]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/wireless/reg.c
Merge tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20
21 /**
22 * DOC: Wireless regulatory infrastructure
23 *
24 * The usual implementation is for a driver to read a device EEPROM to
25 * determine which regulatory domain it should be operating under, then
26 * looking up the allowable channels in a driver-local table and finally
27 * registering those channels in the wiphy structure.
28 *
29 * Another set of compliance enforcement is for drivers to use their
30 * own compliance limits which can be stored on the EEPROM. The host
31 * driver or firmware may ensure these are used.
32 *
33 * In addition to all this we provide an extra layer of regulatory
34 * conformance. For drivers which do not have any regulatory
35 * information CRDA provides the complete regulatory solution.
36 * For others it provides a community effort on further restrictions
37 * to enhance compliance.
38 *
39 * Note: When number of rules --> infinity we will not be able to
40 * index on alpha2 any more, instead we'll probably have to
41 * rely on some SHA1 checksum of the regdomain for example.
42 *
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
56 #include "core.h"
57 #include "reg.h"
58 #include "regdb.h"
59 #include "nl80211.h"
60
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...) \
63 printk(KERN_DEBUG pr_fmt(format), ##args)
64 #else
65 #define REG_DBG_PRINT(args...)
66 #endif
67
68 enum reg_request_treatment {
69 REG_REQ_OK,
70 REG_REQ_IGNORE,
71 REG_REQ_INTERSECT,
72 REG_REQ_ALREADY_SET,
73 };
74
75 static struct regulatory_request core_request_world = {
76 .initiator = NL80211_REGDOM_SET_BY_CORE,
77 .alpha2[0] = '0',
78 .alpha2[1] = '0',
79 .intersect = false,
80 .processed = true,
81 .country_ie_env = ENVIRON_ANY,
82 };
83
84 /*
85 * Receipt of information from last regulatory request,
86 * protected by RTNL (and can be accessed with RCU protection)
87 */
88 static struct regulatory_request __rcu *last_request =
89 (void __rcu *)&core_request_world;
90
91 /* To trigger userspace events */
92 static struct platform_device *reg_pdev;
93
94 static struct device_type reg_device_type = {
95 .uevent = reg_device_uevent,
96 };
97
98 /*
99 * Central wireless core regulatory domains, we only need two,
100 * the current one and a world regulatory domain in case we have no
101 * information to give us an alpha2.
102 * (protected by RTNL, can be read under RCU)
103 */
104 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
105
106 /*
107 * Number of devices that registered to the core
108 * that support cellular base station regulatory hints
109 * (protected by RTNL)
110 */
111 static int reg_num_devs_support_basehint;
112
113 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
114 {
115 return rtnl_dereference(cfg80211_regdomain);
116 }
117
118 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
119 {
120 return rtnl_dereference(wiphy->regd);
121 }
122
123 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
124 {
125 if (!r)
126 return;
127 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
128 }
129
130 static struct regulatory_request *get_last_request(void)
131 {
132 return rcu_dereference_rtnl(last_request);
133 }
134
135 /* Used to queue up regulatory hints */
136 static LIST_HEAD(reg_requests_list);
137 static spinlock_t reg_requests_lock;
138
139 /* Used to queue up beacon hints for review */
140 static LIST_HEAD(reg_pending_beacons);
141 static spinlock_t reg_pending_beacons_lock;
142
143 /* Used to keep track of processed beacon hints */
144 static LIST_HEAD(reg_beacon_list);
145
146 struct reg_beacon {
147 struct list_head list;
148 struct ieee80211_channel chan;
149 };
150
151 static void reg_todo(struct work_struct *work);
152 static DECLARE_WORK(reg_work, reg_todo);
153
154 static void reg_timeout_work(struct work_struct *work);
155 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
156
157 /* We keep a static world regulatory domain in case of the absence of CRDA */
158 static const struct ieee80211_regdomain world_regdom = {
159 .n_reg_rules = 6,
160 .alpha2 = "00",
161 .reg_rules = {
162 /* IEEE 802.11b/g, channels 1..11 */
163 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
164 /* IEEE 802.11b/g, channels 12..13. */
165 REG_RULE(2467-10, 2472+10, 40, 6, 20,
166 NL80211_RRF_PASSIVE_SCAN |
167 NL80211_RRF_NO_IBSS),
168 /* IEEE 802.11 channel 14 - Only JP enables
169 * this and for 802.11b only */
170 REG_RULE(2484-10, 2484+10, 20, 6, 20,
171 NL80211_RRF_PASSIVE_SCAN |
172 NL80211_RRF_NO_IBSS |
173 NL80211_RRF_NO_OFDM),
174 /* IEEE 802.11a, channel 36..48 */
175 REG_RULE(5180-10, 5240+10, 80, 6, 20,
176 NL80211_RRF_PASSIVE_SCAN |
177 NL80211_RRF_NO_IBSS),
178
179 /* NB: 5260 MHz - 5700 MHz requires DFS */
180
181 /* IEEE 802.11a, channel 149..165 */
182 REG_RULE(5745-10, 5825+10, 80, 6, 20,
183 NL80211_RRF_PASSIVE_SCAN |
184 NL80211_RRF_NO_IBSS),
185
186 /* IEEE 802.11ad (60gHz), channels 1..3 */
187 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
188 }
189 };
190
191 /* protected by RTNL */
192 static const struct ieee80211_regdomain *cfg80211_world_regdom =
193 &world_regdom;
194
195 static char *ieee80211_regdom = "00";
196 static char user_alpha2[2];
197
198 module_param(ieee80211_regdom, charp, 0444);
199 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
200
201 static void reset_regdomains(bool full_reset,
202 const struct ieee80211_regdomain *new_regdom)
203 {
204 const struct ieee80211_regdomain *r;
205 struct regulatory_request *lr;
206
207 ASSERT_RTNL();
208
209 r = get_cfg80211_regdom();
210
211 /* avoid freeing static information or freeing something twice */
212 if (r == cfg80211_world_regdom)
213 r = NULL;
214 if (cfg80211_world_regdom == &world_regdom)
215 cfg80211_world_regdom = NULL;
216 if (r == &world_regdom)
217 r = NULL;
218
219 rcu_free_regdom(r);
220 rcu_free_regdom(cfg80211_world_regdom);
221
222 cfg80211_world_regdom = &world_regdom;
223 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
224
225 if (!full_reset)
226 return;
227
228 lr = get_last_request();
229 if (lr != &core_request_world && lr)
230 kfree_rcu(lr, rcu_head);
231 rcu_assign_pointer(last_request, &core_request_world);
232 }
233
234 /*
235 * Dynamic world regulatory domain requested by the wireless
236 * core upon initialization
237 */
238 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
239 {
240 struct regulatory_request *lr;
241
242 lr = get_last_request();
243
244 WARN_ON(!lr);
245
246 reset_regdomains(false, rd);
247
248 cfg80211_world_regdom = rd;
249 }
250
251 bool is_world_regdom(const char *alpha2)
252 {
253 if (!alpha2)
254 return false;
255 return alpha2[0] == '0' && alpha2[1] == '0';
256 }
257
258 static bool is_alpha2_set(const char *alpha2)
259 {
260 if (!alpha2)
261 return false;
262 return alpha2[0] && alpha2[1];
263 }
264
265 static bool is_unknown_alpha2(const char *alpha2)
266 {
267 if (!alpha2)
268 return false;
269 /*
270 * Special case where regulatory domain was built by driver
271 * but a specific alpha2 cannot be determined
272 */
273 return alpha2[0] == '9' && alpha2[1] == '9';
274 }
275
276 static bool is_intersected_alpha2(const char *alpha2)
277 {
278 if (!alpha2)
279 return false;
280 /*
281 * Special case where regulatory domain is the
282 * result of an intersection between two regulatory domain
283 * structures
284 */
285 return alpha2[0] == '9' && alpha2[1] == '8';
286 }
287
288 static bool is_an_alpha2(const char *alpha2)
289 {
290 if (!alpha2)
291 return false;
292 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
293 }
294
295 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
296 {
297 if (!alpha2_x || !alpha2_y)
298 return false;
299 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
300 }
301
302 static bool regdom_changes(const char *alpha2)
303 {
304 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
305
306 if (!r)
307 return true;
308 return !alpha2_equal(r->alpha2, alpha2);
309 }
310
311 /*
312 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
313 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
314 * has ever been issued.
315 */
316 static bool is_user_regdom_saved(void)
317 {
318 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
319 return false;
320
321 /* This would indicate a mistake on the design */
322 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
323 "Unexpected user alpha2: %c%c\n",
324 user_alpha2[0], user_alpha2[1]))
325 return false;
326
327 return true;
328 }
329
330 static const struct ieee80211_regdomain *
331 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
332 {
333 struct ieee80211_regdomain *regd;
334 int size_of_regd;
335 unsigned int i;
336
337 size_of_regd =
338 sizeof(struct ieee80211_regdomain) +
339 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
340
341 regd = kzalloc(size_of_regd, GFP_KERNEL);
342 if (!regd)
343 return ERR_PTR(-ENOMEM);
344
345 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
346
347 for (i = 0; i < src_regd->n_reg_rules; i++)
348 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
349 sizeof(struct ieee80211_reg_rule));
350
351 return regd;
352 }
353
354 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
355 struct reg_regdb_search_request {
356 char alpha2[2];
357 struct list_head list;
358 };
359
360 static LIST_HEAD(reg_regdb_search_list);
361 static DEFINE_MUTEX(reg_regdb_search_mutex);
362
363 static void reg_regdb_search(struct work_struct *work)
364 {
365 struct reg_regdb_search_request *request;
366 const struct ieee80211_regdomain *curdom, *regdom = NULL;
367 int i;
368
369 rtnl_lock();
370
371 mutex_lock(&reg_regdb_search_mutex);
372 while (!list_empty(&reg_regdb_search_list)) {
373 request = list_first_entry(&reg_regdb_search_list,
374 struct reg_regdb_search_request,
375 list);
376 list_del(&request->list);
377
378 for (i = 0; i < reg_regdb_size; i++) {
379 curdom = reg_regdb[i];
380
381 if (alpha2_equal(request->alpha2, curdom->alpha2)) {
382 regdom = reg_copy_regd(curdom);
383 break;
384 }
385 }
386
387 kfree(request);
388 }
389 mutex_unlock(&reg_regdb_search_mutex);
390
391 if (!IS_ERR_OR_NULL(regdom))
392 set_regdom(regdom);
393
394 rtnl_unlock();
395 }
396
397 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
398
399 static void reg_regdb_query(const char *alpha2)
400 {
401 struct reg_regdb_search_request *request;
402
403 if (!alpha2)
404 return;
405
406 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
407 if (!request)
408 return;
409
410 memcpy(request->alpha2, alpha2, 2);
411
412 mutex_lock(&reg_regdb_search_mutex);
413 list_add_tail(&request->list, &reg_regdb_search_list);
414 mutex_unlock(&reg_regdb_search_mutex);
415
416 schedule_work(&reg_regdb_work);
417 }
418
419 /* Feel free to add any other sanity checks here */
420 static void reg_regdb_size_check(void)
421 {
422 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
423 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
424 }
425 #else
426 static inline void reg_regdb_size_check(void) {}
427 static inline void reg_regdb_query(const char *alpha2) {}
428 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
429
430 /*
431 * This lets us keep regulatory code which is updated on a regulatory
432 * basis in userspace. Country information is filled in by
433 * reg_device_uevent
434 */
435 static int call_crda(const char *alpha2)
436 {
437 if (!is_world_regdom((char *) alpha2))
438 pr_info("Calling CRDA for country: %c%c\n",
439 alpha2[0], alpha2[1]);
440 else
441 pr_info("Calling CRDA to update world regulatory domain\n");
442
443 /* query internal regulatory database (if it exists) */
444 reg_regdb_query(alpha2);
445
446 return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
447 }
448
449 static bool reg_is_valid_request(const char *alpha2)
450 {
451 struct regulatory_request *lr = get_last_request();
452
453 if (!lr || lr->processed)
454 return false;
455
456 return alpha2_equal(lr->alpha2, alpha2);
457 }
458
459 /* Sanity check on a regulatory rule */
460 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
461 {
462 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
463 u32 freq_diff;
464
465 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
466 return false;
467
468 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
469 return false;
470
471 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
472
473 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
474 freq_range->max_bandwidth_khz > freq_diff)
475 return false;
476
477 return true;
478 }
479
480 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
481 {
482 const struct ieee80211_reg_rule *reg_rule = NULL;
483 unsigned int i;
484
485 if (!rd->n_reg_rules)
486 return false;
487
488 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
489 return false;
490
491 for (i = 0; i < rd->n_reg_rules; i++) {
492 reg_rule = &rd->reg_rules[i];
493 if (!is_valid_reg_rule(reg_rule))
494 return false;
495 }
496
497 return true;
498 }
499
500 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
501 u32 center_freq_khz, u32 bw_khz)
502 {
503 u32 start_freq_khz, end_freq_khz;
504
505 start_freq_khz = center_freq_khz - (bw_khz/2);
506 end_freq_khz = center_freq_khz + (bw_khz/2);
507
508 if (start_freq_khz >= freq_range->start_freq_khz &&
509 end_freq_khz <= freq_range->end_freq_khz)
510 return true;
511
512 return false;
513 }
514
515 /**
516 * freq_in_rule_band - tells us if a frequency is in a frequency band
517 * @freq_range: frequency rule we want to query
518 * @freq_khz: frequency we are inquiring about
519 *
520 * This lets us know if a specific frequency rule is or is not relevant to
521 * a specific frequency's band. Bands are device specific and artificial
522 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
523 * however it is safe for now to assume that a frequency rule should not be
524 * part of a frequency's band if the start freq or end freq are off by more
525 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
526 * 60 GHz band.
527 * This resolution can be lowered and should be considered as we add
528 * regulatory rule support for other "bands".
529 **/
530 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
531 u32 freq_khz)
532 {
533 #define ONE_GHZ_IN_KHZ 1000000
534 /*
535 * From 802.11ad: directional multi-gigabit (DMG):
536 * Pertaining to operation in a frequency band containing a channel
537 * with the Channel starting frequency above 45 GHz.
538 */
539 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
540 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
541 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
542 return true;
543 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
544 return true;
545 return false;
546 #undef ONE_GHZ_IN_KHZ
547 }
548
549 /*
550 * Helper for regdom_intersect(), this does the real
551 * mathematical intersection fun
552 */
553 static int reg_rules_intersect(const struct ieee80211_reg_rule *rule1,
554 const struct ieee80211_reg_rule *rule2,
555 struct ieee80211_reg_rule *intersected_rule)
556 {
557 const struct ieee80211_freq_range *freq_range1, *freq_range2;
558 struct ieee80211_freq_range *freq_range;
559 const struct ieee80211_power_rule *power_rule1, *power_rule2;
560 struct ieee80211_power_rule *power_rule;
561 u32 freq_diff;
562
563 freq_range1 = &rule1->freq_range;
564 freq_range2 = &rule2->freq_range;
565 freq_range = &intersected_rule->freq_range;
566
567 power_rule1 = &rule1->power_rule;
568 power_rule2 = &rule2->power_rule;
569 power_rule = &intersected_rule->power_rule;
570
571 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
572 freq_range2->start_freq_khz);
573 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
574 freq_range2->end_freq_khz);
575 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
576 freq_range2->max_bandwidth_khz);
577
578 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
579 if (freq_range->max_bandwidth_khz > freq_diff)
580 freq_range->max_bandwidth_khz = freq_diff;
581
582 power_rule->max_eirp = min(power_rule1->max_eirp,
583 power_rule2->max_eirp);
584 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
585 power_rule2->max_antenna_gain);
586
587 intersected_rule->flags = rule1->flags | rule2->flags;
588
589 if (!is_valid_reg_rule(intersected_rule))
590 return -EINVAL;
591
592 return 0;
593 }
594
595 /**
596 * regdom_intersect - do the intersection between two regulatory domains
597 * @rd1: first regulatory domain
598 * @rd2: second regulatory domain
599 *
600 * Use this function to get the intersection between two regulatory domains.
601 * Once completed we will mark the alpha2 for the rd as intersected, "98",
602 * as no one single alpha2 can represent this regulatory domain.
603 *
604 * Returns a pointer to the regulatory domain structure which will hold the
605 * resulting intersection of rules between rd1 and rd2. We will
606 * kzalloc() this structure for you.
607 */
608 static struct ieee80211_regdomain *
609 regdom_intersect(const struct ieee80211_regdomain *rd1,
610 const struct ieee80211_regdomain *rd2)
611 {
612 int r, size_of_regd;
613 unsigned int x, y;
614 unsigned int num_rules = 0, rule_idx = 0;
615 const struct ieee80211_reg_rule *rule1, *rule2;
616 struct ieee80211_reg_rule *intersected_rule;
617 struct ieee80211_regdomain *rd;
618 /* This is just a dummy holder to help us count */
619 struct ieee80211_reg_rule dummy_rule;
620
621 if (!rd1 || !rd2)
622 return NULL;
623
624 /*
625 * First we get a count of the rules we'll need, then we actually
626 * build them. This is to so we can malloc() and free() a
627 * regdomain once. The reason we use reg_rules_intersect() here
628 * is it will return -EINVAL if the rule computed makes no sense.
629 * All rules that do check out OK are valid.
630 */
631
632 for (x = 0; x < rd1->n_reg_rules; x++) {
633 rule1 = &rd1->reg_rules[x];
634 for (y = 0; y < rd2->n_reg_rules; y++) {
635 rule2 = &rd2->reg_rules[y];
636 if (!reg_rules_intersect(rule1, rule2, &dummy_rule))
637 num_rules++;
638 }
639 }
640
641 if (!num_rules)
642 return NULL;
643
644 size_of_regd = sizeof(struct ieee80211_regdomain) +
645 num_rules * sizeof(struct ieee80211_reg_rule);
646
647 rd = kzalloc(size_of_regd, GFP_KERNEL);
648 if (!rd)
649 return NULL;
650
651 for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
652 rule1 = &rd1->reg_rules[x];
653 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
654 rule2 = &rd2->reg_rules[y];
655 /*
656 * This time around instead of using the stack lets
657 * write to the target rule directly saving ourselves
658 * a memcpy()
659 */
660 intersected_rule = &rd->reg_rules[rule_idx];
661 r = reg_rules_intersect(rule1, rule2, intersected_rule);
662 /*
663 * No need to memset here the intersected rule here as
664 * we're not using the stack anymore
665 */
666 if (r)
667 continue;
668 rule_idx++;
669 }
670 }
671
672 if (rule_idx != num_rules) {
673 kfree(rd);
674 return NULL;
675 }
676
677 rd->n_reg_rules = num_rules;
678 rd->alpha2[0] = '9';
679 rd->alpha2[1] = '8';
680
681 return rd;
682 }
683
684 /*
685 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
686 * want to just have the channel structure use these
687 */
688 static u32 map_regdom_flags(u32 rd_flags)
689 {
690 u32 channel_flags = 0;
691 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
692 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
693 if (rd_flags & NL80211_RRF_NO_IBSS)
694 channel_flags |= IEEE80211_CHAN_NO_IBSS;
695 if (rd_flags & NL80211_RRF_DFS)
696 channel_flags |= IEEE80211_CHAN_RADAR;
697 if (rd_flags & NL80211_RRF_NO_OFDM)
698 channel_flags |= IEEE80211_CHAN_NO_OFDM;
699 return channel_flags;
700 }
701
702 static const struct ieee80211_reg_rule *
703 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
704 const struct ieee80211_regdomain *regd)
705 {
706 int i;
707 bool band_rule_found = false;
708 bool bw_fits = false;
709
710 if (!regd)
711 return ERR_PTR(-EINVAL);
712
713 for (i = 0; i < regd->n_reg_rules; i++) {
714 const struct ieee80211_reg_rule *rr;
715 const struct ieee80211_freq_range *fr = NULL;
716
717 rr = &regd->reg_rules[i];
718 fr = &rr->freq_range;
719
720 /*
721 * We only need to know if one frequency rule was
722 * was in center_freq's band, that's enough, so lets
723 * not overwrite it once found
724 */
725 if (!band_rule_found)
726 band_rule_found = freq_in_rule_band(fr, center_freq);
727
728 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
729
730 if (band_rule_found && bw_fits)
731 return rr;
732 }
733
734 if (!band_rule_found)
735 return ERR_PTR(-ERANGE);
736
737 return ERR_PTR(-EINVAL);
738 }
739
740 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
741 u32 center_freq)
742 {
743 const struct ieee80211_regdomain *regd;
744 struct regulatory_request *lr = get_last_request();
745
746 /*
747 * Follow the driver's regulatory domain, if present, unless a country
748 * IE has been processed or a user wants to help complaince further
749 */
750 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
751 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
752 wiphy->regd)
753 regd = get_wiphy_regdom(wiphy);
754 else
755 regd = get_cfg80211_regdom();
756
757 return freq_reg_info_regd(wiphy, center_freq, regd);
758 }
759 EXPORT_SYMBOL(freq_reg_info);
760
761 #ifdef CONFIG_CFG80211_REG_DEBUG
762 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
763 {
764 switch (initiator) {
765 case NL80211_REGDOM_SET_BY_CORE:
766 return "Set by core";
767 case NL80211_REGDOM_SET_BY_USER:
768 return "Set by user";
769 case NL80211_REGDOM_SET_BY_DRIVER:
770 return "Set by driver";
771 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
772 return "Set by country IE";
773 default:
774 WARN_ON(1);
775 return "Set by bug";
776 }
777 }
778
779 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
780 const struct ieee80211_reg_rule *reg_rule)
781 {
782 const struct ieee80211_power_rule *power_rule;
783 const struct ieee80211_freq_range *freq_range;
784 char max_antenna_gain[32];
785
786 power_rule = &reg_rule->power_rule;
787 freq_range = &reg_rule->freq_range;
788
789 if (!power_rule->max_antenna_gain)
790 snprintf(max_antenna_gain, 32, "N/A");
791 else
792 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
793
794 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
795 chan->center_freq);
796
797 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
798 freq_range->start_freq_khz, freq_range->end_freq_khz,
799 freq_range->max_bandwidth_khz, max_antenna_gain,
800 power_rule->max_eirp);
801 }
802 #else
803 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
804 const struct ieee80211_reg_rule *reg_rule)
805 {
806 return;
807 }
808 #endif
809
810 /*
811 * Note that right now we assume the desired channel bandwidth
812 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
813 * per channel, the primary and the extension channel).
814 */
815 static void handle_channel(struct wiphy *wiphy,
816 enum nl80211_reg_initiator initiator,
817 struct ieee80211_channel *chan)
818 {
819 u32 flags, bw_flags = 0;
820 const struct ieee80211_reg_rule *reg_rule = NULL;
821 const struct ieee80211_power_rule *power_rule = NULL;
822 const struct ieee80211_freq_range *freq_range = NULL;
823 struct wiphy *request_wiphy = NULL;
824 struct regulatory_request *lr = get_last_request();
825
826 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
827
828 flags = chan->orig_flags;
829
830 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
831 if (IS_ERR(reg_rule)) {
832 /*
833 * We will disable all channels that do not match our
834 * received regulatory rule unless the hint is coming
835 * from a Country IE and the Country IE had no information
836 * about a band. The IEEE 802.11 spec allows for an AP
837 * to send only a subset of the regulatory rules allowed,
838 * so an AP in the US that only supports 2.4 GHz may only send
839 * a country IE with information for the 2.4 GHz band
840 * while 5 GHz is still supported.
841 */
842 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
843 PTR_ERR(reg_rule) == -ERANGE)
844 return;
845
846 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
847 chan->flags |= IEEE80211_CHAN_DISABLED;
848 return;
849 }
850
851 chan_reg_rule_print_dbg(chan, reg_rule);
852
853 power_rule = &reg_rule->power_rule;
854 freq_range = &reg_rule->freq_range;
855
856 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
857 bw_flags = IEEE80211_CHAN_NO_HT40;
858 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80))
859 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
860 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160))
861 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
862
863 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
864 request_wiphy && request_wiphy == wiphy &&
865 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
866 /*
867 * This guarantees the driver's requested regulatory domain
868 * will always be used as a base for further regulatory
869 * settings
870 */
871 chan->flags = chan->orig_flags =
872 map_regdom_flags(reg_rule->flags) | bw_flags;
873 chan->max_antenna_gain = chan->orig_mag =
874 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
875 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
876 (int) MBM_TO_DBM(power_rule->max_eirp);
877 return;
878 }
879
880 chan->dfs_state = NL80211_DFS_USABLE;
881 chan->dfs_state_entered = jiffies;
882
883 chan->beacon_found = false;
884 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
885 chan->max_antenna_gain =
886 min_t(int, chan->orig_mag,
887 MBI_TO_DBI(power_rule->max_antenna_gain));
888 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
889 if (chan->orig_mpwr) {
890 /*
891 * Devices that have their own custom regulatory domain
892 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
893 * passed country IE power settings.
894 */
895 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
896 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
897 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
898 chan->max_power = chan->max_reg_power;
899 else
900 chan->max_power = min(chan->orig_mpwr,
901 chan->max_reg_power);
902 } else
903 chan->max_power = chan->max_reg_power;
904 }
905
906 static void handle_band(struct wiphy *wiphy,
907 enum nl80211_reg_initiator initiator,
908 struct ieee80211_supported_band *sband)
909 {
910 unsigned int i;
911
912 if (!sband)
913 return;
914
915 for (i = 0; i < sband->n_channels; i++)
916 handle_channel(wiphy, initiator, &sband->channels[i]);
917 }
918
919 static bool reg_request_cell_base(struct regulatory_request *request)
920 {
921 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
922 return false;
923 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
924 }
925
926 bool reg_last_request_cell_base(void)
927 {
928 return reg_request_cell_base(get_last_request());
929 }
930
931 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
932 /* Core specific check */
933 static enum reg_request_treatment
934 reg_ignore_cell_hint(struct regulatory_request *pending_request)
935 {
936 struct regulatory_request *lr = get_last_request();
937
938 if (!reg_num_devs_support_basehint)
939 return REG_REQ_IGNORE;
940
941 if (reg_request_cell_base(lr) &&
942 !regdom_changes(pending_request->alpha2))
943 return REG_REQ_ALREADY_SET;
944
945 return REG_REQ_OK;
946 }
947
948 /* Device specific check */
949 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
950 {
951 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
952 }
953 #else
954 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
955 {
956 return REG_REQ_IGNORE;
957 }
958
959 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
960 {
961 return true;
962 }
963 #endif
964
965
966 static bool ignore_reg_update(struct wiphy *wiphy,
967 enum nl80211_reg_initiator initiator)
968 {
969 struct regulatory_request *lr = get_last_request();
970
971 if (!lr) {
972 REG_DBG_PRINT("Ignoring regulatory request %s since last_request is not set\n",
973 reg_initiator_name(initiator));
974 return true;
975 }
976
977 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
978 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
979 REG_DBG_PRINT("Ignoring regulatory request %s since the driver uses its own custom regulatory domain\n",
980 reg_initiator_name(initiator));
981 return true;
982 }
983
984 /*
985 * wiphy->regd will be set once the device has its own
986 * desired regulatory domain set
987 */
988 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
989 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
990 !is_world_regdom(lr->alpha2)) {
991 REG_DBG_PRINT("Ignoring regulatory request %s since the driver requires its own regulatory domain to be set first\n",
992 reg_initiator_name(initiator));
993 return true;
994 }
995
996 if (reg_request_cell_base(lr))
997 return reg_dev_ignore_cell_hint(wiphy);
998
999 return false;
1000 }
1001
1002 static bool reg_is_world_roaming(struct wiphy *wiphy)
1003 {
1004 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1005 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1006 struct regulatory_request *lr = get_last_request();
1007
1008 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1009 return true;
1010
1011 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1012 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1013 return true;
1014
1015 return false;
1016 }
1017
1018 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1019 struct reg_beacon *reg_beacon)
1020 {
1021 struct ieee80211_supported_band *sband;
1022 struct ieee80211_channel *chan;
1023 bool channel_changed = false;
1024 struct ieee80211_channel chan_before;
1025
1026 sband = wiphy->bands[reg_beacon->chan.band];
1027 chan = &sband->channels[chan_idx];
1028
1029 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1030 return;
1031
1032 if (chan->beacon_found)
1033 return;
1034
1035 chan->beacon_found = true;
1036
1037 if (!reg_is_world_roaming(wiphy))
1038 return;
1039
1040 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1041 return;
1042
1043 chan_before.center_freq = chan->center_freq;
1044 chan_before.flags = chan->flags;
1045
1046 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1047 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1048 channel_changed = true;
1049 }
1050
1051 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1052 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1053 channel_changed = true;
1054 }
1055
1056 if (channel_changed)
1057 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1058 }
1059
1060 /*
1061 * Called when a scan on a wiphy finds a beacon on
1062 * new channel
1063 */
1064 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1065 struct reg_beacon *reg_beacon)
1066 {
1067 unsigned int i;
1068 struct ieee80211_supported_band *sband;
1069
1070 if (!wiphy->bands[reg_beacon->chan.band])
1071 return;
1072
1073 sband = wiphy->bands[reg_beacon->chan.band];
1074
1075 for (i = 0; i < sband->n_channels; i++)
1076 handle_reg_beacon(wiphy, i, reg_beacon);
1077 }
1078
1079 /*
1080 * Called upon reg changes or a new wiphy is added
1081 */
1082 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1083 {
1084 unsigned int i;
1085 struct ieee80211_supported_band *sband;
1086 struct reg_beacon *reg_beacon;
1087
1088 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1089 if (!wiphy->bands[reg_beacon->chan.band])
1090 continue;
1091 sband = wiphy->bands[reg_beacon->chan.band];
1092 for (i = 0; i < sband->n_channels; i++)
1093 handle_reg_beacon(wiphy, i, reg_beacon);
1094 }
1095 }
1096
1097 /* Reap the advantages of previously found beacons */
1098 static void reg_process_beacons(struct wiphy *wiphy)
1099 {
1100 /*
1101 * Means we are just firing up cfg80211, so no beacons would
1102 * have been processed yet.
1103 */
1104 if (!last_request)
1105 return;
1106 wiphy_update_beacon_reg(wiphy);
1107 }
1108
1109 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1110 {
1111 if (!chan)
1112 return false;
1113 if (chan->flags & IEEE80211_CHAN_DISABLED)
1114 return false;
1115 /* This would happen when regulatory rules disallow HT40 completely */
1116 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1117 return false;
1118 return true;
1119 }
1120
1121 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1122 struct ieee80211_channel *channel)
1123 {
1124 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1125 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1126 unsigned int i;
1127
1128 if (!is_ht40_allowed(channel)) {
1129 channel->flags |= IEEE80211_CHAN_NO_HT40;
1130 return;
1131 }
1132
1133 /*
1134 * We need to ensure the extension channels exist to
1135 * be able to use HT40- or HT40+, this finds them (or not)
1136 */
1137 for (i = 0; i < sband->n_channels; i++) {
1138 struct ieee80211_channel *c = &sband->channels[i];
1139
1140 if (c->center_freq == (channel->center_freq - 20))
1141 channel_before = c;
1142 if (c->center_freq == (channel->center_freq + 20))
1143 channel_after = c;
1144 }
1145
1146 /*
1147 * Please note that this assumes target bandwidth is 20 MHz,
1148 * if that ever changes we also need to change the below logic
1149 * to include that as well.
1150 */
1151 if (!is_ht40_allowed(channel_before))
1152 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1153 else
1154 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1155
1156 if (!is_ht40_allowed(channel_after))
1157 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1158 else
1159 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1160 }
1161
1162 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1163 struct ieee80211_supported_band *sband)
1164 {
1165 unsigned int i;
1166
1167 if (!sband)
1168 return;
1169
1170 for (i = 0; i < sband->n_channels; i++)
1171 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1172 }
1173
1174 static void reg_process_ht_flags(struct wiphy *wiphy)
1175 {
1176 enum ieee80211_band band;
1177
1178 if (!wiphy)
1179 return;
1180
1181 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1182 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1183 }
1184
1185 static void wiphy_update_regulatory(struct wiphy *wiphy,
1186 enum nl80211_reg_initiator initiator)
1187 {
1188 enum ieee80211_band band;
1189 struct regulatory_request *lr = get_last_request();
1190
1191 if (ignore_reg_update(wiphy, initiator))
1192 return;
1193
1194 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1195
1196 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1197 handle_band(wiphy, initiator, wiphy->bands[band]);
1198
1199 reg_process_beacons(wiphy);
1200 reg_process_ht_flags(wiphy);
1201
1202 if (wiphy->reg_notifier)
1203 wiphy->reg_notifier(wiphy, lr);
1204 }
1205
1206 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1207 {
1208 struct cfg80211_registered_device *rdev;
1209 struct wiphy *wiphy;
1210
1211 ASSERT_RTNL();
1212
1213 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1214 wiphy = &rdev->wiphy;
1215 wiphy_update_regulatory(wiphy, initiator);
1216 /*
1217 * Regulatory updates set by CORE are ignored for custom
1218 * regulatory cards. Let us notify the changes to the driver,
1219 * as some drivers used this to restore its orig_* reg domain.
1220 */
1221 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1222 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1223 wiphy->reg_notifier)
1224 wiphy->reg_notifier(wiphy, get_last_request());
1225 }
1226 }
1227
1228 static void handle_channel_custom(struct wiphy *wiphy,
1229 struct ieee80211_channel *chan,
1230 const struct ieee80211_regdomain *regd)
1231 {
1232 u32 bw_flags = 0;
1233 const struct ieee80211_reg_rule *reg_rule = NULL;
1234 const struct ieee80211_power_rule *power_rule = NULL;
1235 const struct ieee80211_freq_range *freq_range = NULL;
1236
1237 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1238 regd);
1239
1240 if (IS_ERR(reg_rule)) {
1241 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1242 chan->center_freq);
1243 chan->flags = IEEE80211_CHAN_DISABLED;
1244 return;
1245 }
1246
1247 chan_reg_rule_print_dbg(chan, reg_rule);
1248
1249 power_rule = &reg_rule->power_rule;
1250 freq_range = &reg_rule->freq_range;
1251
1252 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1253 bw_flags = IEEE80211_CHAN_NO_HT40;
1254 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80))
1255 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1256 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160))
1257 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1258
1259 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1260 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1261 chan->max_reg_power = chan->max_power =
1262 (int) MBM_TO_DBM(power_rule->max_eirp);
1263 }
1264
1265 static void handle_band_custom(struct wiphy *wiphy,
1266 struct ieee80211_supported_band *sband,
1267 const struct ieee80211_regdomain *regd)
1268 {
1269 unsigned int i;
1270
1271 if (!sband)
1272 return;
1273
1274 for (i = 0; i < sband->n_channels; i++)
1275 handle_channel_custom(wiphy, &sband->channels[i], regd);
1276 }
1277
1278 /* Used by drivers prior to wiphy registration */
1279 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1280 const struct ieee80211_regdomain *regd)
1281 {
1282 enum ieee80211_band band;
1283 unsigned int bands_set = 0;
1284
1285 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1286 if (!wiphy->bands[band])
1287 continue;
1288 handle_band_custom(wiphy, wiphy->bands[band], regd);
1289 bands_set++;
1290 }
1291
1292 /*
1293 * no point in calling this if it won't have any effect
1294 * on your device's supported bands.
1295 */
1296 WARN_ON(!bands_set);
1297 }
1298 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1299
1300 /* This has the logic which determines when a new request
1301 * should be ignored. */
1302 static enum reg_request_treatment
1303 get_reg_request_treatment(struct wiphy *wiphy,
1304 struct regulatory_request *pending_request)
1305 {
1306 struct wiphy *last_wiphy = NULL;
1307 struct regulatory_request *lr = get_last_request();
1308
1309 /* All initial requests are respected */
1310 if (!lr)
1311 return REG_REQ_OK;
1312
1313 switch (pending_request->initiator) {
1314 case NL80211_REGDOM_SET_BY_CORE:
1315 return REG_REQ_OK;
1316 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1317 if (reg_request_cell_base(lr)) {
1318 /* Trust a Cell base station over the AP's country IE */
1319 if (regdom_changes(pending_request->alpha2))
1320 return REG_REQ_IGNORE;
1321 return REG_REQ_ALREADY_SET;
1322 }
1323
1324 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1325
1326 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1327 return -EINVAL;
1328 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1329 if (last_wiphy != wiphy) {
1330 /*
1331 * Two cards with two APs claiming different
1332 * Country IE alpha2s. We could
1333 * intersect them, but that seems unlikely
1334 * to be correct. Reject second one for now.
1335 */
1336 if (regdom_changes(pending_request->alpha2))
1337 return REG_REQ_IGNORE;
1338 return REG_REQ_ALREADY_SET;
1339 }
1340 /*
1341 * Two consecutive Country IE hints on the same wiphy.
1342 * This should be picked up early by the driver/stack
1343 */
1344 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1345 return REG_REQ_OK;
1346 return REG_REQ_ALREADY_SET;
1347 }
1348 return REG_REQ_OK;
1349 case NL80211_REGDOM_SET_BY_DRIVER:
1350 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1351 if (regdom_changes(pending_request->alpha2))
1352 return REG_REQ_OK;
1353 return REG_REQ_ALREADY_SET;
1354 }
1355
1356 /*
1357 * This would happen if you unplug and plug your card
1358 * back in or if you add a new device for which the previously
1359 * loaded card also agrees on the regulatory domain.
1360 */
1361 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1362 !regdom_changes(pending_request->alpha2))
1363 return REG_REQ_ALREADY_SET;
1364
1365 return REG_REQ_INTERSECT;
1366 case NL80211_REGDOM_SET_BY_USER:
1367 if (reg_request_cell_base(pending_request))
1368 return reg_ignore_cell_hint(pending_request);
1369
1370 if (reg_request_cell_base(lr))
1371 return REG_REQ_IGNORE;
1372
1373 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1374 return REG_REQ_INTERSECT;
1375 /*
1376 * If the user knows better the user should set the regdom
1377 * to their country before the IE is picked up
1378 */
1379 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1380 lr->intersect)
1381 return REG_REQ_IGNORE;
1382 /*
1383 * Process user requests only after previous user/driver/core
1384 * requests have been processed
1385 */
1386 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1387 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1388 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1389 regdom_changes(lr->alpha2))
1390 return REG_REQ_IGNORE;
1391
1392 if (!regdom_changes(pending_request->alpha2))
1393 return REG_REQ_ALREADY_SET;
1394
1395 return REG_REQ_OK;
1396 }
1397
1398 return REG_REQ_IGNORE;
1399 }
1400
1401 static void reg_set_request_processed(void)
1402 {
1403 bool need_more_processing = false;
1404 struct regulatory_request *lr = get_last_request();
1405
1406 lr->processed = true;
1407
1408 spin_lock(&reg_requests_lock);
1409 if (!list_empty(&reg_requests_list))
1410 need_more_processing = true;
1411 spin_unlock(&reg_requests_lock);
1412
1413 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1414 cancel_delayed_work(&reg_timeout);
1415
1416 if (need_more_processing)
1417 schedule_work(&reg_work);
1418 }
1419
1420 /**
1421 * __regulatory_hint - hint to the wireless core a regulatory domain
1422 * @wiphy: if the hint comes from country information from an AP, this
1423 * is required to be set to the wiphy that received the information
1424 * @pending_request: the regulatory request currently being processed
1425 *
1426 * The Wireless subsystem can use this function to hint to the wireless core
1427 * what it believes should be the current regulatory domain.
1428 *
1429 * Returns one of the different reg request treatment values.
1430 */
1431 static enum reg_request_treatment
1432 __regulatory_hint(struct wiphy *wiphy,
1433 struct regulatory_request *pending_request)
1434 {
1435 const struct ieee80211_regdomain *regd;
1436 bool intersect = false;
1437 enum reg_request_treatment treatment;
1438 struct regulatory_request *lr;
1439
1440 treatment = get_reg_request_treatment(wiphy, pending_request);
1441
1442 switch (treatment) {
1443 case REG_REQ_INTERSECT:
1444 if (pending_request->initiator ==
1445 NL80211_REGDOM_SET_BY_DRIVER) {
1446 regd = reg_copy_regd(get_cfg80211_regdom());
1447 if (IS_ERR(regd)) {
1448 kfree(pending_request);
1449 return PTR_ERR(regd);
1450 }
1451 rcu_assign_pointer(wiphy->regd, regd);
1452 }
1453 intersect = true;
1454 break;
1455 case REG_REQ_OK:
1456 break;
1457 default:
1458 /*
1459 * If the regulatory domain being requested by the
1460 * driver has already been set just copy it to the
1461 * wiphy
1462 */
1463 if (treatment == REG_REQ_ALREADY_SET &&
1464 pending_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) {
1465 regd = reg_copy_regd(get_cfg80211_regdom());
1466 if (IS_ERR(regd)) {
1467 kfree(pending_request);
1468 return REG_REQ_IGNORE;
1469 }
1470 treatment = REG_REQ_ALREADY_SET;
1471 rcu_assign_pointer(wiphy->regd, regd);
1472 goto new_request;
1473 }
1474 kfree(pending_request);
1475 return treatment;
1476 }
1477
1478 new_request:
1479 lr = get_last_request();
1480 if (lr != &core_request_world && lr)
1481 kfree_rcu(lr, rcu_head);
1482
1483 pending_request->intersect = intersect;
1484 pending_request->processed = false;
1485 rcu_assign_pointer(last_request, pending_request);
1486 lr = pending_request;
1487
1488 pending_request = NULL;
1489
1490 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) {
1491 user_alpha2[0] = lr->alpha2[0];
1492 user_alpha2[1] = lr->alpha2[1];
1493 }
1494
1495 /* When r == REG_REQ_INTERSECT we do need to call CRDA */
1496 if (treatment != REG_REQ_OK && treatment != REG_REQ_INTERSECT) {
1497 /*
1498 * Since CRDA will not be called in this case as we already
1499 * have applied the requested regulatory domain before we just
1500 * inform userspace we have processed the request
1501 */
1502 if (treatment == REG_REQ_ALREADY_SET) {
1503 nl80211_send_reg_change_event(lr);
1504 reg_set_request_processed();
1505 }
1506 return treatment;
1507 }
1508
1509 if (call_crda(lr->alpha2))
1510 return REG_REQ_IGNORE;
1511 return REG_REQ_OK;
1512 }
1513
1514 /* This processes *all* regulatory hints */
1515 static void reg_process_hint(struct regulatory_request *reg_request,
1516 enum nl80211_reg_initiator reg_initiator)
1517 {
1518 struct wiphy *wiphy = NULL;
1519
1520 if (WARN_ON(!reg_request->alpha2))
1521 return;
1522
1523 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1524 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1525
1526 if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER && !wiphy) {
1527 kfree(reg_request);
1528 return;
1529 }
1530
1531 switch (__regulatory_hint(wiphy, reg_request)) {
1532 case REG_REQ_ALREADY_SET:
1533 /* This is required so that the orig_* parameters are saved */
1534 if (wiphy && wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1535 wiphy_update_regulatory(wiphy, reg_initiator);
1536 break;
1537 default:
1538 if (reg_initiator == NL80211_REGDOM_SET_BY_USER)
1539 schedule_delayed_work(&reg_timeout,
1540 msecs_to_jiffies(3142));
1541 break;
1542 }
1543 }
1544
1545 /*
1546 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1547 * Regulatory hints come on a first come first serve basis and we
1548 * must process each one atomically.
1549 */
1550 static void reg_process_pending_hints(void)
1551 {
1552 struct regulatory_request *reg_request, *lr;
1553
1554 lr = get_last_request();
1555
1556 /* When last_request->processed becomes true this will be rescheduled */
1557 if (lr && !lr->processed) {
1558 REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n");
1559 return;
1560 }
1561
1562 spin_lock(&reg_requests_lock);
1563
1564 if (list_empty(&reg_requests_list)) {
1565 spin_unlock(&reg_requests_lock);
1566 return;
1567 }
1568
1569 reg_request = list_first_entry(&reg_requests_list,
1570 struct regulatory_request,
1571 list);
1572 list_del_init(&reg_request->list);
1573
1574 spin_unlock(&reg_requests_lock);
1575
1576 reg_process_hint(reg_request, reg_request->initiator);
1577 }
1578
1579 /* Processes beacon hints -- this has nothing to do with country IEs */
1580 static void reg_process_pending_beacon_hints(void)
1581 {
1582 struct cfg80211_registered_device *rdev;
1583 struct reg_beacon *pending_beacon, *tmp;
1584
1585 /* This goes through the _pending_ beacon list */
1586 spin_lock_bh(&reg_pending_beacons_lock);
1587
1588 list_for_each_entry_safe(pending_beacon, tmp,
1589 &reg_pending_beacons, list) {
1590 list_del_init(&pending_beacon->list);
1591
1592 /* Applies the beacon hint to current wiphys */
1593 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1594 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1595
1596 /* Remembers the beacon hint for new wiphys or reg changes */
1597 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1598 }
1599
1600 spin_unlock_bh(&reg_pending_beacons_lock);
1601 }
1602
1603 static void reg_todo(struct work_struct *work)
1604 {
1605 rtnl_lock();
1606 reg_process_pending_hints();
1607 reg_process_pending_beacon_hints();
1608 rtnl_unlock();
1609 }
1610
1611 static void queue_regulatory_request(struct regulatory_request *request)
1612 {
1613 request->alpha2[0] = toupper(request->alpha2[0]);
1614 request->alpha2[1] = toupper(request->alpha2[1]);
1615
1616 spin_lock(&reg_requests_lock);
1617 list_add_tail(&request->list, &reg_requests_list);
1618 spin_unlock(&reg_requests_lock);
1619
1620 schedule_work(&reg_work);
1621 }
1622
1623 /*
1624 * Core regulatory hint -- happens during cfg80211_init()
1625 * and when we restore regulatory settings.
1626 */
1627 static int regulatory_hint_core(const char *alpha2)
1628 {
1629 struct regulatory_request *request;
1630
1631 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1632 if (!request)
1633 return -ENOMEM;
1634
1635 request->alpha2[0] = alpha2[0];
1636 request->alpha2[1] = alpha2[1];
1637 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1638
1639 queue_regulatory_request(request);
1640
1641 return 0;
1642 }
1643
1644 /* User hints */
1645 int regulatory_hint_user(const char *alpha2,
1646 enum nl80211_user_reg_hint_type user_reg_hint_type)
1647 {
1648 struct regulatory_request *request;
1649
1650 if (WARN_ON(!alpha2))
1651 return -EINVAL;
1652
1653 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1654 if (!request)
1655 return -ENOMEM;
1656
1657 request->wiphy_idx = WIPHY_IDX_INVALID;
1658 request->alpha2[0] = alpha2[0];
1659 request->alpha2[1] = alpha2[1];
1660 request->initiator = NL80211_REGDOM_SET_BY_USER;
1661 request->user_reg_hint_type = user_reg_hint_type;
1662
1663 queue_regulatory_request(request);
1664
1665 return 0;
1666 }
1667
1668 /* Driver hints */
1669 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1670 {
1671 struct regulatory_request *request;
1672
1673 if (WARN_ON(!alpha2 || !wiphy))
1674 return -EINVAL;
1675
1676 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1677 if (!request)
1678 return -ENOMEM;
1679
1680 request->wiphy_idx = get_wiphy_idx(wiphy);
1681
1682 request->alpha2[0] = alpha2[0];
1683 request->alpha2[1] = alpha2[1];
1684 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1685
1686 queue_regulatory_request(request);
1687
1688 return 0;
1689 }
1690 EXPORT_SYMBOL(regulatory_hint);
1691
1692 void regulatory_hint_11d(struct wiphy *wiphy, enum ieee80211_band band,
1693 const u8 *country_ie, u8 country_ie_len)
1694 {
1695 char alpha2[2];
1696 enum environment_cap env = ENVIRON_ANY;
1697 struct regulatory_request *request = NULL, *lr;
1698
1699 /* IE len must be evenly divisible by 2 */
1700 if (country_ie_len & 0x01)
1701 return;
1702
1703 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1704 return;
1705
1706 request = kzalloc(sizeof(*request), GFP_KERNEL);
1707 if (!request)
1708 return;
1709
1710 alpha2[0] = country_ie[0];
1711 alpha2[1] = country_ie[1];
1712
1713 if (country_ie[2] == 'I')
1714 env = ENVIRON_INDOOR;
1715 else if (country_ie[2] == 'O')
1716 env = ENVIRON_OUTDOOR;
1717
1718 rcu_read_lock();
1719 lr = get_last_request();
1720
1721 if (unlikely(!lr))
1722 goto out;
1723
1724 /*
1725 * We will run this only upon a successful connection on cfg80211.
1726 * We leave conflict resolution to the workqueue, where can hold
1727 * the RTNL.
1728 */
1729 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1730 lr->wiphy_idx != WIPHY_IDX_INVALID)
1731 goto out;
1732
1733 request->wiphy_idx = get_wiphy_idx(wiphy);
1734 request->alpha2[0] = alpha2[0];
1735 request->alpha2[1] = alpha2[1];
1736 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1737 request->country_ie_env = env;
1738
1739 queue_regulatory_request(request);
1740 request = NULL;
1741 out:
1742 kfree(request);
1743 rcu_read_unlock();
1744 }
1745
1746 static void restore_alpha2(char *alpha2, bool reset_user)
1747 {
1748 /* indicates there is no alpha2 to consider for restoration */
1749 alpha2[0] = '9';
1750 alpha2[1] = '7';
1751
1752 /* The user setting has precedence over the module parameter */
1753 if (is_user_regdom_saved()) {
1754 /* Unless we're asked to ignore it and reset it */
1755 if (reset_user) {
1756 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
1757 user_alpha2[0] = '9';
1758 user_alpha2[1] = '7';
1759
1760 /*
1761 * If we're ignoring user settings, we still need to
1762 * check the module parameter to ensure we put things
1763 * back as they were for a full restore.
1764 */
1765 if (!is_world_regdom(ieee80211_regdom)) {
1766 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1767 ieee80211_regdom[0], ieee80211_regdom[1]);
1768 alpha2[0] = ieee80211_regdom[0];
1769 alpha2[1] = ieee80211_regdom[1];
1770 }
1771 } else {
1772 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
1773 user_alpha2[0], user_alpha2[1]);
1774 alpha2[0] = user_alpha2[0];
1775 alpha2[1] = user_alpha2[1];
1776 }
1777 } else if (!is_world_regdom(ieee80211_regdom)) {
1778 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1779 ieee80211_regdom[0], ieee80211_regdom[1]);
1780 alpha2[0] = ieee80211_regdom[0];
1781 alpha2[1] = ieee80211_regdom[1];
1782 } else
1783 REG_DBG_PRINT("Restoring regulatory settings\n");
1784 }
1785
1786 static void restore_custom_reg_settings(struct wiphy *wiphy)
1787 {
1788 struct ieee80211_supported_band *sband;
1789 enum ieee80211_band band;
1790 struct ieee80211_channel *chan;
1791 int i;
1792
1793 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1794 sband = wiphy->bands[band];
1795 if (!sband)
1796 continue;
1797 for (i = 0; i < sband->n_channels; i++) {
1798 chan = &sband->channels[i];
1799 chan->flags = chan->orig_flags;
1800 chan->max_antenna_gain = chan->orig_mag;
1801 chan->max_power = chan->orig_mpwr;
1802 chan->beacon_found = false;
1803 }
1804 }
1805 }
1806
1807 /*
1808 * Restoring regulatory settings involves ingoring any
1809 * possibly stale country IE information and user regulatory
1810 * settings if so desired, this includes any beacon hints
1811 * learned as we could have traveled outside to another country
1812 * after disconnection. To restore regulatory settings we do
1813 * exactly what we did at bootup:
1814 *
1815 * - send a core regulatory hint
1816 * - send a user regulatory hint if applicable
1817 *
1818 * Device drivers that send a regulatory hint for a specific country
1819 * keep their own regulatory domain on wiphy->regd so that does does
1820 * not need to be remembered.
1821 */
1822 static void restore_regulatory_settings(bool reset_user)
1823 {
1824 char alpha2[2];
1825 char world_alpha2[2];
1826 struct reg_beacon *reg_beacon, *btmp;
1827 struct regulatory_request *reg_request, *tmp;
1828 LIST_HEAD(tmp_reg_req_list);
1829 struct cfg80211_registered_device *rdev;
1830
1831 ASSERT_RTNL();
1832
1833 reset_regdomains(true, &world_regdom);
1834 restore_alpha2(alpha2, reset_user);
1835
1836 /*
1837 * If there's any pending requests we simply
1838 * stash them to a temporary pending queue and
1839 * add then after we've restored regulatory
1840 * settings.
1841 */
1842 spin_lock(&reg_requests_lock);
1843 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
1844 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
1845 continue;
1846 list_move_tail(&reg_request->list, &tmp_reg_req_list);
1847 }
1848 spin_unlock(&reg_requests_lock);
1849
1850 /* Clear beacon hints */
1851 spin_lock_bh(&reg_pending_beacons_lock);
1852 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
1853 list_del(&reg_beacon->list);
1854 kfree(reg_beacon);
1855 }
1856 spin_unlock_bh(&reg_pending_beacons_lock);
1857
1858 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
1859 list_del(&reg_beacon->list);
1860 kfree(reg_beacon);
1861 }
1862
1863 /* First restore to the basic regulatory settings */
1864 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
1865 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
1866
1867 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1868 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1869 restore_custom_reg_settings(&rdev->wiphy);
1870 }
1871
1872 regulatory_hint_core(world_alpha2);
1873
1874 /*
1875 * This restores the ieee80211_regdom module parameter
1876 * preference or the last user requested regulatory
1877 * settings, user regulatory settings takes precedence.
1878 */
1879 if (is_an_alpha2(alpha2))
1880 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
1881
1882 spin_lock(&reg_requests_lock);
1883 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
1884 spin_unlock(&reg_requests_lock);
1885
1886 REG_DBG_PRINT("Kicking the queue\n");
1887
1888 schedule_work(&reg_work);
1889 }
1890
1891 void regulatory_hint_disconnect(void)
1892 {
1893 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
1894 restore_regulatory_settings(false);
1895 }
1896
1897 static bool freq_is_chan_12_13_14(u16 freq)
1898 {
1899 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1900 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1901 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1902 return true;
1903 return false;
1904 }
1905
1906 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
1907 {
1908 struct reg_beacon *pending_beacon;
1909
1910 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
1911 if (beacon_chan->center_freq ==
1912 pending_beacon->chan.center_freq)
1913 return true;
1914 return false;
1915 }
1916
1917 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1918 struct ieee80211_channel *beacon_chan,
1919 gfp_t gfp)
1920 {
1921 struct reg_beacon *reg_beacon;
1922 bool processing;
1923
1924 if (beacon_chan->beacon_found ||
1925 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
1926 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1927 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
1928 return 0;
1929
1930 spin_lock_bh(&reg_pending_beacons_lock);
1931 processing = pending_reg_beacon(beacon_chan);
1932 spin_unlock_bh(&reg_pending_beacons_lock);
1933
1934 if (processing)
1935 return 0;
1936
1937 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1938 if (!reg_beacon)
1939 return -ENOMEM;
1940
1941 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
1942 beacon_chan->center_freq,
1943 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1944 wiphy_name(wiphy));
1945
1946 memcpy(&reg_beacon->chan, beacon_chan,
1947 sizeof(struct ieee80211_channel));
1948
1949 /*
1950 * Since we can be called from BH or and non-BH context
1951 * we must use spin_lock_bh()
1952 */
1953 spin_lock_bh(&reg_pending_beacons_lock);
1954 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1955 spin_unlock_bh(&reg_pending_beacons_lock);
1956
1957 schedule_work(&reg_work);
1958
1959 return 0;
1960 }
1961
1962 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1963 {
1964 unsigned int i;
1965 const struct ieee80211_reg_rule *reg_rule = NULL;
1966 const struct ieee80211_freq_range *freq_range = NULL;
1967 const struct ieee80211_power_rule *power_rule = NULL;
1968
1969 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1970
1971 for (i = 0; i < rd->n_reg_rules; i++) {
1972 reg_rule = &rd->reg_rules[i];
1973 freq_range = &reg_rule->freq_range;
1974 power_rule = &reg_rule->power_rule;
1975
1976 /*
1977 * There may not be documentation for max antenna gain
1978 * in certain regions
1979 */
1980 if (power_rule->max_antenna_gain)
1981 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1982 freq_range->start_freq_khz,
1983 freq_range->end_freq_khz,
1984 freq_range->max_bandwidth_khz,
1985 power_rule->max_antenna_gain,
1986 power_rule->max_eirp);
1987 else
1988 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1989 freq_range->start_freq_khz,
1990 freq_range->end_freq_khz,
1991 freq_range->max_bandwidth_khz,
1992 power_rule->max_eirp);
1993 }
1994 }
1995
1996 bool reg_supported_dfs_region(u8 dfs_region)
1997 {
1998 switch (dfs_region) {
1999 case NL80211_DFS_UNSET:
2000 case NL80211_DFS_FCC:
2001 case NL80211_DFS_ETSI:
2002 case NL80211_DFS_JP:
2003 return true;
2004 default:
2005 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2006 dfs_region);
2007 return false;
2008 }
2009 }
2010
2011 static void print_dfs_region(u8 dfs_region)
2012 {
2013 if (!dfs_region)
2014 return;
2015
2016 switch (dfs_region) {
2017 case NL80211_DFS_FCC:
2018 pr_info(" DFS Master region FCC");
2019 break;
2020 case NL80211_DFS_ETSI:
2021 pr_info(" DFS Master region ETSI");
2022 break;
2023 case NL80211_DFS_JP:
2024 pr_info(" DFS Master region JP");
2025 break;
2026 default:
2027 pr_info(" DFS Master region Unknown");
2028 break;
2029 }
2030 }
2031
2032 static void print_regdomain(const struct ieee80211_regdomain *rd)
2033 {
2034 struct regulatory_request *lr = get_last_request();
2035
2036 if (is_intersected_alpha2(rd->alpha2)) {
2037 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2038 struct cfg80211_registered_device *rdev;
2039 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2040 if (rdev) {
2041 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2042 rdev->country_ie_alpha2[0],
2043 rdev->country_ie_alpha2[1]);
2044 } else
2045 pr_info("Current regulatory domain intersected:\n");
2046 } else
2047 pr_info("Current regulatory domain intersected:\n");
2048 } else if (is_world_regdom(rd->alpha2)) {
2049 pr_info("World regulatory domain updated:\n");
2050 } else {
2051 if (is_unknown_alpha2(rd->alpha2))
2052 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2053 else {
2054 if (reg_request_cell_base(lr))
2055 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2056 rd->alpha2[0], rd->alpha2[1]);
2057 else
2058 pr_info("Regulatory domain changed to country: %c%c\n",
2059 rd->alpha2[0], rd->alpha2[1]);
2060 }
2061 }
2062
2063 print_dfs_region(rd->dfs_region);
2064 print_rd_rules(rd);
2065 }
2066
2067 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2068 {
2069 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2070 print_rd_rules(rd);
2071 }
2072
2073 /* Takes ownership of rd only if it doesn't fail */
2074 static int __set_regdom(const struct ieee80211_regdomain *rd)
2075 {
2076 const struct ieee80211_regdomain *regd;
2077 const struct ieee80211_regdomain *intersected_rd = NULL;
2078 struct wiphy *request_wiphy;
2079 struct regulatory_request *lr = get_last_request();
2080
2081 /* Some basic sanity checks first */
2082
2083 if (!reg_is_valid_request(rd->alpha2))
2084 return -EINVAL;
2085
2086 if (is_world_regdom(rd->alpha2)) {
2087 update_world_regdomain(rd);
2088 return 0;
2089 }
2090
2091 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2092 !is_unknown_alpha2(rd->alpha2))
2093 return -EINVAL;
2094
2095 /*
2096 * Lets only bother proceeding on the same alpha2 if the current
2097 * rd is non static (it means CRDA was present and was used last)
2098 * and the pending request came in from a country IE
2099 */
2100 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2101 /*
2102 * If someone else asked us to change the rd lets only bother
2103 * checking if the alpha2 changes if CRDA was already called
2104 */
2105 if (!regdom_changes(rd->alpha2))
2106 return -EALREADY;
2107 }
2108
2109 /*
2110 * Now lets set the regulatory domain, update all driver channels
2111 * and finally inform them of what we have done, in case they want
2112 * to review or adjust their own settings based on their own
2113 * internal EEPROM data
2114 */
2115
2116 if (!is_valid_rd(rd)) {
2117 pr_err("Invalid regulatory domain detected:\n");
2118 print_regdomain_info(rd);
2119 return -EINVAL;
2120 }
2121
2122 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2123 if (!request_wiphy &&
2124 (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2125 lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2126 schedule_delayed_work(&reg_timeout, 0);
2127 return -ENODEV;
2128 }
2129
2130 if (!lr->intersect) {
2131 if (lr->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2132 reset_regdomains(false, rd);
2133 return 0;
2134 }
2135
2136 /*
2137 * For a driver hint, lets copy the regulatory domain the
2138 * driver wanted to the wiphy to deal with conflicts
2139 */
2140
2141 /*
2142 * Userspace could have sent two replies with only
2143 * one kernel request.
2144 */
2145 if (request_wiphy->regd)
2146 return -EALREADY;
2147
2148 regd = reg_copy_regd(rd);
2149 if (IS_ERR(regd))
2150 return PTR_ERR(regd);
2151
2152 rcu_assign_pointer(request_wiphy->regd, regd);
2153 reset_regdomains(false, rd);
2154 return 0;
2155 }
2156
2157 /* Intersection requires a bit more work */
2158
2159 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2160 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2161 if (!intersected_rd)
2162 return -EINVAL;
2163
2164 /*
2165 * We can trash what CRDA provided now.
2166 * However if a driver requested this specific regulatory
2167 * domain we keep it for its private use
2168 */
2169 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER) {
2170 const struct ieee80211_regdomain *tmp;
2171
2172 tmp = get_wiphy_regdom(request_wiphy);
2173 rcu_assign_pointer(request_wiphy->regd, rd);
2174 rcu_free_regdom(tmp);
2175 } else {
2176 kfree(rd);
2177 }
2178
2179 rd = NULL;
2180
2181 reset_regdomains(false, intersected_rd);
2182
2183 return 0;
2184 }
2185
2186 return -EINVAL;
2187 }
2188
2189
2190 /*
2191 * Use this call to set the current regulatory domain. Conflicts with
2192 * multiple drivers can be ironed out later. Caller must've already
2193 * kmalloc'd the rd structure.
2194 */
2195 int set_regdom(const struct ieee80211_regdomain *rd)
2196 {
2197 struct regulatory_request *lr;
2198 int r;
2199
2200 lr = get_last_request();
2201
2202 /* Note that this doesn't update the wiphys, this is done below */
2203 r = __set_regdom(rd);
2204 if (r) {
2205 if (r == -EALREADY)
2206 reg_set_request_processed();
2207
2208 kfree(rd);
2209 return r;
2210 }
2211
2212 /* This would make this whole thing pointless */
2213 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2214 return -EINVAL;
2215
2216 /* update all wiphys now with the new established regulatory domain */
2217 update_all_wiphy_regulatory(lr->initiator);
2218
2219 print_regdomain(get_cfg80211_regdom());
2220
2221 nl80211_send_reg_change_event(lr);
2222
2223 reg_set_request_processed();
2224
2225 return 0;
2226 }
2227
2228 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2229 {
2230 struct regulatory_request *lr;
2231 u8 alpha2[2];
2232 bool add = false;
2233
2234 rcu_read_lock();
2235 lr = get_last_request();
2236 if (lr && !lr->processed) {
2237 memcpy(alpha2, lr->alpha2, 2);
2238 add = true;
2239 }
2240 rcu_read_unlock();
2241
2242 if (add)
2243 return add_uevent_var(env, "COUNTRY=%c%c",
2244 alpha2[0], alpha2[1]);
2245 return 0;
2246 }
2247
2248 void wiphy_regulatory_register(struct wiphy *wiphy)
2249 {
2250 struct regulatory_request *lr;
2251
2252 if (!reg_dev_ignore_cell_hint(wiphy))
2253 reg_num_devs_support_basehint++;
2254
2255 lr = get_last_request();
2256 wiphy_update_regulatory(wiphy, lr->initiator);
2257 }
2258
2259 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2260 {
2261 struct wiphy *request_wiphy = NULL;
2262 struct regulatory_request *lr;
2263
2264 lr = get_last_request();
2265
2266 if (!reg_dev_ignore_cell_hint(wiphy))
2267 reg_num_devs_support_basehint--;
2268
2269 rcu_free_regdom(get_wiphy_regdom(wiphy));
2270 rcu_assign_pointer(wiphy->regd, NULL);
2271
2272 if (lr)
2273 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2274
2275 if (!request_wiphy || request_wiphy != wiphy)
2276 return;
2277
2278 lr->wiphy_idx = WIPHY_IDX_INVALID;
2279 lr->country_ie_env = ENVIRON_ANY;
2280 }
2281
2282 static void reg_timeout_work(struct work_struct *work)
2283 {
2284 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2285 rtnl_lock();
2286 restore_regulatory_settings(true);
2287 rtnl_unlock();
2288 }
2289
2290 int __init regulatory_init(void)
2291 {
2292 int err = 0;
2293
2294 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2295 if (IS_ERR(reg_pdev))
2296 return PTR_ERR(reg_pdev);
2297
2298 reg_pdev->dev.type = &reg_device_type;
2299
2300 spin_lock_init(&reg_requests_lock);
2301 spin_lock_init(&reg_pending_beacons_lock);
2302
2303 reg_regdb_size_check();
2304
2305 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2306
2307 user_alpha2[0] = '9';
2308 user_alpha2[1] = '7';
2309
2310 /* We always try to get an update for the static regdomain */
2311 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2312 if (err) {
2313 if (err == -ENOMEM)
2314 return err;
2315 /*
2316 * N.B. kobject_uevent_env() can fail mainly for when we're out
2317 * memory which is handled and propagated appropriately above
2318 * but it can also fail during a netlink_broadcast() or during
2319 * early boot for call_usermodehelper(). For now treat these
2320 * errors as non-fatal.
2321 */
2322 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2323 }
2324
2325 /*
2326 * Finally, if the user set the module parameter treat it
2327 * as a user hint.
2328 */
2329 if (!is_world_regdom(ieee80211_regdom))
2330 regulatory_hint_user(ieee80211_regdom,
2331 NL80211_USER_REG_HINT_USER);
2332
2333 return 0;
2334 }
2335
2336 void regulatory_exit(void)
2337 {
2338 struct regulatory_request *reg_request, *tmp;
2339 struct reg_beacon *reg_beacon, *btmp;
2340
2341 cancel_work_sync(&reg_work);
2342 cancel_delayed_work_sync(&reg_timeout);
2343
2344 /* Lock to suppress warnings */
2345 rtnl_lock();
2346 reset_regdomains(true, NULL);
2347 rtnl_unlock();
2348
2349 dev_set_uevent_suppress(&reg_pdev->dev, true);
2350
2351 platform_device_unregister(reg_pdev);
2352
2353 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2354 list_del(&reg_beacon->list);
2355 kfree(reg_beacon);
2356 }
2357
2358 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2359 list_del(&reg_beacon->list);
2360 kfree(reg_beacon);
2361 }
2362
2363 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2364 list_del(&reg_request->list);
2365 kfree(reg_request);
2366 }
2367 }