]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/wireless/reg.c
cfg80211: add helper for kfree'ing and assigning last_request
[mirror_ubuntu-bionic-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20
21 /**
22 * DOC: Wireless regulatory infrastructure
23 *
24 * The usual implementation is for a driver to read a device EEPROM to
25 * determine which regulatory domain it should be operating under, then
26 * looking up the allowable channels in a driver-local table and finally
27 * registering those channels in the wiphy structure.
28 *
29 * Another set of compliance enforcement is for drivers to use their
30 * own compliance limits which can be stored on the EEPROM. The host
31 * driver or firmware may ensure these are used.
32 *
33 * In addition to all this we provide an extra layer of regulatory
34 * conformance. For drivers which do not have any regulatory
35 * information CRDA provides the complete regulatory solution.
36 * For others it provides a community effort on further restrictions
37 * to enhance compliance.
38 *
39 * Note: When number of rules --> infinity we will not be able to
40 * index on alpha2 any more, instead we'll probably have to
41 * rely on some SHA1 checksum of the regdomain for example.
42 *
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
56 #include "core.h"
57 #include "reg.h"
58 #include "regdb.h"
59 #include "nl80211.h"
60
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...) \
63 printk(KERN_DEBUG pr_fmt(format), ##args)
64 #else
65 #define REG_DBG_PRINT(args...)
66 #endif
67
68 enum reg_request_treatment {
69 REG_REQ_OK,
70 REG_REQ_IGNORE,
71 REG_REQ_INTERSECT,
72 REG_REQ_ALREADY_SET,
73 };
74
75 static struct regulatory_request core_request_world = {
76 .initiator = NL80211_REGDOM_SET_BY_CORE,
77 .alpha2[0] = '0',
78 .alpha2[1] = '0',
79 .intersect = false,
80 .processed = true,
81 .country_ie_env = ENVIRON_ANY,
82 };
83
84 /*
85 * Receipt of information from last regulatory request,
86 * protected by RTNL (and can be accessed with RCU protection)
87 */
88 static struct regulatory_request __rcu *last_request =
89 (void __rcu *)&core_request_world;
90
91 /* To trigger userspace events */
92 static struct platform_device *reg_pdev;
93
94 static struct device_type reg_device_type = {
95 .uevent = reg_device_uevent,
96 };
97
98 /*
99 * Central wireless core regulatory domains, we only need two,
100 * the current one and a world regulatory domain in case we have no
101 * information to give us an alpha2.
102 * (protected by RTNL, can be read under RCU)
103 */
104 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
105
106 /*
107 * Number of devices that registered to the core
108 * that support cellular base station regulatory hints
109 * (protected by RTNL)
110 */
111 static int reg_num_devs_support_basehint;
112
113 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
114 {
115 return rtnl_dereference(cfg80211_regdomain);
116 }
117
118 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
119 {
120 return rtnl_dereference(wiphy->regd);
121 }
122
123 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
124 {
125 if (!r)
126 return;
127 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
128 }
129
130 static struct regulatory_request *get_last_request(void)
131 {
132 return rcu_dereference_rtnl(last_request);
133 }
134
135 /* Used to queue up regulatory hints */
136 static LIST_HEAD(reg_requests_list);
137 static spinlock_t reg_requests_lock;
138
139 /* Used to queue up beacon hints for review */
140 static LIST_HEAD(reg_pending_beacons);
141 static spinlock_t reg_pending_beacons_lock;
142
143 /* Used to keep track of processed beacon hints */
144 static LIST_HEAD(reg_beacon_list);
145
146 struct reg_beacon {
147 struct list_head list;
148 struct ieee80211_channel chan;
149 };
150
151 static void reg_todo(struct work_struct *work);
152 static DECLARE_WORK(reg_work, reg_todo);
153
154 static void reg_timeout_work(struct work_struct *work);
155 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
156
157 /* We keep a static world regulatory domain in case of the absence of CRDA */
158 static const struct ieee80211_regdomain world_regdom = {
159 .n_reg_rules = 6,
160 .alpha2 = "00",
161 .reg_rules = {
162 /* IEEE 802.11b/g, channels 1..11 */
163 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
164 /* IEEE 802.11b/g, channels 12..13. */
165 REG_RULE(2467-10, 2472+10, 40, 6, 20,
166 NL80211_RRF_NO_IR),
167 /* IEEE 802.11 channel 14 - Only JP enables
168 * this and for 802.11b only */
169 REG_RULE(2484-10, 2484+10, 20, 6, 20,
170 NL80211_RRF_NO_IR |
171 NL80211_RRF_NO_OFDM),
172 /* IEEE 802.11a, channel 36..48 */
173 REG_RULE(5180-10, 5240+10, 160, 6, 20,
174 NL80211_RRF_NO_IR),
175
176 /* IEEE 802.11a, channel 52..64 - DFS required */
177 REG_RULE(5260-10, 5320+10, 160, 6, 20,
178 NL80211_RRF_NO_IR |
179 NL80211_RRF_DFS),
180
181 /* IEEE 802.11a, channel 100..144 - DFS required */
182 REG_RULE(5500-10, 5720+10, 160, 6, 20,
183 NL80211_RRF_NO_IR |
184 NL80211_RRF_DFS),
185
186 /* IEEE 802.11a, channel 149..165 */
187 REG_RULE(5745-10, 5825+10, 80, 6, 20,
188 NL80211_RRF_NO_IR),
189
190 /* IEEE 802.11ad (60gHz), channels 1..3 */
191 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
192 }
193 };
194
195 /* protected by RTNL */
196 static const struct ieee80211_regdomain *cfg80211_world_regdom =
197 &world_regdom;
198
199 static char *ieee80211_regdom = "00";
200 static char user_alpha2[2];
201
202 module_param(ieee80211_regdom, charp, 0444);
203 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
204
205 static void reg_kfree_last_request(void)
206 {
207 struct regulatory_request *lr;
208
209 lr = get_last_request();
210
211 if (lr != &core_request_world && lr)
212 kfree_rcu(lr, rcu_head);
213 }
214
215 static void reg_update_last_request(struct regulatory_request *request)
216 {
217 reg_kfree_last_request();
218 rcu_assign_pointer(last_request, request);
219 }
220
221 static void reset_regdomains(bool full_reset,
222 const struct ieee80211_regdomain *new_regdom)
223 {
224 const struct ieee80211_regdomain *r;
225
226 ASSERT_RTNL();
227
228 r = get_cfg80211_regdom();
229
230 /* avoid freeing static information or freeing something twice */
231 if (r == cfg80211_world_regdom)
232 r = NULL;
233 if (cfg80211_world_regdom == &world_regdom)
234 cfg80211_world_regdom = NULL;
235 if (r == &world_regdom)
236 r = NULL;
237
238 rcu_free_regdom(r);
239 rcu_free_regdom(cfg80211_world_regdom);
240
241 cfg80211_world_regdom = &world_regdom;
242 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
243
244 if (!full_reset)
245 return;
246
247 reg_update_last_request(&core_request_world);
248 }
249
250 /*
251 * Dynamic world regulatory domain requested by the wireless
252 * core upon initialization
253 */
254 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
255 {
256 struct regulatory_request *lr;
257
258 lr = get_last_request();
259
260 WARN_ON(!lr);
261
262 reset_regdomains(false, rd);
263
264 cfg80211_world_regdom = rd;
265 }
266
267 bool is_world_regdom(const char *alpha2)
268 {
269 if (!alpha2)
270 return false;
271 return alpha2[0] == '0' && alpha2[1] == '0';
272 }
273
274 static bool is_alpha2_set(const char *alpha2)
275 {
276 if (!alpha2)
277 return false;
278 return alpha2[0] && alpha2[1];
279 }
280
281 static bool is_unknown_alpha2(const char *alpha2)
282 {
283 if (!alpha2)
284 return false;
285 /*
286 * Special case where regulatory domain was built by driver
287 * but a specific alpha2 cannot be determined
288 */
289 return alpha2[0] == '9' && alpha2[1] == '9';
290 }
291
292 static bool is_intersected_alpha2(const char *alpha2)
293 {
294 if (!alpha2)
295 return false;
296 /*
297 * Special case where regulatory domain is the
298 * result of an intersection between two regulatory domain
299 * structures
300 */
301 return alpha2[0] == '9' && alpha2[1] == '8';
302 }
303
304 static bool is_an_alpha2(const char *alpha2)
305 {
306 if (!alpha2)
307 return false;
308 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
309 }
310
311 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
312 {
313 if (!alpha2_x || !alpha2_y)
314 return false;
315 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
316 }
317
318 static bool regdom_changes(const char *alpha2)
319 {
320 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
321
322 if (!r)
323 return true;
324 return !alpha2_equal(r->alpha2, alpha2);
325 }
326
327 /*
328 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
329 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
330 * has ever been issued.
331 */
332 static bool is_user_regdom_saved(void)
333 {
334 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
335 return false;
336
337 /* This would indicate a mistake on the design */
338 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
339 "Unexpected user alpha2: %c%c\n",
340 user_alpha2[0], user_alpha2[1]))
341 return false;
342
343 return true;
344 }
345
346 static const struct ieee80211_regdomain *
347 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
348 {
349 struct ieee80211_regdomain *regd;
350 int size_of_regd;
351 unsigned int i;
352
353 size_of_regd =
354 sizeof(struct ieee80211_regdomain) +
355 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
356
357 regd = kzalloc(size_of_regd, GFP_KERNEL);
358 if (!regd)
359 return ERR_PTR(-ENOMEM);
360
361 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
362
363 for (i = 0; i < src_regd->n_reg_rules; i++)
364 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
365 sizeof(struct ieee80211_reg_rule));
366
367 return regd;
368 }
369
370 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
371 struct reg_regdb_search_request {
372 char alpha2[2];
373 struct list_head list;
374 };
375
376 static LIST_HEAD(reg_regdb_search_list);
377 static DEFINE_MUTEX(reg_regdb_search_mutex);
378
379 static void reg_regdb_search(struct work_struct *work)
380 {
381 struct reg_regdb_search_request *request;
382 const struct ieee80211_regdomain *curdom, *regdom = NULL;
383 int i;
384
385 rtnl_lock();
386
387 mutex_lock(&reg_regdb_search_mutex);
388 while (!list_empty(&reg_regdb_search_list)) {
389 request = list_first_entry(&reg_regdb_search_list,
390 struct reg_regdb_search_request,
391 list);
392 list_del(&request->list);
393
394 for (i = 0; i < reg_regdb_size; i++) {
395 curdom = reg_regdb[i];
396
397 if (alpha2_equal(request->alpha2, curdom->alpha2)) {
398 regdom = reg_copy_regd(curdom);
399 break;
400 }
401 }
402
403 kfree(request);
404 }
405 mutex_unlock(&reg_regdb_search_mutex);
406
407 if (!IS_ERR_OR_NULL(regdom))
408 set_regdom(regdom);
409
410 rtnl_unlock();
411 }
412
413 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
414
415 static void reg_regdb_query(const char *alpha2)
416 {
417 struct reg_regdb_search_request *request;
418
419 if (!alpha2)
420 return;
421
422 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
423 if (!request)
424 return;
425
426 memcpy(request->alpha2, alpha2, 2);
427
428 mutex_lock(&reg_regdb_search_mutex);
429 list_add_tail(&request->list, &reg_regdb_search_list);
430 mutex_unlock(&reg_regdb_search_mutex);
431
432 schedule_work(&reg_regdb_work);
433 }
434
435 /* Feel free to add any other sanity checks here */
436 static void reg_regdb_size_check(void)
437 {
438 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
439 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
440 }
441 #else
442 static inline void reg_regdb_size_check(void) {}
443 static inline void reg_regdb_query(const char *alpha2) {}
444 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
445
446 /*
447 * This lets us keep regulatory code which is updated on a regulatory
448 * basis in userspace. Country information is filled in by
449 * reg_device_uevent
450 */
451 static int call_crda(const char *alpha2)
452 {
453 if (!is_world_regdom((char *) alpha2))
454 pr_info("Calling CRDA for country: %c%c\n",
455 alpha2[0], alpha2[1]);
456 else
457 pr_info("Calling CRDA to update world regulatory domain\n");
458
459 /* query internal regulatory database (if it exists) */
460 reg_regdb_query(alpha2);
461
462 return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
463 }
464
465 bool reg_is_valid_request(const char *alpha2)
466 {
467 struct regulatory_request *lr = get_last_request();
468
469 if (!lr || lr->processed)
470 return false;
471
472 return alpha2_equal(lr->alpha2, alpha2);
473 }
474
475 /* Sanity check on a regulatory rule */
476 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
477 {
478 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
479 u32 freq_diff;
480
481 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
482 return false;
483
484 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
485 return false;
486
487 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
488
489 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
490 freq_range->max_bandwidth_khz > freq_diff)
491 return false;
492
493 return true;
494 }
495
496 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
497 {
498 const struct ieee80211_reg_rule *reg_rule = NULL;
499 unsigned int i;
500
501 if (!rd->n_reg_rules)
502 return false;
503
504 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
505 return false;
506
507 for (i = 0; i < rd->n_reg_rules; i++) {
508 reg_rule = &rd->reg_rules[i];
509 if (!is_valid_reg_rule(reg_rule))
510 return false;
511 }
512
513 return true;
514 }
515
516 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
517 u32 center_freq_khz, u32 bw_khz)
518 {
519 u32 start_freq_khz, end_freq_khz;
520
521 start_freq_khz = center_freq_khz - (bw_khz/2);
522 end_freq_khz = center_freq_khz + (bw_khz/2);
523
524 if (start_freq_khz >= freq_range->start_freq_khz &&
525 end_freq_khz <= freq_range->end_freq_khz)
526 return true;
527
528 return false;
529 }
530
531 /**
532 * freq_in_rule_band - tells us if a frequency is in a frequency band
533 * @freq_range: frequency rule we want to query
534 * @freq_khz: frequency we are inquiring about
535 *
536 * This lets us know if a specific frequency rule is or is not relevant to
537 * a specific frequency's band. Bands are device specific and artificial
538 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
539 * however it is safe for now to assume that a frequency rule should not be
540 * part of a frequency's band if the start freq or end freq are off by more
541 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
542 * 60 GHz band.
543 * This resolution can be lowered and should be considered as we add
544 * regulatory rule support for other "bands".
545 **/
546 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
547 u32 freq_khz)
548 {
549 #define ONE_GHZ_IN_KHZ 1000000
550 /*
551 * From 802.11ad: directional multi-gigabit (DMG):
552 * Pertaining to operation in a frequency band containing a channel
553 * with the Channel starting frequency above 45 GHz.
554 */
555 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
556 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
557 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
558 return true;
559 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
560 return true;
561 return false;
562 #undef ONE_GHZ_IN_KHZ
563 }
564
565 /*
566 * Helper for regdom_intersect(), this does the real
567 * mathematical intersection fun
568 */
569 static int reg_rules_intersect(const struct ieee80211_reg_rule *rule1,
570 const struct ieee80211_reg_rule *rule2,
571 struct ieee80211_reg_rule *intersected_rule)
572 {
573 const struct ieee80211_freq_range *freq_range1, *freq_range2;
574 struct ieee80211_freq_range *freq_range;
575 const struct ieee80211_power_rule *power_rule1, *power_rule2;
576 struct ieee80211_power_rule *power_rule;
577 u32 freq_diff;
578
579 freq_range1 = &rule1->freq_range;
580 freq_range2 = &rule2->freq_range;
581 freq_range = &intersected_rule->freq_range;
582
583 power_rule1 = &rule1->power_rule;
584 power_rule2 = &rule2->power_rule;
585 power_rule = &intersected_rule->power_rule;
586
587 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
588 freq_range2->start_freq_khz);
589 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
590 freq_range2->end_freq_khz);
591 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
592 freq_range2->max_bandwidth_khz);
593
594 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
595 if (freq_range->max_bandwidth_khz > freq_diff)
596 freq_range->max_bandwidth_khz = freq_diff;
597
598 power_rule->max_eirp = min(power_rule1->max_eirp,
599 power_rule2->max_eirp);
600 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
601 power_rule2->max_antenna_gain);
602
603 intersected_rule->flags = rule1->flags | rule2->flags;
604
605 if (!is_valid_reg_rule(intersected_rule))
606 return -EINVAL;
607
608 return 0;
609 }
610
611 /**
612 * regdom_intersect - do the intersection between two regulatory domains
613 * @rd1: first regulatory domain
614 * @rd2: second regulatory domain
615 *
616 * Use this function to get the intersection between two regulatory domains.
617 * Once completed we will mark the alpha2 for the rd as intersected, "98",
618 * as no one single alpha2 can represent this regulatory domain.
619 *
620 * Returns a pointer to the regulatory domain structure which will hold the
621 * resulting intersection of rules between rd1 and rd2. We will
622 * kzalloc() this structure for you.
623 */
624 static struct ieee80211_regdomain *
625 regdom_intersect(const struct ieee80211_regdomain *rd1,
626 const struct ieee80211_regdomain *rd2)
627 {
628 int r, size_of_regd;
629 unsigned int x, y;
630 unsigned int num_rules = 0, rule_idx = 0;
631 const struct ieee80211_reg_rule *rule1, *rule2;
632 struct ieee80211_reg_rule *intersected_rule;
633 struct ieee80211_regdomain *rd;
634 /* This is just a dummy holder to help us count */
635 struct ieee80211_reg_rule dummy_rule;
636
637 if (!rd1 || !rd2)
638 return NULL;
639
640 /*
641 * First we get a count of the rules we'll need, then we actually
642 * build them. This is to so we can malloc() and free() a
643 * regdomain once. The reason we use reg_rules_intersect() here
644 * is it will return -EINVAL if the rule computed makes no sense.
645 * All rules that do check out OK are valid.
646 */
647
648 for (x = 0; x < rd1->n_reg_rules; x++) {
649 rule1 = &rd1->reg_rules[x];
650 for (y = 0; y < rd2->n_reg_rules; y++) {
651 rule2 = &rd2->reg_rules[y];
652 if (!reg_rules_intersect(rule1, rule2, &dummy_rule))
653 num_rules++;
654 }
655 }
656
657 if (!num_rules)
658 return NULL;
659
660 size_of_regd = sizeof(struct ieee80211_regdomain) +
661 num_rules * sizeof(struct ieee80211_reg_rule);
662
663 rd = kzalloc(size_of_regd, GFP_KERNEL);
664 if (!rd)
665 return NULL;
666
667 for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
668 rule1 = &rd1->reg_rules[x];
669 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
670 rule2 = &rd2->reg_rules[y];
671 /*
672 * This time around instead of using the stack lets
673 * write to the target rule directly saving ourselves
674 * a memcpy()
675 */
676 intersected_rule = &rd->reg_rules[rule_idx];
677 r = reg_rules_intersect(rule1, rule2, intersected_rule);
678 /*
679 * No need to memset here the intersected rule here as
680 * we're not using the stack anymore
681 */
682 if (r)
683 continue;
684 rule_idx++;
685 }
686 }
687
688 if (rule_idx != num_rules) {
689 kfree(rd);
690 return NULL;
691 }
692
693 rd->n_reg_rules = num_rules;
694 rd->alpha2[0] = '9';
695 rd->alpha2[1] = '8';
696
697 return rd;
698 }
699
700 /*
701 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
702 * want to just have the channel structure use these
703 */
704 static u32 map_regdom_flags(u32 rd_flags)
705 {
706 u32 channel_flags = 0;
707 if (rd_flags & NL80211_RRF_NO_IR_ALL)
708 channel_flags |= IEEE80211_CHAN_NO_IR;
709 if (rd_flags & NL80211_RRF_DFS)
710 channel_flags |= IEEE80211_CHAN_RADAR;
711 if (rd_flags & NL80211_RRF_NO_OFDM)
712 channel_flags |= IEEE80211_CHAN_NO_OFDM;
713 return channel_flags;
714 }
715
716 static const struct ieee80211_reg_rule *
717 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
718 const struct ieee80211_regdomain *regd)
719 {
720 int i;
721 bool band_rule_found = false;
722 bool bw_fits = false;
723
724 if (!regd)
725 return ERR_PTR(-EINVAL);
726
727 for (i = 0; i < regd->n_reg_rules; i++) {
728 const struct ieee80211_reg_rule *rr;
729 const struct ieee80211_freq_range *fr = NULL;
730
731 rr = &regd->reg_rules[i];
732 fr = &rr->freq_range;
733
734 /*
735 * We only need to know if one frequency rule was
736 * was in center_freq's band, that's enough, so lets
737 * not overwrite it once found
738 */
739 if (!band_rule_found)
740 band_rule_found = freq_in_rule_band(fr, center_freq);
741
742 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
743
744 if (band_rule_found && bw_fits)
745 return rr;
746 }
747
748 if (!band_rule_found)
749 return ERR_PTR(-ERANGE);
750
751 return ERR_PTR(-EINVAL);
752 }
753
754 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
755 u32 center_freq)
756 {
757 const struct ieee80211_regdomain *regd;
758 struct regulatory_request *lr = get_last_request();
759
760 /*
761 * Follow the driver's regulatory domain, if present, unless a country
762 * IE has been processed or a user wants to help complaince further
763 */
764 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
765 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
766 wiphy->regd)
767 regd = get_wiphy_regdom(wiphy);
768 else
769 regd = get_cfg80211_regdom();
770
771 return freq_reg_info_regd(wiphy, center_freq, regd);
772 }
773 EXPORT_SYMBOL(freq_reg_info);
774
775 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
776 {
777 switch (initiator) {
778 case NL80211_REGDOM_SET_BY_CORE:
779 return "core";
780 case NL80211_REGDOM_SET_BY_USER:
781 return "user";
782 case NL80211_REGDOM_SET_BY_DRIVER:
783 return "driver";
784 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
785 return "country IE";
786 default:
787 WARN_ON(1);
788 return "bug";
789 }
790 }
791 EXPORT_SYMBOL(reg_initiator_name);
792
793 #ifdef CONFIG_CFG80211_REG_DEBUG
794 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
795 const struct ieee80211_reg_rule *reg_rule)
796 {
797 const struct ieee80211_power_rule *power_rule;
798 const struct ieee80211_freq_range *freq_range;
799 char max_antenna_gain[32];
800
801 power_rule = &reg_rule->power_rule;
802 freq_range = &reg_rule->freq_range;
803
804 if (!power_rule->max_antenna_gain)
805 snprintf(max_antenna_gain, 32, "N/A");
806 else
807 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
808
809 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
810 chan->center_freq);
811
812 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
813 freq_range->start_freq_khz, freq_range->end_freq_khz,
814 freq_range->max_bandwidth_khz, max_antenna_gain,
815 power_rule->max_eirp);
816 }
817 #else
818 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
819 const struct ieee80211_reg_rule *reg_rule)
820 {
821 return;
822 }
823 #endif
824
825 /*
826 * Note that right now we assume the desired channel bandwidth
827 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
828 * per channel, the primary and the extension channel).
829 */
830 static void handle_channel(struct wiphy *wiphy,
831 enum nl80211_reg_initiator initiator,
832 struct ieee80211_channel *chan)
833 {
834 u32 flags, bw_flags = 0;
835 const struct ieee80211_reg_rule *reg_rule = NULL;
836 const struct ieee80211_power_rule *power_rule = NULL;
837 const struct ieee80211_freq_range *freq_range = NULL;
838 struct wiphy *request_wiphy = NULL;
839 struct regulatory_request *lr = get_last_request();
840
841 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
842
843 flags = chan->orig_flags;
844
845 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
846 if (IS_ERR(reg_rule)) {
847 /*
848 * We will disable all channels that do not match our
849 * received regulatory rule unless the hint is coming
850 * from a Country IE and the Country IE had no information
851 * about a band. The IEEE 802.11 spec allows for an AP
852 * to send only a subset of the regulatory rules allowed,
853 * so an AP in the US that only supports 2.4 GHz may only send
854 * a country IE with information for the 2.4 GHz band
855 * while 5 GHz is still supported.
856 */
857 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
858 PTR_ERR(reg_rule) == -ERANGE)
859 return;
860
861 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
862 request_wiphy && request_wiphy == wiphy &&
863 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
864 REG_DBG_PRINT("Disabling freq %d MHz for good\n",
865 chan->center_freq);
866 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
867 chan->flags = chan->orig_flags;
868 } else {
869 REG_DBG_PRINT("Disabling freq %d MHz\n",
870 chan->center_freq);
871 chan->flags |= IEEE80211_CHAN_DISABLED;
872 }
873 return;
874 }
875
876 chan_reg_rule_print_dbg(chan, reg_rule);
877
878 power_rule = &reg_rule->power_rule;
879 freq_range = &reg_rule->freq_range;
880
881 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
882 bw_flags = IEEE80211_CHAN_NO_HT40;
883 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80))
884 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
885 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160))
886 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
887
888 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
889 request_wiphy && request_wiphy == wiphy &&
890 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
891 /*
892 * This guarantees the driver's requested regulatory domain
893 * will always be used as a base for further regulatory
894 * settings
895 */
896 chan->flags = chan->orig_flags =
897 map_regdom_flags(reg_rule->flags) | bw_flags;
898 chan->max_antenna_gain = chan->orig_mag =
899 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
900 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
901 (int) MBM_TO_DBM(power_rule->max_eirp);
902 return;
903 }
904
905 chan->dfs_state = NL80211_DFS_USABLE;
906 chan->dfs_state_entered = jiffies;
907
908 chan->beacon_found = false;
909 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
910 chan->max_antenna_gain =
911 min_t(int, chan->orig_mag,
912 MBI_TO_DBI(power_rule->max_antenna_gain));
913 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
914 if (chan->orig_mpwr) {
915 /*
916 * Devices that have their own custom regulatory domain
917 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
918 * passed country IE power settings.
919 */
920 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
921 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
922 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
923 chan->max_power = chan->max_reg_power;
924 else
925 chan->max_power = min(chan->orig_mpwr,
926 chan->max_reg_power);
927 } else
928 chan->max_power = chan->max_reg_power;
929 }
930
931 static void handle_band(struct wiphy *wiphy,
932 enum nl80211_reg_initiator initiator,
933 struct ieee80211_supported_band *sband)
934 {
935 unsigned int i;
936
937 if (!sband)
938 return;
939
940 for (i = 0; i < sband->n_channels; i++)
941 handle_channel(wiphy, initiator, &sband->channels[i]);
942 }
943
944 static bool reg_request_cell_base(struct regulatory_request *request)
945 {
946 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
947 return false;
948 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
949 }
950
951 bool reg_last_request_cell_base(void)
952 {
953 return reg_request_cell_base(get_last_request());
954 }
955
956 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
957 /* Core specific check */
958 static enum reg_request_treatment
959 reg_ignore_cell_hint(struct regulatory_request *pending_request)
960 {
961 struct regulatory_request *lr = get_last_request();
962
963 if (!reg_num_devs_support_basehint)
964 return REG_REQ_IGNORE;
965
966 if (reg_request_cell_base(lr) &&
967 !regdom_changes(pending_request->alpha2))
968 return REG_REQ_ALREADY_SET;
969
970 return REG_REQ_OK;
971 }
972
973 /* Device specific check */
974 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
975 {
976 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
977 }
978 #else
979 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
980 {
981 return REG_REQ_IGNORE;
982 }
983
984 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
985 {
986 return true;
987 }
988 #endif
989
990 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
991 {
992 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY &&
993 !(wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY))
994 return true;
995 return false;
996 }
997
998 static bool ignore_reg_update(struct wiphy *wiphy,
999 enum nl80211_reg_initiator initiator)
1000 {
1001 struct regulatory_request *lr = get_last_request();
1002
1003 if (!lr) {
1004 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1005 "since last_request is not set\n",
1006 reg_initiator_name(initiator));
1007 return true;
1008 }
1009
1010 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1011 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
1012 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1013 "since the driver uses its own custom "
1014 "regulatory domain\n",
1015 reg_initiator_name(initiator));
1016 return true;
1017 }
1018
1019 /*
1020 * wiphy->regd will be set once the device has its own
1021 * desired regulatory domain set
1022 */
1023 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1024 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1025 !is_world_regdom(lr->alpha2)) {
1026 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1027 "since the driver requires its own regulatory "
1028 "domain to be set first\n",
1029 reg_initiator_name(initiator));
1030 return true;
1031 }
1032
1033 if (reg_request_cell_base(lr))
1034 return reg_dev_ignore_cell_hint(wiphy);
1035
1036 return false;
1037 }
1038
1039 static bool reg_is_world_roaming(struct wiphy *wiphy)
1040 {
1041 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1042 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1043 struct regulatory_request *lr = get_last_request();
1044
1045 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1046 return true;
1047
1048 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1049 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1050 return true;
1051
1052 return false;
1053 }
1054
1055 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1056 struct reg_beacon *reg_beacon)
1057 {
1058 struct ieee80211_supported_band *sband;
1059 struct ieee80211_channel *chan;
1060 bool channel_changed = false;
1061 struct ieee80211_channel chan_before;
1062
1063 sband = wiphy->bands[reg_beacon->chan.band];
1064 chan = &sband->channels[chan_idx];
1065
1066 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1067 return;
1068
1069 if (chan->beacon_found)
1070 return;
1071
1072 chan->beacon_found = true;
1073
1074 if (!reg_is_world_roaming(wiphy))
1075 return;
1076
1077 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1078 return;
1079
1080 chan_before.center_freq = chan->center_freq;
1081 chan_before.flags = chan->flags;
1082
1083 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1084 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1085 channel_changed = true;
1086 }
1087
1088 if (channel_changed)
1089 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1090 }
1091
1092 /*
1093 * Called when a scan on a wiphy finds a beacon on
1094 * new channel
1095 */
1096 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1097 struct reg_beacon *reg_beacon)
1098 {
1099 unsigned int i;
1100 struct ieee80211_supported_band *sband;
1101
1102 if (!wiphy->bands[reg_beacon->chan.band])
1103 return;
1104
1105 sband = wiphy->bands[reg_beacon->chan.band];
1106
1107 for (i = 0; i < sband->n_channels; i++)
1108 handle_reg_beacon(wiphy, i, reg_beacon);
1109 }
1110
1111 /*
1112 * Called upon reg changes or a new wiphy is added
1113 */
1114 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1115 {
1116 unsigned int i;
1117 struct ieee80211_supported_band *sband;
1118 struct reg_beacon *reg_beacon;
1119
1120 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1121 if (!wiphy->bands[reg_beacon->chan.band])
1122 continue;
1123 sband = wiphy->bands[reg_beacon->chan.band];
1124 for (i = 0; i < sband->n_channels; i++)
1125 handle_reg_beacon(wiphy, i, reg_beacon);
1126 }
1127 }
1128
1129 /* Reap the advantages of previously found beacons */
1130 static void reg_process_beacons(struct wiphy *wiphy)
1131 {
1132 /*
1133 * Means we are just firing up cfg80211, so no beacons would
1134 * have been processed yet.
1135 */
1136 if (!last_request)
1137 return;
1138 wiphy_update_beacon_reg(wiphy);
1139 }
1140
1141 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1142 {
1143 if (!chan)
1144 return false;
1145 if (chan->flags & IEEE80211_CHAN_DISABLED)
1146 return false;
1147 /* This would happen when regulatory rules disallow HT40 completely */
1148 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1149 return false;
1150 return true;
1151 }
1152
1153 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1154 struct ieee80211_channel *channel)
1155 {
1156 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1157 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1158 unsigned int i;
1159
1160 if (!is_ht40_allowed(channel)) {
1161 channel->flags |= IEEE80211_CHAN_NO_HT40;
1162 return;
1163 }
1164
1165 /*
1166 * We need to ensure the extension channels exist to
1167 * be able to use HT40- or HT40+, this finds them (or not)
1168 */
1169 for (i = 0; i < sband->n_channels; i++) {
1170 struct ieee80211_channel *c = &sband->channels[i];
1171
1172 if (c->center_freq == (channel->center_freq - 20))
1173 channel_before = c;
1174 if (c->center_freq == (channel->center_freq + 20))
1175 channel_after = c;
1176 }
1177
1178 /*
1179 * Please note that this assumes target bandwidth is 20 MHz,
1180 * if that ever changes we also need to change the below logic
1181 * to include that as well.
1182 */
1183 if (!is_ht40_allowed(channel_before))
1184 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1185 else
1186 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1187
1188 if (!is_ht40_allowed(channel_after))
1189 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1190 else
1191 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1192 }
1193
1194 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1195 struct ieee80211_supported_band *sband)
1196 {
1197 unsigned int i;
1198
1199 if (!sband)
1200 return;
1201
1202 for (i = 0; i < sband->n_channels; i++)
1203 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1204 }
1205
1206 static void reg_process_ht_flags(struct wiphy *wiphy)
1207 {
1208 enum ieee80211_band band;
1209
1210 if (!wiphy)
1211 return;
1212
1213 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1214 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1215 }
1216
1217 static void wiphy_update_regulatory(struct wiphy *wiphy,
1218 enum nl80211_reg_initiator initiator)
1219 {
1220 enum ieee80211_band band;
1221 struct regulatory_request *lr = get_last_request();
1222
1223 if (ignore_reg_update(wiphy, initiator))
1224 return;
1225
1226 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1227
1228 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1229 handle_band(wiphy, initiator, wiphy->bands[band]);
1230
1231 reg_process_beacons(wiphy);
1232 reg_process_ht_flags(wiphy);
1233
1234 if (wiphy->reg_notifier)
1235 wiphy->reg_notifier(wiphy, lr);
1236 }
1237
1238 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1239 {
1240 struct cfg80211_registered_device *rdev;
1241 struct wiphy *wiphy;
1242
1243 ASSERT_RTNL();
1244
1245 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1246 wiphy = &rdev->wiphy;
1247 wiphy_update_regulatory(wiphy, initiator);
1248 /*
1249 * Regulatory updates set by CORE are ignored for custom
1250 * regulatory cards. Let us notify the changes to the driver,
1251 * as some drivers used this to restore its orig_* reg domain.
1252 */
1253 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1254 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1255 wiphy->reg_notifier)
1256 wiphy->reg_notifier(wiphy, get_last_request());
1257 }
1258 }
1259
1260 static void handle_channel_custom(struct wiphy *wiphy,
1261 struct ieee80211_channel *chan,
1262 const struct ieee80211_regdomain *regd)
1263 {
1264 u32 bw_flags = 0;
1265 const struct ieee80211_reg_rule *reg_rule = NULL;
1266 const struct ieee80211_power_rule *power_rule = NULL;
1267 const struct ieee80211_freq_range *freq_range = NULL;
1268
1269 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1270 regd);
1271
1272 if (IS_ERR(reg_rule)) {
1273 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1274 chan->center_freq);
1275 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1276 chan->flags = chan->orig_flags;
1277 return;
1278 }
1279
1280 chan_reg_rule_print_dbg(chan, reg_rule);
1281
1282 power_rule = &reg_rule->power_rule;
1283 freq_range = &reg_rule->freq_range;
1284
1285 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1286 bw_flags = IEEE80211_CHAN_NO_HT40;
1287 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80))
1288 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1289 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160))
1290 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1291
1292 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1293 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1294 chan->max_reg_power = chan->max_power =
1295 (int) MBM_TO_DBM(power_rule->max_eirp);
1296 }
1297
1298 static void handle_band_custom(struct wiphy *wiphy,
1299 struct ieee80211_supported_band *sband,
1300 const struct ieee80211_regdomain *regd)
1301 {
1302 unsigned int i;
1303
1304 if (!sband)
1305 return;
1306
1307 for (i = 0; i < sband->n_channels; i++)
1308 handle_channel_custom(wiphy, &sband->channels[i], regd);
1309 }
1310
1311 /* Used by drivers prior to wiphy registration */
1312 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1313 const struct ieee80211_regdomain *regd)
1314 {
1315 enum ieee80211_band band;
1316 unsigned int bands_set = 0;
1317
1318 WARN(!(wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY),
1319 "wiphy should have WIPHY_FLAG_CUSTOM_REGULATORY\n");
1320 wiphy->flags |= WIPHY_FLAG_CUSTOM_REGULATORY;
1321
1322 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1323 if (!wiphy->bands[band])
1324 continue;
1325 handle_band_custom(wiphy, wiphy->bands[band], regd);
1326 bands_set++;
1327 }
1328
1329 /*
1330 * no point in calling this if it won't have any effect
1331 * on your device's supported bands.
1332 */
1333 WARN_ON(!bands_set);
1334 }
1335 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1336
1337 static void reg_set_request_processed(void)
1338 {
1339 bool need_more_processing = false;
1340 struct regulatory_request *lr = get_last_request();
1341
1342 lr->processed = true;
1343
1344 spin_lock(&reg_requests_lock);
1345 if (!list_empty(&reg_requests_list))
1346 need_more_processing = true;
1347 spin_unlock(&reg_requests_lock);
1348
1349 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1350 cancel_delayed_work(&reg_timeout);
1351
1352 if (need_more_processing)
1353 schedule_work(&reg_work);
1354 }
1355
1356 /**
1357 * reg_process_hint_core - process core regulatory requests
1358 * @pending_request: a pending core regulatory request
1359 *
1360 * The wireless subsystem can use this function to process
1361 * a regulatory request issued by the regulatory core.
1362 *
1363 * Returns one of the different reg request treatment values.
1364 */
1365 static enum reg_request_treatment
1366 reg_process_hint_core(struct regulatory_request *core_request)
1367 {
1368
1369 core_request->intersect = false;
1370 core_request->processed = false;
1371
1372 reg_update_last_request(core_request);
1373
1374 if (call_crda(core_request->alpha2))
1375 return REG_REQ_IGNORE;
1376 return REG_REQ_OK;
1377 }
1378
1379 static enum reg_request_treatment
1380 __reg_process_hint_user(struct regulatory_request *user_request)
1381 {
1382 struct regulatory_request *lr = get_last_request();
1383
1384 if (reg_request_cell_base(user_request))
1385 return reg_ignore_cell_hint(user_request);
1386
1387 if (reg_request_cell_base(lr))
1388 return REG_REQ_IGNORE;
1389
1390 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1391 return REG_REQ_INTERSECT;
1392 /*
1393 * If the user knows better the user should set the regdom
1394 * to their country before the IE is picked up
1395 */
1396 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1397 lr->intersect)
1398 return REG_REQ_IGNORE;
1399 /*
1400 * Process user requests only after previous user/driver/core
1401 * requests have been processed
1402 */
1403 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1404 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1405 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1406 regdom_changes(lr->alpha2))
1407 return REG_REQ_IGNORE;
1408
1409 if (!regdom_changes(user_request->alpha2))
1410 return REG_REQ_ALREADY_SET;
1411
1412 return REG_REQ_OK;
1413 }
1414
1415 /**
1416 * reg_process_hint_user - process user regulatory requests
1417 * @user_request: a pending user regulatory request
1418 *
1419 * The wireless subsystem can use this function to process
1420 * a regulatory request initiated by userspace.
1421 *
1422 * Returns one of the different reg request treatment values.
1423 */
1424 static enum reg_request_treatment
1425 reg_process_hint_user(struct regulatory_request *user_request)
1426 {
1427 enum reg_request_treatment treatment;
1428
1429 treatment = __reg_process_hint_user(user_request);
1430 if (treatment == REG_REQ_IGNORE ||
1431 treatment == REG_REQ_ALREADY_SET) {
1432 kfree(user_request);
1433 return treatment;
1434 }
1435
1436 user_request->intersect = treatment == REG_REQ_INTERSECT;
1437 user_request->processed = false;
1438
1439 reg_update_last_request(user_request);
1440
1441 user_alpha2[0] = user_request->alpha2[0];
1442 user_alpha2[1] = user_request->alpha2[1];
1443
1444 if (call_crda(user_request->alpha2))
1445 return REG_REQ_IGNORE;
1446 return REG_REQ_OK;
1447 }
1448
1449 static enum reg_request_treatment
1450 __reg_process_hint_driver(struct regulatory_request *driver_request)
1451 {
1452 struct regulatory_request *lr = get_last_request();
1453
1454 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1455 if (regdom_changes(driver_request->alpha2))
1456 return REG_REQ_OK;
1457 return REG_REQ_ALREADY_SET;
1458 }
1459
1460 /*
1461 * This would happen if you unplug and plug your card
1462 * back in or if you add a new device for which the previously
1463 * loaded card also agrees on the regulatory domain.
1464 */
1465 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1466 !regdom_changes(driver_request->alpha2))
1467 return REG_REQ_ALREADY_SET;
1468
1469 return REG_REQ_INTERSECT;
1470 }
1471
1472 /**
1473 * reg_process_hint_driver - process driver regulatory requests
1474 * @driver_request: a pending driver regulatory request
1475 *
1476 * The wireless subsystem can use this function to process
1477 * a regulatory request issued by an 802.11 driver.
1478 *
1479 * Returns one of the different reg request treatment values.
1480 */
1481 static enum reg_request_treatment
1482 reg_process_hint_driver(struct wiphy *wiphy,
1483 struct regulatory_request *driver_request)
1484 {
1485 const struct ieee80211_regdomain *regd;
1486 enum reg_request_treatment treatment;
1487
1488 treatment = __reg_process_hint_driver(driver_request);
1489
1490 switch (treatment) {
1491 case REG_REQ_OK:
1492 break;
1493 case REG_REQ_IGNORE:
1494 kfree(driver_request);
1495 return treatment;
1496 case REG_REQ_INTERSECT:
1497 /* fall through */
1498 case REG_REQ_ALREADY_SET:
1499 regd = reg_copy_regd(get_cfg80211_regdom());
1500 if (IS_ERR(regd)) {
1501 kfree(driver_request);
1502 return REG_REQ_IGNORE;
1503 }
1504 rcu_assign_pointer(wiphy->regd, regd);
1505 }
1506
1507
1508 driver_request->intersect = treatment == REG_REQ_INTERSECT;
1509 driver_request->processed = false;
1510
1511 reg_update_last_request(driver_request);
1512
1513 /*
1514 * Since CRDA will not be called in this case as we already
1515 * have applied the requested regulatory domain before we just
1516 * inform userspace we have processed the request
1517 */
1518 if (treatment == REG_REQ_ALREADY_SET) {
1519 nl80211_send_reg_change_event(driver_request);
1520 reg_set_request_processed();
1521 return treatment;
1522 }
1523
1524 if (call_crda(driver_request->alpha2))
1525 return REG_REQ_IGNORE;
1526 return REG_REQ_OK;
1527 }
1528
1529 static enum reg_request_treatment
1530 __reg_process_hint_country_ie(struct wiphy *wiphy,
1531 struct regulatory_request *country_ie_request)
1532 {
1533 struct wiphy *last_wiphy = NULL;
1534 struct regulatory_request *lr = get_last_request();
1535
1536 if (reg_request_cell_base(lr)) {
1537 /* Trust a Cell base station over the AP's country IE */
1538 if (regdom_changes(country_ie_request->alpha2))
1539 return REG_REQ_IGNORE;
1540 return REG_REQ_ALREADY_SET;
1541 }
1542
1543 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
1544 return -EINVAL;
1545
1546 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
1547 return REG_REQ_OK;
1548
1549 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1550
1551 if (last_wiphy != wiphy) {
1552 /*
1553 * Two cards with two APs claiming different
1554 * Country IE alpha2s. We could
1555 * intersect them, but that seems unlikely
1556 * to be correct. Reject second one for now.
1557 */
1558 if (regdom_changes(country_ie_request->alpha2))
1559 return REG_REQ_IGNORE;
1560 return REG_REQ_ALREADY_SET;
1561 }
1562 /*
1563 * Two consecutive Country IE hints on the same wiphy.
1564 * This should be picked up early by the driver/stack
1565 */
1566 if (WARN_ON(regdom_changes(country_ie_request->alpha2)))
1567 return REG_REQ_OK;
1568 return REG_REQ_ALREADY_SET;
1569 }
1570
1571 /**
1572 * reg_process_hint_country_ie - process regulatory requests from country IEs
1573 * @country_ie_request: a regulatory request from a country IE
1574 *
1575 * The wireless subsystem can use this function to process
1576 * a regulatory request issued by a country Information Element.
1577 *
1578 * Returns one of the different reg request treatment values.
1579 */
1580 static enum reg_request_treatment
1581 reg_process_hint_country_ie(struct wiphy *wiphy,
1582 struct regulatory_request *country_ie_request)
1583 {
1584 enum reg_request_treatment treatment;
1585
1586 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
1587
1588 switch (treatment) {
1589 case REG_REQ_OK:
1590 break;
1591 case REG_REQ_IGNORE:
1592 /* fall through */
1593 case REG_REQ_ALREADY_SET:
1594 kfree(country_ie_request);
1595 return treatment;
1596 case REG_REQ_INTERSECT:
1597 kfree(country_ie_request);
1598 /*
1599 * This doesn't happen yet, not sure we
1600 * ever want to support it for this case.
1601 */
1602 WARN_ONCE(1, "Unexpected intersection for country IEs");
1603 return REG_REQ_IGNORE;
1604 }
1605
1606 country_ie_request->intersect = false;
1607 country_ie_request->processed = false;
1608
1609 reg_update_last_request(country_ie_request);
1610
1611 if (call_crda(country_ie_request->alpha2))
1612 return REG_REQ_IGNORE;
1613 return REG_REQ_OK;
1614 }
1615
1616 /* This processes *all* regulatory hints */
1617 static void reg_process_hint(struct regulatory_request *reg_request)
1618 {
1619 struct wiphy *wiphy = NULL;
1620 enum reg_request_treatment treatment;
1621
1622 if (WARN_ON(!reg_request->alpha2))
1623 return;
1624
1625 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1626 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1627
1628 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && !wiphy) {
1629 kfree(reg_request);
1630 return;
1631 }
1632
1633 switch (reg_request->initiator) {
1634 case NL80211_REGDOM_SET_BY_CORE:
1635 reg_process_hint_core(reg_request);
1636 return;
1637 case NL80211_REGDOM_SET_BY_USER:
1638 treatment = reg_process_hint_user(reg_request);
1639 if (treatment == REG_REQ_OK ||
1640 treatment == REG_REQ_ALREADY_SET)
1641 return;
1642 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1643 return;
1644 case NL80211_REGDOM_SET_BY_DRIVER:
1645 treatment = reg_process_hint_driver(wiphy, reg_request);
1646 break;
1647 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1648 treatment = reg_process_hint_country_ie(wiphy, reg_request);
1649 break;
1650 default:
1651 WARN(1, "invalid initiator %d\n", reg_request->initiator);
1652 return;
1653 }
1654
1655 /* This is required so that the orig_* parameters are saved */
1656 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
1657 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1658 wiphy_update_regulatory(wiphy, reg_request->initiator);
1659 }
1660
1661 /*
1662 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1663 * Regulatory hints come on a first come first serve basis and we
1664 * must process each one atomically.
1665 */
1666 static void reg_process_pending_hints(void)
1667 {
1668 struct regulatory_request *reg_request, *lr;
1669
1670 lr = get_last_request();
1671
1672 /* When last_request->processed becomes true this will be rescheduled */
1673 if (lr && !lr->processed) {
1674 REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n");
1675 return;
1676 }
1677
1678 spin_lock(&reg_requests_lock);
1679
1680 if (list_empty(&reg_requests_list)) {
1681 spin_unlock(&reg_requests_lock);
1682 return;
1683 }
1684
1685 reg_request = list_first_entry(&reg_requests_list,
1686 struct regulatory_request,
1687 list);
1688 list_del_init(&reg_request->list);
1689
1690 spin_unlock(&reg_requests_lock);
1691
1692 reg_process_hint(reg_request);
1693 }
1694
1695 /* Processes beacon hints -- this has nothing to do with country IEs */
1696 static void reg_process_pending_beacon_hints(void)
1697 {
1698 struct cfg80211_registered_device *rdev;
1699 struct reg_beacon *pending_beacon, *tmp;
1700
1701 /* This goes through the _pending_ beacon list */
1702 spin_lock_bh(&reg_pending_beacons_lock);
1703
1704 list_for_each_entry_safe(pending_beacon, tmp,
1705 &reg_pending_beacons, list) {
1706 list_del_init(&pending_beacon->list);
1707
1708 /* Applies the beacon hint to current wiphys */
1709 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1710 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1711
1712 /* Remembers the beacon hint for new wiphys or reg changes */
1713 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1714 }
1715
1716 spin_unlock_bh(&reg_pending_beacons_lock);
1717 }
1718
1719 static void reg_todo(struct work_struct *work)
1720 {
1721 rtnl_lock();
1722 reg_process_pending_hints();
1723 reg_process_pending_beacon_hints();
1724 rtnl_unlock();
1725 }
1726
1727 static void queue_regulatory_request(struct regulatory_request *request)
1728 {
1729 request->alpha2[0] = toupper(request->alpha2[0]);
1730 request->alpha2[1] = toupper(request->alpha2[1]);
1731
1732 spin_lock(&reg_requests_lock);
1733 list_add_tail(&request->list, &reg_requests_list);
1734 spin_unlock(&reg_requests_lock);
1735
1736 schedule_work(&reg_work);
1737 }
1738
1739 /*
1740 * Core regulatory hint -- happens during cfg80211_init()
1741 * and when we restore regulatory settings.
1742 */
1743 static int regulatory_hint_core(const char *alpha2)
1744 {
1745 struct regulatory_request *request;
1746
1747 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1748 if (!request)
1749 return -ENOMEM;
1750
1751 request->alpha2[0] = alpha2[0];
1752 request->alpha2[1] = alpha2[1];
1753 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1754
1755 queue_regulatory_request(request);
1756
1757 return 0;
1758 }
1759
1760 /* User hints */
1761 int regulatory_hint_user(const char *alpha2,
1762 enum nl80211_user_reg_hint_type user_reg_hint_type)
1763 {
1764 struct regulatory_request *request;
1765
1766 if (WARN_ON(!alpha2))
1767 return -EINVAL;
1768
1769 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1770 if (!request)
1771 return -ENOMEM;
1772
1773 request->wiphy_idx = WIPHY_IDX_INVALID;
1774 request->alpha2[0] = alpha2[0];
1775 request->alpha2[1] = alpha2[1];
1776 request->initiator = NL80211_REGDOM_SET_BY_USER;
1777 request->user_reg_hint_type = user_reg_hint_type;
1778
1779 queue_regulatory_request(request);
1780
1781 return 0;
1782 }
1783
1784 /* Driver hints */
1785 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1786 {
1787 struct regulatory_request *request;
1788
1789 if (WARN_ON(!alpha2 || !wiphy))
1790 return -EINVAL;
1791
1792 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1793 if (!request)
1794 return -ENOMEM;
1795
1796 request->wiphy_idx = get_wiphy_idx(wiphy);
1797
1798 request->alpha2[0] = alpha2[0];
1799 request->alpha2[1] = alpha2[1];
1800 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1801
1802 queue_regulatory_request(request);
1803
1804 return 0;
1805 }
1806 EXPORT_SYMBOL(regulatory_hint);
1807
1808 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
1809 const u8 *country_ie, u8 country_ie_len)
1810 {
1811 char alpha2[2];
1812 enum environment_cap env = ENVIRON_ANY;
1813 struct regulatory_request *request = NULL, *lr;
1814
1815 /* IE len must be evenly divisible by 2 */
1816 if (country_ie_len & 0x01)
1817 return;
1818
1819 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1820 return;
1821
1822 request = kzalloc(sizeof(*request), GFP_KERNEL);
1823 if (!request)
1824 return;
1825
1826 alpha2[0] = country_ie[0];
1827 alpha2[1] = country_ie[1];
1828
1829 if (country_ie[2] == 'I')
1830 env = ENVIRON_INDOOR;
1831 else if (country_ie[2] == 'O')
1832 env = ENVIRON_OUTDOOR;
1833
1834 rcu_read_lock();
1835 lr = get_last_request();
1836
1837 if (unlikely(!lr))
1838 goto out;
1839
1840 /*
1841 * We will run this only upon a successful connection on cfg80211.
1842 * We leave conflict resolution to the workqueue, where can hold
1843 * the RTNL.
1844 */
1845 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1846 lr->wiphy_idx != WIPHY_IDX_INVALID)
1847 goto out;
1848
1849 request->wiphy_idx = get_wiphy_idx(wiphy);
1850 request->alpha2[0] = alpha2[0];
1851 request->alpha2[1] = alpha2[1];
1852 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1853 request->country_ie_env = env;
1854
1855 queue_regulatory_request(request);
1856 request = NULL;
1857 out:
1858 kfree(request);
1859 rcu_read_unlock();
1860 }
1861
1862 static void restore_alpha2(char *alpha2, bool reset_user)
1863 {
1864 /* indicates there is no alpha2 to consider for restoration */
1865 alpha2[0] = '9';
1866 alpha2[1] = '7';
1867
1868 /* The user setting has precedence over the module parameter */
1869 if (is_user_regdom_saved()) {
1870 /* Unless we're asked to ignore it and reset it */
1871 if (reset_user) {
1872 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
1873 user_alpha2[0] = '9';
1874 user_alpha2[1] = '7';
1875
1876 /*
1877 * If we're ignoring user settings, we still need to
1878 * check the module parameter to ensure we put things
1879 * back as they were for a full restore.
1880 */
1881 if (!is_world_regdom(ieee80211_regdom)) {
1882 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1883 ieee80211_regdom[0], ieee80211_regdom[1]);
1884 alpha2[0] = ieee80211_regdom[0];
1885 alpha2[1] = ieee80211_regdom[1];
1886 }
1887 } else {
1888 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
1889 user_alpha2[0], user_alpha2[1]);
1890 alpha2[0] = user_alpha2[0];
1891 alpha2[1] = user_alpha2[1];
1892 }
1893 } else if (!is_world_regdom(ieee80211_regdom)) {
1894 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1895 ieee80211_regdom[0], ieee80211_regdom[1]);
1896 alpha2[0] = ieee80211_regdom[0];
1897 alpha2[1] = ieee80211_regdom[1];
1898 } else
1899 REG_DBG_PRINT("Restoring regulatory settings\n");
1900 }
1901
1902 static void restore_custom_reg_settings(struct wiphy *wiphy)
1903 {
1904 struct ieee80211_supported_band *sband;
1905 enum ieee80211_band band;
1906 struct ieee80211_channel *chan;
1907 int i;
1908
1909 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1910 sband = wiphy->bands[band];
1911 if (!sband)
1912 continue;
1913 for (i = 0; i < sband->n_channels; i++) {
1914 chan = &sband->channels[i];
1915 chan->flags = chan->orig_flags;
1916 chan->max_antenna_gain = chan->orig_mag;
1917 chan->max_power = chan->orig_mpwr;
1918 chan->beacon_found = false;
1919 }
1920 }
1921 }
1922
1923 /*
1924 * Restoring regulatory settings involves ingoring any
1925 * possibly stale country IE information and user regulatory
1926 * settings if so desired, this includes any beacon hints
1927 * learned as we could have traveled outside to another country
1928 * after disconnection. To restore regulatory settings we do
1929 * exactly what we did at bootup:
1930 *
1931 * - send a core regulatory hint
1932 * - send a user regulatory hint if applicable
1933 *
1934 * Device drivers that send a regulatory hint for a specific country
1935 * keep their own regulatory domain on wiphy->regd so that does does
1936 * not need to be remembered.
1937 */
1938 static void restore_regulatory_settings(bool reset_user)
1939 {
1940 char alpha2[2];
1941 char world_alpha2[2];
1942 struct reg_beacon *reg_beacon, *btmp;
1943 struct regulatory_request *reg_request, *tmp;
1944 LIST_HEAD(tmp_reg_req_list);
1945 struct cfg80211_registered_device *rdev;
1946
1947 ASSERT_RTNL();
1948
1949 reset_regdomains(true, &world_regdom);
1950 restore_alpha2(alpha2, reset_user);
1951
1952 /*
1953 * If there's any pending requests we simply
1954 * stash them to a temporary pending queue and
1955 * add then after we've restored regulatory
1956 * settings.
1957 */
1958 spin_lock(&reg_requests_lock);
1959 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
1960 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
1961 continue;
1962 list_move_tail(&reg_request->list, &tmp_reg_req_list);
1963 }
1964 spin_unlock(&reg_requests_lock);
1965
1966 /* Clear beacon hints */
1967 spin_lock_bh(&reg_pending_beacons_lock);
1968 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
1969 list_del(&reg_beacon->list);
1970 kfree(reg_beacon);
1971 }
1972 spin_unlock_bh(&reg_pending_beacons_lock);
1973
1974 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
1975 list_del(&reg_beacon->list);
1976 kfree(reg_beacon);
1977 }
1978
1979 /* First restore to the basic regulatory settings */
1980 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
1981 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
1982
1983 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1984 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1985 restore_custom_reg_settings(&rdev->wiphy);
1986 }
1987
1988 regulatory_hint_core(world_alpha2);
1989
1990 /*
1991 * This restores the ieee80211_regdom module parameter
1992 * preference or the last user requested regulatory
1993 * settings, user regulatory settings takes precedence.
1994 */
1995 if (is_an_alpha2(alpha2))
1996 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
1997
1998 spin_lock(&reg_requests_lock);
1999 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2000 spin_unlock(&reg_requests_lock);
2001
2002 REG_DBG_PRINT("Kicking the queue\n");
2003
2004 schedule_work(&reg_work);
2005 }
2006
2007 void regulatory_hint_disconnect(void)
2008 {
2009 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2010 restore_regulatory_settings(false);
2011 }
2012
2013 static bool freq_is_chan_12_13_14(u16 freq)
2014 {
2015 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2016 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2017 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2018 return true;
2019 return false;
2020 }
2021
2022 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2023 {
2024 struct reg_beacon *pending_beacon;
2025
2026 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2027 if (beacon_chan->center_freq ==
2028 pending_beacon->chan.center_freq)
2029 return true;
2030 return false;
2031 }
2032
2033 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2034 struct ieee80211_channel *beacon_chan,
2035 gfp_t gfp)
2036 {
2037 struct reg_beacon *reg_beacon;
2038 bool processing;
2039
2040 if (beacon_chan->beacon_found ||
2041 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2042 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2043 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2044 return 0;
2045
2046 spin_lock_bh(&reg_pending_beacons_lock);
2047 processing = pending_reg_beacon(beacon_chan);
2048 spin_unlock_bh(&reg_pending_beacons_lock);
2049
2050 if (processing)
2051 return 0;
2052
2053 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2054 if (!reg_beacon)
2055 return -ENOMEM;
2056
2057 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2058 beacon_chan->center_freq,
2059 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2060 wiphy_name(wiphy));
2061
2062 memcpy(&reg_beacon->chan, beacon_chan,
2063 sizeof(struct ieee80211_channel));
2064
2065 /*
2066 * Since we can be called from BH or and non-BH context
2067 * we must use spin_lock_bh()
2068 */
2069 spin_lock_bh(&reg_pending_beacons_lock);
2070 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2071 spin_unlock_bh(&reg_pending_beacons_lock);
2072
2073 schedule_work(&reg_work);
2074
2075 return 0;
2076 }
2077
2078 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2079 {
2080 unsigned int i;
2081 const struct ieee80211_reg_rule *reg_rule = NULL;
2082 const struct ieee80211_freq_range *freq_range = NULL;
2083 const struct ieee80211_power_rule *power_rule = NULL;
2084
2085 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2086
2087 for (i = 0; i < rd->n_reg_rules; i++) {
2088 reg_rule = &rd->reg_rules[i];
2089 freq_range = &reg_rule->freq_range;
2090 power_rule = &reg_rule->power_rule;
2091
2092 /*
2093 * There may not be documentation for max antenna gain
2094 * in certain regions
2095 */
2096 if (power_rule->max_antenna_gain)
2097 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2098 freq_range->start_freq_khz,
2099 freq_range->end_freq_khz,
2100 freq_range->max_bandwidth_khz,
2101 power_rule->max_antenna_gain,
2102 power_rule->max_eirp);
2103 else
2104 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2105 freq_range->start_freq_khz,
2106 freq_range->end_freq_khz,
2107 freq_range->max_bandwidth_khz,
2108 power_rule->max_eirp);
2109 }
2110 }
2111
2112 bool reg_supported_dfs_region(u8 dfs_region)
2113 {
2114 switch (dfs_region) {
2115 case NL80211_DFS_UNSET:
2116 case NL80211_DFS_FCC:
2117 case NL80211_DFS_ETSI:
2118 case NL80211_DFS_JP:
2119 return true;
2120 default:
2121 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2122 dfs_region);
2123 return false;
2124 }
2125 }
2126
2127 static void print_dfs_region(u8 dfs_region)
2128 {
2129 if (!dfs_region)
2130 return;
2131
2132 switch (dfs_region) {
2133 case NL80211_DFS_FCC:
2134 pr_info(" DFS Master region FCC");
2135 break;
2136 case NL80211_DFS_ETSI:
2137 pr_info(" DFS Master region ETSI");
2138 break;
2139 case NL80211_DFS_JP:
2140 pr_info(" DFS Master region JP");
2141 break;
2142 default:
2143 pr_info(" DFS Master region Unknown");
2144 break;
2145 }
2146 }
2147
2148 static void print_regdomain(const struct ieee80211_regdomain *rd)
2149 {
2150 struct regulatory_request *lr = get_last_request();
2151
2152 if (is_intersected_alpha2(rd->alpha2)) {
2153 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2154 struct cfg80211_registered_device *rdev;
2155 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2156 if (rdev) {
2157 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2158 rdev->country_ie_alpha2[0],
2159 rdev->country_ie_alpha2[1]);
2160 } else
2161 pr_info("Current regulatory domain intersected:\n");
2162 } else
2163 pr_info("Current regulatory domain intersected:\n");
2164 } else if (is_world_regdom(rd->alpha2)) {
2165 pr_info("World regulatory domain updated:\n");
2166 } else {
2167 if (is_unknown_alpha2(rd->alpha2))
2168 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2169 else {
2170 if (reg_request_cell_base(lr))
2171 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2172 rd->alpha2[0], rd->alpha2[1]);
2173 else
2174 pr_info("Regulatory domain changed to country: %c%c\n",
2175 rd->alpha2[0], rd->alpha2[1]);
2176 }
2177 }
2178
2179 print_dfs_region(rd->dfs_region);
2180 print_rd_rules(rd);
2181 }
2182
2183 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2184 {
2185 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2186 print_rd_rules(rd);
2187 }
2188
2189 /* Takes ownership of rd only if it doesn't fail */
2190 static int __set_regdom(const struct ieee80211_regdomain *rd)
2191 {
2192 const struct ieee80211_regdomain *regd;
2193 const struct ieee80211_regdomain *intersected_rd = NULL;
2194 struct wiphy *request_wiphy;
2195 struct regulatory_request *lr = get_last_request();
2196
2197 /* Some basic sanity checks first */
2198
2199 if (!reg_is_valid_request(rd->alpha2))
2200 return -EINVAL;
2201
2202 if (is_world_regdom(rd->alpha2)) {
2203 update_world_regdomain(rd);
2204 return 0;
2205 }
2206
2207 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2208 !is_unknown_alpha2(rd->alpha2))
2209 return -EINVAL;
2210
2211 /*
2212 * Lets only bother proceeding on the same alpha2 if the current
2213 * rd is non static (it means CRDA was present and was used last)
2214 * and the pending request came in from a country IE
2215 */
2216 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2217 /*
2218 * If someone else asked us to change the rd lets only bother
2219 * checking if the alpha2 changes if CRDA was already called
2220 */
2221 if (!regdom_changes(rd->alpha2))
2222 return -EALREADY;
2223 }
2224
2225 /*
2226 * Now lets set the regulatory domain, update all driver channels
2227 * and finally inform them of what we have done, in case they want
2228 * to review or adjust their own settings based on their own
2229 * internal EEPROM data
2230 */
2231
2232 if (!is_valid_rd(rd)) {
2233 pr_err("Invalid regulatory domain detected:\n");
2234 print_regdomain_info(rd);
2235 return -EINVAL;
2236 }
2237
2238 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2239 if (!request_wiphy &&
2240 (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2241 lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2242 schedule_delayed_work(&reg_timeout, 0);
2243 return -ENODEV;
2244 }
2245
2246 if (!lr->intersect) {
2247 if (lr->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2248 reset_regdomains(false, rd);
2249 return 0;
2250 }
2251
2252 /*
2253 * For a driver hint, lets copy the regulatory domain the
2254 * driver wanted to the wiphy to deal with conflicts
2255 */
2256
2257 /*
2258 * Userspace could have sent two replies with only
2259 * one kernel request.
2260 */
2261 if (request_wiphy->regd)
2262 return -EALREADY;
2263
2264 regd = reg_copy_regd(rd);
2265 if (IS_ERR(regd))
2266 return PTR_ERR(regd);
2267
2268 rcu_assign_pointer(request_wiphy->regd, regd);
2269 reset_regdomains(false, rd);
2270 return 0;
2271 }
2272
2273 /* Intersection requires a bit more work */
2274
2275 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2276 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2277 if (!intersected_rd)
2278 return -EINVAL;
2279
2280 /*
2281 * We can trash what CRDA provided now.
2282 * However if a driver requested this specific regulatory
2283 * domain we keep it for its private use
2284 */
2285 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER) {
2286 const struct ieee80211_regdomain *tmp;
2287
2288 tmp = get_wiphy_regdom(request_wiphy);
2289 rcu_assign_pointer(request_wiphy->regd, rd);
2290 rcu_free_regdom(tmp);
2291 } else {
2292 kfree(rd);
2293 }
2294
2295 rd = NULL;
2296
2297 reset_regdomains(false, intersected_rd);
2298
2299 return 0;
2300 }
2301
2302 return -EINVAL;
2303 }
2304
2305
2306 /*
2307 * Use this call to set the current regulatory domain. Conflicts with
2308 * multiple drivers can be ironed out later. Caller must've already
2309 * kmalloc'd the rd structure.
2310 */
2311 int set_regdom(const struct ieee80211_regdomain *rd)
2312 {
2313 struct regulatory_request *lr;
2314 int r;
2315
2316 lr = get_last_request();
2317
2318 /* Note that this doesn't update the wiphys, this is done below */
2319 r = __set_regdom(rd);
2320 if (r) {
2321 if (r == -EALREADY)
2322 reg_set_request_processed();
2323
2324 kfree(rd);
2325 return r;
2326 }
2327
2328 /* This would make this whole thing pointless */
2329 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2330 return -EINVAL;
2331
2332 /* update all wiphys now with the new established regulatory domain */
2333 update_all_wiphy_regulatory(lr->initiator);
2334
2335 print_regdomain(get_cfg80211_regdom());
2336
2337 nl80211_send_reg_change_event(lr);
2338
2339 reg_set_request_processed();
2340
2341 return 0;
2342 }
2343
2344 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2345 {
2346 struct regulatory_request *lr;
2347 u8 alpha2[2];
2348 bool add = false;
2349
2350 rcu_read_lock();
2351 lr = get_last_request();
2352 if (lr && !lr->processed) {
2353 memcpy(alpha2, lr->alpha2, 2);
2354 add = true;
2355 }
2356 rcu_read_unlock();
2357
2358 if (add)
2359 return add_uevent_var(env, "COUNTRY=%c%c",
2360 alpha2[0], alpha2[1]);
2361 return 0;
2362 }
2363
2364 void wiphy_regulatory_register(struct wiphy *wiphy)
2365 {
2366 struct regulatory_request *lr;
2367
2368 if (!reg_dev_ignore_cell_hint(wiphy))
2369 reg_num_devs_support_basehint++;
2370
2371 lr = get_last_request();
2372 wiphy_update_regulatory(wiphy, lr->initiator);
2373 }
2374
2375 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2376 {
2377 struct wiphy *request_wiphy = NULL;
2378 struct regulatory_request *lr;
2379
2380 lr = get_last_request();
2381
2382 if (!reg_dev_ignore_cell_hint(wiphy))
2383 reg_num_devs_support_basehint--;
2384
2385 rcu_free_regdom(get_wiphy_regdom(wiphy));
2386 rcu_assign_pointer(wiphy->regd, NULL);
2387
2388 if (lr)
2389 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2390
2391 if (!request_wiphy || request_wiphy != wiphy)
2392 return;
2393
2394 lr->wiphy_idx = WIPHY_IDX_INVALID;
2395 lr->country_ie_env = ENVIRON_ANY;
2396 }
2397
2398 static void reg_timeout_work(struct work_struct *work)
2399 {
2400 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2401 rtnl_lock();
2402 restore_regulatory_settings(true);
2403 rtnl_unlock();
2404 }
2405
2406 int __init regulatory_init(void)
2407 {
2408 int err = 0;
2409
2410 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2411 if (IS_ERR(reg_pdev))
2412 return PTR_ERR(reg_pdev);
2413
2414 reg_pdev->dev.type = &reg_device_type;
2415
2416 spin_lock_init(&reg_requests_lock);
2417 spin_lock_init(&reg_pending_beacons_lock);
2418
2419 reg_regdb_size_check();
2420
2421 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2422
2423 user_alpha2[0] = '9';
2424 user_alpha2[1] = '7';
2425
2426 /* We always try to get an update for the static regdomain */
2427 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2428 if (err) {
2429 if (err == -ENOMEM)
2430 return err;
2431 /*
2432 * N.B. kobject_uevent_env() can fail mainly for when we're out
2433 * memory which is handled and propagated appropriately above
2434 * but it can also fail during a netlink_broadcast() or during
2435 * early boot for call_usermodehelper(). For now treat these
2436 * errors as non-fatal.
2437 */
2438 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2439 }
2440
2441 /*
2442 * Finally, if the user set the module parameter treat it
2443 * as a user hint.
2444 */
2445 if (!is_world_regdom(ieee80211_regdom))
2446 regulatory_hint_user(ieee80211_regdom,
2447 NL80211_USER_REG_HINT_USER);
2448
2449 return 0;
2450 }
2451
2452 void regulatory_exit(void)
2453 {
2454 struct regulatory_request *reg_request, *tmp;
2455 struct reg_beacon *reg_beacon, *btmp;
2456
2457 cancel_work_sync(&reg_work);
2458 cancel_delayed_work_sync(&reg_timeout);
2459
2460 /* Lock to suppress warnings */
2461 rtnl_lock();
2462 reset_regdomains(true, NULL);
2463 rtnl_unlock();
2464
2465 dev_set_uevent_suppress(&reg_pdev->dev, true);
2466
2467 platform_device_unregister(reg_pdev);
2468
2469 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2470 list_del(&reg_beacon->list);
2471 kfree(reg_beacon);
2472 }
2473
2474 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2475 list_del(&reg_beacon->list);
2476 kfree(reg_beacon);
2477 }
2478
2479 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2480 list_del(&reg_request->list);
2481 kfree(reg_request);
2482 }
2483 }