;
244 cfg80211_regdomain = NULL;
245 }
246
247 /*
248 * Dynamic world regulatory domain requested by the wireless
249 * core upon initialization
250 */
251 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
252 {
253 BUG_ON(!last_request);
254
255 reset_regdomains();
256
257 cfg80211_world_regdom = rd;
258 cfg80211_regdomain = rd;
259 }
260
261 bool is_world_regdom(const char *alpha2)
262 {
263 if (!alpha2)
264 return false;
265 if (alpha2[0] == '0' && alpha2[1] == '0')
266 return true;
267 return false;
268 }
269
270 static bool is_alpha2_set(const char *alpha2)
271 {
272 if (!alpha2)
273 return false;
274 if (alpha2[0] != 0 && alpha2[1] != 0)
275 return true;
276 return false;
277 }
278
279 static bool is_alpha_upper(char letter)
280 {
281 /* ASCII A - Z */
282 if (letter >= 65 && letter <= 90)
283 return true;
284 return false;
285 }
286
287 static bool is_unknown_alpha2(const char *alpha2)
288 {
289 if (!alpha2)
290 return false;
291 /*
292 * Special case where regulatory domain was built by driver
293 * but a specific alpha2 cannot be determined
294 */
295 if (alpha2[0] == '9' && alpha2[1] == '9')
296 return true;
297 return false;
298 }
299
300 static bool is_intersected_alpha2(const char *alpha2)
301 {
302 if (!alpha2)
303 return false;
304 /*
305 * Special case where regulatory domain is the
306 * result of an intersection between two regulatory domain
307 * structures
308 */
309 if (alpha2[0] == '9' && alpha2[1] == '8')
310 return true;
311 return false;
312 }
313
314 static bool is_an_alpha2(const char *alpha2)
315 {
316 if (!alpha2)
317 return false;
318 if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
319 return true;
320 return false;
321 }
322
323 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
324 {
325 if (!alpha2_x || !alpha2_y)
326 return false;
327 if (alpha2_x[0] == alpha2_y[0] &&
328 alpha2_x[1] == alpha2_y[1])
329 return true;
330 return false;
331 }
332
333 static bool regdom_changes(const char *alpha2)
334 {
335 assert_cfg80211_lock();
336
337 if (!cfg80211_regdomain)
338 return true;
339 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
340 return false;
341 return true;
342 }
343
344 /**
345 * country_ie_integrity_changes - tells us if the country IE has changed
346 * @checksum: checksum of country IE of fields we are interested in
347 *
348 * If the country IE has not changed you can ignore it safely. This is
349 * useful to determine if two devices are seeing two different country IEs
350 * even on the same alpha2. Note that this will return false if no IE has
351 * been set on the wireless core yet.
352 */
353 static bool country_ie_integrity_changes(u32 checksum)
354 {
355 /* If no IE has been set then the checksum doesn't change */
356 if (unlikely(!last_request->country_ie_checksum))
357 return false;
358 if (unlikely(last_request->country_ie_checksum != checksum))
359 return true;
360 return false;
361 }
362
363 /*
364 * This lets us keep regulatory code which is updated on a regulatory
365 * basis in userspace.
366 */
367 static int call_crda(const char *alpha2)
368 {
369 char country_env[9 + 2] = "COUNTRY=";
370 char *envp[] = {
371 country_env,
372 NULL
373 };
374
375 if (!is_world_regdom((char *) alpha2))
376 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
377 alpha2[0], alpha2[1]);
378 else
379 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
380 "regulatory domain\n");
381
382 country_env[8] = alpha2[0];
383 country_env[9] = alpha2[1];
384
385 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
386 }
387
388 /* Used by nl80211 before kmalloc'ing our regulatory domain */
389 bool reg_is_valid_request(const char *alpha2)
390 {
391 assert_cfg80211_lock();
392
393 if (!last_request)
394 return false;
395
396 return alpha2_equal(last_request->alpha2, alpha2);
397 }
398
399 /* Sanity check on a regulatory rule */
400 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
401 {
402 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
403 u32 freq_diff;
404
405 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
406 return false;
407
408 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
409 return false;
410
411 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
412
413 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
414 freq_range->max_bandwidth_khz > freq_diff)
415 return false;
416
417 return true;
418 }
419
420 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
421 {
422 const struct ieee80211_reg_rule *reg_rule = NULL;
423 unsigned int i;
424
425 if (!rd->n_reg_rules)
426 return false;
427
428 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
429 return false;
430
431 for (i = 0; i < rd->n_reg_rules; i++) {
432 reg_rule = &rd->reg_rules[i];
433 if (!is_valid_reg_rule(reg_rule))
434 return false;
435 }
436
437 return true;
438 }
439
440 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
441 u32 center_freq_khz,
442 u32 bw_khz)
443 {
444 u32 start_freq_khz, end_freq_khz;
445
446 start_freq_khz = center_freq_khz - (bw_khz/2);
447 end_freq_khz = center_freq_khz + (bw_khz/2);
448
449 if (start_freq_khz >= freq_range->start_freq_khz &&
450 end_freq_khz <= freq_range->end_freq_khz)
451 return true;
452
453 return false;
454 }
455
456 /**
457 * freq_in_rule_band - tells us if a frequency is in a frequency band
458 * @freq_range: frequency rule we want to query
459 * @freq_khz: frequency we are inquiring about
460 *
461 * This lets us know if a specific frequency rule is or is not relevant to
462 * a specific frequency's band. Bands are device specific and artificial
463 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
464 * safe for now to assume that a frequency rule should not be part of a
465 * frequency's band if the start freq or end freq are off by more than 2 GHz.
466 * This resolution can be lowered and should be considered as we add
467 * regulatory rule support for other "bands".
468 **/
469 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
470 u32 freq_khz)
471 {
472 #define ONE_GHZ_IN_KHZ 1000000
473 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
474 return true;
475 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
476 return true;
477 return false;
478 #undef ONE_GHZ_IN_KHZ
479 }
480
481 /*
482 * Converts a country IE to a regulatory domain. A regulatory domain
483 * structure has a lot of information which the IE doesn't yet have,
484 * so for the other values we use upper max values as we will intersect
485 * with our userspace regulatory agent to get lower bounds.
486 */
487 static struct ieee80211_regdomain *country_ie_2_rd(
488 u8 *country_ie,
489 u8 country_ie_len,
490 u32 *checksum)
491 {
492 struct ieee80211_regdomain *rd = NULL;
493 unsigned int i = 0;
494 char alpha2[2];
495 u32 flags = 0;
496 u32 num_rules = 0, size_of_regd = 0;
497 u8 *triplets_start = NULL;
498 u8 len_at_triplet = 0;
499 /* the last channel we have registered in a subband (triplet) */
500 int last_sub_max_channel = 0;
501
502 *checksum = 0xDEADBEEF;
503
504 /* Country IE requirements */
505 BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
506 country_ie_len & 0x01);
507
508 alpha2[0] = country_ie[0];
509 alpha2[1] = country_ie[1];
510
511 /*
512 * Third octet can be:
513 * 'I' - Indoor
514 * 'O' - Outdoor
515 *
516 * anything else we assume is no restrictions
517 */
518 if (country_ie[2] == 'I')
519 flags = NL80211_RRF_NO_OUTDOOR;
520 else if (country_ie[2] == 'O')
521 flags = NL80211_RRF_NO_INDOOR;
522
523 country_ie += 3;
524 country_ie_len -= 3;
525
526 triplets_start = country_ie;
527 len_at_triplet = country_ie_len;
528
529 *checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);
530
531 /*
532 * We need to build a reg rule for each triplet, but first we must
533 * calculate the number of reg rules we will need. We will need one
534 * for each channel subband
535 */
536 while (country_ie_len >= 3) {
537 int end_channel = 0;
538 struct ieee80211_country_ie_triplet *triplet =
539 (struct ieee80211_country_ie_triplet *) country_ie;
540 int cur_sub_max_channel = 0, cur_channel = 0;
541
542 if (triplet->ext.reg_extension_id >=
543 IEEE80211_COUNTRY_EXTENSION_ID) {
544 country_ie += 3;
545 country_ie_len -= 3;
546 continue;
547 }
548
549 /* 2 GHz */
550 if (triplet->chans.first_channel <= 14)
551 end_channel = triplet->chans.first_channel +
552 triplet->chans.num_channels;
553 else
554 /*
555 * 5 GHz -- For example in country IEs if the first
556 * channel given is 36 and the number of channels is 4
557 * then the individual channel numbers defined for the
558 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
559 * and not 36, 37, 38, 39.
560 *
561 * See: http://tinyurl.com/11d-clarification
562 */
563 end_channel = triplet->chans.first_channel +
564 (4 * (triplet->chans.num_channels - 1));
565
566 cur_channel = triplet->chans.first_channel;
567 cur_sub_max_channel = end_channel;
568
569 /* Basic sanity check */
570 if (cur_sub_max_channel < cur_channel)
571 return NULL;
572
573 /*
574 * Do not allow overlapping channels. Also channels
575 * passed in each subband must be monotonically
576 * increasing
577 */
578 if (last_sub_max_channel) {
579 if (cur_channel <= last_sub_max_channel)
580 return NULL;
581 if (cur_sub_max_channel <= last_sub_max_channel)
582 return NULL;
583 }
584
585 /*
586 * When dot11RegulatoryClassesRequired is supported
587 * we can throw ext triplets as part of this soup,
588 * for now we don't care when those change as we
589 * don't support them
590 */
591 *checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
592 ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
593 ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);
594
595 last_sub_max_channel = cur_sub_max_channel;
596
597 country_ie += 3;
598 country_ie_len -= 3;
599 num_rules++;
600
601 /*
602 * Note: this is not a IEEE requirement but
603 * simply a memory requirement
604 */
605 if (num_rules > NL80211_MAX_SUPP_REG_RULES)
606 return NULL;
607 }
608
609 country_ie = triplets_start;
610 country_ie_len = len_at_triplet;
611
612 size_of_regd = sizeof(struct ieee80211_regdomain) +
613 (num_rules * sizeof(struct ieee80211_reg_rule));
614
615 rd = kzalloc(size_of_regd, GFP_KERNEL);
616 if (!rd)
617 return NULL;
618
619 rd->n_reg_rules = num_rules;
620 rd->alpha2[0] = alpha2[0];
621 rd->alpha2[1] = alpha2[1];
622
623 /* This time around we fill in the rd */
624 while (country_ie_len >= 3) {
625 int end_channel = 0;
626 struct ieee80211_country_ie_triplet *triplet =
627 (struct ieee80211_country_ie_triplet *) country_ie;
628 struct ieee80211_reg_rule *reg_rule = NULL;
629 struct ieee80211_freq_range *freq_range = NULL;
630 struct ieee80211_power_rule *power_rule = NULL;
631
632 /*
633 * Must parse if dot11RegulatoryClassesRequired is true,
634 * we don't support this yet
635 */
636 if (triplet->ext.reg_extension_id >=
637 IEEE80211_COUNTRY_EXTENSION_ID) {
638 country_ie += 3;
639 country_ie_len -= 3;
640 continue;
641 }
642
643 reg_rule = &rd->reg_rules[i];
644 freq_range = &reg_rule->freq_range;
645 power_rule = &reg_rule->power_rule;
646
647 reg_rule->flags = flags;
648
649 /* 2 GHz */
650 if (triplet->chans.first_channel <= 14)
651 end_channel = triplet->chans.first_channel +
652 triplet->chans.num_channels;
653 else
654 end_channel = triplet->chans.first_channel +
655 (4 * (triplet->chans.num_channels - 1));
656
657 /*
658 * The +10 is since the regulatory domain expects
659 * the actual band edge, not the center of freq for
660 * its start and end freqs, assuming 20 MHz bandwidth on
661 * the channels passed
662 */
663 freq_range->start_freq_khz =
664 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
665 triplet->chans.first_channel) - 10);
666 freq_range->end_freq_khz =
667 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
668 end_channel) + 10);
669
670 /*
671 * These are large arbitrary values we use to intersect later.
672 * Increment this if we ever support >= 40 MHz channels
673 * in IEEE 802.11
674 */
675 freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
676 power_rule->max_antenna_gain = DBI_TO_MBI(100);
677 power_rule->max_eirp = DBM_TO_MBM(100);
678
679 country_ie += 3;
680 country_ie_len -= 3;
681 i++;
682
683 BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
684 }
685
686 return rd;
687 }
688
689
690 /*
691 * Helper for regdom_intersect(), this does the real
692 * mathematical intersection fun
693 */
694 static int reg_rules_intersect(
695 const struct ieee80211_reg_rule *rule1,
696 const struct ieee80211_reg_rule *rule2,
697 struct ieee80211_reg_rule *intersected_rule)
698 {
699 const struct ieee80211_freq_range *freq_range1, *freq_range2;
700 struct ieee80211_freq_range *freq_range;
701 const struct ieee80211_power_rule *power_rule1, *power_rule2;
702 struct ieee80211_power_rule *power_rule;
703 u32 freq_diff;
704
705 freq_range1 = &rule1->freq_range;
706 freq_range2 = &rule2->freq_range;
707 freq_range = &intersected_rule->freq_range;
708
709 power_rule1 = &rule1->power_rule;
710 power_rule2 = &rule2->power_rule;
711 power_rule = &intersected_rule->power_rule;
712
713 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
714 freq_range2->start_freq_khz);
715 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
716 freq_range2->end_freq_khz);
717 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
718 freq_range2->max_bandwidth_khz);
719
720 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
721 if (freq_range->max_bandwidth_khz > freq_diff)
722 freq_range->max_bandwidth_khz = freq_diff;
723
724 power_rule->max_eirp = min(power_rule1->max_eirp,
725 power_rule2->max_eirp);
726 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
727 power_rule2->max_antenna_gain);
728
729 intersected_rule->flags = (rule1->flags | rule2->flags);
730
731 if (!is_valid_reg_rule(intersected_rule))
732 return -EINVAL;
733
734 return 0;
735 }
736
737 /**
738 * regdom_intersect - do the intersection between two regulatory domains
739 * @rd1: first regulatory domain
740 * @rd2: second regulatory domain
741 *
742 * Use this function to get the intersection between two regulatory domains.
743 * Once completed we will mark the alpha2 for the rd as intersected, "98",
744 * as no one single alpha2 can represent this regulatory domain.
745 *
746 * Returns a pointer to the regulatory domain structure which will hold the
747 * resulting intersection of rules between rd1 and rd2. We will
748 * kzalloc() this structure for you.
749 */
750 static struct ieee80211_regdomain *regdom_intersect(
751 const struct ieee80211_regdomain *rd1,
752 const struct ieee80211_regdomain *rd2)
753 {
754 int r, size_of_regd;
755 unsigned int x, y;
756 unsigned int num_rules = 0, rule_idx = 0;
757 const struct ieee80211_reg_rule *rule1, *rule2;
758 struct ieee80211_reg_rule *intersected_rule;
759 struct ieee80211_regdomain *rd;
760 /* This is just a dummy holder to help us count */
761 struct ieee80211_reg_rule irule;
762
763 /* Uses the stack temporarily for counter arithmetic */
764 intersected_rule = &irule;
765
766 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
767
768 if (!rd1 || !rd2)
769 return NULL;
770
771 /*
772 * First we get a count of the rules we'll need, then we actually
773 * build them. This is to so we can malloc() and free() a
774 * regdomain once. The reason we use reg_rules_intersect() here
775 * is it will return -EINVAL if the rule computed makes no sense.
776 * All rules that do check out OK are valid.
777 */
778
779 for (x = 0; x < rd1->n_reg_rules; x++) {
780 rule1 = &rd1->reg_rules[x];
781 for (y = 0; y < rd2->n_reg_rules; y++) {
782 rule2 = &rd2->reg_rules[y];
783 if (!reg_rules_intersect(rule1, rule2,
784 intersected_rule))
785 num_rules++;
786 memset(intersected_rule, 0,
787 sizeof(struct ieee80211_reg_rule));
788 }
789 }
790
791 if (!num_rules)
792 return NULL;
793
794 size_of_regd = sizeof(struct ieee80211_regdomain) +
795 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
796
797 rd = kzalloc(size_of_regd, GFP_KERNEL);
798 if (!rd)
799 return NULL;
800
801 for (x = 0; x < rd1->n_reg_rules; x++) {
802 rule1 = &rd1->reg_rules[x];
803 for (y = 0; y < rd2->n_reg_rules; y++) {
804 rule2 = &rd2->reg_rules[y];
805 /*
806 * This time around instead of using the stack lets
807 * write to the target rule directly saving ourselves
808 * a memcpy()
809 */
810 intersected_rule = &rd->reg_rules[rule_idx];
811 r = reg_rules_intersect(rule1, rule2,
812 intersected_rule);
813 /*
814 * No need to memset here the intersected rule here as
815 * we're not using the stack anymore
816 */
817 if (r)
818 continue;
819 rule_idx++;
820 }
821 }
822
823 if (rule_idx != num_rules) {
824 kfree(rd);
825 return NULL;
826 }
827
828 rd->n_reg_rules = num_rules;
829 rd->alpha2[0] = '9';
830 rd->alpha2[1] = '8';
831
832 return rd;
833 }
834
835 /*
836 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
837 * want to just have the channel structure use these
838 */
839 static u32 map_regdom_flags(u32 rd_flags)
840 {
841 u32 channel_flags = 0;
842 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
843 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
844 if (rd_flags & NL80211_RRF_NO_IBSS)
845 channel_flags |= IEEE80211_CHAN_NO_IBSS;
846 if (rd_flags & NL80211_RRF_DFS)
847 channel_flags |= IEEE80211_CHAN_RADAR;
848 return channel_flags;
849 }
850
851 static int freq_reg_info_regd(struct wiphy *wiphy,
852 u32 center_freq,
853 u32 desired_bw_khz,
854 const struct ieee80211_reg_rule **reg_rule,
855 const struct ieee80211_regdomain *custom_regd)
856 {
857 int i;
858 bool band_rule_found = false;
859 const struct ieee80211_regdomain *regd;
860 bool bw_fits = false;
861
862 if (!desired_bw_khz)
863 desired_bw_khz = MHZ_TO_KHZ(20);
864
865 regd = custom_regd ? custom_regd : cfg80211_regdomain;
866
867 /*
868 * Follow the driver's regulatory domain, if present, unless a country
869 * IE has been processed or a user wants to help complaince further
870 */
871 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
872 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
873 wiphy->regd)
874 regd = wiphy->regd;
875
876 if (!regd)
877 return -EINVAL;
878
879 for (i = 0; i < regd->n_reg_rules; i++) {
880 const struct ieee80211_reg_rule *rr;
881 const struct ieee80211_freq_range *fr = NULL;
882 const struct ieee80211_power_rule *pr = NULL;
883
884 rr = &regd->reg_rules[i];
885 fr = &rr->freq_range;
886 pr = &rr->power_rule;
887
888 /*
889 * We only need to know if one frequency rule was
890 * was in center_freq's band, that's enough, so lets
891 * not overwrite it once found
892 */
893 if (!band_rule_found)
894 band_rule_found = freq_in_rule_band(fr, center_freq);
895
896 bw_fits = reg_does_bw_fit(fr,
897 center_freq,
898 desired_bw_khz);
899
900 if (band_rule_found && bw_fits) {
901 *reg_rule = rr;
902 return 0;
903 }
904 }
905
906 if (!band_rule_found)
907 return -ERANGE;
908
909 return -EINVAL;
910 }
911 EXPORT_SYMBOL(freq_reg_info);
912
913 int freq_reg_info(struct wiphy *wiphy,
914 u32 center_freq,
915 u32 desired_bw_khz,
916 const struct ieee80211_reg_rule **reg_rule)
917 {
918 assert_cfg80211_lock();
919 return freq_reg_info_regd(wiphy,
920 center_freq,
921 desired_bw_khz,
922 reg_rule,
923 NULL);
924 }
925
926 /*
927 * Note that right now we assume the desired channel bandwidth
928 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
929 * per channel, the primary and the extension channel). To support
930 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
931 * new ieee80211_channel.target_bw and re run the regulatory check
932 * on the wiphy with the target_bw specified. Then we can simply use
933 * that below for the desired_bw_khz below.
934 */
935 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
936 unsigned int chan_idx)
937 {
938 int r;
939 u32 flags, bw_flags = 0;
940 u32 desired_bw_khz = MHZ_TO_KHZ(20);
941 const struct ieee80211_reg_rule *reg_rule = NULL;
942 const struct ieee80211_power_rule *power_rule = NULL;
943 const struct ieee80211_freq_range *freq_range = NULL;
944 struct ieee80211_supported_band *sband;
945 struct ieee80211_channel *chan;
946 struct wiphy *request_wiphy = NULL;
947
948 assert_cfg80211_lock();
949
950 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
951
952 sband = wiphy->bands[band];
953 BUG_ON(chan_idx >= sband->n_channels);
954 chan = &sband->channels[chan_idx];
955
956 flags = chan->orig_flags;
957
958 r = freq_reg_info(wiphy,
959 MHZ_TO_KHZ(chan->center_freq),
960 desired_bw_khz,
961 &reg_rule);
962
963 if (r) {
964 /*
965 * This means no regulatory rule was found in the country IE
966 * with a frequency range on the center_freq's band, since
967 * IEEE-802.11 allows for a country IE to have a subset of the
968 * regulatory information provided in a country we ignore
969 * disabling the channel unless at least one reg rule was
970 * found on the center_freq's band. For details see this
971 * clarification:
972 *
973 * http://tinyurl.com/11d-clarification
974 */
975 if (r == -ERANGE &&
976 last_request->initiator ==
977 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
978 #ifdef CONFIG_CFG80211_REG_DEBUG
979 printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
980 "intact on %s - no rule found in band on "
981 "Country IE\n",
982 chan->center_freq, wiphy_name(wiphy));
983 #endif
984 } else {
985 /*
986 * In this case we know the country IE has at least one reg rule
987 * for the band so we respect its band definitions
988 */
989 #ifdef CONFIG_CFG80211_REG_DEBUG
990 if (last_request->initiator ==
991 NL80211_REGDOM_SET_BY_COUNTRY_IE)
992 printk(KERN_DEBUG "cfg80211: Disabling "
993 "channel %d MHz on %s due to "
994 "Country IE\n",
995 chan->center_freq, wiphy_name(wiphy));
996 #endif
997 flags |= IEEE80211_CHAN_DISABLED;
998 chan->flags = flags;
999 }
1000 return;
1001 }
1002
1003 power_rule = &reg_rule->power_rule;
1004 freq_range = &reg_rule->freq_range;
1005
1006 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1007 bw_flags = IEEE80211_CHAN_NO_HT40;
1008
1009 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1010 request_wiphy && request_wiphy == wiphy &&
1011 request_wiphy->strict_regulatory) {
1012 /*
1013 * This gaurantees the driver's requested regulatory domain
1014 * will always be used as a base for further regulatory
1015 * settings
1016 */
1017 chan->flags = chan->orig_flags =
1018 map_regdom_flags(reg_rule->flags) | bw_flags;
1019 chan->max_antenna_gain = chan->orig_mag =
1020 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1021 chan->max_power = chan->orig_mpwr =
1022 (int) MBM_TO_DBM(power_rule->max_eirp);
1023 return;
1024 }
1025
1026 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1027 chan->max_antenna_gain = min(chan->orig_mag,
1028 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
1029 if (chan->orig_mpwr)
1030 chan->max_power = min(chan->orig_mpwr,
1031 (int) MBM_TO_DBM(power_rule->max_eirp));
1032 else
1033 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1034 }
1035
1036 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1037 {
1038 unsigned int i;
1039 struct ieee80211_supported_band *sband;
1040
1041 BUG_ON(!wiphy->bands[band]);
1042 sband = wiphy->bands[band];
1043
1044 for (i = 0; i < sband->n_channels; i++)
1045 handle_channel(wiphy, band, i);
1046 }
1047
1048 static bool ignore_reg_update(struct wiphy *wiphy,
1049 enum nl80211_reg_initiator initiator)
1050 {
1051 if (!last_request)
1052 return true;
1053 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1054 wiphy->custom_regulatory)
1055 return true;
1056 /*
1057 * wiphy->regd will be set once the device has its own
1058 * desired regulatory domain set
1059 */
1060 if (wiphy->strict_regulatory && !wiphy->regd &&
1061 !is_world_regdom(last_request->alpha2))
1062 return true;
1063 return false;
1064 }
1065
1066 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1067 {
1068 struct cfg80211_registered_device *rdev;
1069
1070 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1071 wiphy_update_regulatory(&rdev->wiphy, initiator);
1072 }
1073
1074 static void handle_reg_beacon(struct wiphy *wiphy,
1075 unsigned int chan_idx,
1076 struct reg_beacon *reg_beacon)
1077 {
1078 struct ieee80211_supported_band *sband;
1079 struct ieee80211_channel *chan;
1080 bool channel_changed = false;
1081 struct ieee80211_channel chan_before;
1082
1083 assert_cfg80211_lock();
1084
1085 sband = wiphy->bands[reg_beacon->chan.band];
1086 chan = &sband->channels[chan_idx];
1087
1088 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1089 return;
1090
1091 if (chan->beacon_found)
1092 return;
1093
1094 chan->beacon_found = true;
1095
1096 if (wiphy->disable_beacon_hints)
1097 return;
1098
1099 chan_before.center_freq = chan->center_freq;
1100 chan_before.flags = chan->flags;
1101
1102 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1103 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1104 channel_changed = true;
1105 }
1106
1107 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1108 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1109 channel_changed = true;
1110 }
1111
1112 if (channel_changed)
1113 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1114 }
1115
1116 /*
1117 * Called when a scan on a wiphy finds a beacon on
1118 * new channel
1119 */
1120 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1121 struct reg_beacon *reg_beacon)
1122 {
1123 unsigned int i;
1124 struct ieee80211_supported_band *sband;
1125
1126 assert_cfg80211_lock();
1127
1128 if (!wiphy->bands[reg_beacon->chan.band])
1129 return;
1130
1131 sband = wiphy->bands[reg_beacon->chan.band];
1132
1133 for (i = 0; i < sband->n_channels; i++)
1134 handle_reg_beacon(wiphy, i, reg_beacon);
1135 }
1136
1137 /*
1138 * Called upon reg changes or a new wiphy is added
1139 */
1140 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1141 {
1142 unsigned int i;
1143 struct ieee80211_supported_band *sband;
1144 struct reg_beacon *reg_beacon;
1145
1146 assert_cfg80211_lock();
1147
1148 if (list_empty(&reg_beacon_list))
1149 return;
1150
1151 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1152 if (!wiphy->bands[reg_beacon->chan.band])
1153 continue;
1154 sband = wiphy->bands[reg_beacon->chan.band];
1155 for (i = 0; i < sband->n_channels; i++)
1156 handle_reg_beacon(wiphy, i, reg_beacon);
1157 }
1158 }
1159
1160 static bool reg_is_world_roaming(struct wiphy *wiphy)
1161 {
1162 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1163 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1164 return true;
1165 if (last_request &&
1166 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1167 wiphy->custom_regulatory)
1168 return true;
1169 return false;
1170 }
1171
1172 /* Reap the advantages of previously found beacons */
1173 static void reg_process_beacons(struct wiphy *wiphy)
1174 {
1175 /*
1176 * Means we are just firing up cfg80211, so no beacons would
1177 * have been processed yet.
1178 */
1179 if (!last_request)
1180 return;
1181 if (!reg_is_world_roaming(wiphy))
1182 return;
1183 wiphy_update_beacon_reg(wiphy);
1184 }
1185
1186 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1187 {
1188 if (!chan)
1189 return true;
1190 if (chan->flags & IEEE80211_CHAN_DISABLED)
1191 return true;
1192 /* This would happen when regulatory rules disallow HT40 completely */
1193 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1194 return true;
1195 return false;
1196 }
1197
1198 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1199 enum ieee80211_band band,
1200 unsigned int chan_idx)
1201 {
1202 struct ieee80211_supported_band *sband;
1203 struct ieee80211_channel *channel;
1204 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1205 unsigned int i;
1206
1207 assert_cfg80211_lock();
1208
1209 sband = wiphy->bands[band];
1210 BUG_ON(chan_idx >= sband->n_channels);
1211 channel = &sband->channels[chan_idx];
1212
1213 if (is_ht40_not_allowed(channel)) {
1214 channel->flags |= IEEE80211_CHAN_NO_HT40;
1215 return;
1216 }
1217
1218 /*
1219 * We need to ensure the extension channels exist to
1220 * be able to use HT40- or HT40+, this finds them (or not)
1221 */
1222 for (i = 0; i < sband->n_channels; i++) {
1223 struct ieee80211_channel *c = &sband->channels[i];
1224 if (c->center_freq == (channel->center_freq - 20))
1225 channel_before = c;
1226 if (c->center_freq == (channel->center_freq + 20))
1227 channel_after = c;
1228 }
1229
1230 /*
1231 * Please note that this assumes target bandwidth is 20 MHz,
1232 * if that ever changes we also need to change the below logic
1233 * to include that as well.
1234 */
1235 if (is_ht40_not_allowed(channel_before))
1236 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1237 else
1238 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1239
1240 if (is_ht40_not_allowed(channel_after))
1241 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1242 else
1243 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1244 }
1245
1246 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1247 enum ieee80211_band band)
1248 {
1249 unsigned int i;
1250 struct ieee80211_supported_band *sband;
1251
1252 BUG_ON(!wiphy->bands[band]);
1253 sband = wiphy->bands[band];
1254
1255 for (i = 0; i < sband->n_channels; i++)
1256 reg_process_ht_flags_channel(wiphy, band, i);
1257 }
1258
1259 static void reg_process_ht_flags(struct wiphy *wiphy)
1260 {
1261 enum ieee80211_band band;
1262
1263 if (!wiphy)
1264 return;
1265
1266 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1267 if (wiphy->bands[band])
1268 reg_process_ht_flags_band(wiphy, band);
1269 }
1270
1271 }
1272
1273 void wiphy_update_regulatory(struct wiphy *wiphy,
1274 enum nl80211_reg_initiator initiator)
1275 {
1276 enum ieee80211_band band;
1277
1278 if (ignore_reg_update(wiphy, initiator))
1279 goto out;
1280 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1281 if (wiphy->bands[band])
1282 handle_band(wiphy, band);
1283 }
1284 out:
1285 reg_process_beacons(wiphy);
1286 reg_process_ht_flags(wiphy);
1287 if (wiphy->reg_notifier)
1288 wiphy->reg_notifier(wiphy, last_request);
1289 }
1290
1291 static void handle_channel_custom(struct wiphy *wiphy,
1292 enum ieee80211_band band,
1293 unsigned int chan_idx,
1294 const struct ieee80211_regdomain *regd)
1295 {
1296 int r;
1297 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1298 u32 bw_flags = 0;
1299 const struct ieee80211_reg_rule *reg_rule = NULL;
1300 const struct ieee80211_power_rule *power_rule = NULL;
1301 const struct ieee80211_freq_range *freq_range = NULL;
1302 struct ieee80211_supported_band *sband;
1303 struct ieee80211_channel *chan;
1304
1305 assert_reg_lock();
1306
1307 sband = wiphy->bands[band];
1308 BUG_ON(chan_idx >= sband->n_channels);
1309 chan = &sband->channels[chan_idx];
1310
1311 r = freq_reg_info_regd(wiphy,
1312 MHZ_TO_KHZ(chan->center_freq),
1313 desired_bw_khz,
1314 &reg_rule,
1315 regd);
1316
1317 if (r) {
1318 chan->flags = IEEE80211_CHAN_DISABLED;
1319 return;
1320 }
1321
1322 power_rule = &reg_rule->power_rule;
1323 freq_range = &reg_rule->freq_range;
1324
1325 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1326 bw_flags = IEEE80211_CHAN_NO_HT40;
1327
1328 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1329 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1330 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1331 }
1332
1333 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1334 const struct ieee80211_regdomain *regd)
1335 {
1336 unsigned int i;
1337 struct ieee80211_supported_band *sband;
1338
1339 BUG_ON(!wiphy->bands[band]);
1340 sband = wiphy->bands[band];
1341
1342 for (i = 0; i < sband->n_channels; i++)
1343 handle_channel_custom(wiphy, band, i, regd);
1344 }
1345
1346 /* Used by drivers prior to wiphy registration */
1347 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1348 const struct ieee80211_regdomain *regd)
1349 {
1350 enum ieee80211_band band;
1351 unsigned int bands_set = 0;
1352
1353 mutex_lock(&reg_mutex);
1354 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1355 if (!wiphy->bands[band])
1356 continue;
1357 handle_band_custom(wiphy, band, regd);
1358 bands_set++;
1359 }
1360 mutex_unlock(&reg_mutex);
1361
1362 /*
1363 * no point in calling this if it won't have any effect
1364 * on your device's supportd bands.
1365 */
1366 WARN_ON(!bands_set);
1367 }
1368 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1369
1370 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
1371 const struct ieee80211_regdomain *src_regd)
1372 {
1373 struct ieee80211_regdomain *regd;
1374 int size_of_regd = 0;
1375 unsigned int i;
1376
1377 size_of_regd = sizeof(struct ieee80211_regdomain) +
1378 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
1379
1380 regd = kzalloc(size_of_regd, GFP_KERNEL);
1381 if (!regd)
1382 return -ENOMEM;
1383
1384 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
1385
1386 for (i = 0; i < src_regd->n_reg_rules; i++)
1387 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
1388 sizeof(struct ieee80211_reg_rule));
1389
1390 *dst_regd = regd;
1391 return 0;
1392 }
1393
1394 /*
1395 * Return value which can be used by ignore_request() to indicate
1396 * it has been determined we should intersect two regulatory domains
1397 */
1398 #define REG_INTERSECT 1
1399
1400 /* This has the logic which determines when a new request
1401 * should be ignored. */
1402 static int ignore_request(struct wiphy *wiphy,
1403 struct regulatory_request *pending_request)
1404 {
1405 struct wiphy *last_wiphy = NULL;
1406
1407 assert_cfg80211_lock();
1408
1409 /* All initial requests are respected */
1410 if (!last_request)
1411 return 0;
1412
1413 switch (pending_request->initiator) {
1414 case NL80211_REGDOM_SET_BY_CORE:
1415 return -EINVAL;
1416 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1417
1418 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1419
1420 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1421 return -EINVAL;
1422 if (last_request->initiator ==
1423 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1424 if (last_wiphy != wiphy) {
1425 /*
1426 * Two cards with two APs claiming different
1427 * Country IE alpha2s. We could
1428 * intersect them, but that seems unlikely
1429 * to be correct. Reject second one for now.
1430 */
1431 if (regdom_changes(pending_request->alpha2))
1432 return -EOPNOTSUPP;
1433 return -EALREADY;
1434 }
1435 /*
1436 * Two consecutive Country IE hints on the same wiphy.
1437 * This should be picked up early by the driver/stack
1438 */
1439 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1440 return 0;
1441 return -EALREADY;
1442 }
1443 return REG_INTERSECT;
1444 case NL80211_REGDOM_SET_BY_DRIVER:
1445 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1446 if (is_old_static_regdom(cfg80211_regdomain))
1447 return 0;
1448 if (regdom_changes(pending_request->alpha2))
1449 return 0;
1450 return -EALREADY;
1451 }
1452
1453 /*
1454 * This would happen if you unplug and plug your card
1455 * back in or if you add a new device for which the previously
1456 * loaded card also agrees on the regulatory domain.
1457 */
1458 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1459 !regdom_changes(pending_request->alpha2))
1460 return -EALREADY;
1461
1462 return REG_INTERSECT;
1463 case NL80211_REGDOM_SET_BY_USER:
1464 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1465 return REG_INTERSECT;
1466 /*
1467 * If the user knows better the user should set the regdom
1468 * to their country before the IE is picked up
1469 */
1470 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1471 last_request->intersect)
1472 return -EOPNOTSUPP;
1473 /*
1474 * Process user requests only after previous user/driver/core
1475 * requests have been processed
1476 */
1477 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1478 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1479 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1480 if (regdom_changes(last_request->alpha2))
1481 return -EAGAIN;
1482 }
1483
1484 if (!is_old_static_regdom(cfg80211_regdomain) &&
1485 !regdom_changes(pending_request->alpha2))
1486 return -EALREADY;
1487
1488 return 0;
1489 }
1490
1491 return -EINVAL;
1492 }
1493
1494 /**
1495 * __regulatory_hint - hint to the wireless core a regulatory domain
1496 * @wiphy: if the hint comes from country information from an AP, this
1497 * is required to be set to the wiphy that received the information
1498 * @pending_request: the regulatory request currently being processed
1499 *
1500 * The Wireless subsystem can use this function to hint to the wireless core
1501 * what it believes should be the current regulatory domain.
1502 *
1503 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1504 * already been set or other standard error codes.
1505 *
1506 * Caller must hold &cfg80211_mutex and &reg_mutex
1507 */
1508 static int __regulatory_hint(struct wiphy *wiphy,
1509 struct regulatory_request *pending_request)
1510 {
1511 bool intersect = false;
1512 int r = 0;
1513
1514 assert_cfg80211_lock();
1515
1516 r = ignore_request(wiphy, pending_request);
1517
1518 if (r == REG_INTERSECT) {
1519 if (pending_request->initiator ==
1520 NL80211_REGDOM_SET_BY_DRIVER) {
1521 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1522 if (r) {
1523 kfree(pending_request);
1524 return r;
1525 }
1526 }
1527 intersect = true;
1528 } else if (r) {
1529 /*
1530 * If the regulatory domain being requested by the
1531 * driver has already been set just copy it to the
1532 * wiphy
1533 */
1534 if (r == -EALREADY &&
1535 pending_request->initiator ==
1536 NL80211_REGDOM_SET_BY_DRIVER) {
1537 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1538 if (r) {
1539 kfree(pending_request);
1540 return r;
1541 }
1542 r = -EALREADY;
1543 goto new_request;
1544 }
1545 kfree(pending_request);
1546 return r;
1547 }
1548
1549 new_request:
1550 kfree(last_request);
1551
1552 last_request = pending_request;
1553 last_request->intersect = intersect;
1554
1555 pending_request = NULL;
1556
1557 /* When r == REG_INTERSECT we do need to call CRDA */
1558 if (r < 0) {
1559 /*
1560 * Since CRDA will not be called in this case as we already
1561 * have applied the requested regulatory domain before we just
1562 * inform userspace we have processed the request
1563 */
1564 if (r == -EALREADY)
1565 nl80211_send_reg_change_event(last_request);
1566 return r;
1567 }
1568
1569 return call_crda(last_request->alpha2);
1570 }
1571
1572 /* This processes *all* regulatory hints */
1573 static void reg_process_hint(struct regulatory_request *reg_request)
1574 {
1575 int r = 0;
1576 struct wiphy *wiphy = NULL;
1577
1578 BUG_ON(!reg_request->alpha2);
1579
1580 mutex_lock(&cfg80211_mutex);
1581 mutex_lock(&reg_mutex);
1582
1583 if (wiphy_idx_valid(reg_request->wiphy_idx))
1584 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1585
1586 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1587 !wiphy) {
1588 kfree(reg_request);
1589 goto out;
1590 }
1591
1592 r = __regulatory_hint(wiphy, reg_request);
1593 /* This is required so that the orig_* parameters are saved */
1594 if (r == -EALREADY && wiphy && wiphy->strict_regulatory)
1595 wiphy_update_regulatory(wiphy, reg_request->initiator);
1596 out:
1597 mutex_unlock(&reg_mutex);
1598 mutex_unlock(&cfg80211_mutex);
1599 }
1600
1601 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1602 static void reg_process_pending_hints(void)
1603 {
1604 struct regulatory_request *reg_request;
1605
1606 spin_lock(&reg_requests_lock);
1607 while (!list_empty(&reg_requests_list)) {
1608 reg_request = list_first_entry(&reg_requests_list,
1609 struct regulatory_request,
1610 list);
1611 list_del_init(&reg_request->list);
1612
1613 spin_unlock(&reg_requests_lock);
1614 reg_process_hint(reg_request);
1615 spin_lock(&reg_requests_lock);
1616 }
1617 spin_unlock(&reg_requests_lock);
1618 }
1619
1620 /* Processes beacon hints -- this has nothing to do with country IEs */
1621 static void reg_process_pending_beacon_hints(void)
1622 {
1623 struct cfg80211_registered_device *rdev;
1624 struct reg_beacon *pending_beacon, *tmp;
1625
1626 /*
1627 * No need to hold the reg_mutex here as we just touch wiphys
1628 * and do not read or access regulatory variables.
1629 */
1630 mutex_lock(&cfg80211_mutex);
1631
1632 /* This goes through the _pending_ beacon list */
1633 spin_lock_bh(&reg_pending_beacons_lock);
1634
1635 if (list_empty(&reg_pending_beacons)) {
1636 spin_unlock_bh(&reg_pending_beacons_lock);
1637 goto out;
1638 }
1639
1640 list_for_each_entry_safe(pending_beacon, tmp,
1641 &reg_pending_beacons, list) {
1642
1643 list_del_init(&pending_beacon->list);
1644
1645 /* Applies the beacon hint to current wiphys */
1646 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1647 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1648
1649 /* Remembers the beacon hint for new wiphys or reg changes */
1650 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1651 }
1652
1653 spin_unlock_bh(&reg_pending_beacons_lock);
1654 out:
1655 mutex_unlock(&cfg80211_mutex);
1656 }
1657
1658 static void reg_todo(struct work_struct *work)
1659 {
1660 reg_process_pending_hints();
1661 reg_process_pending_beacon_hints();
1662 }
1663
1664 static DECLARE_WORK(reg_work, reg_todo);
1665
1666 static void queue_regulatory_request(struct regulatory_request *request)
1667 {
1668 spin_lock(&reg_requests_lock);
1669 list_add_tail(&request->list, &reg_requests_list);
1670 spin_unlock(&reg_requests_lock);
1671
1672 schedule_work(&reg_work);
1673 }
1674
1675 /* Core regulatory hint -- happens once during cfg80211_init() */
1676 static int regulatory_hint_core(const char *alpha2)
1677 {
1678 struct regulatory_request *request;
1679
1680 BUG_ON(last_request);
1681
1682 request = kzalloc(sizeof(struct regulatory_request),
1683 GFP_KERNEL);
1684 if (!request)
1685 return -ENOMEM;
1686
1687 request->alpha2[0] = alpha2[0];
1688 request->alpha2[1] = alpha2[1];
1689 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1690
1691 queue_regulatory_request(request);
1692
1693 /*
1694 * This ensures last_request is populated once modules
1695 * come swinging in and calling regulatory hints and
1696 * wiphy_apply_custom_regulatory().
1697 */
1698 flush_scheduled_work();
1699
1700 return 0;
1701 }
1702
1703 /* User hints */
1704 int regulatory_hint_user(const char *alpha2)
1705 {
1706 struct regulatory_request *request;
1707
1708 BUG_ON(!alpha2);
1709
1710 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1711 if (!request)
1712 return -ENOMEM;
1713
1714 request->wiphy_idx = WIPHY_IDX_STALE;
1715 request->alpha2[0] = alpha2[0];
1716 request->alpha2[1] = alpha2[1];
1717 request->initiator = NL80211_REGDOM_SET_BY_USER,
1718
1719 queue_regulatory_request(request);
1720
1721 return 0;
1722 }
1723
1724 /* Driver hints */
1725 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1726 {
1727 struct regulatory_request *request;
1728
1729 BUG_ON(!alpha2);
1730 BUG_ON(!wiphy);
1731
1732 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1733 if (!request)
1734 return -ENOMEM;
1735
1736 request->wiphy_idx = get_wiphy_idx(wiphy);
1737
1738 /* Must have registered wiphy first */
1739 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1740
1741 request->alpha2[0] = alpha2[0];
1742 request->alpha2[1] = alpha2[1];
1743 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1744
1745 queue_regulatory_request(request);
1746
1747 return 0;
1748 }
1749 EXPORT_SYMBOL(regulatory_hint);
1750
1751 /* Caller must hold reg_mutex */
1752 static bool reg_same_country_ie_hint(struct wiphy *wiphy,
1753 u32 country_ie_checksum)
1754 {
1755 struct wiphy *request_wiphy;
1756
1757 assert_reg_lock();
1758
1759 if (unlikely(last_request->initiator !=
1760 NL80211_REGDOM_SET_BY_COUNTRY_IE))
1761 return false;
1762
1763 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1764
1765 if (!request_wiphy)
1766 return false;
1767
1768 if (likely(request_wiphy != wiphy))
1769 return !country_ie_integrity_changes(country_ie_checksum);
1770 /*
1771 * We should not have let these through at this point, they
1772 * should have been picked up earlier by the first alpha2 check
1773 * on the device
1774 */
1775 if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
1776 return true;
1777 return false;
1778 }
1779
1780 /*
1781 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1782 * therefore cannot iterate over the rdev list here.
1783 */
1784 void regulatory_hint_11d(struct wiphy *wiphy,
1785 u8 *country_ie,
1786 u8 country_ie_len)
1787 {
1788 struct ieee80211_regdomain *rd = NULL;
1789 char alpha2[2];
1790 u32 checksum = 0;
1791 enum environment_cap env = ENVIRON_ANY;
1792 struct regulatory_request *request;
1793
1794 mutex_lock(&reg_mutex);
1795
1796 if (unlikely(!last_request))
1797 goto out;
1798
1799 /* IE len must be evenly divisible by 2 */
1800 if (country_ie_len & 0x01)
1801 goto out;
1802
1803 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1804 goto out;
1805
1806 /*
1807 * Pending country IE processing, this can happen after we
1808 * call CRDA and wait for a response if a beacon was received before
1809 * we were able to process the last regulatory_hint_11d() call
1810 */
1811 if (country_ie_regdomain)
1812 goto out;
1813
1814 alpha2[0] = country_ie[0];
1815 alpha2[1] = country_ie[1];
1816
1817 if (country_ie[2] == 'I')
1818 env = ENVIRON_INDOOR;
1819 else if (country_ie[2] == 'O')
1820 env = ENVIRON_OUTDOOR;
1821
1822 /*
1823 * We will run this only upon a successful connection on cfg80211.
1824 * We leave conflict resolution to the workqueue, where can hold
1825 * cfg80211_mutex.
1826 */
1827 if (likely(last_request->initiator ==
1828 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1829 wiphy_idx_valid(last_request->wiphy_idx)))
1830 goto out;
1831
1832 rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
1833 if (!rd)
1834 goto out;
1835
1836 /*
1837 * This will not happen right now but we leave it here for the
1838 * the future when we want to add suspend/resume support and having
1839 * the user move to another country after doing so, or having the user
1840 * move to another AP. Right now we just trust the first AP.
1841 *
1842 * If we hit this before we add this support we want to be informed of
1843 * it as it would indicate a mistake in the current design
1844 */
1845 if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
1846 goto free_rd_out;
1847
1848 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1849 if (!request)
1850 goto free_rd_out;
1851
1852 /*
1853 * We keep this around for when CRDA comes back with a response so
1854 * we can intersect with that
1855 */
1856 country_ie_regdomain = rd;
1857
1858 request->wiphy_idx = get_wiphy_idx(wiphy);
1859 request->alpha2[0] = rd->alpha2[0];
1860 request->alpha2[1] = rd->alpha2[1];
1861 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1862 request->country_ie_checksum = checksum;
1863 request->country_ie_env = env;
1864
1865 mutex_unlock(&reg_mutex);
1866
1867 queue_regulatory_request(request);
1868
1869 return;
1870
1871 free_rd_out:
1872 kfree(rd);
1873 out:
1874 mutex_unlock(&reg_mutex);
1875 }
1876
1877 static bool freq_is_chan_12_13_14(u16 freq)
1878 {
1879 if (freq == ieee80211_channel_to_frequency(12) ||
1880 freq == ieee80211_channel_to_frequency(13) ||
1881 freq == ieee80211_channel_to_frequency(14))
1882 return true;
1883 return false;
1884 }
1885
1886 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1887 struct ieee80211_channel *beacon_chan,
1888 gfp_t gfp)
1889 {
1890 struct reg_beacon *reg_beacon;
1891
1892 if (likely((beacon_chan->beacon_found ||
1893 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1894 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1895 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1896 return 0;
1897
1898 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1899 if (!reg_beacon)
1900 return -ENOMEM;
1901
1902 #ifdef CONFIG_CFG80211_REG_DEBUG
1903 printk(KERN_DEBUG "cfg80211: Found new beacon on "
1904 "frequency: %d MHz (Ch %d) on %s\n",
1905 beacon_chan->center_freq,
1906 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1907 wiphy_name(wiphy));
1908 #endif
1909 memcpy(&reg_beacon->chan, beacon_chan,
1910 sizeof(struct ieee80211_channel));
1911
1912
1913 /*
1914 * Since we can be called from BH or and non-BH context
1915 * we must use spin_lock_bh()
1916 */
1917 spin_lock_bh(&reg_pending_beacons_lock);
1918 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1919 spin_unlock_bh(&reg_pending_beacons_lock);
1920
1921 schedule_work(&reg_work);
1922
1923 return 0;
1924 }
1925
1926 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1927 {
1928 unsigned int i;
1929 const struct ieee80211_reg_rule *reg_rule = NULL;
1930 const struct ieee80211_freq_range *freq_range = NULL;
1931 const struct ieee80211_power_rule *power_rule = NULL;
1932
1933 printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
1934 "(max_antenna_gain, max_eirp)\n");
1935
1936 for (i = 0; i < rd->n_reg_rules; i++) {
1937 reg_rule = &rd->reg_rules[i];
1938 freq_range = &reg_rule->freq_range;
1939 power_rule = &reg_rule->power_rule;
1940
1941 /*
1942 * There may not be documentation for max antenna gain
1943 * in certain regions
1944 */
1945 if (power_rule->max_antenna_gain)
1946 printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1947 "(%d mBi, %d mBm)\n",
1948 freq_range->start_freq_khz,
1949 freq_range->end_freq_khz,
1950 freq_range->max_bandwidth_khz,
1951 power_rule->max_antenna_gain,
1952 power_rule->max_eirp);
1953 else
1954 printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1955 "(N/A, %d mBm)\n",
1956 freq_range->start_freq_khz,
1957 freq_range->end_freq_khz,
1958 freq_range->max_bandwidth_khz,
1959 power_rule->max_eirp);
1960 }
1961 }
1962
1963 static void print_regdomain(const struct ieee80211_regdomain *rd)
1964 {
1965
1966 if (is_intersected_alpha2(rd->alpha2)) {
1967
1968 if (last_request->initiator ==
1969 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1970 struct cfg80211_registered_device *rdev;
1971 rdev = cfg80211_rdev_by_wiphy_idx(
1972 last_request->wiphy_idx);
1973 if (rdev) {
1974 printk(KERN_INFO "cfg80211: Current regulatory "
1975 "domain updated by AP to: %c%c\n",
1976 rdev->country_ie_alpha2[0],
1977 rdev->country_ie_alpha2[1]);
1978 } else
1979 printk(KERN_INFO "cfg80211: Current regulatory "
1980 "domain intersected: \n");
1981 } else
1982 printk(KERN_INFO "cfg80211: Current regulatory "
1983 "domain intersected: \n");
1984 } else if (is_world_regdom(rd->alpha2))
1985 printk(KERN_INFO "cfg80211: World regulatory "
1986 "domain updated:\n");
1987 else {
1988 if (is_unknown_alpha2(rd->alpha2))
1989 printk(KERN_INFO "cfg80211: Regulatory domain "
1990 "changed to driver built-in settings "
1991 "(unknown country)\n");
1992 else
1993 printk(KERN_INFO "cfg80211: Regulatory domain "
1994 "changed to country: %c%c\n",
1995 rd->alpha2[0], rd->alpha2[1]);
1996 }
1997 print_rd_rules(rd);
1998 }
1999
2000 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2001 {
2002 printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
2003 rd->alpha2[0], rd->alpha2[1]);
2004 print_rd_rules(rd);
2005 }
2006
2007 #ifdef CONFIG_CFG80211_REG_DEBUG
2008 static void reg_country_ie_process_debug(
2009 const struct ieee80211_regdomain *rd,
2010 const struct ieee80211_regdomain *country_ie_regdomain,
2011 const struct ieee80211_regdomain *intersected_rd)
2012 {
2013 printk(KERN_DEBUG "cfg80211: Received country IE:\n");
2014 print_regdomain_info(country_ie_regdomain);
2015 printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
2016 print_regdomain_info(rd);
2017 if (intersected_rd) {
2018 printk(KERN_DEBUG "cfg80211: We intersect both of these "
2019 "and get:\n");
2020 print_regdomain_info(intersected_rd);
2021 return;
2022 }
2023 printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
2024 }
2025 #else
2026 static inline void reg_country_ie_process_debug(
2027 const struct ieee80211_regdomain *rd,
2028 const struct ieee80211_regdomain *country_ie_regdomain,
2029 const struct ieee80211_regdomain *intersected_rd)
2030 {
2031 }
2032 #endif
2033
2034 /* Takes ownership of rd only if it doesn't fail */
2035 static int __set_regdom(const struct ieee80211_regdomain *rd)
2036 {
2037 const struct ieee80211_regdomain *intersected_rd = NULL;
2038 struct cfg80211_registered_device *rdev = NULL;
2039 struct wiphy *request_wiphy;
2040 /* Some basic sanity checks first */
2041
2042 if (is_world_regdom(rd->alpha2)) {
2043 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2044 return -EINVAL;
2045 update_world_regdomain(rd);
2046 return 0;
2047 }
2048
2049 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2050 !is_unknown_alpha2(rd->alpha2))
2051 return -EINVAL;
2052
2053 if (!last_request)
2054 return -EINVAL;
2055
2056 /*
2057 * Lets only bother proceeding on the same alpha2 if the current
2058 * rd is non static (it means CRDA was present and was used last)
2059 * and the pending request came in from a country IE
2060 */
2061 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2062 /*
2063 * If someone else asked us to change the rd lets only bother
2064 * checking if the alpha2 changes if CRDA was already called
2065 */
2066 if (!is_old_static_regdom(cfg80211_regdomain) &&
2067 !regdom_changes(rd->alpha2))
2068 return -EINVAL;
2069 }
2070
2071 /*
2072 * Now lets set the regulatory domain, update all driver channels
2073 * and finally inform them of what we have done, in case they want
2074 * to review or adjust their own settings based on their own
2075 * internal EEPROM data
2076 */
2077
2078 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2079 return -EINVAL;
2080
2081 if (!is_valid_rd(rd)) {
2082 printk(KERN_ERR "cfg80211: Invalid "
2083 "regulatory domain detected:\n");
2084 print_regdomain_info(rd);
2085 return -EINVAL;
2086 }
2087
2088 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2089
2090 if (!last_request->intersect) {
2091 int r;
2092
2093 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2094 reset_regdomains();
2095 cfg80211_regdomain = rd;
2096 return 0;
2097 }
2098
2099 /*
2100 * For a driver hint, lets copy the regulatory domain the
2101 * driver wanted to the wiphy to deal with conflicts
2102 */
2103
2104 /*
2105 * Userspace could have sent two replies with only
2106 * one kernel request.
2107 */
2108 if (request_wiphy->regd)
2109 return -EALREADY;
2110
2111 r = reg_copy_regd(&request_wiphy->regd, rd);
2112 if (r)
2113 return r;
2114
2115 reset_regdomains();
2116 cfg80211_regdomain = rd;
2117 return 0;
2118 }
2119
2120 /* Intersection requires a bit more work */
2121
2122 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2123
2124 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2125 if (!intersected_rd)
2126 return -EINVAL;
2127
2128 /*
2129 * We can trash what CRDA provided now.
2130 * However if a driver requested this specific regulatory
2131 * domain we keep it for its private use
2132 */
2133 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2134 request_wiphy->regd = rd;
2135 else
2136 kfree(rd);
2137
2138 rd = NULL;
2139
2140 reset_regdomains();
2141 cfg80211_regdomain = intersected_rd;
2142
2143 return 0;
2144 }
2145
2146 /*
2147 * Country IE requests are handled a bit differently, we intersect
2148 * the country IE rd with what CRDA believes that country should have
2149 */
2150
2151 /*
2152 * Userspace could have sent two replies with only
2153 * one kernel request. By the second reply we would have
2154 * already processed and consumed the country_ie_regdomain.
2155 */
2156 if (!country_ie_regdomain)
2157 return -EALREADY;
2158 BUG_ON(rd == country_ie_regdomain);
2159
2160 /*
2161 * Intersect what CRDA returned and our what we
2162 * had built from the Country IE received
2163 */
2164
2165 intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2166
2167 reg_country_ie_process_debug(rd,
2168 country_ie_regdomain,
2169 intersected_rd);
2170
2171 kfree(country_ie_regdomain);
2172 country_ie_regdomain = NULL;
2173
2174 if (!intersected_rd)
2175 return -EINVAL;
2176
2177 rdev = wiphy_to_dev(request_wiphy);
2178
2179 rdev->country_ie_alpha2[0] = rd->alpha2[0];
2180 rdev->country_ie_alpha2[1] = rd->alpha2[1];
2181 rdev->env = last_request->country_ie_env;
2182
2183 BUG_ON(intersected_rd == rd);
2184
2185 kfree(rd);
2186 rd = NULL;
2187
2188 reset_regdomains();
2189 cfg80211_regdomain = intersected_rd;
2190
2191 return 0;
2192 }
2193
2194
2195 /*
2196 * Use this call to set the current regulatory domain. Conflicts with
2197 * multiple drivers can be ironed out later. Caller must've already
2198 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2199 */
2200 int set_regdom(const struct ieee80211_regdomain *rd)
2201 {
2202 int r;
2203
2204 assert_cfg80211_lock();
2205
2206 mutex_lock(&reg_mutex);
2207
2208 /* Note that this doesn't update the wiphys, this is done below */
2209 r = __set_regdom(rd);
2210 if (r) {
2211 kfree(rd);
2212 mutex_unlock(&reg_mutex);
2213 return r;
2214 }
2215
2216 /* This would make this whole thing pointless */
2217 if (!last_request->intersect)
2218 BUG_ON(rd != cfg80211_regdomain);
2219
2220 /* update all wiphys now with the new established regulatory domain */
2221 update_all_wiphy_regulatory(last_request->initiator);
2222
2223 print_regdomain(cfg80211_regdomain);
2224
2225 nl80211_send_reg_change_event(last_request);
2226
2227 mutex_unlock(&reg_mutex);
2228
2229 return r;
2230 }
2231
2232 /* Caller must hold cfg80211_mutex */
2233 void reg_device_remove(struct wiphy *wiphy)
2234 {
2235 struct wiphy *request_wiphy = NULL;
2236
2237 assert_cfg80211_lock();
2238
2239 mutex_lock(&reg_mutex);
2240
2241 kfree(wiphy->regd);
2242
2243 if (last_request)
2244 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2245
2246 if (!request_wiphy || request_wiphy != wiphy)
2247 goto out;
2248
2249 last_request->wiphy_idx = WIPHY_IDX_STALE;
2250 last_request->country_ie_env = ENVIRON_ANY;
2251 out:
2252 mutex_unlock(&reg_mutex);
2253 }
2254
2255 int regulatory_init(void)
2256 {
2257 int err = 0;
2258
2259 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2260 if (IS_ERR(reg_pdev))
2261 return PTR_ERR(reg_pdev);
2262
2263 spin_lock_init(&reg_requests_lock);
2264 spin_lock_init(&reg_pending_beacons_lock);
2265
2266 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
2267 cfg80211_regdomain = static_regdom(ieee80211_regdom);
2268
2269 printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
2270 print_regdomain_info(cfg80211_regdomain);
2271 #else
2272 cfg80211_regdomain = cfg80211_world_regdom;
2273
2274 #endif
2275 /* We always try to get an update for the static regdomain */
2276 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2277 if (err) {
2278 if (err == -ENOMEM)
2279 return err;
2280 /*
2281 * N.B. kobject_uevent_env() can fail mainly for when we're out
2282 * memory which is handled and propagated appropriately above
2283 * but it can also fail during a netlink_broadcast() or during
2284 * early boot for call_usermodehelper(). For now treat these
2285 * errors as non-fatal.
2286 */
2287 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2288 "to call CRDA during init");
2289 #ifdef CONFIG_CFG80211_REG_DEBUG
2290 /* We want to find out exactly why when debugging */
2291 WARN_ON(err);
2292 #endif
2293 }
2294
2295 /*
2296 * Finally, if the user set the module parameter treat it
2297 * as a user hint.
2298 */
2299 if (!is_world_regdom(ieee80211_regdom))
2300 regulatory_hint_user(ieee80211_regdom);
2301
2302 return 0;
2303 }
2304
2305 void regulatory_exit(void)
2306 {
2307 struct regulatory_request *reg_request, *tmp;
2308 struct reg_beacon *reg_beacon, *btmp;
2309
2310 cancel_work_sync(&reg_work);
2311
2312 mutex_lock(&cfg80211_mutex);
2313 mutex_lock(&reg_mutex);
2314
2315 reset_regdomains();
2316
2317 kfree(country_ie_regdomain);
2318 country_ie_regdomain = NULL;
2319
2320 kfree(last_request);
2321
2322 platform_device_unregister(reg_pdev);
2323
2324 spin_lock_bh(&reg_pending_beacons_lock);
2325 if (!list_empty(&reg_pending_beacons)) {
2326 list_for_each_entry_safe(reg_beacon, btmp,
2327 &reg_pending_beacons, list) {
2328 list_del(&reg_beacon->list);
2329 kfree(reg_beacon);
2330 }
2331 }
2332 spin_unlock_bh(&reg_pending_beacons_lock);
2333
2334 if (!list_empty(&reg_beacon_list)) {
2335 list_for_each_entry_safe(reg_beacon, btmp,
2336 &reg_beacon_list, list) {
2337 list_del(&reg_beacon->list);
2338 kfree(reg_beacon);
2339 }
2340 }
2341
2342 spin_lock(&reg_requests_lock);
2343 if (!list_empty(&reg_requests_list)) {
2344 list_for_each_entry_safe(reg_request, tmp,
2345 &reg_requests_list, list) {
2346 list_del(&reg_request->list);
2347 kfree(reg_request);
2348 }
2349 }
2350 spin_unlock(&reg_requests_lock);
2351
2352 mutex_unlock(&reg_mutex);
2353 mutex_unlock(&cfg80211_mutex);
2354 }