]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/wireless/reg.c
cfg80211: return private regdom for self-managed devices
[mirror_ubuntu-bionic-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 *
8 * Permission to use, copy, modify, and/or distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21
22 /**
23 * DOC: Wireless regulatory infrastructure
24 *
25 * The usual implementation is for a driver to read a device EEPROM to
26 * determine which regulatory domain it should be operating under, then
27 * looking up the allowable channels in a driver-local table and finally
28 * registering those channels in the wiphy structure.
29 *
30 * Another set of compliance enforcement is for drivers to use their
31 * own compliance limits which can be stored on the EEPROM. The host
32 * driver or firmware may ensure these are used.
33 *
34 * In addition to all this we provide an extra layer of regulatory
35 * conformance. For drivers which do not have any regulatory
36 * information CRDA provides the complete regulatory solution.
37 * For others it provides a community effort on further restrictions
38 * to enhance compliance.
39 *
40 * Note: When number of rules --> infinity we will not be able to
41 * index on alpha2 any more, instead we'll probably have to
42 * rely on some SHA1 checksum of the regdomain for example.
43 *
44 */
45
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "rdev-ops.h"
60 #include "regdb.h"
61 #include "nl80211.h"
62
63 #ifdef CONFIG_CFG80211_REG_DEBUG
64 #define REG_DBG_PRINT(format, args...) \
65 printk(KERN_DEBUG pr_fmt(format), ##args)
66 #else
67 #define REG_DBG_PRINT(args...)
68 #endif
69
70 /*
71 * Grace period we give before making sure all current interfaces reside on
72 * channels allowed by the current regulatory domain.
73 */
74 #define REG_ENFORCE_GRACE_MS 60000
75
76 /**
77 * enum reg_request_treatment - regulatory request treatment
78 *
79 * @REG_REQ_OK: continue processing the regulatory request
80 * @REG_REQ_IGNORE: ignore the regulatory request
81 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
82 * be intersected with the current one.
83 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
84 * regulatory settings, and no further processing is required.
85 * @REG_REQ_USER_HINT_HANDLED: a non alpha2 user hint was handled and no
86 * further processing is required, i.e., not need to update last_request
87 * etc. This should be used for user hints that do not provide an alpha2
88 * but some other type of regulatory hint, i.e., indoor operation.
89 */
90 enum reg_request_treatment {
91 REG_REQ_OK,
92 REG_REQ_IGNORE,
93 REG_REQ_INTERSECT,
94 REG_REQ_ALREADY_SET,
95 REG_REQ_USER_HINT_HANDLED,
96 };
97
98 static struct regulatory_request core_request_world = {
99 .initiator = NL80211_REGDOM_SET_BY_CORE,
100 .alpha2[0] = '0',
101 .alpha2[1] = '0',
102 .intersect = false,
103 .processed = true,
104 .country_ie_env = ENVIRON_ANY,
105 };
106
107 /*
108 * Receipt of information from last regulatory request,
109 * protected by RTNL (and can be accessed with RCU protection)
110 */
111 static struct regulatory_request __rcu *last_request =
112 (void __force __rcu *)&core_request_world;
113
114 /* To trigger userspace events */
115 static struct platform_device *reg_pdev;
116
117 /*
118 * Central wireless core regulatory domains, we only need two,
119 * the current one and a world regulatory domain in case we have no
120 * information to give us an alpha2.
121 * (protected by RTNL, can be read under RCU)
122 */
123 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
124
125 /*
126 * Number of devices that registered to the core
127 * that support cellular base station regulatory hints
128 * (protected by RTNL)
129 */
130 static int reg_num_devs_support_basehint;
131
132 /*
133 * State variable indicating if the platform on which the devices
134 * are attached is operating in an indoor environment. The state variable
135 * is relevant for all registered devices.
136 * (protected by RTNL)
137 */
138 static bool reg_is_indoor;
139
140 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
141 {
142 return rtnl_dereference(cfg80211_regdomain);
143 }
144
145 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
146 {
147 return rtnl_dereference(wiphy->regd);
148 }
149
150 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
151 {
152 switch (dfs_region) {
153 case NL80211_DFS_UNSET:
154 return "unset";
155 case NL80211_DFS_FCC:
156 return "FCC";
157 case NL80211_DFS_ETSI:
158 return "ETSI";
159 case NL80211_DFS_JP:
160 return "JP";
161 }
162 return "Unknown";
163 }
164
165 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
166 {
167 const struct ieee80211_regdomain *regd = NULL;
168 const struct ieee80211_regdomain *wiphy_regd = NULL;
169
170 regd = get_cfg80211_regdom();
171 if (!wiphy)
172 goto out;
173
174 wiphy_regd = get_wiphy_regdom(wiphy);
175 if (!wiphy_regd)
176 goto out;
177
178 if (wiphy_regd->dfs_region == regd->dfs_region)
179 goto out;
180
181 REG_DBG_PRINT("%s: device specific dfs_region "
182 "(%s) disagrees with cfg80211's "
183 "central dfs_region (%s)\n",
184 dev_name(&wiphy->dev),
185 reg_dfs_region_str(wiphy_regd->dfs_region),
186 reg_dfs_region_str(regd->dfs_region));
187
188 out:
189 return regd->dfs_region;
190 }
191
192 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
193 {
194 if (!r)
195 return;
196 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
197 }
198
199 static struct regulatory_request *get_last_request(void)
200 {
201 return rcu_dereference_rtnl(last_request);
202 }
203
204 /* Used to queue up regulatory hints */
205 static LIST_HEAD(reg_requests_list);
206 static spinlock_t reg_requests_lock;
207
208 /* Used to queue up beacon hints for review */
209 static LIST_HEAD(reg_pending_beacons);
210 static spinlock_t reg_pending_beacons_lock;
211
212 /* Used to keep track of processed beacon hints */
213 static LIST_HEAD(reg_beacon_list);
214
215 struct reg_beacon {
216 struct list_head list;
217 struct ieee80211_channel chan;
218 };
219
220 static void reg_check_chans_work(struct work_struct *work);
221 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
222
223 static void reg_todo(struct work_struct *work);
224 static DECLARE_WORK(reg_work, reg_todo);
225
226 static void reg_timeout_work(struct work_struct *work);
227 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
228
229 /* We keep a static world regulatory domain in case of the absence of CRDA */
230 static const struct ieee80211_regdomain world_regdom = {
231 .n_reg_rules = 6,
232 .alpha2 = "00",
233 .reg_rules = {
234 /* IEEE 802.11b/g, channels 1..11 */
235 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
236 /* IEEE 802.11b/g, channels 12..13. */
237 REG_RULE(2467-10, 2472+10, 40, 6, 20,
238 NL80211_RRF_NO_IR),
239 /* IEEE 802.11 channel 14 - Only JP enables
240 * this and for 802.11b only */
241 REG_RULE(2484-10, 2484+10, 20, 6, 20,
242 NL80211_RRF_NO_IR |
243 NL80211_RRF_NO_OFDM),
244 /* IEEE 802.11a, channel 36..48 */
245 REG_RULE(5180-10, 5240+10, 160, 6, 20,
246 NL80211_RRF_NO_IR),
247
248 /* IEEE 802.11a, channel 52..64 - DFS required */
249 REG_RULE(5260-10, 5320+10, 160, 6, 20,
250 NL80211_RRF_NO_IR |
251 NL80211_RRF_DFS),
252
253 /* IEEE 802.11a, channel 100..144 - DFS required */
254 REG_RULE(5500-10, 5720+10, 160, 6, 20,
255 NL80211_RRF_NO_IR |
256 NL80211_RRF_DFS),
257
258 /* IEEE 802.11a, channel 149..165 */
259 REG_RULE(5745-10, 5825+10, 80, 6, 20,
260 NL80211_RRF_NO_IR),
261
262 /* IEEE 802.11ad (60gHz), channels 1..3 */
263 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
264 }
265 };
266
267 /* protected by RTNL */
268 static const struct ieee80211_regdomain *cfg80211_world_regdom =
269 &world_regdom;
270
271 static char *ieee80211_regdom = "00";
272 static char user_alpha2[2];
273
274 module_param(ieee80211_regdom, charp, 0444);
275 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
276
277 static void reg_free_request(struct regulatory_request *request)
278 {
279 if (request != get_last_request())
280 kfree(request);
281 }
282
283 static void reg_free_last_request(void)
284 {
285 struct regulatory_request *lr = get_last_request();
286
287 if (lr != &core_request_world && lr)
288 kfree_rcu(lr, rcu_head);
289 }
290
291 static void reg_update_last_request(struct regulatory_request *request)
292 {
293 struct regulatory_request *lr;
294
295 lr = get_last_request();
296 if (lr == request)
297 return;
298
299 reg_free_last_request();
300 rcu_assign_pointer(last_request, request);
301 }
302
303 static void reset_regdomains(bool full_reset,
304 const struct ieee80211_regdomain *new_regdom)
305 {
306 const struct ieee80211_regdomain *r;
307
308 ASSERT_RTNL();
309
310 r = get_cfg80211_regdom();
311
312 /* avoid freeing static information or freeing something twice */
313 if (r == cfg80211_world_regdom)
314 r = NULL;
315 if (cfg80211_world_regdom == &world_regdom)
316 cfg80211_world_regdom = NULL;
317 if (r == &world_regdom)
318 r = NULL;
319
320 rcu_free_regdom(r);
321 rcu_free_regdom(cfg80211_world_regdom);
322
323 cfg80211_world_regdom = &world_regdom;
324 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
325
326 if (!full_reset)
327 return;
328
329 reg_update_last_request(&core_request_world);
330 }
331
332 /*
333 * Dynamic world regulatory domain requested by the wireless
334 * core upon initialization
335 */
336 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
337 {
338 struct regulatory_request *lr;
339
340 lr = get_last_request();
341
342 WARN_ON(!lr);
343
344 reset_regdomains(false, rd);
345
346 cfg80211_world_regdom = rd;
347 }
348
349 bool is_world_regdom(const char *alpha2)
350 {
351 if (!alpha2)
352 return false;
353 return alpha2[0] == '0' && alpha2[1] == '0';
354 }
355
356 static bool is_alpha2_set(const char *alpha2)
357 {
358 if (!alpha2)
359 return false;
360 return alpha2[0] && alpha2[1];
361 }
362
363 static bool is_unknown_alpha2(const char *alpha2)
364 {
365 if (!alpha2)
366 return false;
367 /*
368 * Special case where regulatory domain was built by driver
369 * but a specific alpha2 cannot be determined
370 */
371 return alpha2[0] == '9' && alpha2[1] == '9';
372 }
373
374 static bool is_intersected_alpha2(const char *alpha2)
375 {
376 if (!alpha2)
377 return false;
378 /*
379 * Special case where regulatory domain is the
380 * result of an intersection between two regulatory domain
381 * structures
382 */
383 return alpha2[0] == '9' && alpha2[1] == '8';
384 }
385
386 static bool is_an_alpha2(const char *alpha2)
387 {
388 if (!alpha2)
389 return false;
390 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
391 }
392
393 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
394 {
395 if (!alpha2_x || !alpha2_y)
396 return false;
397 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
398 }
399
400 static bool regdom_changes(const char *alpha2)
401 {
402 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
403
404 if (!r)
405 return true;
406 return !alpha2_equal(r->alpha2, alpha2);
407 }
408
409 /*
410 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
411 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
412 * has ever been issued.
413 */
414 static bool is_user_regdom_saved(void)
415 {
416 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
417 return false;
418
419 /* This would indicate a mistake on the design */
420 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
421 "Unexpected user alpha2: %c%c\n",
422 user_alpha2[0], user_alpha2[1]))
423 return false;
424
425 return true;
426 }
427
428 static const struct ieee80211_regdomain *
429 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
430 {
431 struct ieee80211_regdomain *regd;
432 int size_of_regd;
433 unsigned int i;
434
435 size_of_regd =
436 sizeof(struct ieee80211_regdomain) +
437 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
438
439 regd = kzalloc(size_of_regd, GFP_KERNEL);
440 if (!regd)
441 return ERR_PTR(-ENOMEM);
442
443 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
444
445 for (i = 0; i < src_regd->n_reg_rules; i++)
446 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
447 sizeof(struct ieee80211_reg_rule));
448
449 return regd;
450 }
451
452 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
453 struct reg_regdb_search_request {
454 char alpha2[2];
455 struct list_head list;
456 };
457
458 static LIST_HEAD(reg_regdb_search_list);
459 static DEFINE_MUTEX(reg_regdb_search_mutex);
460
461 static void reg_regdb_search(struct work_struct *work)
462 {
463 struct reg_regdb_search_request *request;
464 const struct ieee80211_regdomain *curdom, *regdom = NULL;
465 int i;
466
467 rtnl_lock();
468
469 mutex_lock(&reg_regdb_search_mutex);
470 while (!list_empty(&reg_regdb_search_list)) {
471 request = list_first_entry(&reg_regdb_search_list,
472 struct reg_regdb_search_request,
473 list);
474 list_del(&request->list);
475
476 for (i = 0; i < reg_regdb_size; i++) {
477 curdom = reg_regdb[i];
478
479 if (alpha2_equal(request->alpha2, curdom->alpha2)) {
480 regdom = reg_copy_regd(curdom);
481 break;
482 }
483 }
484
485 kfree(request);
486 }
487 mutex_unlock(&reg_regdb_search_mutex);
488
489 if (!IS_ERR_OR_NULL(regdom))
490 set_regdom(regdom);
491
492 rtnl_unlock();
493 }
494
495 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
496
497 static void reg_regdb_query(const char *alpha2)
498 {
499 struct reg_regdb_search_request *request;
500
501 if (!alpha2)
502 return;
503
504 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
505 if (!request)
506 return;
507
508 memcpy(request->alpha2, alpha2, 2);
509
510 mutex_lock(&reg_regdb_search_mutex);
511 list_add_tail(&request->list, &reg_regdb_search_list);
512 mutex_unlock(&reg_regdb_search_mutex);
513
514 schedule_work(&reg_regdb_work);
515 }
516
517 /* Feel free to add any other sanity checks here */
518 static void reg_regdb_size_check(void)
519 {
520 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
521 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
522 }
523 #else
524 static inline void reg_regdb_size_check(void) {}
525 static inline void reg_regdb_query(const char *alpha2) {}
526 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
527
528 /*
529 * This lets us keep regulatory code which is updated on a regulatory
530 * basis in userspace.
531 */
532 static int call_crda(const char *alpha2)
533 {
534 char country[12];
535 char *env[] = { country, NULL };
536
537 snprintf(country, sizeof(country), "COUNTRY=%c%c",
538 alpha2[0], alpha2[1]);
539
540 if (!is_world_regdom((char *) alpha2))
541 pr_info("Calling CRDA for country: %c%c\n",
542 alpha2[0], alpha2[1]);
543 else
544 pr_info("Calling CRDA to update world regulatory domain\n");
545
546 /* query internal regulatory database (if it exists) */
547 reg_regdb_query(alpha2);
548
549 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
550 }
551
552 static enum reg_request_treatment
553 reg_call_crda(struct regulatory_request *request)
554 {
555 if (call_crda(request->alpha2))
556 return REG_REQ_IGNORE;
557 return REG_REQ_OK;
558 }
559
560 bool reg_is_valid_request(const char *alpha2)
561 {
562 struct regulatory_request *lr = get_last_request();
563
564 if (!lr || lr->processed)
565 return false;
566
567 return alpha2_equal(lr->alpha2, alpha2);
568 }
569
570 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
571 {
572 struct regulatory_request *lr = get_last_request();
573
574 /*
575 * Follow the driver's regulatory domain, if present, unless a country
576 * IE has been processed or a user wants to help complaince further
577 */
578 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
579 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
580 wiphy->regd)
581 return get_wiphy_regdom(wiphy);
582
583 return get_cfg80211_regdom();
584 }
585
586 static unsigned int
587 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
588 const struct ieee80211_reg_rule *rule)
589 {
590 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
591 const struct ieee80211_freq_range *freq_range_tmp;
592 const struct ieee80211_reg_rule *tmp;
593 u32 start_freq, end_freq, idx, no;
594
595 for (idx = 0; idx < rd->n_reg_rules; idx++)
596 if (rule == &rd->reg_rules[idx])
597 break;
598
599 if (idx == rd->n_reg_rules)
600 return 0;
601
602 /* get start_freq */
603 no = idx;
604
605 while (no) {
606 tmp = &rd->reg_rules[--no];
607 freq_range_tmp = &tmp->freq_range;
608
609 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
610 break;
611
612 freq_range = freq_range_tmp;
613 }
614
615 start_freq = freq_range->start_freq_khz;
616
617 /* get end_freq */
618 freq_range = &rule->freq_range;
619 no = idx;
620
621 while (no < rd->n_reg_rules - 1) {
622 tmp = &rd->reg_rules[++no];
623 freq_range_tmp = &tmp->freq_range;
624
625 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
626 break;
627
628 freq_range = freq_range_tmp;
629 }
630
631 end_freq = freq_range->end_freq_khz;
632
633 return end_freq - start_freq;
634 }
635
636 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
637 const struct ieee80211_reg_rule *rule)
638 {
639 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
640
641 if (rule->flags & NL80211_RRF_NO_160MHZ)
642 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
643 if (rule->flags & NL80211_RRF_NO_80MHZ)
644 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
645
646 /*
647 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
648 * are not allowed.
649 */
650 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
651 rule->flags & NL80211_RRF_NO_HT40PLUS)
652 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
653
654 return bw;
655 }
656
657 /* Sanity check on a regulatory rule */
658 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
659 {
660 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
661 u32 freq_diff;
662
663 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
664 return false;
665
666 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
667 return false;
668
669 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
670
671 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
672 freq_range->max_bandwidth_khz > freq_diff)
673 return false;
674
675 return true;
676 }
677
678 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
679 {
680 const struct ieee80211_reg_rule *reg_rule = NULL;
681 unsigned int i;
682
683 if (!rd->n_reg_rules)
684 return false;
685
686 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
687 return false;
688
689 for (i = 0; i < rd->n_reg_rules; i++) {
690 reg_rule = &rd->reg_rules[i];
691 if (!is_valid_reg_rule(reg_rule))
692 return false;
693 }
694
695 return true;
696 }
697
698 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
699 u32 center_freq_khz, u32 bw_khz)
700 {
701 u32 start_freq_khz, end_freq_khz;
702
703 start_freq_khz = center_freq_khz - (bw_khz/2);
704 end_freq_khz = center_freq_khz + (bw_khz/2);
705
706 if (start_freq_khz >= freq_range->start_freq_khz &&
707 end_freq_khz <= freq_range->end_freq_khz)
708 return true;
709
710 return false;
711 }
712
713 /**
714 * freq_in_rule_band - tells us if a frequency is in a frequency band
715 * @freq_range: frequency rule we want to query
716 * @freq_khz: frequency we are inquiring about
717 *
718 * This lets us know if a specific frequency rule is or is not relevant to
719 * a specific frequency's band. Bands are device specific and artificial
720 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
721 * however it is safe for now to assume that a frequency rule should not be
722 * part of a frequency's band if the start freq or end freq are off by more
723 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
724 * 60 GHz band.
725 * This resolution can be lowered and should be considered as we add
726 * regulatory rule support for other "bands".
727 **/
728 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
729 u32 freq_khz)
730 {
731 #define ONE_GHZ_IN_KHZ 1000000
732 /*
733 * From 802.11ad: directional multi-gigabit (DMG):
734 * Pertaining to operation in a frequency band containing a channel
735 * with the Channel starting frequency above 45 GHz.
736 */
737 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
738 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
739 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
740 return true;
741 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
742 return true;
743 return false;
744 #undef ONE_GHZ_IN_KHZ
745 }
746
747 /*
748 * Later on we can perhaps use the more restrictive DFS
749 * region but we don't have information for that yet so
750 * for now simply disallow conflicts.
751 */
752 static enum nl80211_dfs_regions
753 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
754 const enum nl80211_dfs_regions dfs_region2)
755 {
756 if (dfs_region1 != dfs_region2)
757 return NL80211_DFS_UNSET;
758 return dfs_region1;
759 }
760
761 /*
762 * Helper for regdom_intersect(), this does the real
763 * mathematical intersection fun
764 */
765 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
766 const struct ieee80211_regdomain *rd2,
767 const struct ieee80211_reg_rule *rule1,
768 const struct ieee80211_reg_rule *rule2,
769 struct ieee80211_reg_rule *intersected_rule)
770 {
771 const struct ieee80211_freq_range *freq_range1, *freq_range2;
772 struct ieee80211_freq_range *freq_range;
773 const struct ieee80211_power_rule *power_rule1, *power_rule2;
774 struct ieee80211_power_rule *power_rule;
775 u32 freq_diff, max_bandwidth1, max_bandwidth2;
776
777 freq_range1 = &rule1->freq_range;
778 freq_range2 = &rule2->freq_range;
779 freq_range = &intersected_rule->freq_range;
780
781 power_rule1 = &rule1->power_rule;
782 power_rule2 = &rule2->power_rule;
783 power_rule = &intersected_rule->power_rule;
784
785 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
786 freq_range2->start_freq_khz);
787 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
788 freq_range2->end_freq_khz);
789
790 max_bandwidth1 = freq_range1->max_bandwidth_khz;
791 max_bandwidth2 = freq_range2->max_bandwidth_khz;
792
793 if (rule1->flags & NL80211_RRF_AUTO_BW)
794 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
795 if (rule2->flags & NL80211_RRF_AUTO_BW)
796 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
797
798 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
799
800 intersected_rule->flags = rule1->flags | rule2->flags;
801
802 /*
803 * In case NL80211_RRF_AUTO_BW requested for both rules
804 * set AUTO_BW in intersected rule also. Next we will
805 * calculate BW correctly in handle_channel function.
806 * In other case remove AUTO_BW flag while we calculate
807 * maximum bandwidth correctly and auto calculation is
808 * not required.
809 */
810 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
811 (rule2->flags & NL80211_RRF_AUTO_BW))
812 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
813 else
814 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
815
816 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
817 if (freq_range->max_bandwidth_khz > freq_diff)
818 freq_range->max_bandwidth_khz = freq_diff;
819
820 power_rule->max_eirp = min(power_rule1->max_eirp,
821 power_rule2->max_eirp);
822 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
823 power_rule2->max_antenna_gain);
824
825 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
826 rule2->dfs_cac_ms);
827
828 if (!is_valid_reg_rule(intersected_rule))
829 return -EINVAL;
830
831 return 0;
832 }
833
834 /* check whether old rule contains new rule */
835 static bool rule_contains(struct ieee80211_reg_rule *r1,
836 struct ieee80211_reg_rule *r2)
837 {
838 /* for simplicity, currently consider only same flags */
839 if (r1->flags != r2->flags)
840 return false;
841
842 /* verify r1 is more restrictive */
843 if ((r1->power_rule.max_antenna_gain >
844 r2->power_rule.max_antenna_gain) ||
845 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
846 return false;
847
848 /* make sure r2's range is contained within r1 */
849 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
850 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
851 return false;
852
853 /* and finally verify that r1.max_bw >= r2.max_bw */
854 if (r1->freq_range.max_bandwidth_khz <
855 r2->freq_range.max_bandwidth_khz)
856 return false;
857
858 return true;
859 }
860
861 /* add or extend current rules. do nothing if rule is already contained */
862 static void add_rule(struct ieee80211_reg_rule *rule,
863 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
864 {
865 struct ieee80211_reg_rule *tmp_rule;
866 int i;
867
868 for (i = 0; i < *n_rules; i++) {
869 tmp_rule = &reg_rules[i];
870 /* rule is already contained - do nothing */
871 if (rule_contains(tmp_rule, rule))
872 return;
873
874 /* extend rule if possible */
875 if (rule_contains(rule, tmp_rule)) {
876 memcpy(tmp_rule, rule, sizeof(*rule));
877 return;
878 }
879 }
880
881 memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
882 (*n_rules)++;
883 }
884
885 /**
886 * regdom_intersect - do the intersection between two regulatory domains
887 * @rd1: first regulatory domain
888 * @rd2: second regulatory domain
889 *
890 * Use this function to get the intersection between two regulatory domains.
891 * Once completed we will mark the alpha2 for the rd as intersected, "98",
892 * as no one single alpha2 can represent this regulatory domain.
893 *
894 * Returns a pointer to the regulatory domain structure which will hold the
895 * resulting intersection of rules between rd1 and rd2. We will
896 * kzalloc() this structure for you.
897 */
898 static struct ieee80211_regdomain *
899 regdom_intersect(const struct ieee80211_regdomain *rd1,
900 const struct ieee80211_regdomain *rd2)
901 {
902 int r, size_of_regd;
903 unsigned int x, y;
904 unsigned int num_rules = 0;
905 const struct ieee80211_reg_rule *rule1, *rule2;
906 struct ieee80211_reg_rule intersected_rule;
907 struct ieee80211_regdomain *rd;
908
909 if (!rd1 || !rd2)
910 return NULL;
911
912 /*
913 * First we get a count of the rules we'll need, then we actually
914 * build them. This is to so we can malloc() and free() a
915 * regdomain once. The reason we use reg_rules_intersect() here
916 * is it will return -EINVAL if the rule computed makes no sense.
917 * All rules that do check out OK are valid.
918 */
919
920 for (x = 0; x < rd1->n_reg_rules; x++) {
921 rule1 = &rd1->reg_rules[x];
922 for (y = 0; y < rd2->n_reg_rules; y++) {
923 rule2 = &rd2->reg_rules[y];
924 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
925 &intersected_rule))
926 num_rules++;
927 }
928 }
929
930 if (!num_rules)
931 return NULL;
932
933 size_of_regd = sizeof(struct ieee80211_regdomain) +
934 num_rules * sizeof(struct ieee80211_reg_rule);
935
936 rd = kzalloc(size_of_regd, GFP_KERNEL);
937 if (!rd)
938 return NULL;
939
940 for (x = 0; x < rd1->n_reg_rules; x++) {
941 rule1 = &rd1->reg_rules[x];
942 for (y = 0; y < rd2->n_reg_rules; y++) {
943 rule2 = &rd2->reg_rules[y];
944 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
945 &intersected_rule);
946 /*
947 * No need to memset here the intersected rule here as
948 * we're not using the stack anymore
949 */
950 if (r)
951 continue;
952
953 add_rule(&intersected_rule, rd->reg_rules,
954 &rd->n_reg_rules);
955 }
956 }
957
958 rd->alpha2[0] = '9';
959 rd->alpha2[1] = '8';
960 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
961 rd2->dfs_region);
962
963 return rd;
964 }
965
966 /*
967 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
968 * want to just have the channel structure use these
969 */
970 static u32 map_regdom_flags(u32 rd_flags)
971 {
972 u32 channel_flags = 0;
973 if (rd_flags & NL80211_RRF_NO_IR_ALL)
974 channel_flags |= IEEE80211_CHAN_NO_IR;
975 if (rd_flags & NL80211_RRF_DFS)
976 channel_flags |= IEEE80211_CHAN_RADAR;
977 if (rd_flags & NL80211_RRF_NO_OFDM)
978 channel_flags |= IEEE80211_CHAN_NO_OFDM;
979 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
980 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
981 if (rd_flags & NL80211_RRF_GO_CONCURRENT)
982 channel_flags |= IEEE80211_CHAN_GO_CONCURRENT;
983 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
984 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
985 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
986 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
987 if (rd_flags & NL80211_RRF_NO_80MHZ)
988 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
989 if (rd_flags & NL80211_RRF_NO_160MHZ)
990 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
991 return channel_flags;
992 }
993
994 static const struct ieee80211_reg_rule *
995 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
996 const struct ieee80211_regdomain *regd)
997 {
998 int i;
999 bool band_rule_found = false;
1000 bool bw_fits = false;
1001
1002 if (!regd)
1003 return ERR_PTR(-EINVAL);
1004
1005 for (i = 0; i < regd->n_reg_rules; i++) {
1006 const struct ieee80211_reg_rule *rr;
1007 const struct ieee80211_freq_range *fr = NULL;
1008
1009 rr = &regd->reg_rules[i];
1010 fr = &rr->freq_range;
1011
1012 /*
1013 * We only need to know if one frequency rule was
1014 * was in center_freq's band, that's enough, so lets
1015 * not overwrite it once found
1016 */
1017 if (!band_rule_found)
1018 band_rule_found = freq_in_rule_band(fr, center_freq);
1019
1020 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
1021
1022 if (band_rule_found && bw_fits)
1023 return rr;
1024 }
1025
1026 if (!band_rule_found)
1027 return ERR_PTR(-ERANGE);
1028
1029 return ERR_PTR(-EINVAL);
1030 }
1031
1032 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1033 u32 center_freq)
1034 {
1035 const struct ieee80211_regdomain *regd;
1036
1037 regd = reg_get_regdomain(wiphy);
1038
1039 return freq_reg_info_regd(wiphy, center_freq, regd);
1040 }
1041 EXPORT_SYMBOL(freq_reg_info);
1042
1043 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1044 {
1045 switch (initiator) {
1046 case NL80211_REGDOM_SET_BY_CORE:
1047 return "core";
1048 case NL80211_REGDOM_SET_BY_USER:
1049 return "user";
1050 case NL80211_REGDOM_SET_BY_DRIVER:
1051 return "driver";
1052 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1053 return "country IE";
1054 default:
1055 WARN_ON(1);
1056 return "bug";
1057 }
1058 }
1059 EXPORT_SYMBOL(reg_initiator_name);
1060
1061 #ifdef CONFIG_CFG80211_REG_DEBUG
1062 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1063 struct ieee80211_channel *chan,
1064 const struct ieee80211_reg_rule *reg_rule)
1065 {
1066 const struct ieee80211_power_rule *power_rule;
1067 const struct ieee80211_freq_range *freq_range;
1068 char max_antenna_gain[32], bw[32];
1069
1070 power_rule = &reg_rule->power_rule;
1071 freq_range = &reg_rule->freq_range;
1072
1073 if (!power_rule->max_antenna_gain)
1074 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1075 else
1076 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
1077 power_rule->max_antenna_gain);
1078
1079 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1080 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1081 freq_range->max_bandwidth_khz,
1082 reg_get_max_bandwidth(regd, reg_rule));
1083 else
1084 snprintf(bw, sizeof(bw), "%d KHz",
1085 freq_range->max_bandwidth_khz);
1086
1087 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1088 chan->center_freq);
1089
1090 REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
1091 freq_range->start_freq_khz, freq_range->end_freq_khz,
1092 bw, max_antenna_gain,
1093 power_rule->max_eirp);
1094 }
1095 #else
1096 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1097 struct ieee80211_channel *chan,
1098 const struct ieee80211_reg_rule *reg_rule)
1099 {
1100 return;
1101 }
1102 #endif
1103
1104 /*
1105 * Note that right now we assume the desired channel bandwidth
1106 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1107 * per channel, the primary and the extension channel).
1108 */
1109 static void handle_channel(struct wiphy *wiphy,
1110 enum nl80211_reg_initiator initiator,
1111 struct ieee80211_channel *chan)
1112 {
1113 u32 flags, bw_flags = 0;
1114 const struct ieee80211_reg_rule *reg_rule = NULL;
1115 const struct ieee80211_power_rule *power_rule = NULL;
1116 const struct ieee80211_freq_range *freq_range = NULL;
1117 struct wiphy *request_wiphy = NULL;
1118 struct regulatory_request *lr = get_last_request();
1119 const struct ieee80211_regdomain *regd;
1120 u32 max_bandwidth_khz;
1121
1122 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1123
1124 flags = chan->orig_flags;
1125
1126 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1127 if (IS_ERR(reg_rule)) {
1128 /*
1129 * We will disable all channels that do not match our
1130 * received regulatory rule unless the hint is coming
1131 * from a Country IE and the Country IE had no information
1132 * about a band. The IEEE 802.11 spec allows for an AP
1133 * to send only a subset of the regulatory rules allowed,
1134 * so an AP in the US that only supports 2.4 GHz may only send
1135 * a country IE with information for the 2.4 GHz band
1136 * while 5 GHz is still supported.
1137 */
1138 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1139 PTR_ERR(reg_rule) == -ERANGE)
1140 return;
1141
1142 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1143 request_wiphy && request_wiphy == wiphy &&
1144 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1145 REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1146 chan->center_freq);
1147 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1148 chan->flags = chan->orig_flags;
1149 } else {
1150 REG_DBG_PRINT("Disabling freq %d MHz\n",
1151 chan->center_freq);
1152 chan->flags |= IEEE80211_CHAN_DISABLED;
1153 }
1154 return;
1155 }
1156
1157 regd = reg_get_regdomain(wiphy);
1158 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1159
1160 power_rule = &reg_rule->power_rule;
1161 freq_range = &reg_rule->freq_range;
1162
1163 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1164 /* Check if auto calculation requested */
1165 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1166 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1167
1168 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1169 bw_flags = IEEE80211_CHAN_NO_HT40;
1170 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1171 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1172 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1173 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1174
1175 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1176 request_wiphy && request_wiphy == wiphy &&
1177 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1178 /*
1179 * This guarantees the driver's requested regulatory domain
1180 * will always be used as a base for further regulatory
1181 * settings
1182 */
1183 chan->flags = chan->orig_flags =
1184 map_regdom_flags(reg_rule->flags) | bw_flags;
1185 chan->max_antenna_gain = chan->orig_mag =
1186 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1187 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1188 (int) MBM_TO_DBM(power_rule->max_eirp);
1189
1190 if (chan->flags & IEEE80211_CHAN_RADAR) {
1191 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1192 if (reg_rule->dfs_cac_ms)
1193 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1194 }
1195
1196 return;
1197 }
1198
1199 chan->dfs_state = NL80211_DFS_USABLE;
1200 chan->dfs_state_entered = jiffies;
1201
1202 chan->beacon_found = false;
1203 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1204 chan->max_antenna_gain =
1205 min_t(int, chan->orig_mag,
1206 MBI_TO_DBI(power_rule->max_antenna_gain));
1207 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1208
1209 if (chan->flags & IEEE80211_CHAN_RADAR) {
1210 if (reg_rule->dfs_cac_ms)
1211 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1212 else
1213 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1214 }
1215
1216 if (chan->orig_mpwr) {
1217 /*
1218 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1219 * will always follow the passed country IE power settings.
1220 */
1221 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1222 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1223 chan->max_power = chan->max_reg_power;
1224 else
1225 chan->max_power = min(chan->orig_mpwr,
1226 chan->max_reg_power);
1227 } else
1228 chan->max_power = chan->max_reg_power;
1229 }
1230
1231 static void handle_band(struct wiphy *wiphy,
1232 enum nl80211_reg_initiator initiator,
1233 struct ieee80211_supported_band *sband)
1234 {
1235 unsigned int i;
1236
1237 if (!sband)
1238 return;
1239
1240 for (i = 0; i < sband->n_channels; i++)
1241 handle_channel(wiphy, initiator, &sband->channels[i]);
1242 }
1243
1244 static bool reg_request_cell_base(struct regulatory_request *request)
1245 {
1246 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1247 return false;
1248 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1249 }
1250
1251 static bool reg_request_indoor(struct regulatory_request *request)
1252 {
1253 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1254 return false;
1255 return request->user_reg_hint_type == NL80211_USER_REG_HINT_INDOOR;
1256 }
1257
1258 bool reg_last_request_cell_base(void)
1259 {
1260 return reg_request_cell_base(get_last_request());
1261 }
1262
1263 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1264 /* Core specific check */
1265 static enum reg_request_treatment
1266 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1267 {
1268 struct regulatory_request *lr = get_last_request();
1269
1270 if (!reg_num_devs_support_basehint)
1271 return REG_REQ_IGNORE;
1272
1273 if (reg_request_cell_base(lr) &&
1274 !regdom_changes(pending_request->alpha2))
1275 return REG_REQ_ALREADY_SET;
1276
1277 return REG_REQ_OK;
1278 }
1279
1280 /* Device specific check */
1281 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1282 {
1283 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1284 }
1285 #else
1286 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1287 {
1288 return REG_REQ_IGNORE;
1289 }
1290
1291 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1292 {
1293 return true;
1294 }
1295 #endif
1296
1297 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1298 {
1299 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1300 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1301 return true;
1302 return false;
1303 }
1304
1305 static bool ignore_reg_update(struct wiphy *wiphy,
1306 enum nl80211_reg_initiator initiator)
1307 {
1308 struct regulatory_request *lr = get_last_request();
1309
1310 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1311 return true;
1312
1313 if (!lr) {
1314 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1315 "since last_request is not set\n",
1316 reg_initiator_name(initiator));
1317 return true;
1318 }
1319
1320 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1321 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1322 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1323 "since the driver uses its own custom "
1324 "regulatory domain\n",
1325 reg_initiator_name(initiator));
1326 return true;
1327 }
1328
1329 /*
1330 * wiphy->regd will be set once the device has its own
1331 * desired regulatory domain set
1332 */
1333 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1334 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1335 !is_world_regdom(lr->alpha2)) {
1336 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1337 "since the driver requires its own regulatory "
1338 "domain to be set first\n",
1339 reg_initiator_name(initiator));
1340 return true;
1341 }
1342
1343 if (reg_request_cell_base(lr))
1344 return reg_dev_ignore_cell_hint(wiphy);
1345
1346 return false;
1347 }
1348
1349 static bool reg_is_world_roaming(struct wiphy *wiphy)
1350 {
1351 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1352 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1353 struct regulatory_request *lr = get_last_request();
1354
1355 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1356 return true;
1357
1358 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1359 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1360 return true;
1361
1362 return false;
1363 }
1364
1365 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1366 struct reg_beacon *reg_beacon)
1367 {
1368 struct ieee80211_supported_band *sband;
1369 struct ieee80211_channel *chan;
1370 bool channel_changed = false;
1371 struct ieee80211_channel chan_before;
1372
1373 sband = wiphy->bands[reg_beacon->chan.band];
1374 chan = &sband->channels[chan_idx];
1375
1376 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1377 return;
1378
1379 if (chan->beacon_found)
1380 return;
1381
1382 chan->beacon_found = true;
1383
1384 if (!reg_is_world_roaming(wiphy))
1385 return;
1386
1387 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1388 return;
1389
1390 chan_before.center_freq = chan->center_freq;
1391 chan_before.flags = chan->flags;
1392
1393 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1394 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1395 channel_changed = true;
1396 }
1397
1398 if (channel_changed)
1399 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1400 }
1401
1402 /*
1403 * Called when a scan on a wiphy finds a beacon on
1404 * new channel
1405 */
1406 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1407 struct reg_beacon *reg_beacon)
1408 {
1409 unsigned int i;
1410 struct ieee80211_supported_band *sband;
1411
1412 if (!wiphy->bands[reg_beacon->chan.band])
1413 return;
1414
1415 sband = wiphy->bands[reg_beacon->chan.band];
1416
1417 for (i = 0; i < sband->n_channels; i++)
1418 handle_reg_beacon(wiphy, i, reg_beacon);
1419 }
1420
1421 /*
1422 * Called upon reg changes or a new wiphy is added
1423 */
1424 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1425 {
1426 unsigned int i;
1427 struct ieee80211_supported_band *sband;
1428 struct reg_beacon *reg_beacon;
1429
1430 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1431 if (!wiphy->bands[reg_beacon->chan.band])
1432 continue;
1433 sband = wiphy->bands[reg_beacon->chan.band];
1434 for (i = 0; i < sband->n_channels; i++)
1435 handle_reg_beacon(wiphy, i, reg_beacon);
1436 }
1437 }
1438
1439 /* Reap the advantages of previously found beacons */
1440 static void reg_process_beacons(struct wiphy *wiphy)
1441 {
1442 /*
1443 * Means we are just firing up cfg80211, so no beacons would
1444 * have been processed yet.
1445 */
1446 if (!last_request)
1447 return;
1448 wiphy_update_beacon_reg(wiphy);
1449 }
1450
1451 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1452 {
1453 if (!chan)
1454 return false;
1455 if (chan->flags & IEEE80211_CHAN_DISABLED)
1456 return false;
1457 /* This would happen when regulatory rules disallow HT40 completely */
1458 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1459 return false;
1460 return true;
1461 }
1462
1463 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1464 struct ieee80211_channel *channel)
1465 {
1466 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1467 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1468 unsigned int i;
1469
1470 if (!is_ht40_allowed(channel)) {
1471 channel->flags |= IEEE80211_CHAN_NO_HT40;
1472 return;
1473 }
1474
1475 /*
1476 * We need to ensure the extension channels exist to
1477 * be able to use HT40- or HT40+, this finds them (or not)
1478 */
1479 for (i = 0; i < sband->n_channels; i++) {
1480 struct ieee80211_channel *c = &sband->channels[i];
1481
1482 if (c->center_freq == (channel->center_freq - 20))
1483 channel_before = c;
1484 if (c->center_freq == (channel->center_freq + 20))
1485 channel_after = c;
1486 }
1487
1488 /*
1489 * Please note that this assumes target bandwidth is 20 MHz,
1490 * if that ever changes we also need to change the below logic
1491 * to include that as well.
1492 */
1493 if (!is_ht40_allowed(channel_before))
1494 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1495 else
1496 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1497
1498 if (!is_ht40_allowed(channel_after))
1499 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1500 else
1501 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1502 }
1503
1504 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1505 struct ieee80211_supported_band *sband)
1506 {
1507 unsigned int i;
1508
1509 if (!sband)
1510 return;
1511
1512 for (i = 0; i < sband->n_channels; i++)
1513 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1514 }
1515
1516 static void reg_process_ht_flags(struct wiphy *wiphy)
1517 {
1518 enum ieee80211_band band;
1519
1520 if (!wiphy)
1521 return;
1522
1523 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1524 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1525 }
1526
1527 static void reg_call_notifier(struct wiphy *wiphy,
1528 struct regulatory_request *request)
1529 {
1530 if (wiphy->reg_notifier)
1531 wiphy->reg_notifier(wiphy, request);
1532 }
1533
1534 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1535 {
1536 struct ieee80211_channel *ch;
1537 struct cfg80211_chan_def chandef;
1538 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1539 bool ret = true;
1540
1541 wdev_lock(wdev);
1542
1543 if (!wdev->netdev || !netif_running(wdev->netdev))
1544 goto out;
1545
1546 switch (wdev->iftype) {
1547 case NL80211_IFTYPE_AP:
1548 case NL80211_IFTYPE_P2P_GO:
1549 if (!wdev->beacon_interval)
1550 goto out;
1551
1552 ret = cfg80211_reg_can_beacon(wiphy,
1553 &wdev->chandef, wdev->iftype);
1554 break;
1555 case NL80211_IFTYPE_STATION:
1556 case NL80211_IFTYPE_P2P_CLIENT:
1557 case NL80211_IFTYPE_ADHOC:
1558 if (!wdev->current_bss ||
1559 !wdev->current_bss->pub.channel)
1560 goto out;
1561
1562 ch = wdev->current_bss->pub.channel;
1563 if (rdev->ops->get_channel &&
1564 !rdev_get_channel(rdev, wdev, &chandef))
1565 ret = cfg80211_chandef_usable(wiphy, &chandef,
1566 IEEE80211_CHAN_DISABLED);
1567 else
1568 ret = !(ch->flags & IEEE80211_CHAN_DISABLED);
1569 break;
1570 case NL80211_IFTYPE_MONITOR:
1571 case NL80211_IFTYPE_AP_VLAN:
1572 case NL80211_IFTYPE_P2P_DEVICE:
1573 /* no enforcement required */
1574 break;
1575 default:
1576 /* others not implemented for now */
1577 WARN_ON(1);
1578 break;
1579 }
1580
1581 out:
1582 wdev_unlock(wdev);
1583 return ret;
1584 }
1585
1586 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1587 {
1588 struct wireless_dev *wdev;
1589 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1590
1591 ASSERT_RTNL();
1592
1593 list_for_each_entry(wdev, &rdev->wdev_list, list)
1594 if (!reg_wdev_chan_valid(wiphy, wdev))
1595 cfg80211_leave(rdev, wdev);
1596 }
1597
1598 static void reg_check_chans_work(struct work_struct *work)
1599 {
1600 struct cfg80211_registered_device *rdev;
1601
1602 REG_DBG_PRINT("Verifying active interfaces after reg change\n");
1603 rtnl_lock();
1604
1605 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1606 if (!(rdev->wiphy.regulatory_flags &
1607 REGULATORY_IGNORE_STALE_KICKOFF))
1608 reg_leave_invalid_chans(&rdev->wiphy);
1609
1610 rtnl_unlock();
1611 }
1612
1613 static void reg_check_channels(void)
1614 {
1615 /*
1616 * Give usermode a chance to do something nicer (move to another
1617 * channel, orderly disconnection), before forcing a disconnection.
1618 */
1619 mod_delayed_work(system_power_efficient_wq,
1620 &reg_check_chans,
1621 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1622 }
1623
1624 static void wiphy_update_regulatory(struct wiphy *wiphy,
1625 enum nl80211_reg_initiator initiator)
1626 {
1627 enum ieee80211_band band;
1628 struct regulatory_request *lr = get_last_request();
1629
1630 if (ignore_reg_update(wiphy, initiator)) {
1631 /*
1632 * Regulatory updates set by CORE are ignored for custom
1633 * regulatory cards. Let us notify the changes to the driver,
1634 * as some drivers used this to restore its orig_* reg domain.
1635 */
1636 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1637 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1638 reg_call_notifier(wiphy, lr);
1639 return;
1640 }
1641
1642 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1643
1644 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1645 handle_band(wiphy, initiator, wiphy->bands[band]);
1646
1647 reg_process_beacons(wiphy);
1648 reg_process_ht_flags(wiphy);
1649 reg_call_notifier(wiphy, lr);
1650 }
1651
1652 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1653 {
1654 struct cfg80211_registered_device *rdev;
1655 struct wiphy *wiphy;
1656
1657 ASSERT_RTNL();
1658
1659 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1660 wiphy = &rdev->wiphy;
1661 wiphy_update_regulatory(wiphy, initiator);
1662 }
1663
1664 reg_check_channels();
1665 }
1666
1667 static void handle_channel_custom(struct wiphy *wiphy,
1668 struct ieee80211_channel *chan,
1669 const struct ieee80211_regdomain *regd)
1670 {
1671 u32 bw_flags = 0;
1672 const struct ieee80211_reg_rule *reg_rule = NULL;
1673 const struct ieee80211_power_rule *power_rule = NULL;
1674 const struct ieee80211_freq_range *freq_range = NULL;
1675 u32 max_bandwidth_khz;
1676
1677 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1678 regd);
1679
1680 if (IS_ERR(reg_rule)) {
1681 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1682 chan->center_freq);
1683 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1684 chan->flags = chan->orig_flags;
1685 return;
1686 }
1687
1688 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1689
1690 power_rule = &reg_rule->power_rule;
1691 freq_range = &reg_rule->freq_range;
1692
1693 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1694 /* Check if auto calculation requested */
1695 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1696 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1697
1698 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1699 bw_flags = IEEE80211_CHAN_NO_HT40;
1700 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1701 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1702 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1703 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1704
1705 chan->dfs_state_entered = jiffies;
1706 chan->dfs_state = NL80211_DFS_USABLE;
1707
1708 chan->beacon_found = false;
1709 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1710 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1711 chan->max_reg_power = chan->max_power =
1712 (int) MBM_TO_DBM(power_rule->max_eirp);
1713
1714 if (chan->flags & IEEE80211_CHAN_RADAR) {
1715 if (reg_rule->dfs_cac_ms)
1716 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1717 else
1718 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1719 }
1720
1721 chan->max_power = chan->max_reg_power;
1722 }
1723
1724 static void handle_band_custom(struct wiphy *wiphy,
1725 struct ieee80211_supported_band *sband,
1726 const struct ieee80211_regdomain *regd)
1727 {
1728 unsigned int i;
1729
1730 if (!sband)
1731 return;
1732
1733 for (i = 0; i < sband->n_channels; i++)
1734 handle_channel_custom(wiphy, &sband->channels[i], regd);
1735 }
1736
1737 /* Used by drivers prior to wiphy registration */
1738 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1739 const struct ieee80211_regdomain *regd)
1740 {
1741 enum ieee80211_band band;
1742 unsigned int bands_set = 0;
1743
1744 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1745 "wiphy should have REGULATORY_CUSTOM_REG\n");
1746 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1747
1748 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1749 if (!wiphy->bands[band])
1750 continue;
1751 handle_band_custom(wiphy, wiphy->bands[band], regd);
1752 bands_set++;
1753 }
1754
1755 /*
1756 * no point in calling this if it won't have any effect
1757 * on your device's supported bands.
1758 */
1759 WARN_ON(!bands_set);
1760 }
1761 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1762
1763 static void reg_set_request_processed(void)
1764 {
1765 bool need_more_processing = false;
1766 struct regulatory_request *lr = get_last_request();
1767
1768 lr->processed = true;
1769
1770 spin_lock(&reg_requests_lock);
1771 if (!list_empty(&reg_requests_list))
1772 need_more_processing = true;
1773 spin_unlock(&reg_requests_lock);
1774
1775 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1776 cancel_delayed_work(&reg_timeout);
1777
1778 if (need_more_processing)
1779 schedule_work(&reg_work);
1780 }
1781
1782 /**
1783 * reg_process_hint_core - process core regulatory requests
1784 * @pending_request: a pending core regulatory request
1785 *
1786 * The wireless subsystem can use this function to process
1787 * a regulatory request issued by the regulatory core.
1788 *
1789 * Returns one of the different reg request treatment values.
1790 */
1791 static enum reg_request_treatment
1792 reg_process_hint_core(struct regulatory_request *core_request)
1793 {
1794
1795 core_request->intersect = false;
1796 core_request->processed = false;
1797
1798 reg_update_last_request(core_request);
1799
1800 return reg_call_crda(core_request);
1801 }
1802
1803 static enum reg_request_treatment
1804 __reg_process_hint_user(struct regulatory_request *user_request)
1805 {
1806 struct regulatory_request *lr = get_last_request();
1807
1808 if (reg_request_indoor(user_request)) {
1809 reg_is_indoor = true;
1810 return REG_REQ_USER_HINT_HANDLED;
1811 }
1812
1813 if (reg_request_cell_base(user_request))
1814 return reg_ignore_cell_hint(user_request);
1815
1816 if (reg_request_cell_base(lr))
1817 return REG_REQ_IGNORE;
1818
1819 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1820 return REG_REQ_INTERSECT;
1821 /*
1822 * If the user knows better the user should set the regdom
1823 * to their country before the IE is picked up
1824 */
1825 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1826 lr->intersect)
1827 return REG_REQ_IGNORE;
1828 /*
1829 * Process user requests only after previous user/driver/core
1830 * requests have been processed
1831 */
1832 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1833 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1834 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1835 regdom_changes(lr->alpha2))
1836 return REG_REQ_IGNORE;
1837
1838 if (!regdom_changes(user_request->alpha2))
1839 return REG_REQ_ALREADY_SET;
1840
1841 return REG_REQ_OK;
1842 }
1843
1844 /**
1845 * reg_process_hint_user - process user regulatory requests
1846 * @user_request: a pending user regulatory request
1847 *
1848 * The wireless subsystem can use this function to process
1849 * a regulatory request initiated by userspace.
1850 *
1851 * Returns one of the different reg request treatment values.
1852 */
1853 static enum reg_request_treatment
1854 reg_process_hint_user(struct regulatory_request *user_request)
1855 {
1856 enum reg_request_treatment treatment;
1857
1858 treatment = __reg_process_hint_user(user_request);
1859 if (treatment == REG_REQ_IGNORE ||
1860 treatment == REG_REQ_ALREADY_SET ||
1861 treatment == REG_REQ_USER_HINT_HANDLED) {
1862 reg_free_request(user_request);
1863 return treatment;
1864 }
1865
1866 user_request->intersect = treatment == REG_REQ_INTERSECT;
1867 user_request->processed = false;
1868
1869 reg_update_last_request(user_request);
1870
1871 user_alpha2[0] = user_request->alpha2[0];
1872 user_alpha2[1] = user_request->alpha2[1];
1873
1874 return reg_call_crda(user_request);
1875 }
1876
1877 static enum reg_request_treatment
1878 __reg_process_hint_driver(struct regulatory_request *driver_request)
1879 {
1880 struct regulatory_request *lr = get_last_request();
1881
1882 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1883 if (regdom_changes(driver_request->alpha2))
1884 return REG_REQ_OK;
1885 return REG_REQ_ALREADY_SET;
1886 }
1887
1888 /*
1889 * This would happen if you unplug and plug your card
1890 * back in or if you add a new device for which the previously
1891 * loaded card also agrees on the regulatory domain.
1892 */
1893 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1894 !regdom_changes(driver_request->alpha2))
1895 return REG_REQ_ALREADY_SET;
1896
1897 return REG_REQ_INTERSECT;
1898 }
1899
1900 /**
1901 * reg_process_hint_driver - process driver regulatory requests
1902 * @driver_request: a pending driver regulatory request
1903 *
1904 * The wireless subsystem can use this function to process
1905 * a regulatory request issued by an 802.11 driver.
1906 *
1907 * Returns one of the different reg request treatment values.
1908 */
1909 static enum reg_request_treatment
1910 reg_process_hint_driver(struct wiphy *wiphy,
1911 struct regulatory_request *driver_request)
1912 {
1913 const struct ieee80211_regdomain *regd;
1914 enum reg_request_treatment treatment;
1915
1916 treatment = __reg_process_hint_driver(driver_request);
1917
1918 switch (treatment) {
1919 case REG_REQ_OK:
1920 break;
1921 case REG_REQ_IGNORE:
1922 case REG_REQ_USER_HINT_HANDLED:
1923 reg_free_request(driver_request);
1924 return treatment;
1925 case REG_REQ_INTERSECT:
1926 /* fall through */
1927 case REG_REQ_ALREADY_SET:
1928 regd = reg_copy_regd(get_cfg80211_regdom());
1929 if (IS_ERR(regd)) {
1930 reg_free_request(driver_request);
1931 return REG_REQ_IGNORE;
1932 }
1933 rcu_assign_pointer(wiphy->regd, regd);
1934 }
1935
1936
1937 driver_request->intersect = treatment == REG_REQ_INTERSECT;
1938 driver_request->processed = false;
1939
1940 reg_update_last_request(driver_request);
1941
1942 /*
1943 * Since CRDA will not be called in this case as we already
1944 * have applied the requested regulatory domain before we just
1945 * inform userspace we have processed the request
1946 */
1947 if (treatment == REG_REQ_ALREADY_SET) {
1948 nl80211_send_reg_change_event(driver_request);
1949 reg_set_request_processed();
1950 return treatment;
1951 }
1952
1953 return reg_call_crda(driver_request);
1954 }
1955
1956 static enum reg_request_treatment
1957 __reg_process_hint_country_ie(struct wiphy *wiphy,
1958 struct regulatory_request *country_ie_request)
1959 {
1960 struct wiphy *last_wiphy = NULL;
1961 struct regulatory_request *lr = get_last_request();
1962
1963 if (reg_request_cell_base(lr)) {
1964 /* Trust a Cell base station over the AP's country IE */
1965 if (regdom_changes(country_ie_request->alpha2))
1966 return REG_REQ_IGNORE;
1967 return REG_REQ_ALREADY_SET;
1968 } else {
1969 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1970 return REG_REQ_IGNORE;
1971 }
1972
1973 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
1974 return -EINVAL;
1975
1976 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
1977 return REG_REQ_OK;
1978
1979 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1980
1981 if (last_wiphy != wiphy) {
1982 /*
1983 * Two cards with two APs claiming different
1984 * Country IE alpha2s. We could
1985 * intersect them, but that seems unlikely
1986 * to be correct. Reject second one for now.
1987 */
1988 if (regdom_changes(country_ie_request->alpha2))
1989 return REG_REQ_IGNORE;
1990 return REG_REQ_ALREADY_SET;
1991 }
1992 /*
1993 * Two consecutive Country IE hints on the same wiphy.
1994 * This should be picked up early by the driver/stack
1995 */
1996 if (WARN_ON(regdom_changes(country_ie_request->alpha2)))
1997 return REG_REQ_OK;
1998 return REG_REQ_ALREADY_SET;
1999 }
2000
2001 /**
2002 * reg_process_hint_country_ie - process regulatory requests from country IEs
2003 * @country_ie_request: a regulatory request from a country IE
2004 *
2005 * The wireless subsystem can use this function to process
2006 * a regulatory request issued by a country Information Element.
2007 *
2008 * Returns one of the different reg request treatment values.
2009 */
2010 static enum reg_request_treatment
2011 reg_process_hint_country_ie(struct wiphy *wiphy,
2012 struct regulatory_request *country_ie_request)
2013 {
2014 enum reg_request_treatment treatment;
2015
2016 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2017
2018 switch (treatment) {
2019 case REG_REQ_OK:
2020 break;
2021 case REG_REQ_IGNORE:
2022 case REG_REQ_USER_HINT_HANDLED:
2023 /* fall through */
2024 case REG_REQ_ALREADY_SET:
2025 reg_free_request(country_ie_request);
2026 return treatment;
2027 case REG_REQ_INTERSECT:
2028 reg_free_request(country_ie_request);
2029 /*
2030 * This doesn't happen yet, not sure we
2031 * ever want to support it for this case.
2032 */
2033 WARN_ONCE(1, "Unexpected intersection for country IEs");
2034 return REG_REQ_IGNORE;
2035 }
2036
2037 country_ie_request->intersect = false;
2038 country_ie_request->processed = false;
2039
2040 reg_update_last_request(country_ie_request);
2041
2042 return reg_call_crda(country_ie_request);
2043 }
2044
2045 /* This processes *all* regulatory hints */
2046 static void reg_process_hint(struct regulatory_request *reg_request)
2047 {
2048 struct wiphy *wiphy = NULL;
2049 enum reg_request_treatment treatment;
2050
2051 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2052 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2053
2054 switch (reg_request->initiator) {
2055 case NL80211_REGDOM_SET_BY_CORE:
2056 reg_process_hint_core(reg_request);
2057 return;
2058 case NL80211_REGDOM_SET_BY_USER:
2059 treatment = reg_process_hint_user(reg_request);
2060 if (treatment == REG_REQ_IGNORE ||
2061 treatment == REG_REQ_ALREADY_SET ||
2062 treatment == REG_REQ_USER_HINT_HANDLED)
2063 return;
2064 queue_delayed_work(system_power_efficient_wq,
2065 &reg_timeout, msecs_to_jiffies(3142));
2066 return;
2067 case NL80211_REGDOM_SET_BY_DRIVER:
2068 if (!wiphy)
2069 goto out_free;
2070 treatment = reg_process_hint_driver(wiphy, reg_request);
2071 break;
2072 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2073 if (!wiphy)
2074 goto out_free;
2075 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2076 break;
2077 default:
2078 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2079 goto out_free;
2080 }
2081
2082 /* This is required so that the orig_* parameters are saved */
2083 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2084 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2085 wiphy_update_regulatory(wiphy, reg_request->initiator);
2086 reg_check_channels();
2087 }
2088
2089 return;
2090
2091 out_free:
2092 reg_free_request(reg_request);
2093 }
2094
2095 /*
2096 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2097 * Regulatory hints come on a first come first serve basis and we
2098 * must process each one atomically.
2099 */
2100 static void reg_process_pending_hints(void)
2101 {
2102 struct regulatory_request *reg_request, *lr;
2103
2104 lr = get_last_request();
2105
2106 /* When last_request->processed becomes true this will be rescheduled */
2107 if (lr && !lr->processed) {
2108 reg_process_hint(lr);
2109 return;
2110 }
2111
2112 spin_lock(&reg_requests_lock);
2113
2114 if (list_empty(&reg_requests_list)) {
2115 spin_unlock(&reg_requests_lock);
2116 return;
2117 }
2118
2119 reg_request = list_first_entry(&reg_requests_list,
2120 struct regulatory_request,
2121 list);
2122 list_del_init(&reg_request->list);
2123
2124 spin_unlock(&reg_requests_lock);
2125
2126 reg_process_hint(reg_request);
2127 }
2128
2129 /* Processes beacon hints -- this has nothing to do with country IEs */
2130 static void reg_process_pending_beacon_hints(void)
2131 {
2132 struct cfg80211_registered_device *rdev;
2133 struct reg_beacon *pending_beacon, *tmp;
2134
2135 /* This goes through the _pending_ beacon list */
2136 spin_lock_bh(&reg_pending_beacons_lock);
2137
2138 list_for_each_entry_safe(pending_beacon, tmp,
2139 &reg_pending_beacons, list) {
2140 list_del_init(&pending_beacon->list);
2141
2142 /* Applies the beacon hint to current wiphys */
2143 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2144 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2145
2146 /* Remembers the beacon hint for new wiphys or reg changes */
2147 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2148 }
2149
2150 spin_unlock_bh(&reg_pending_beacons_lock);
2151 }
2152
2153 static void reg_process_self_managed_hints(void)
2154 {
2155 struct cfg80211_registered_device *rdev;
2156 struct wiphy *wiphy;
2157 const struct ieee80211_regdomain *tmp;
2158 const struct ieee80211_regdomain *regd;
2159 enum ieee80211_band band;
2160 struct regulatory_request request = {};
2161
2162 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2163 wiphy = &rdev->wiphy;
2164
2165 spin_lock(&reg_requests_lock);
2166 regd = rdev->requested_regd;
2167 rdev->requested_regd = NULL;
2168 spin_unlock(&reg_requests_lock);
2169
2170 if (regd == NULL)
2171 continue;
2172
2173 tmp = get_wiphy_regdom(wiphy);
2174 rcu_assign_pointer(wiphy->regd, regd);
2175 rcu_free_regdom(tmp);
2176
2177 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
2178 handle_band_custom(wiphy, wiphy->bands[band], regd);
2179
2180 reg_process_ht_flags(wiphy);
2181
2182 request.wiphy_idx = get_wiphy_idx(wiphy);
2183 request.alpha2[0] = regd->alpha2[0];
2184 request.alpha2[1] = regd->alpha2[1];
2185 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2186
2187 nl80211_send_wiphy_reg_change_event(&request);
2188 }
2189
2190 reg_check_channels();
2191 }
2192
2193 static void reg_todo(struct work_struct *work)
2194 {
2195 rtnl_lock();
2196 reg_process_pending_hints();
2197 reg_process_pending_beacon_hints();
2198 reg_process_self_managed_hints();
2199 rtnl_unlock();
2200 }
2201
2202 static void queue_regulatory_request(struct regulatory_request *request)
2203 {
2204 request->alpha2[0] = toupper(request->alpha2[0]);
2205 request->alpha2[1] = toupper(request->alpha2[1]);
2206
2207 spin_lock(&reg_requests_lock);
2208 list_add_tail(&request->list, &reg_requests_list);
2209 spin_unlock(&reg_requests_lock);
2210
2211 schedule_work(&reg_work);
2212 }
2213
2214 /*
2215 * Core regulatory hint -- happens during cfg80211_init()
2216 * and when we restore regulatory settings.
2217 */
2218 static int regulatory_hint_core(const char *alpha2)
2219 {
2220 struct regulatory_request *request;
2221
2222 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2223 if (!request)
2224 return -ENOMEM;
2225
2226 request->alpha2[0] = alpha2[0];
2227 request->alpha2[1] = alpha2[1];
2228 request->initiator = NL80211_REGDOM_SET_BY_CORE;
2229
2230 queue_regulatory_request(request);
2231
2232 return 0;
2233 }
2234
2235 /* User hints */
2236 int regulatory_hint_user(const char *alpha2,
2237 enum nl80211_user_reg_hint_type user_reg_hint_type)
2238 {
2239 struct regulatory_request *request;
2240
2241 if (WARN_ON(!alpha2))
2242 return -EINVAL;
2243
2244 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2245 if (!request)
2246 return -ENOMEM;
2247
2248 request->wiphy_idx = WIPHY_IDX_INVALID;
2249 request->alpha2[0] = alpha2[0];
2250 request->alpha2[1] = alpha2[1];
2251 request->initiator = NL80211_REGDOM_SET_BY_USER;
2252 request->user_reg_hint_type = user_reg_hint_type;
2253
2254 queue_regulatory_request(request);
2255
2256 return 0;
2257 }
2258
2259 int regulatory_hint_indoor_user(void)
2260 {
2261 struct regulatory_request *request;
2262
2263 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2264 if (!request)
2265 return -ENOMEM;
2266
2267 request->wiphy_idx = WIPHY_IDX_INVALID;
2268 request->initiator = NL80211_REGDOM_SET_BY_USER;
2269 request->user_reg_hint_type = NL80211_USER_REG_HINT_INDOOR;
2270 queue_regulatory_request(request);
2271
2272 return 0;
2273 }
2274
2275 /* Driver hints */
2276 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2277 {
2278 struct regulatory_request *request;
2279
2280 if (WARN_ON(!alpha2 || !wiphy))
2281 return -EINVAL;
2282
2283 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2284
2285 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2286 if (!request)
2287 return -ENOMEM;
2288
2289 request->wiphy_idx = get_wiphy_idx(wiphy);
2290
2291 request->alpha2[0] = alpha2[0];
2292 request->alpha2[1] = alpha2[1];
2293 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2294
2295 queue_regulatory_request(request);
2296
2297 return 0;
2298 }
2299 EXPORT_SYMBOL(regulatory_hint);
2300
2301 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2302 const u8 *country_ie, u8 country_ie_len)
2303 {
2304 char alpha2[2];
2305 enum environment_cap env = ENVIRON_ANY;
2306 struct regulatory_request *request = NULL, *lr;
2307
2308 /* IE len must be evenly divisible by 2 */
2309 if (country_ie_len & 0x01)
2310 return;
2311
2312 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2313 return;
2314
2315 request = kzalloc(sizeof(*request), GFP_KERNEL);
2316 if (!request)
2317 return;
2318
2319 alpha2[0] = country_ie[0];
2320 alpha2[1] = country_ie[1];
2321
2322 if (country_ie[2] == 'I')
2323 env = ENVIRON_INDOOR;
2324 else if (country_ie[2] == 'O')
2325 env = ENVIRON_OUTDOOR;
2326
2327 rcu_read_lock();
2328 lr = get_last_request();
2329
2330 if (unlikely(!lr))
2331 goto out;
2332
2333 /*
2334 * We will run this only upon a successful connection on cfg80211.
2335 * We leave conflict resolution to the workqueue, where can hold
2336 * the RTNL.
2337 */
2338 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2339 lr->wiphy_idx != WIPHY_IDX_INVALID)
2340 goto out;
2341
2342 request->wiphy_idx = get_wiphy_idx(wiphy);
2343 request->alpha2[0] = alpha2[0];
2344 request->alpha2[1] = alpha2[1];
2345 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2346 request->country_ie_env = env;
2347
2348 queue_regulatory_request(request);
2349 request = NULL;
2350 out:
2351 kfree(request);
2352 rcu_read_unlock();
2353 }
2354
2355 static void restore_alpha2(char *alpha2, bool reset_user)
2356 {
2357 /* indicates there is no alpha2 to consider for restoration */
2358 alpha2[0] = '9';
2359 alpha2[1] = '7';
2360
2361 /* The user setting has precedence over the module parameter */
2362 if (is_user_regdom_saved()) {
2363 /* Unless we're asked to ignore it and reset it */
2364 if (reset_user) {
2365 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2366 user_alpha2[0] = '9';
2367 user_alpha2[1] = '7';
2368
2369 /*
2370 * If we're ignoring user settings, we still need to
2371 * check the module parameter to ensure we put things
2372 * back as they were for a full restore.
2373 */
2374 if (!is_world_regdom(ieee80211_regdom)) {
2375 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2376 ieee80211_regdom[0], ieee80211_regdom[1]);
2377 alpha2[0] = ieee80211_regdom[0];
2378 alpha2[1] = ieee80211_regdom[1];
2379 }
2380 } else {
2381 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2382 user_alpha2[0], user_alpha2[1]);
2383 alpha2[0] = user_alpha2[0];
2384 alpha2[1] = user_alpha2[1];
2385 }
2386 } else if (!is_world_regdom(ieee80211_regdom)) {
2387 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2388 ieee80211_regdom[0], ieee80211_regdom[1]);
2389 alpha2[0] = ieee80211_regdom[0];
2390 alpha2[1] = ieee80211_regdom[1];
2391 } else
2392 REG_DBG_PRINT("Restoring regulatory settings\n");
2393 }
2394
2395 static void restore_custom_reg_settings(struct wiphy *wiphy)
2396 {
2397 struct ieee80211_supported_band *sband;
2398 enum ieee80211_band band;
2399 struct ieee80211_channel *chan;
2400 int i;
2401
2402 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2403 sband = wiphy->bands[band];
2404 if (!sband)
2405 continue;
2406 for (i = 0; i < sband->n_channels; i++) {
2407 chan = &sband->channels[i];
2408 chan->flags = chan->orig_flags;
2409 chan->max_antenna_gain = chan->orig_mag;
2410 chan->max_power = chan->orig_mpwr;
2411 chan->beacon_found = false;
2412 }
2413 }
2414 }
2415
2416 /*
2417 * Restoring regulatory settings involves ingoring any
2418 * possibly stale country IE information and user regulatory
2419 * settings if so desired, this includes any beacon hints
2420 * learned as we could have traveled outside to another country
2421 * after disconnection. To restore regulatory settings we do
2422 * exactly what we did at bootup:
2423 *
2424 * - send a core regulatory hint
2425 * - send a user regulatory hint if applicable
2426 *
2427 * Device drivers that send a regulatory hint for a specific country
2428 * keep their own regulatory domain on wiphy->regd so that does does
2429 * not need to be remembered.
2430 */
2431 static void restore_regulatory_settings(bool reset_user)
2432 {
2433 char alpha2[2];
2434 char world_alpha2[2];
2435 struct reg_beacon *reg_beacon, *btmp;
2436 struct regulatory_request *reg_request, *tmp;
2437 LIST_HEAD(tmp_reg_req_list);
2438 struct cfg80211_registered_device *rdev;
2439
2440 ASSERT_RTNL();
2441
2442 reg_is_indoor = false;
2443
2444 reset_regdomains(true, &world_regdom);
2445 restore_alpha2(alpha2, reset_user);
2446
2447 /*
2448 * If there's any pending requests we simply
2449 * stash them to a temporary pending queue and
2450 * add then after we've restored regulatory
2451 * settings.
2452 */
2453 spin_lock(&reg_requests_lock);
2454 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2455 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
2456 continue;
2457 list_move_tail(&reg_request->list, &tmp_reg_req_list);
2458 }
2459 spin_unlock(&reg_requests_lock);
2460
2461 /* Clear beacon hints */
2462 spin_lock_bh(&reg_pending_beacons_lock);
2463 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2464 list_del(&reg_beacon->list);
2465 kfree(reg_beacon);
2466 }
2467 spin_unlock_bh(&reg_pending_beacons_lock);
2468
2469 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2470 list_del(&reg_beacon->list);
2471 kfree(reg_beacon);
2472 }
2473
2474 /* First restore to the basic regulatory settings */
2475 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2476 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2477
2478 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2479 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2480 continue;
2481 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2482 restore_custom_reg_settings(&rdev->wiphy);
2483 }
2484
2485 regulatory_hint_core(world_alpha2);
2486
2487 /*
2488 * This restores the ieee80211_regdom module parameter
2489 * preference or the last user requested regulatory
2490 * settings, user regulatory settings takes precedence.
2491 */
2492 if (is_an_alpha2(alpha2))
2493 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2494
2495 spin_lock(&reg_requests_lock);
2496 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2497 spin_unlock(&reg_requests_lock);
2498
2499 REG_DBG_PRINT("Kicking the queue\n");
2500
2501 schedule_work(&reg_work);
2502 }
2503
2504 void regulatory_hint_disconnect(void)
2505 {
2506 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2507 restore_regulatory_settings(false);
2508 }
2509
2510 static bool freq_is_chan_12_13_14(u16 freq)
2511 {
2512 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2513 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2514 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2515 return true;
2516 return false;
2517 }
2518
2519 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2520 {
2521 struct reg_beacon *pending_beacon;
2522
2523 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2524 if (beacon_chan->center_freq ==
2525 pending_beacon->chan.center_freq)
2526 return true;
2527 return false;
2528 }
2529
2530 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2531 struct ieee80211_channel *beacon_chan,
2532 gfp_t gfp)
2533 {
2534 struct reg_beacon *reg_beacon;
2535 bool processing;
2536
2537 if (beacon_chan->beacon_found ||
2538 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2539 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2540 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2541 return 0;
2542
2543 spin_lock_bh(&reg_pending_beacons_lock);
2544 processing = pending_reg_beacon(beacon_chan);
2545 spin_unlock_bh(&reg_pending_beacons_lock);
2546
2547 if (processing)
2548 return 0;
2549
2550 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2551 if (!reg_beacon)
2552 return -ENOMEM;
2553
2554 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2555 beacon_chan->center_freq,
2556 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2557 wiphy_name(wiphy));
2558
2559 memcpy(&reg_beacon->chan, beacon_chan,
2560 sizeof(struct ieee80211_channel));
2561
2562 /*
2563 * Since we can be called from BH or and non-BH context
2564 * we must use spin_lock_bh()
2565 */
2566 spin_lock_bh(&reg_pending_beacons_lock);
2567 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2568 spin_unlock_bh(&reg_pending_beacons_lock);
2569
2570 schedule_work(&reg_work);
2571
2572 return 0;
2573 }
2574
2575 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2576 {
2577 unsigned int i;
2578 const struct ieee80211_reg_rule *reg_rule = NULL;
2579 const struct ieee80211_freq_range *freq_range = NULL;
2580 const struct ieee80211_power_rule *power_rule = NULL;
2581 char bw[32], cac_time[32];
2582
2583 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2584
2585 for (i = 0; i < rd->n_reg_rules; i++) {
2586 reg_rule = &rd->reg_rules[i];
2587 freq_range = &reg_rule->freq_range;
2588 power_rule = &reg_rule->power_rule;
2589
2590 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2591 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2592 freq_range->max_bandwidth_khz,
2593 reg_get_max_bandwidth(rd, reg_rule));
2594 else
2595 snprintf(bw, sizeof(bw), "%d KHz",
2596 freq_range->max_bandwidth_khz);
2597
2598 if (reg_rule->flags & NL80211_RRF_DFS)
2599 scnprintf(cac_time, sizeof(cac_time), "%u s",
2600 reg_rule->dfs_cac_ms/1000);
2601 else
2602 scnprintf(cac_time, sizeof(cac_time), "N/A");
2603
2604
2605 /*
2606 * There may not be documentation for max antenna gain
2607 * in certain regions
2608 */
2609 if (power_rule->max_antenna_gain)
2610 pr_info(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2611 freq_range->start_freq_khz,
2612 freq_range->end_freq_khz,
2613 bw,
2614 power_rule->max_antenna_gain,
2615 power_rule->max_eirp,
2616 cac_time);
2617 else
2618 pr_info(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2619 freq_range->start_freq_khz,
2620 freq_range->end_freq_khz,
2621 bw,
2622 power_rule->max_eirp,
2623 cac_time);
2624 }
2625 }
2626
2627 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2628 {
2629 switch (dfs_region) {
2630 case NL80211_DFS_UNSET:
2631 case NL80211_DFS_FCC:
2632 case NL80211_DFS_ETSI:
2633 case NL80211_DFS_JP:
2634 return true;
2635 default:
2636 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2637 dfs_region);
2638 return false;
2639 }
2640 }
2641
2642 static void print_regdomain(const struct ieee80211_regdomain *rd)
2643 {
2644 struct regulatory_request *lr = get_last_request();
2645
2646 if (is_intersected_alpha2(rd->alpha2)) {
2647 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2648 struct cfg80211_registered_device *rdev;
2649 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2650 if (rdev) {
2651 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2652 rdev->country_ie_alpha2[0],
2653 rdev->country_ie_alpha2[1]);
2654 } else
2655 pr_info("Current regulatory domain intersected:\n");
2656 } else
2657 pr_info("Current regulatory domain intersected:\n");
2658 } else if (is_world_regdom(rd->alpha2)) {
2659 pr_info("World regulatory domain updated:\n");
2660 } else {
2661 if (is_unknown_alpha2(rd->alpha2))
2662 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2663 else {
2664 if (reg_request_cell_base(lr))
2665 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2666 rd->alpha2[0], rd->alpha2[1]);
2667 else
2668 pr_info("Regulatory domain changed to country: %c%c\n",
2669 rd->alpha2[0], rd->alpha2[1]);
2670 }
2671 }
2672
2673 pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2674 print_rd_rules(rd);
2675 }
2676
2677 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2678 {
2679 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2680 print_rd_rules(rd);
2681 }
2682
2683 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2684 {
2685 if (!is_world_regdom(rd->alpha2))
2686 return -EINVAL;
2687 update_world_regdomain(rd);
2688 return 0;
2689 }
2690
2691 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2692 struct regulatory_request *user_request)
2693 {
2694 const struct ieee80211_regdomain *intersected_rd = NULL;
2695
2696 if (!regdom_changes(rd->alpha2))
2697 return -EALREADY;
2698
2699 if (!is_valid_rd(rd)) {
2700 pr_err("Invalid regulatory domain detected:\n");
2701 print_regdomain_info(rd);
2702 return -EINVAL;
2703 }
2704
2705 if (!user_request->intersect) {
2706 reset_regdomains(false, rd);
2707 return 0;
2708 }
2709
2710 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2711 if (!intersected_rd)
2712 return -EINVAL;
2713
2714 kfree(rd);
2715 rd = NULL;
2716 reset_regdomains(false, intersected_rd);
2717
2718 return 0;
2719 }
2720
2721 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2722 struct regulatory_request *driver_request)
2723 {
2724 const struct ieee80211_regdomain *regd;
2725 const struct ieee80211_regdomain *intersected_rd = NULL;
2726 const struct ieee80211_regdomain *tmp;
2727 struct wiphy *request_wiphy;
2728
2729 if (is_world_regdom(rd->alpha2))
2730 return -EINVAL;
2731
2732 if (!regdom_changes(rd->alpha2))
2733 return -EALREADY;
2734
2735 if (!is_valid_rd(rd)) {
2736 pr_err("Invalid regulatory domain detected:\n");
2737 print_regdomain_info(rd);
2738 return -EINVAL;
2739 }
2740
2741 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2742 if (!request_wiphy) {
2743 queue_delayed_work(system_power_efficient_wq,
2744 &reg_timeout, 0);
2745 return -ENODEV;
2746 }
2747
2748 if (!driver_request->intersect) {
2749 if (request_wiphy->regd)
2750 return -EALREADY;
2751
2752 regd = reg_copy_regd(rd);
2753 if (IS_ERR(regd))
2754 return PTR_ERR(regd);
2755
2756 rcu_assign_pointer(request_wiphy->regd, regd);
2757 reset_regdomains(false, rd);
2758 return 0;
2759 }
2760
2761 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2762 if (!intersected_rd)
2763 return -EINVAL;
2764
2765 /*
2766 * We can trash what CRDA provided now.
2767 * However if a driver requested this specific regulatory
2768 * domain we keep it for its private use
2769 */
2770 tmp = get_wiphy_regdom(request_wiphy);
2771 rcu_assign_pointer(request_wiphy->regd, rd);
2772 rcu_free_regdom(tmp);
2773
2774 rd = NULL;
2775
2776 reset_regdomains(false, intersected_rd);
2777
2778 return 0;
2779 }
2780
2781 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2782 struct regulatory_request *country_ie_request)
2783 {
2784 struct wiphy *request_wiphy;
2785
2786 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2787 !is_unknown_alpha2(rd->alpha2))
2788 return -EINVAL;
2789
2790 /*
2791 * Lets only bother proceeding on the same alpha2 if the current
2792 * rd is non static (it means CRDA was present and was used last)
2793 * and the pending request came in from a country IE
2794 */
2795
2796 if (!is_valid_rd(rd)) {
2797 pr_err("Invalid regulatory domain detected:\n");
2798 print_regdomain_info(rd);
2799 return -EINVAL;
2800 }
2801
2802 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2803 if (!request_wiphy) {
2804 queue_delayed_work(system_power_efficient_wq,
2805 &reg_timeout, 0);
2806 return -ENODEV;
2807 }
2808
2809 if (country_ie_request->intersect)
2810 return -EINVAL;
2811
2812 reset_regdomains(false, rd);
2813 return 0;
2814 }
2815
2816 /*
2817 * Use this call to set the current regulatory domain. Conflicts with
2818 * multiple drivers can be ironed out later. Caller must've already
2819 * kmalloc'd the rd structure.
2820 */
2821 int set_regdom(const struct ieee80211_regdomain *rd)
2822 {
2823 struct regulatory_request *lr;
2824 bool user_reset = false;
2825 int r;
2826
2827 if (!reg_is_valid_request(rd->alpha2)) {
2828 kfree(rd);
2829 return -EINVAL;
2830 }
2831
2832 lr = get_last_request();
2833
2834 /* Note that this doesn't update the wiphys, this is done below */
2835 switch (lr->initiator) {
2836 case NL80211_REGDOM_SET_BY_CORE:
2837 r = reg_set_rd_core(rd);
2838 break;
2839 case NL80211_REGDOM_SET_BY_USER:
2840 r = reg_set_rd_user(rd, lr);
2841 user_reset = true;
2842 break;
2843 case NL80211_REGDOM_SET_BY_DRIVER:
2844 r = reg_set_rd_driver(rd, lr);
2845 break;
2846 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2847 r = reg_set_rd_country_ie(rd, lr);
2848 break;
2849 default:
2850 WARN(1, "invalid initiator %d\n", lr->initiator);
2851 return -EINVAL;
2852 }
2853
2854 if (r) {
2855 switch (r) {
2856 case -EALREADY:
2857 reg_set_request_processed();
2858 break;
2859 default:
2860 /* Back to world regulatory in case of errors */
2861 restore_regulatory_settings(user_reset);
2862 }
2863
2864 kfree(rd);
2865 return r;
2866 }
2867
2868 /* This would make this whole thing pointless */
2869 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2870 return -EINVAL;
2871
2872 /* update all wiphys now with the new established regulatory domain */
2873 update_all_wiphy_regulatory(lr->initiator);
2874
2875 print_regdomain(get_cfg80211_regdom());
2876
2877 nl80211_send_reg_change_event(lr);
2878
2879 reg_set_request_processed();
2880
2881 return 0;
2882 }
2883
2884 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
2885 struct ieee80211_regdomain *rd)
2886 {
2887 const struct ieee80211_regdomain *regd;
2888 const struct ieee80211_regdomain *prev_regd;
2889 struct cfg80211_registered_device *rdev;
2890
2891 if (WARN_ON(!wiphy || !rd))
2892 return -EINVAL;
2893
2894 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
2895 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
2896 return -EPERM;
2897
2898 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
2899 print_regdomain_info(rd);
2900 return -EINVAL;
2901 }
2902
2903 regd = reg_copy_regd(rd);
2904 if (IS_ERR(regd))
2905 return PTR_ERR(regd);
2906
2907 rdev = wiphy_to_rdev(wiphy);
2908
2909 spin_lock(&reg_requests_lock);
2910 prev_regd = rdev->requested_regd;
2911 rdev->requested_regd = regd;
2912 spin_unlock(&reg_requests_lock);
2913
2914 kfree(prev_regd);
2915
2916 schedule_work(&reg_work);
2917 return 0;
2918 }
2919 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
2920
2921 void wiphy_regulatory_register(struct wiphy *wiphy)
2922 {
2923 struct regulatory_request *lr;
2924
2925 /* self-managed devices ignore external hints */
2926 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2927 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
2928 REGULATORY_COUNTRY_IE_IGNORE;
2929
2930 if (!reg_dev_ignore_cell_hint(wiphy))
2931 reg_num_devs_support_basehint++;
2932
2933 lr = get_last_request();
2934 wiphy_update_regulatory(wiphy, lr->initiator);
2935 }
2936
2937 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2938 {
2939 struct wiphy *request_wiphy = NULL;
2940 struct regulatory_request *lr;
2941
2942 lr = get_last_request();
2943
2944 if (!reg_dev_ignore_cell_hint(wiphy))
2945 reg_num_devs_support_basehint--;
2946
2947 rcu_free_regdom(get_wiphy_regdom(wiphy));
2948 RCU_INIT_POINTER(wiphy->regd, NULL);
2949
2950 if (lr)
2951 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2952
2953 if (!request_wiphy || request_wiphy != wiphy)
2954 return;
2955
2956 lr->wiphy_idx = WIPHY_IDX_INVALID;
2957 lr->country_ie_env = ENVIRON_ANY;
2958 }
2959
2960 static void reg_timeout_work(struct work_struct *work)
2961 {
2962 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2963 rtnl_lock();
2964 restore_regulatory_settings(true);
2965 rtnl_unlock();
2966 }
2967
2968 /*
2969 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
2970 * UNII band definitions
2971 */
2972 int cfg80211_get_unii(int freq)
2973 {
2974 /* UNII-1 */
2975 if (freq >= 5150 && freq <= 5250)
2976 return 0;
2977
2978 /* UNII-2A */
2979 if (freq > 5250 && freq <= 5350)
2980 return 1;
2981
2982 /* UNII-2B */
2983 if (freq > 5350 && freq <= 5470)
2984 return 2;
2985
2986 /* UNII-2C */
2987 if (freq > 5470 && freq <= 5725)
2988 return 3;
2989
2990 /* UNII-3 */
2991 if (freq > 5725 && freq <= 5825)
2992 return 4;
2993
2994 return -EINVAL;
2995 }
2996
2997 bool regulatory_indoor_allowed(void)
2998 {
2999 return reg_is_indoor;
3000 }
3001
3002 int __init regulatory_init(void)
3003 {
3004 int err = 0;
3005
3006 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3007 if (IS_ERR(reg_pdev))
3008 return PTR_ERR(reg_pdev);
3009
3010 spin_lock_init(&reg_requests_lock);
3011 spin_lock_init(&reg_pending_beacons_lock);
3012
3013 reg_regdb_size_check();
3014
3015 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3016
3017 user_alpha2[0] = '9';
3018 user_alpha2[1] = '7';
3019
3020 /* We always try to get an update for the static regdomain */
3021 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3022 if (err) {
3023 if (err == -ENOMEM)
3024 return err;
3025 /*
3026 * N.B. kobject_uevent_env() can fail mainly for when we're out
3027 * memory which is handled and propagated appropriately above
3028 * but it can also fail during a netlink_broadcast() or during
3029 * early boot for call_usermodehelper(). For now treat these
3030 * errors as non-fatal.
3031 */
3032 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3033 }
3034
3035 /*
3036 * Finally, if the user set the module parameter treat it
3037 * as a user hint.
3038 */
3039 if (!is_world_regdom(ieee80211_regdom))
3040 regulatory_hint_user(ieee80211_regdom,
3041 NL80211_USER_REG_HINT_USER);
3042
3043 return 0;
3044 }
3045
3046 void regulatory_exit(void)
3047 {
3048 struct regulatory_request *reg_request, *tmp;
3049 struct reg_beacon *reg_beacon, *btmp;
3050
3051 cancel_work_sync(&reg_work);
3052 cancel_delayed_work_sync(&reg_timeout);
3053 cancel_delayed_work_sync(&reg_check_chans);
3054
3055 /* Lock to suppress warnings */
3056 rtnl_lock();
3057 reset_regdomains(true, NULL);
3058 rtnl_unlock();
3059
3060 dev_set_uevent_suppress(&reg_pdev->dev, true);
3061
3062 platform_device_unregister(reg_pdev);
3063
3064 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3065 list_del(&reg_beacon->list);
3066 kfree(reg_beacon);
3067 }
3068
3069 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3070 list_del(&reg_beacon->list);
3071 kfree(reg_beacon);
3072 }
3073
3074 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3075 list_del(&reg_request->list);
3076 kfree(reg_request);
3077 }
3078 }