]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/wireless/reg.c
mac80211: allow driver to return error from sched_scan_stop
[mirror_ubuntu-bionic-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20
21 /**
22 * DOC: Wireless regulatory infrastructure
23 *
24 * The usual implementation is for a driver to read a device EEPROM to
25 * determine which regulatory domain it should be operating under, then
26 * looking up the allowable channels in a driver-local table and finally
27 * registering those channels in the wiphy structure.
28 *
29 * Another set of compliance enforcement is for drivers to use their
30 * own compliance limits which can be stored on the EEPROM. The host
31 * driver or firmware may ensure these are used.
32 *
33 * In addition to all this we provide an extra layer of regulatory
34 * conformance. For drivers which do not have any regulatory
35 * information CRDA provides the complete regulatory solution.
36 * For others it provides a community effort on further restrictions
37 * to enhance compliance.
38 *
39 * Note: When number of rules --> infinity we will not be able to
40 * index on alpha2 any more, instead we'll probably have to
41 * rely on some SHA1 checksum of the regdomain for example.
42 *
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
56 #include "core.h"
57 #include "reg.h"
58 #include "regdb.h"
59 #include "nl80211.h"
60
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...) \
63 printk(KERN_DEBUG pr_fmt(format), ##args)
64 #else
65 #define REG_DBG_PRINT(args...)
66 #endif
67
68 enum reg_request_treatment {
69 REG_REQ_OK,
70 REG_REQ_IGNORE,
71 REG_REQ_INTERSECT,
72 REG_REQ_ALREADY_SET,
73 };
74
75 static struct regulatory_request core_request_world = {
76 .initiator = NL80211_REGDOM_SET_BY_CORE,
77 .alpha2[0] = '0',
78 .alpha2[1] = '0',
79 .intersect = false,
80 .processed = true,
81 .country_ie_env = ENVIRON_ANY,
82 };
83
84 /*
85 * Receipt of information from last regulatory request,
86 * protected by RTNL (and can be accessed with RCU protection)
87 */
88 static struct regulatory_request __rcu *last_request =
89 (void __rcu *)&core_request_world;
90
91 /* To trigger userspace events */
92 static struct platform_device *reg_pdev;
93
94 static const struct device_type reg_device_type = {
95 .uevent = reg_device_uevent,
96 };
97
98 /*
99 * Central wireless core regulatory domains, we only need two,
100 * the current one and a world regulatory domain in case we have no
101 * information to give us an alpha2.
102 * (protected by RTNL, can be read under RCU)
103 */
104 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
105
106 /*
107 * Number of devices that registered to the core
108 * that support cellular base station regulatory hints
109 * (protected by RTNL)
110 */
111 static int reg_num_devs_support_basehint;
112
113 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
114 {
115 return rtnl_dereference(cfg80211_regdomain);
116 }
117
118 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
119 {
120 return rtnl_dereference(wiphy->regd);
121 }
122
123 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
124 {
125 switch (dfs_region) {
126 case NL80211_DFS_UNSET:
127 return "unset";
128 case NL80211_DFS_FCC:
129 return "FCC";
130 case NL80211_DFS_ETSI:
131 return "ETSI";
132 case NL80211_DFS_JP:
133 return "JP";
134 }
135 return "Unknown";
136 }
137
138 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
139 {
140 const struct ieee80211_regdomain *regd = NULL;
141 const struct ieee80211_regdomain *wiphy_regd = NULL;
142
143 regd = get_cfg80211_regdom();
144 if (!wiphy)
145 goto out;
146
147 wiphy_regd = get_wiphy_regdom(wiphy);
148 if (!wiphy_regd)
149 goto out;
150
151 if (wiphy_regd->dfs_region == regd->dfs_region)
152 goto out;
153
154 REG_DBG_PRINT("%s: device specific dfs_region "
155 "(%s) disagrees with cfg80211's "
156 "central dfs_region (%s)\n",
157 dev_name(&wiphy->dev),
158 reg_dfs_region_str(wiphy_regd->dfs_region),
159 reg_dfs_region_str(regd->dfs_region));
160
161 out:
162 return regd->dfs_region;
163 }
164
165 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
166 {
167 if (!r)
168 return;
169 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
170 }
171
172 static struct regulatory_request *get_last_request(void)
173 {
174 return rcu_dereference_rtnl(last_request);
175 }
176
177 /* Used to queue up regulatory hints */
178 static LIST_HEAD(reg_requests_list);
179 static spinlock_t reg_requests_lock;
180
181 /* Used to queue up beacon hints for review */
182 static LIST_HEAD(reg_pending_beacons);
183 static spinlock_t reg_pending_beacons_lock;
184
185 /* Used to keep track of processed beacon hints */
186 static LIST_HEAD(reg_beacon_list);
187
188 struct reg_beacon {
189 struct list_head list;
190 struct ieee80211_channel chan;
191 };
192
193 static void reg_todo(struct work_struct *work);
194 static DECLARE_WORK(reg_work, reg_todo);
195
196 static void reg_timeout_work(struct work_struct *work);
197 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
198
199 /* We keep a static world regulatory domain in case of the absence of CRDA */
200 static const struct ieee80211_regdomain world_regdom = {
201 .n_reg_rules = 6,
202 .alpha2 = "00",
203 .reg_rules = {
204 /* IEEE 802.11b/g, channels 1..11 */
205 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
206 /* IEEE 802.11b/g, channels 12..13. */
207 REG_RULE(2467-10, 2472+10, 40, 6, 20,
208 NL80211_RRF_NO_IR),
209 /* IEEE 802.11 channel 14 - Only JP enables
210 * this and for 802.11b only */
211 REG_RULE(2484-10, 2484+10, 20, 6, 20,
212 NL80211_RRF_NO_IR |
213 NL80211_RRF_NO_OFDM),
214 /* IEEE 802.11a, channel 36..48 */
215 REG_RULE(5180-10, 5240+10, 160, 6, 20,
216 NL80211_RRF_NO_IR),
217
218 /* IEEE 802.11a, channel 52..64 - DFS required */
219 REG_RULE(5260-10, 5320+10, 160, 6, 20,
220 NL80211_RRF_NO_IR |
221 NL80211_RRF_DFS),
222
223 /* IEEE 802.11a, channel 100..144 - DFS required */
224 REG_RULE(5500-10, 5720+10, 160, 6, 20,
225 NL80211_RRF_NO_IR |
226 NL80211_RRF_DFS),
227
228 /* IEEE 802.11a, channel 149..165 */
229 REG_RULE(5745-10, 5825+10, 80, 6, 20,
230 NL80211_RRF_NO_IR),
231
232 /* IEEE 802.11ad (60gHz), channels 1..3 */
233 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
234 }
235 };
236
237 /* protected by RTNL */
238 static const struct ieee80211_regdomain *cfg80211_world_regdom =
239 &world_regdom;
240
241 static char *ieee80211_regdom = "00";
242 static char user_alpha2[2];
243
244 module_param(ieee80211_regdom, charp, 0444);
245 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
246
247 static void reg_kfree_last_request(void)
248 {
249 struct regulatory_request *lr;
250
251 lr = get_last_request();
252
253 if (lr != &core_request_world && lr)
254 kfree_rcu(lr, rcu_head);
255 }
256
257 static void reg_update_last_request(struct regulatory_request *request)
258 {
259 reg_kfree_last_request();
260 rcu_assign_pointer(last_request, request);
261 }
262
263 static void reset_regdomains(bool full_reset,
264 const struct ieee80211_regdomain *new_regdom)
265 {
266 const struct ieee80211_regdomain *r;
267
268 ASSERT_RTNL();
269
270 r = get_cfg80211_regdom();
271
272 /* avoid freeing static information or freeing something twice */
273 if (r == cfg80211_world_regdom)
274 r = NULL;
275 if (cfg80211_world_regdom == &world_regdom)
276 cfg80211_world_regdom = NULL;
277 if (r == &world_regdom)
278 r = NULL;
279
280 rcu_free_regdom(r);
281 rcu_free_regdom(cfg80211_world_regdom);
282
283 cfg80211_world_regdom = &world_regdom;
284 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
285
286 if (!full_reset)
287 return;
288
289 reg_update_last_request(&core_request_world);
290 }
291
292 /*
293 * Dynamic world regulatory domain requested by the wireless
294 * core upon initialization
295 */
296 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
297 {
298 struct regulatory_request *lr;
299
300 lr = get_last_request();
301
302 WARN_ON(!lr);
303
304 reset_regdomains(false, rd);
305
306 cfg80211_world_regdom = rd;
307 }
308
309 bool is_world_regdom(const char *alpha2)
310 {
311 if (!alpha2)
312 return false;
313 return alpha2[0] == '0' && alpha2[1] == '0';
314 }
315
316 static bool is_alpha2_set(const char *alpha2)
317 {
318 if (!alpha2)
319 return false;
320 return alpha2[0] && alpha2[1];
321 }
322
323 static bool is_unknown_alpha2(const char *alpha2)
324 {
325 if (!alpha2)
326 return false;
327 /*
328 * Special case where regulatory domain was built by driver
329 * but a specific alpha2 cannot be determined
330 */
331 return alpha2[0] == '9' && alpha2[1] == '9';
332 }
333
334 static bool is_intersected_alpha2(const char *alpha2)
335 {
336 if (!alpha2)
337 return false;
338 /*
339 * Special case where regulatory domain is the
340 * result of an intersection between two regulatory domain
341 * structures
342 */
343 return alpha2[0] == '9' && alpha2[1] == '8';
344 }
345
346 static bool is_an_alpha2(const char *alpha2)
347 {
348 if (!alpha2)
349 return false;
350 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
351 }
352
353 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
354 {
355 if (!alpha2_x || !alpha2_y)
356 return false;
357 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
358 }
359
360 static bool regdom_changes(const char *alpha2)
361 {
362 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
363
364 if (!r)
365 return true;
366 return !alpha2_equal(r->alpha2, alpha2);
367 }
368
369 /*
370 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
371 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
372 * has ever been issued.
373 */
374 static bool is_user_regdom_saved(void)
375 {
376 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
377 return false;
378
379 /* This would indicate a mistake on the design */
380 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
381 "Unexpected user alpha2: %c%c\n",
382 user_alpha2[0], user_alpha2[1]))
383 return false;
384
385 return true;
386 }
387
388 static const struct ieee80211_regdomain *
389 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
390 {
391 struct ieee80211_regdomain *regd;
392 int size_of_regd;
393 unsigned int i;
394
395 size_of_regd =
396 sizeof(struct ieee80211_regdomain) +
397 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
398
399 regd = kzalloc(size_of_regd, GFP_KERNEL);
400 if (!regd)
401 return ERR_PTR(-ENOMEM);
402
403 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
404
405 for (i = 0; i < src_regd->n_reg_rules; i++)
406 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
407 sizeof(struct ieee80211_reg_rule));
408
409 return regd;
410 }
411
412 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
413 struct reg_regdb_search_request {
414 char alpha2[2];
415 struct list_head list;
416 };
417
418 static LIST_HEAD(reg_regdb_search_list);
419 static DEFINE_MUTEX(reg_regdb_search_mutex);
420
421 static void reg_regdb_search(struct work_struct *work)
422 {
423 struct reg_regdb_search_request *request;
424 const struct ieee80211_regdomain *curdom, *regdom = NULL;
425 int i;
426
427 rtnl_lock();
428
429 mutex_lock(&reg_regdb_search_mutex);
430 while (!list_empty(&reg_regdb_search_list)) {
431 request = list_first_entry(&reg_regdb_search_list,
432 struct reg_regdb_search_request,
433 list);
434 list_del(&request->list);
435
436 for (i = 0; i < reg_regdb_size; i++) {
437 curdom = reg_regdb[i];
438
439 if (alpha2_equal(request->alpha2, curdom->alpha2)) {
440 regdom = reg_copy_regd(curdom);
441 break;
442 }
443 }
444
445 kfree(request);
446 }
447 mutex_unlock(&reg_regdb_search_mutex);
448
449 if (!IS_ERR_OR_NULL(regdom))
450 set_regdom(regdom);
451
452 rtnl_unlock();
453 }
454
455 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
456
457 static void reg_regdb_query(const char *alpha2)
458 {
459 struct reg_regdb_search_request *request;
460
461 if (!alpha2)
462 return;
463
464 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
465 if (!request)
466 return;
467
468 memcpy(request->alpha2, alpha2, 2);
469
470 mutex_lock(&reg_regdb_search_mutex);
471 list_add_tail(&request->list, &reg_regdb_search_list);
472 mutex_unlock(&reg_regdb_search_mutex);
473
474 schedule_work(&reg_regdb_work);
475 }
476
477 /* Feel free to add any other sanity checks here */
478 static void reg_regdb_size_check(void)
479 {
480 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
481 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
482 }
483 #else
484 static inline void reg_regdb_size_check(void) {}
485 static inline void reg_regdb_query(const char *alpha2) {}
486 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
487
488 /*
489 * This lets us keep regulatory code which is updated on a regulatory
490 * basis in userspace. Country information is filled in by
491 * reg_device_uevent
492 */
493 static int call_crda(const char *alpha2)
494 {
495 if (!is_world_regdom((char *) alpha2))
496 pr_info("Calling CRDA for country: %c%c\n",
497 alpha2[0], alpha2[1]);
498 else
499 pr_info("Calling CRDA to update world regulatory domain\n");
500
501 /* query internal regulatory database (if it exists) */
502 reg_regdb_query(alpha2);
503
504 return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
505 }
506
507 static enum reg_request_treatment
508 reg_call_crda(struct regulatory_request *request)
509 {
510 if (call_crda(request->alpha2))
511 return REG_REQ_IGNORE;
512 return REG_REQ_OK;
513 }
514
515 bool reg_is_valid_request(const char *alpha2)
516 {
517 struct regulatory_request *lr = get_last_request();
518
519 if (!lr || lr->processed)
520 return false;
521
522 return alpha2_equal(lr->alpha2, alpha2);
523 }
524
525 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
526 {
527 struct regulatory_request *lr = get_last_request();
528
529 /*
530 * Follow the driver's regulatory domain, if present, unless a country
531 * IE has been processed or a user wants to help complaince further
532 */
533 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
534 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
535 wiphy->regd)
536 return get_wiphy_regdom(wiphy);
537
538 return get_cfg80211_regdom();
539 }
540
541 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
542 const struct ieee80211_reg_rule *rule)
543 {
544 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
545 const struct ieee80211_freq_range *freq_range_tmp;
546 const struct ieee80211_reg_rule *tmp;
547 u32 start_freq, end_freq, idx, no;
548
549 for (idx = 0; idx < rd->n_reg_rules; idx++)
550 if (rule == &rd->reg_rules[idx])
551 break;
552
553 if (idx == rd->n_reg_rules)
554 return 0;
555
556 /* get start_freq */
557 no = idx;
558
559 while (no) {
560 tmp = &rd->reg_rules[--no];
561 freq_range_tmp = &tmp->freq_range;
562
563 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
564 break;
565
566 if (freq_range_tmp->max_bandwidth_khz)
567 break;
568
569 freq_range = freq_range_tmp;
570 }
571
572 start_freq = freq_range->start_freq_khz;
573
574 /* get end_freq */
575 freq_range = &rule->freq_range;
576 no = idx;
577
578 while (no < rd->n_reg_rules - 1) {
579 tmp = &rd->reg_rules[++no];
580 freq_range_tmp = &tmp->freq_range;
581
582 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
583 break;
584
585 if (freq_range_tmp->max_bandwidth_khz)
586 break;
587
588 freq_range = freq_range_tmp;
589 }
590
591 end_freq = freq_range->end_freq_khz;
592
593 return end_freq - start_freq;
594 }
595
596 /* Sanity check on a regulatory rule */
597 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
598 {
599 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
600 u32 freq_diff;
601
602 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
603 return false;
604
605 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
606 return false;
607
608 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
609
610 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
611 freq_range->max_bandwidth_khz > freq_diff)
612 return false;
613
614 return true;
615 }
616
617 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
618 {
619 const struct ieee80211_reg_rule *reg_rule = NULL;
620 unsigned int i;
621
622 if (!rd->n_reg_rules)
623 return false;
624
625 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
626 return false;
627
628 for (i = 0; i < rd->n_reg_rules; i++) {
629 reg_rule = &rd->reg_rules[i];
630 if (!is_valid_reg_rule(reg_rule))
631 return false;
632 }
633
634 return true;
635 }
636
637 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
638 u32 center_freq_khz, u32 bw_khz)
639 {
640 u32 start_freq_khz, end_freq_khz;
641
642 start_freq_khz = center_freq_khz - (bw_khz/2);
643 end_freq_khz = center_freq_khz + (bw_khz/2);
644
645 if (start_freq_khz >= freq_range->start_freq_khz &&
646 end_freq_khz <= freq_range->end_freq_khz)
647 return true;
648
649 return false;
650 }
651
652 /**
653 * freq_in_rule_band - tells us if a frequency is in a frequency band
654 * @freq_range: frequency rule we want to query
655 * @freq_khz: frequency we are inquiring about
656 *
657 * This lets us know if a specific frequency rule is or is not relevant to
658 * a specific frequency's band. Bands are device specific and artificial
659 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
660 * however it is safe for now to assume that a frequency rule should not be
661 * part of a frequency's band if the start freq or end freq are off by more
662 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
663 * 60 GHz band.
664 * This resolution can be lowered and should be considered as we add
665 * regulatory rule support for other "bands".
666 **/
667 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
668 u32 freq_khz)
669 {
670 #define ONE_GHZ_IN_KHZ 1000000
671 /*
672 * From 802.11ad: directional multi-gigabit (DMG):
673 * Pertaining to operation in a frequency band containing a channel
674 * with the Channel starting frequency above 45 GHz.
675 */
676 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
677 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
678 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
679 return true;
680 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
681 return true;
682 return false;
683 #undef ONE_GHZ_IN_KHZ
684 }
685
686 /*
687 * Later on we can perhaps use the more restrictive DFS
688 * region but we don't have information for that yet so
689 * for now simply disallow conflicts.
690 */
691 static enum nl80211_dfs_regions
692 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
693 const enum nl80211_dfs_regions dfs_region2)
694 {
695 if (dfs_region1 != dfs_region2)
696 return NL80211_DFS_UNSET;
697 return dfs_region1;
698 }
699
700 /*
701 * Helper for regdom_intersect(), this does the real
702 * mathematical intersection fun
703 */
704 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
705 const struct ieee80211_regdomain *rd2,
706 const struct ieee80211_reg_rule *rule1,
707 const struct ieee80211_reg_rule *rule2,
708 struct ieee80211_reg_rule *intersected_rule)
709 {
710 const struct ieee80211_freq_range *freq_range1, *freq_range2;
711 struct ieee80211_freq_range *freq_range;
712 const struct ieee80211_power_rule *power_rule1, *power_rule2;
713 struct ieee80211_power_rule *power_rule;
714 u32 freq_diff, max_bandwidth1, max_bandwidth2;
715
716 freq_range1 = &rule1->freq_range;
717 freq_range2 = &rule2->freq_range;
718 freq_range = &intersected_rule->freq_range;
719
720 power_rule1 = &rule1->power_rule;
721 power_rule2 = &rule2->power_rule;
722 power_rule = &intersected_rule->power_rule;
723
724 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
725 freq_range2->start_freq_khz);
726 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
727 freq_range2->end_freq_khz);
728
729 max_bandwidth1 = freq_range1->max_bandwidth_khz;
730 max_bandwidth2 = freq_range2->max_bandwidth_khz;
731
732 /*
733 * In case max_bandwidth1 == 0 and max_bandwith2 == 0 set
734 * output bandwidth as 0 (auto calculation). Next we will
735 * calculate this correctly in handle_channel function.
736 * In other case calculate output bandwidth here.
737 */
738 if (max_bandwidth1 || max_bandwidth2) {
739 if (!max_bandwidth1)
740 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
741 if (!max_bandwidth2)
742 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
743 }
744
745 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
746
747 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
748 if (freq_range->max_bandwidth_khz > freq_diff)
749 freq_range->max_bandwidth_khz = freq_diff;
750
751 power_rule->max_eirp = min(power_rule1->max_eirp,
752 power_rule2->max_eirp);
753 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
754 power_rule2->max_antenna_gain);
755
756 intersected_rule->flags = rule1->flags | rule2->flags;
757
758 if (!is_valid_reg_rule(intersected_rule))
759 return -EINVAL;
760
761 return 0;
762 }
763
764 /**
765 * regdom_intersect - do the intersection between two regulatory domains
766 * @rd1: first regulatory domain
767 * @rd2: second regulatory domain
768 *
769 * Use this function to get the intersection between two regulatory domains.
770 * Once completed we will mark the alpha2 for the rd as intersected, "98",
771 * as no one single alpha2 can represent this regulatory domain.
772 *
773 * Returns a pointer to the regulatory domain structure which will hold the
774 * resulting intersection of rules between rd1 and rd2. We will
775 * kzalloc() this structure for you.
776 */
777 static struct ieee80211_regdomain *
778 regdom_intersect(const struct ieee80211_regdomain *rd1,
779 const struct ieee80211_regdomain *rd2)
780 {
781 int r, size_of_regd;
782 unsigned int x, y;
783 unsigned int num_rules = 0, rule_idx = 0;
784 const struct ieee80211_reg_rule *rule1, *rule2;
785 struct ieee80211_reg_rule *intersected_rule;
786 struct ieee80211_regdomain *rd;
787 /* This is just a dummy holder to help us count */
788 struct ieee80211_reg_rule dummy_rule;
789
790 if (!rd1 || !rd2)
791 return NULL;
792
793 /*
794 * First we get a count of the rules we'll need, then we actually
795 * build them. This is to so we can malloc() and free() a
796 * regdomain once. The reason we use reg_rules_intersect() here
797 * is it will return -EINVAL if the rule computed makes no sense.
798 * All rules that do check out OK are valid.
799 */
800
801 for (x = 0; x < rd1->n_reg_rules; x++) {
802 rule1 = &rd1->reg_rules[x];
803 for (y = 0; y < rd2->n_reg_rules; y++) {
804 rule2 = &rd2->reg_rules[y];
805 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
806 &dummy_rule))
807 num_rules++;
808 }
809 }
810
811 if (!num_rules)
812 return NULL;
813
814 size_of_regd = sizeof(struct ieee80211_regdomain) +
815 num_rules * sizeof(struct ieee80211_reg_rule);
816
817 rd = kzalloc(size_of_regd, GFP_KERNEL);
818 if (!rd)
819 return NULL;
820
821 for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
822 rule1 = &rd1->reg_rules[x];
823 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
824 rule2 = &rd2->reg_rules[y];
825 /*
826 * This time around instead of using the stack lets
827 * write to the target rule directly saving ourselves
828 * a memcpy()
829 */
830 intersected_rule = &rd->reg_rules[rule_idx];
831 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
832 intersected_rule);
833 /*
834 * No need to memset here the intersected rule here as
835 * we're not using the stack anymore
836 */
837 if (r)
838 continue;
839 rule_idx++;
840 }
841 }
842
843 if (rule_idx != num_rules) {
844 kfree(rd);
845 return NULL;
846 }
847
848 rd->n_reg_rules = num_rules;
849 rd->alpha2[0] = '9';
850 rd->alpha2[1] = '8';
851 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
852 rd2->dfs_region);
853
854 return rd;
855 }
856
857 /*
858 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
859 * want to just have the channel structure use these
860 */
861 static u32 map_regdom_flags(u32 rd_flags)
862 {
863 u32 channel_flags = 0;
864 if (rd_flags & NL80211_RRF_NO_IR_ALL)
865 channel_flags |= IEEE80211_CHAN_NO_IR;
866 if (rd_flags & NL80211_RRF_DFS)
867 channel_flags |= IEEE80211_CHAN_RADAR;
868 if (rd_flags & NL80211_RRF_NO_OFDM)
869 channel_flags |= IEEE80211_CHAN_NO_OFDM;
870 return channel_flags;
871 }
872
873 static const struct ieee80211_reg_rule *
874 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
875 const struct ieee80211_regdomain *regd)
876 {
877 int i;
878 bool band_rule_found = false;
879 bool bw_fits = false;
880
881 if (!regd)
882 return ERR_PTR(-EINVAL);
883
884 for (i = 0; i < regd->n_reg_rules; i++) {
885 const struct ieee80211_reg_rule *rr;
886 const struct ieee80211_freq_range *fr = NULL;
887
888 rr = &regd->reg_rules[i];
889 fr = &rr->freq_range;
890
891 /*
892 * We only need to know if one frequency rule was
893 * was in center_freq's band, that's enough, so lets
894 * not overwrite it once found
895 */
896 if (!band_rule_found)
897 band_rule_found = freq_in_rule_band(fr, center_freq);
898
899 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
900
901 if (band_rule_found && bw_fits)
902 return rr;
903 }
904
905 if (!band_rule_found)
906 return ERR_PTR(-ERANGE);
907
908 return ERR_PTR(-EINVAL);
909 }
910
911 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
912 u32 center_freq)
913 {
914 const struct ieee80211_regdomain *regd;
915
916 regd = reg_get_regdomain(wiphy);
917
918 return freq_reg_info_regd(wiphy, center_freq, regd);
919 }
920 EXPORT_SYMBOL(freq_reg_info);
921
922 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
923 {
924 switch (initiator) {
925 case NL80211_REGDOM_SET_BY_CORE:
926 return "core";
927 case NL80211_REGDOM_SET_BY_USER:
928 return "user";
929 case NL80211_REGDOM_SET_BY_DRIVER:
930 return "driver";
931 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
932 return "country IE";
933 default:
934 WARN_ON(1);
935 return "bug";
936 }
937 }
938 EXPORT_SYMBOL(reg_initiator_name);
939
940 #ifdef CONFIG_CFG80211_REG_DEBUG
941 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
942 const struct ieee80211_reg_rule *reg_rule)
943 {
944 const struct ieee80211_power_rule *power_rule;
945 const struct ieee80211_freq_range *freq_range;
946 char max_antenna_gain[32];
947
948 power_rule = &reg_rule->power_rule;
949 freq_range = &reg_rule->freq_range;
950
951 if (!power_rule->max_antenna_gain)
952 snprintf(max_antenna_gain, 32, "N/A");
953 else
954 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
955
956 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
957 chan->center_freq);
958
959 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
960 freq_range->start_freq_khz, freq_range->end_freq_khz,
961 freq_range->max_bandwidth_khz, max_antenna_gain,
962 power_rule->max_eirp);
963 }
964 #else
965 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
966 const struct ieee80211_reg_rule *reg_rule)
967 {
968 return;
969 }
970 #endif
971
972 /*
973 * Note that right now we assume the desired channel bandwidth
974 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
975 * per channel, the primary and the extension channel).
976 */
977 static void handle_channel(struct wiphy *wiphy,
978 enum nl80211_reg_initiator initiator,
979 struct ieee80211_channel *chan)
980 {
981 u32 flags, bw_flags = 0;
982 const struct ieee80211_reg_rule *reg_rule = NULL;
983 const struct ieee80211_power_rule *power_rule = NULL;
984 const struct ieee80211_freq_range *freq_range = NULL;
985 struct wiphy *request_wiphy = NULL;
986 struct regulatory_request *lr = get_last_request();
987 const struct ieee80211_regdomain *regd;
988 u32 max_bandwidth_khz;
989
990 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
991
992 flags = chan->orig_flags;
993
994 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
995 if (IS_ERR(reg_rule)) {
996 /*
997 * We will disable all channels that do not match our
998 * received regulatory rule unless the hint is coming
999 * from a Country IE and the Country IE had no information
1000 * about a band. The IEEE 802.11 spec allows for an AP
1001 * to send only a subset of the regulatory rules allowed,
1002 * so an AP in the US that only supports 2.4 GHz may only send
1003 * a country IE with information for the 2.4 GHz band
1004 * while 5 GHz is still supported.
1005 */
1006 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1007 PTR_ERR(reg_rule) == -ERANGE)
1008 return;
1009
1010 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1011 request_wiphy && request_wiphy == wiphy &&
1012 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1013 REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1014 chan->center_freq);
1015 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1016 chan->flags = chan->orig_flags;
1017 } else {
1018 REG_DBG_PRINT("Disabling freq %d MHz\n",
1019 chan->center_freq);
1020 chan->flags |= IEEE80211_CHAN_DISABLED;
1021 }
1022 return;
1023 }
1024
1025 chan_reg_rule_print_dbg(chan, reg_rule);
1026
1027 power_rule = &reg_rule->power_rule;
1028 freq_range = &reg_rule->freq_range;
1029
1030 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1031 /* Check if auto calculation requested */
1032 if (!max_bandwidth_khz) {
1033 regd = reg_get_regdomain(wiphy);
1034 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1035 }
1036
1037 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1038 bw_flags = IEEE80211_CHAN_NO_HT40;
1039 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1040 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1041 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1042 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1043
1044 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1045 request_wiphy && request_wiphy == wiphy &&
1046 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1047 /*
1048 * This guarantees the driver's requested regulatory domain
1049 * will always be used as a base for further regulatory
1050 * settings
1051 */
1052 chan->flags = chan->orig_flags =
1053 map_regdom_flags(reg_rule->flags) | bw_flags;
1054 chan->max_antenna_gain = chan->orig_mag =
1055 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1056 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1057 (int) MBM_TO_DBM(power_rule->max_eirp);
1058 return;
1059 }
1060
1061 chan->dfs_state = NL80211_DFS_USABLE;
1062 chan->dfs_state_entered = jiffies;
1063
1064 chan->beacon_found = false;
1065 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1066 chan->max_antenna_gain =
1067 min_t(int, chan->orig_mag,
1068 MBI_TO_DBI(power_rule->max_antenna_gain));
1069 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1070 if (chan->orig_mpwr) {
1071 /*
1072 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1073 * will always follow the passed country IE power settings.
1074 */
1075 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1076 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1077 chan->max_power = chan->max_reg_power;
1078 else
1079 chan->max_power = min(chan->orig_mpwr,
1080 chan->max_reg_power);
1081 } else
1082 chan->max_power = chan->max_reg_power;
1083 }
1084
1085 static void handle_band(struct wiphy *wiphy,
1086 enum nl80211_reg_initiator initiator,
1087 struct ieee80211_supported_band *sband)
1088 {
1089 unsigned int i;
1090
1091 if (!sband)
1092 return;
1093
1094 for (i = 0; i < sband->n_channels; i++)
1095 handle_channel(wiphy, initiator, &sband->channels[i]);
1096 }
1097
1098 static bool reg_request_cell_base(struct regulatory_request *request)
1099 {
1100 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1101 return false;
1102 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1103 }
1104
1105 bool reg_last_request_cell_base(void)
1106 {
1107 return reg_request_cell_base(get_last_request());
1108 }
1109
1110 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
1111 /* Core specific check */
1112 static enum reg_request_treatment
1113 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1114 {
1115 struct regulatory_request *lr = get_last_request();
1116
1117 if (!reg_num_devs_support_basehint)
1118 return REG_REQ_IGNORE;
1119
1120 if (reg_request_cell_base(lr) &&
1121 !regdom_changes(pending_request->alpha2))
1122 return REG_REQ_ALREADY_SET;
1123
1124 return REG_REQ_OK;
1125 }
1126
1127 /* Device specific check */
1128 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1129 {
1130 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1131 }
1132 #else
1133 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1134 {
1135 return REG_REQ_IGNORE;
1136 }
1137
1138 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1139 {
1140 return true;
1141 }
1142 #endif
1143
1144 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1145 {
1146 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1147 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1148 return true;
1149 return false;
1150 }
1151
1152 static bool ignore_reg_update(struct wiphy *wiphy,
1153 enum nl80211_reg_initiator initiator)
1154 {
1155 struct regulatory_request *lr = get_last_request();
1156
1157 if (!lr) {
1158 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1159 "since last_request is not set\n",
1160 reg_initiator_name(initiator));
1161 return true;
1162 }
1163
1164 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1165 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1166 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1167 "since the driver uses its own custom "
1168 "regulatory domain\n",
1169 reg_initiator_name(initiator));
1170 return true;
1171 }
1172
1173 /*
1174 * wiphy->regd will be set once the device has its own
1175 * desired regulatory domain set
1176 */
1177 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1178 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1179 !is_world_regdom(lr->alpha2)) {
1180 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1181 "since the driver requires its own regulatory "
1182 "domain to be set first\n",
1183 reg_initiator_name(initiator));
1184 return true;
1185 }
1186
1187 if (reg_request_cell_base(lr))
1188 return reg_dev_ignore_cell_hint(wiphy);
1189
1190 return false;
1191 }
1192
1193 static bool reg_is_world_roaming(struct wiphy *wiphy)
1194 {
1195 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1196 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1197 struct regulatory_request *lr = get_last_request();
1198
1199 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1200 return true;
1201
1202 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1203 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1204 return true;
1205
1206 return false;
1207 }
1208
1209 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1210 struct reg_beacon *reg_beacon)
1211 {
1212 struct ieee80211_supported_band *sband;
1213 struct ieee80211_channel *chan;
1214 bool channel_changed = false;
1215 struct ieee80211_channel chan_before;
1216
1217 sband = wiphy->bands[reg_beacon->chan.band];
1218 chan = &sband->channels[chan_idx];
1219
1220 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1221 return;
1222
1223 if (chan->beacon_found)
1224 return;
1225
1226 chan->beacon_found = true;
1227
1228 if (!reg_is_world_roaming(wiphy))
1229 return;
1230
1231 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1232 return;
1233
1234 chan_before.center_freq = chan->center_freq;
1235 chan_before.flags = chan->flags;
1236
1237 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1238 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1239 channel_changed = true;
1240 }
1241
1242 if (channel_changed)
1243 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1244 }
1245
1246 /*
1247 * Called when a scan on a wiphy finds a beacon on
1248 * new channel
1249 */
1250 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1251 struct reg_beacon *reg_beacon)
1252 {
1253 unsigned int i;
1254 struct ieee80211_supported_band *sband;
1255
1256 if (!wiphy->bands[reg_beacon->chan.band])
1257 return;
1258
1259 sband = wiphy->bands[reg_beacon->chan.band];
1260
1261 for (i = 0; i < sband->n_channels; i++)
1262 handle_reg_beacon(wiphy, i, reg_beacon);
1263 }
1264
1265 /*
1266 * Called upon reg changes or a new wiphy is added
1267 */
1268 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1269 {
1270 unsigned int i;
1271 struct ieee80211_supported_band *sband;
1272 struct reg_beacon *reg_beacon;
1273
1274 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1275 if (!wiphy->bands[reg_beacon->chan.band])
1276 continue;
1277 sband = wiphy->bands[reg_beacon->chan.band];
1278 for (i = 0; i < sband->n_channels; i++)
1279 handle_reg_beacon(wiphy, i, reg_beacon);
1280 }
1281 }
1282
1283 /* Reap the advantages of previously found beacons */
1284 static void reg_process_beacons(struct wiphy *wiphy)
1285 {
1286 /*
1287 * Means we are just firing up cfg80211, so no beacons would
1288 * have been processed yet.
1289 */
1290 if (!last_request)
1291 return;
1292 wiphy_update_beacon_reg(wiphy);
1293 }
1294
1295 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1296 {
1297 if (!chan)
1298 return false;
1299 if (chan->flags & IEEE80211_CHAN_DISABLED)
1300 return false;
1301 /* This would happen when regulatory rules disallow HT40 completely */
1302 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1303 return false;
1304 return true;
1305 }
1306
1307 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1308 struct ieee80211_channel *channel)
1309 {
1310 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1311 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1312 unsigned int i;
1313
1314 if (!is_ht40_allowed(channel)) {
1315 channel->flags |= IEEE80211_CHAN_NO_HT40;
1316 return;
1317 }
1318
1319 /*
1320 * We need to ensure the extension channels exist to
1321 * be able to use HT40- or HT40+, this finds them (or not)
1322 */
1323 for (i = 0; i < sband->n_channels; i++) {
1324 struct ieee80211_channel *c = &sband->channels[i];
1325
1326 if (c->center_freq == (channel->center_freq - 20))
1327 channel_before = c;
1328 if (c->center_freq == (channel->center_freq + 20))
1329 channel_after = c;
1330 }
1331
1332 /*
1333 * Please note that this assumes target bandwidth is 20 MHz,
1334 * if that ever changes we also need to change the below logic
1335 * to include that as well.
1336 */
1337 if (!is_ht40_allowed(channel_before))
1338 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1339 else
1340 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1341
1342 if (!is_ht40_allowed(channel_after))
1343 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1344 else
1345 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1346 }
1347
1348 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1349 struct ieee80211_supported_band *sband)
1350 {
1351 unsigned int i;
1352
1353 if (!sband)
1354 return;
1355
1356 for (i = 0; i < sband->n_channels; i++)
1357 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1358 }
1359
1360 static void reg_process_ht_flags(struct wiphy *wiphy)
1361 {
1362 enum ieee80211_band band;
1363
1364 if (!wiphy)
1365 return;
1366
1367 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1368 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1369 }
1370
1371 static void reg_call_notifier(struct wiphy *wiphy,
1372 struct regulatory_request *request)
1373 {
1374 if (wiphy->reg_notifier)
1375 wiphy->reg_notifier(wiphy, request);
1376 }
1377
1378 static void wiphy_update_regulatory(struct wiphy *wiphy,
1379 enum nl80211_reg_initiator initiator)
1380 {
1381 enum ieee80211_band band;
1382 struct regulatory_request *lr = get_last_request();
1383
1384 if (ignore_reg_update(wiphy, initiator)) {
1385 /*
1386 * Regulatory updates set by CORE are ignored for custom
1387 * regulatory cards. Let us notify the changes to the driver,
1388 * as some drivers used this to restore its orig_* reg domain.
1389 */
1390 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1391 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1392 reg_call_notifier(wiphy, lr);
1393 return;
1394 }
1395
1396 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1397
1398 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1399 handle_band(wiphy, initiator, wiphy->bands[band]);
1400
1401 reg_process_beacons(wiphy);
1402 reg_process_ht_flags(wiphy);
1403 reg_call_notifier(wiphy, lr);
1404 }
1405
1406 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1407 {
1408 struct cfg80211_registered_device *rdev;
1409 struct wiphy *wiphy;
1410
1411 ASSERT_RTNL();
1412
1413 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1414 wiphy = &rdev->wiphy;
1415 wiphy_update_regulatory(wiphy, initiator);
1416 }
1417 }
1418
1419 static void handle_channel_custom(struct wiphy *wiphy,
1420 struct ieee80211_channel *chan,
1421 const struct ieee80211_regdomain *regd)
1422 {
1423 u32 bw_flags = 0;
1424 const struct ieee80211_reg_rule *reg_rule = NULL;
1425 const struct ieee80211_power_rule *power_rule = NULL;
1426 const struct ieee80211_freq_range *freq_range = NULL;
1427 u32 max_bandwidth_khz;
1428
1429 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1430 regd);
1431
1432 if (IS_ERR(reg_rule)) {
1433 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1434 chan->center_freq);
1435 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1436 chan->flags = chan->orig_flags;
1437 return;
1438 }
1439
1440 chan_reg_rule_print_dbg(chan, reg_rule);
1441
1442 power_rule = &reg_rule->power_rule;
1443 freq_range = &reg_rule->freq_range;
1444
1445 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1446 /* Check if auto calculation requested */
1447 if (!max_bandwidth_khz)
1448 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1449
1450 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1451 bw_flags = IEEE80211_CHAN_NO_HT40;
1452 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1453 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1454 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1455 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1456
1457 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1458 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1459 chan->max_reg_power = chan->max_power =
1460 (int) MBM_TO_DBM(power_rule->max_eirp);
1461 }
1462
1463 static void handle_band_custom(struct wiphy *wiphy,
1464 struct ieee80211_supported_band *sband,
1465 const struct ieee80211_regdomain *regd)
1466 {
1467 unsigned int i;
1468
1469 if (!sband)
1470 return;
1471
1472 for (i = 0; i < sband->n_channels; i++)
1473 handle_channel_custom(wiphy, &sband->channels[i], regd);
1474 }
1475
1476 /* Used by drivers prior to wiphy registration */
1477 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1478 const struct ieee80211_regdomain *regd)
1479 {
1480 enum ieee80211_band band;
1481 unsigned int bands_set = 0;
1482
1483 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1484 "wiphy should have REGULATORY_CUSTOM_REG\n");
1485 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1486
1487 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1488 if (!wiphy->bands[band])
1489 continue;
1490 handle_band_custom(wiphy, wiphy->bands[band], regd);
1491 bands_set++;
1492 }
1493
1494 /*
1495 * no point in calling this if it won't have any effect
1496 * on your device's supported bands.
1497 */
1498 WARN_ON(!bands_set);
1499 }
1500 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1501
1502 static void reg_set_request_processed(void)
1503 {
1504 bool need_more_processing = false;
1505 struct regulatory_request *lr = get_last_request();
1506
1507 lr->processed = true;
1508
1509 spin_lock(&reg_requests_lock);
1510 if (!list_empty(&reg_requests_list))
1511 need_more_processing = true;
1512 spin_unlock(&reg_requests_lock);
1513
1514 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1515 cancel_delayed_work(&reg_timeout);
1516
1517 if (need_more_processing)
1518 schedule_work(&reg_work);
1519 }
1520
1521 /**
1522 * reg_process_hint_core - process core regulatory requests
1523 * @pending_request: a pending core regulatory request
1524 *
1525 * The wireless subsystem can use this function to process
1526 * a regulatory request issued by the regulatory core.
1527 *
1528 * Returns one of the different reg request treatment values.
1529 */
1530 static enum reg_request_treatment
1531 reg_process_hint_core(struct regulatory_request *core_request)
1532 {
1533
1534 core_request->intersect = false;
1535 core_request->processed = false;
1536
1537 reg_update_last_request(core_request);
1538
1539 return reg_call_crda(core_request);
1540 }
1541
1542 static enum reg_request_treatment
1543 __reg_process_hint_user(struct regulatory_request *user_request)
1544 {
1545 struct regulatory_request *lr = get_last_request();
1546
1547 if (reg_request_cell_base(user_request))
1548 return reg_ignore_cell_hint(user_request);
1549
1550 if (reg_request_cell_base(lr))
1551 return REG_REQ_IGNORE;
1552
1553 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1554 return REG_REQ_INTERSECT;
1555 /*
1556 * If the user knows better the user should set the regdom
1557 * to their country before the IE is picked up
1558 */
1559 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1560 lr->intersect)
1561 return REG_REQ_IGNORE;
1562 /*
1563 * Process user requests only after previous user/driver/core
1564 * requests have been processed
1565 */
1566 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1567 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1568 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1569 regdom_changes(lr->alpha2))
1570 return REG_REQ_IGNORE;
1571
1572 if (!regdom_changes(user_request->alpha2))
1573 return REG_REQ_ALREADY_SET;
1574
1575 return REG_REQ_OK;
1576 }
1577
1578 /**
1579 * reg_process_hint_user - process user regulatory requests
1580 * @user_request: a pending user regulatory request
1581 *
1582 * The wireless subsystem can use this function to process
1583 * a regulatory request initiated by userspace.
1584 *
1585 * Returns one of the different reg request treatment values.
1586 */
1587 static enum reg_request_treatment
1588 reg_process_hint_user(struct regulatory_request *user_request)
1589 {
1590 enum reg_request_treatment treatment;
1591
1592 treatment = __reg_process_hint_user(user_request);
1593 if (treatment == REG_REQ_IGNORE ||
1594 treatment == REG_REQ_ALREADY_SET) {
1595 kfree(user_request);
1596 return treatment;
1597 }
1598
1599 user_request->intersect = treatment == REG_REQ_INTERSECT;
1600 user_request->processed = false;
1601
1602 reg_update_last_request(user_request);
1603
1604 user_alpha2[0] = user_request->alpha2[0];
1605 user_alpha2[1] = user_request->alpha2[1];
1606
1607 return reg_call_crda(user_request);
1608 }
1609
1610 static enum reg_request_treatment
1611 __reg_process_hint_driver(struct regulatory_request *driver_request)
1612 {
1613 struct regulatory_request *lr = get_last_request();
1614
1615 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1616 if (regdom_changes(driver_request->alpha2))
1617 return REG_REQ_OK;
1618 return REG_REQ_ALREADY_SET;
1619 }
1620
1621 /*
1622 * This would happen if you unplug and plug your card
1623 * back in or if you add a new device for which the previously
1624 * loaded card also agrees on the regulatory domain.
1625 */
1626 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1627 !regdom_changes(driver_request->alpha2))
1628 return REG_REQ_ALREADY_SET;
1629
1630 return REG_REQ_INTERSECT;
1631 }
1632
1633 /**
1634 * reg_process_hint_driver - process driver regulatory requests
1635 * @driver_request: a pending driver regulatory request
1636 *
1637 * The wireless subsystem can use this function to process
1638 * a regulatory request issued by an 802.11 driver.
1639 *
1640 * Returns one of the different reg request treatment values.
1641 */
1642 static enum reg_request_treatment
1643 reg_process_hint_driver(struct wiphy *wiphy,
1644 struct regulatory_request *driver_request)
1645 {
1646 const struct ieee80211_regdomain *regd;
1647 enum reg_request_treatment treatment;
1648
1649 treatment = __reg_process_hint_driver(driver_request);
1650
1651 switch (treatment) {
1652 case REG_REQ_OK:
1653 break;
1654 case REG_REQ_IGNORE:
1655 kfree(driver_request);
1656 return treatment;
1657 case REG_REQ_INTERSECT:
1658 /* fall through */
1659 case REG_REQ_ALREADY_SET:
1660 regd = reg_copy_regd(get_cfg80211_regdom());
1661 if (IS_ERR(regd)) {
1662 kfree(driver_request);
1663 return REG_REQ_IGNORE;
1664 }
1665 rcu_assign_pointer(wiphy->regd, regd);
1666 }
1667
1668
1669 driver_request->intersect = treatment == REG_REQ_INTERSECT;
1670 driver_request->processed = false;
1671
1672 reg_update_last_request(driver_request);
1673
1674 /*
1675 * Since CRDA will not be called in this case as we already
1676 * have applied the requested regulatory domain before we just
1677 * inform userspace we have processed the request
1678 */
1679 if (treatment == REG_REQ_ALREADY_SET) {
1680 nl80211_send_reg_change_event(driver_request);
1681 reg_set_request_processed();
1682 return treatment;
1683 }
1684
1685 return reg_call_crda(driver_request);
1686 }
1687
1688 static enum reg_request_treatment
1689 __reg_process_hint_country_ie(struct wiphy *wiphy,
1690 struct regulatory_request *country_ie_request)
1691 {
1692 struct wiphy *last_wiphy = NULL;
1693 struct regulatory_request *lr = get_last_request();
1694
1695 if (reg_request_cell_base(lr)) {
1696 /* Trust a Cell base station over the AP's country IE */
1697 if (regdom_changes(country_ie_request->alpha2))
1698 return REG_REQ_IGNORE;
1699 return REG_REQ_ALREADY_SET;
1700 } else {
1701 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1702 return REG_REQ_IGNORE;
1703 }
1704
1705 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
1706 return -EINVAL;
1707
1708 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
1709 return REG_REQ_OK;
1710
1711 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1712
1713 if (last_wiphy != wiphy) {
1714 /*
1715 * Two cards with two APs claiming different
1716 * Country IE alpha2s. We could
1717 * intersect them, but that seems unlikely
1718 * to be correct. Reject second one for now.
1719 */
1720 if (regdom_changes(country_ie_request->alpha2))
1721 return REG_REQ_IGNORE;
1722 return REG_REQ_ALREADY_SET;
1723 }
1724 /*
1725 * Two consecutive Country IE hints on the same wiphy.
1726 * This should be picked up early by the driver/stack
1727 */
1728 if (WARN_ON(regdom_changes(country_ie_request->alpha2)))
1729 return REG_REQ_OK;
1730 return REG_REQ_ALREADY_SET;
1731 }
1732
1733 /**
1734 * reg_process_hint_country_ie - process regulatory requests from country IEs
1735 * @country_ie_request: a regulatory request from a country IE
1736 *
1737 * The wireless subsystem can use this function to process
1738 * a regulatory request issued by a country Information Element.
1739 *
1740 * Returns one of the different reg request treatment values.
1741 */
1742 static enum reg_request_treatment
1743 reg_process_hint_country_ie(struct wiphy *wiphy,
1744 struct regulatory_request *country_ie_request)
1745 {
1746 enum reg_request_treatment treatment;
1747
1748 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
1749
1750 switch (treatment) {
1751 case REG_REQ_OK:
1752 break;
1753 case REG_REQ_IGNORE:
1754 /* fall through */
1755 case REG_REQ_ALREADY_SET:
1756 kfree(country_ie_request);
1757 return treatment;
1758 case REG_REQ_INTERSECT:
1759 kfree(country_ie_request);
1760 /*
1761 * This doesn't happen yet, not sure we
1762 * ever want to support it for this case.
1763 */
1764 WARN_ONCE(1, "Unexpected intersection for country IEs");
1765 return REG_REQ_IGNORE;
1766 }
1767
1768 country_ie_request->intersect = false;
1769 country_ie_request->processed = false;
1770
1771 reg_update_last_request(country_ie_request);
1772
1773 return reg_call_crda(country_ie_request);
1774 }
1775
1776 /* This processes *all* regulatory hints */
1777 static void reg_process_hint(struct regulatory_request *reg_request)
1778 {
1779 struct wiphy *wiphy = NULL;
1780 enum reg_request_treatment treatment;
1781
1782 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1783 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1784
1785 switch (reg_request->initiator) {
1786 case NL80211_REGDOM_SET_BY_CORE:
1787 reg_process_hint_core(reg_request);
1788 return;
1789 case NL80211_REGDOM_SET_BY_USER:
1790 treatment = reg_process_hint_user(reg_request);
1791 if (treatment == REG_REQ_OK ||
1792 treatment == REG_REQ_ALREADY_SET)
1793 return;
1794 queue_delayed_work(system_power_efficient_wq,
1795 &reg_timeout, msecs_to_jiffies(3142));
1796 return;
1797 case NL80211_REGDOM_SET_BY_DRIVER:
1798 if (!wiphy)
1799 goto out_free;
1800 treatment = reg_process_hint_driver(wiphy, reg_request);
1801 break;
1802 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1803 if (!wiphy)
1804 goto out_free;
1805 treatment = reg_process_hint_country_ie(wiphy, reg_request);
1806 break;
1807 default:
1808 WARN(1, "invalid initiator %d\n", reg_request->initiator);
1809 goto out_free;
1810 }
1811
1812 /* This is required so that the orig_* parameters are saved */
1813 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
1814 wiphy->regulatory_flags & REGULATORY_STRICT_REG)
1815 wiphy_update_regulatory(wiphy, reg_request->initiator);
1816
1817 return;
1818
1819 out_free:
1820 kfree(reg_request);
1821 }
1822
1823 /*
1824 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1825 * Regulatory hints come on a first come first serve basis and we
1826 * must process each one atomically.
1827 */
1828 static void reg_process_pending_hints(void)
1829 {
1830 struct regulatory_request *reg_request, *lr;
1831
1832 lr = get_last_request();
1833
1834 /* When last_request->processed becomes true this will be rescheduled */
1835 if (lr && !lr->processed) {
1836 REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n");
1837 return;
1838 }
1839
1840 spin_lock(&reg_requests_lock);
1841
1842 if (list_empty(&reg_requests_list)) {
1843 spin_unlock(&reg_requests_lock);
1844 return;
1845 }
1846
1847 reg_request = list_first_entry(&reg_requests_list,
1848 struct regulatory_request,
1849 list);
1850 list_del_init(&reg_request->list);
1851
1852 spin_unlock(&reg_requests_lock);
1853
1854 reg_process_hint(reg_request);
1855 }
1856
1857 /* Processes beacon hints -- this has nothing to do with country IEs */
1858 static void reg_process_pending_beacon_hints(void)
1859 {
1860 struct cfg80211_registered_device *rdev;
1861 struct reg_beacon *pending_beacon, *tmp;
1862
1863 /* This goes through the _pending_ beacon list */
1864 spin_lock_bh(&reg_pending_beacons_lock);
1865
1866 list_for_each_entry_safe(pending_beacon, tmp,
1867 &reg_pending_beacons, list) {
1868 list_del_init(&pending_beacon->list);
1869
1870 /* Applies the beacon hint to current wiphys */
1871 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1872 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1873
1874 /* Remembers the beacon hint for new wiphys or reg changes */
1875 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1876 }
1877
1878 spin_unlock_bh(&reg_pending_beacons_lock);
1879 }
1880
1881 static void reg_todo(struct work_struct *work)
1882 {
1883 rtnl_lock();
1884 reg_process_pending_hints();
1885 reg_process_pending_beacon_hints();
1886 rtnl_unlock();
1887 }
1888
1889 static void queue_regulatory_request(struct regulatory_request *request)
1890 {
1891 request->alpha2[0] = toupper(request->alpha2[0]);
1892 request->alpha2[1] = toupper(request->alpha2[1]);
1893
1894 spin_lock(&reg_requests_lock);
1895 list_add_tail(&request->list, &reg_requests_list);
1896 spin_unlock(&reg_requests_lock);
1897
1898 schedule_work(&reg_work);
1899 }
1900
1901 /*
1902 * Core regulatory hint -- happens during cfg80211_init()
1903 * and when we restore regulatory settings.
1904 */
1905 static int regulatory_hint_core(const char *alpha2)
1906 {
1907 struct regulatory_request *request;
1908
1909 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1910 if (!request)
1911 return -ENOMEM;
1912
1913 request->alpha2[0] = alpha2[0];
1914 request->alpha2[1] = alpha2[1];
1915 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1916
1917 queue_regulatory_request(request);
1918
1919 return 0;
1920 }
1921
1922 /* User hints */
1923 int regulatory_hint_user(const char *alpha2,
1924 enum nl80211_user_reg_hint_type user_reg_hint_type)
1925 {
1926 struct regulatory_request *request;
1927
1928 if (WARN_ON(!alpha2))
1929 return -EINVAL;
1930
1931 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1932 if (!request)
1933 return -ENOMEM;
1934
1935 request->wiphy_idx = WIPHY_IDX_INVALID;
1936 request->alpha2[0] = alpha2[0];
1937 request->alpha2[1] = alpha2[1];
1938 request->initiator = NL80211_REGDOM_SET_BY_USER;
1939 request->user_reg_hint_type = user_reg_hint_type;
1940
1941 queue_regulatory_request(request);
1942
1943 return 0;
1944 }
1945
1946 /* Driver hints */
1947 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1948 {
1949 struct regulatory_request *request;
1950
1951 if (WARN_ON(!alpha2 || !wiphy))
1952 return -EINVAL;
1953
1954 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
1955
1956 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1957 if (!request)
1958 return -ENOMEM;
1959
1960 request->wiphy_idx = get_wiphy_idx(wiphy);
1961
1962 request->alpha2[0] = alpha2[0];
1963 request->alpha2[1] = alpha2[1];
1964 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1965
1966 queue_regulatory_request(request);
1967
1968 return 0;
1969 }
1970 EXPORT_SYMBOL(regulatory_hint);
1971
1972 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
1973 const u8 *country_ie, u8 country_ie_len)
1974 {
1975 char alpha2[2];
1976 enum environment_cap env = ENVIRON_ANY;
1977 struct regulatory_request *request = NULL, *lr;
1978
1979 /* IE len must be evenly divisible by 2 */
1980 if (country_ie_len & 0x01)
1981 return;
1982
1983 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1984 return;
1985
1986 request = kzalloc(sizeof(*request), GFP_KERNEL);
1987 if (!request)
1988 return;
1989
1990 alpha2[0] = country_ie[0];
1991 alpha2[1] = country_ie[1];
1992
1993 if (country_ie[2] == 'I')
1994 env = ENVIRON_INDOOR;
1995 else if (country_ie[2] == 'O')
1996 env = ENVIRON_OUTDOOR;
1997
1998 rcu_read_lock();
1999 lr = get_last_request();
2000
2001 if (unlikely(!lr))
2002 goto out;
2003
2004 /*
2005 * We will run this only upon a successful connection on cfg80211.
2006 * We leave conflict resolution to the workqueue, where can hold
2007 * the RTNL.
2008 */
2009 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2010 lr->wiphy_idx != WIPHY_IDX_INVALID)
2011 goto out;
2012
2013 request->wiphy_idx = get_wiphy_idx(wiphy);
2014 request->alpha2[0] = alpha2[0];
2015 request->alpha2[1] = alpha2[1];
2016 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2017 request->country_ie_env = env;
2018
2019 queue_regulatory_request(request);
2020 request = NULL;
2021 out:
2022 kfree(request);
2023 rcu_read_unlock();
2024 }
2025
2026 static void restore_alpha2(char *alpha2, bool reset_user)
2027 {
2028 /* indicates there is no alpha2 to consider for restoration */
2029 alpha2[0] = '9';
2030 alpha2[1] = '7';
2031
2032 /* The user setting has precedence over the module parameter */
2033 if (is_user_regdom_saved()) {
2034 /* Unless we're asked to ignore it and reset it */
2035 if (reset_user) {
2036 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2037 user_alpha2[0] = '9';
2038 user_alpha2[1] = '7';
2039
2040 /*
2041 * If we're ignoring user settings, we still need to
2042 * check the module parameter to ensure we put things
2043 * back as they were for a full restore.
2044 */
2045 if (!is_world_regdom(ieee80211_regdom)) {
2046 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2047 ieee80211_regdom[0], ieee80211_regdom[1]);
2048 alpha2[0] = ieee80211_regdom[0];
2049 alpha2[1] = ieee80211_regdom[1];
2050 }
2051 } else {
2052 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2053 user_alpha2[0], user_alpha2[1]);
2054 alpha2[0] = user_alpha2[0];
2055 alpha2[1] = user_alpha2[1];
2056 }
2057 } else if (!is_world_regdom(ieee80211_regdom)) {
2058 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2059 ieee80211_regdom[0], ieee80211_regdom[1]);
2060 alpha2[0] = ieee80211_regdom[0];
2061 alpha2[1] = ieee80211_regdom[1];
2062 } else
2063 REG_DBG_PRINT("Restoring regulatory settings\n");
2064 }
2065
2066 static void restore_custom_reg_settings(struct wiphy *wiphy)
2067 {
2068 struct ieee80211_supported_band *sband;
2069 enum ieee80211_band band;
2070 struct ieee80211_channel *chan;
2071 int i;
2072
2073 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2074 sband = wiphy->bands[band];
2075 if (!sband)
2076 continue;
2077 for (i = 0; i < sband->n_channels; i++) {
2078 chan = &sband->channels[i];
2079 chan->flags = chan->orig_flags;
2080 chan->max_antenna_gain = chan->orig_mag;
2081 chan->max_power = chan->orig_mpwr;
2082 chan->beacon_found = false;
2083 }
2084 }
2085 }
2086
2087 /*
2088 * Restoring regulatory settings involves ingoring any
2089 * possibly stale country IE information and user regulatory
2090 * settings if so desired, this includes any beacon hints
2091 * learned as we could have traveled outside to another country
2092 * after disconnection. To restore regulatory settings we do
2093 * exactly what we did at bootup:
2094 *
2095 * - send a core regulatory hint
2096 * - send a user regulatory hint if applicable
2097 *
2098 * Device drivers that send a regulatory hint for a specific country
2099 * keep their own regulatory domain on wiphy->regd so that does does
2100 * not need to be remembered.
2101 */
2102 static void restore_regulatory_settings(bool reset_user)
2103 {
2104 char alpha2[2];
2105 char world_alpha2[2];
2106 struct reg_beacon *reg_beacon, *btmp;
2107 struct regulatory_request *reg_request, *tmp;
2108 LIST_HEAD(tmp_reg_req_list);
2109 struct cfg80211_registered_device *rdev;
2110
2111 ASSERT_RTNL();
2112
2113 reset_regdomains(true, &world_regdom);
2114 restore_alpha2(alpha2, reset_user);
2115
2116 /*
2117 * If there's any pending requests we simply
2118 * stash them to a temporary pending queue and
2119 * add then after we've restored regulatory
2120 * settings.
2121 */
2122 spin_lock(&reg_requests_lock);
2123 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2124 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
2125 continue;
2126 list_move_tail(&reg_request->list, &tmp_reg_req_list);
2127 }
2128 spin_unlock(&reg_requests_lock);
2129
2130 /* Clear beacon hints */
2131 spin_lock_bh(&reg_pending_beacons_lock);
2132 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2133 list_del(&reg_beacon->list);
2134 kfree(reg_beacon);
2135 }
2136 spin_unlock_bh(&reg_pending_beacons_lock);
2137
2138 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2139 list_del(&reg_beacon->list);
2140 kfree(reg_beacon);
2141 }
2142
2143 /* First restore to the basic regulatory settings */
2144 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2145 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2146
2147 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2148 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2149 restore_custom_reg_settings(&rdev->wiphy);
2150 }
2151
2152 regulatory_hint_core(world_alpha2);
2153
2154 /*
2155 * This restores the ieee80211_regdom module parameter
2156 * preference or the last user requested regulatory
2157 * settings, user regulatory settings takes precedence.
2158 */
2159 if (is_an_alpha2(alpha2))
2160 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2161
2162 spin_lock(&reg_requests_lock);
2163 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2164 spin_unlock(&reg_requests_lock);
2165
2166 REG_DBG_PRINT("Kicking the queue\n");
2167
2168 schedule_work(&reg_work);
2169 }
2170
2171 void regulatory_hint_disconnect(void)
2172 {
2173 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2174 restore_regulatory_settings(false);
2175 }
2176
2177 static bool freq_is_chan_12_13_14(u16 freq)
2178 {
2179 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2180 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2181 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2182 return true;
2183 return false;
2184 }
2185
2186 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2187 {
2188 struct reg_beacon *pending_beacon;
2189
2190 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2191 if (beacon_chan->center_freq ==
2192 pending_beacon->chan.center_freq)
2193 return true;
2194 return false;
2195 }
2196
2197 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2198 struct ieee80211_channel *beacon_chan,
2199 gfp_t gfp)
2200 {
2201 struct reg_beacon *reg_beacon;
2202 bool processing;
2203
2204 if (beacon_chan->beacon_found ||
2205 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2206 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2207 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2208 return 0;
2209
2210 spin_lock_bh(&reg_pending_beacons_lock);
2211 processing = pending_reg_beacon(beacon_chan);
2212 spin_unlock_bh(&reg_pending_beacons_lock);
2213
2214 if (processing)
2215 return 0;
2216
2217 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2218 if (!reg_beacon)
2219 return -ENOMEM;
2220
2221 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2222 beacon_chan->center_freq,
2223 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2224 wiphy_name(wiphy));
2225
2226 memcpy(&reg_beacon->chan, beacon_chan,
2227 sizeof(struct ieee80211_channel));
2228
2229 /*
2230 * Since we can be called from BH or and non-BH context
2231 * we must use spin_lock_bh()
2232 */
2233 spin_lock_bh(&reg_pending_beacons_lock);
2234 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2235 spin_unlock_bh(&reg_pending_beacons_lock);
2236
2237 schedule_work(&reg_work);
2238
2239 return 0;
2240 }
2241
2242 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2243 {
2244 unsigned int i;
2245 const struct ieee80211_reg_rule *reg_rule = NULL;
2246 const struct ieee80211_freq_range *freq_range = NULL;
2247 const struct ieee80211_power_rule *power_rule = NULL;
2248 char bw[32];
2249
2250 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2251
2252 for (i = 0; i < rd->n_reg_rules; i++) {
2253 reg_rule = &rd->reg_rules[i];
2254 freq_range = &reg_rule->freq_range;
2255 power_rule = &reg_rule->power_rule;
2256
2257 if (!freq_range->max_bandwidth_khz)
2258 snprintf(bw, 32, "%d KHz, AUTO",
2259 reg_get_max_bandwidth(rd, reg_rule));
2260 else
2261 snprintf(bw, 32, "%d KHz",
2262 freq_range->max_bandwidth_khz);
2263
2264 /*
2265 * There may not be documentation for max antenna gain
2266 * in certain regions
2267 */
2268 if (power_rule->max_antenna_gain)
2269 pr_info(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm)\n",
2270 freq_range->start_freq_khz,
2271 freq_range->end_freq_khz,
2272 bw,
2273 power_rule->max_antenna_gain,
2274 power_rule->max_eirp);
2275 else
2276 pr_info(" (%d KHz - %d KHz @ %s), (N/A, %d mBm)\n",
2277 freq_range->start_freq_khz,
2278 freq_range->end_freq_khz,
2279 bw,
2280 power_rule->max_eirp);
2281 }
2282 }
2283
2284 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2285 {
2286 switch (dfs_region) {
2287 case NL80211_DFS_UNSET:
2288 case NL80211_DFS_FCC:
2289 case NL80211_DFS_ETSI:
2290 case NL80211_DFS_JP:
2291 return true;
2292 default:
2293 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2294 dfs_region);
2295 return false;
2296 }
2297 }
2298
2299 static void print_regdomain(const struct ieee80211_regdomain *rd)
2300 {
2301 struct regulatory_request *lr = get_last_request();
2302
2303 if (is_intersected_alpha2(rd->alpha2)) {
2304 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2305 struct cfg80211_registered_device *rdev;
2306 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2307 if (rdev) {
2308 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2309 rdev->country_ie_alpha2[0],
2310 rdev->country_ie_alpha2[1]);
2311 } else
2312 pr_info("Current regulatory domain intersected:\n");
2313 } else
2314 pr_info("Current regulatory domain intersected:\n");
2315 } else if (is_world_regdom(rd->alpha2)) {
2316 pr_info("World regulatory domain updated:\n");
2317 } else {
2318 if (is_unknown_alpha2(rd->alpha2))
2319 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2320 else {
2321 if (reg_request_cell_base(lr))
2322 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2323 rd->alpha2[0], rd->alpha2[1]);
2324 else
2325 pr_info("Regulatory domain changed to country: %c%c\n",
2326 rd->alpha2[0], rd->alpha2[1]);
2327 }
2328 }
2329
2330 pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2331 print_rd_rules(rd);
2332 }
2333
2334 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2335 {
2336 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2337 print_rd_rules(rd);
2338 }
2339
2340 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2341 {
2342 if (!is_world_regdom(rd->alpha2))
2343 return -EINVAL;
2344 update_world_regdomain(rd);
2345 return 0;
2346 }
2347
2348 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2349 struct regulatory_request *user_request)
2350 {
2351 const struct ieee80211_regdomain *intersected_rd = NULL;
2352
2353 if (is_world_regdom(rd->alpha2))
2354 return -EINVAL;
2355
2356 if (!regdom_changes(rd->alpha2))
2357 return -EALREADY;
2358
2359 if (!is_valid_rd(rd)) {
2360 pr_err("Invalid regulatory domain detected:\n");
2361 print_regdomain_info(rd);
2362 return -EINVAL;
2363 }
2364
2365 if (!user_request->intersect) {
2366 reset_regdomains(false, rd);
2367 return 0;
2368 }
2369
2370 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2371 if (!intersected_rd)
2372 return -EINVAL;
2373
2374 kfree(rd);
2375 rd = NULL;
2376 reset_regdomains(false, intersected_rd);
2377
2378 return 0;
2379 }
2380
2381 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2382 struct regulatory_request *driver_request)
2383 {
2384 const struct ieee80211_regdomain *regd;
2385 const struct ieee80211_regdomain *intersected_rd = NULL;
2386 const struct ieee80211_regdomain *tmp;
2387 struct wiphy *request_wiphy;
2388
2389 if (is_world_regdom(rd->alpha2))
2390 return -EINVAL;
2391
2392 if (!regdom_changes(rd->alpha2))
2393 return -EALREADY;
2394
2395 if (!is_valid_rd(rd)) {
2396 pr_err("Invalid regulatory domain detected:\n");
2397 print_regdomain_info(rd);
2398 return -EINVAL;
2399 }
2400
2401 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2402 if (!request_wiphy) {
2403 queue_delayed_work(system_power_efficient_wq,
2404 &reg_timeout, 0);
2405 return -ENODEV;
2406 }
2407
2408 if (!driver_request->intersect) {
2409 if (request_wiphy->regd)
2410 return -EALREADY;
2411
2412 regd = reg_copy_regd(rd);
2413 if (IS_ERR(regd))
2414 return PTR_ERR(regd);
2415
2416 rcu_assign_pointer(request_wiphy->regd, regd);
2417 reset_regdomains(false, rd);
2418 return 0;
2419 }
2420
2421 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2422 if (!intersected_rd)
2423 return -EINVAL;
2424
2425 /*
2426 * We can trash what CRDA provided now.
2427 * However if a driver requested this specific regulatory
2428 * domain we keep it for its private use
2429 */
2430 tmp = get_wiphy_regdom(request_wiphy);
2431 rcu_assign_pointer(request_wiphy->regd, rd);
2432 rcu_free_regdom(tmp);
2433
2434 rd = NULL;
2435
2436 reset_regdomains(false, intersected_rd);
2437
2438 return 0;
2439 }
2440
2441 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2442 struct regulatory_request *country_ie_request)
2443 {
2444 struct wiphy *request_wiphy;
2445
2446 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2447 !is_unknown_alpha2(rd->alpha2))
2448 return -EINVAL;
2449
2450 /*
2451 * Lets only bother proceeding on the same alpha2 if the current
2452 * rd is non static (it means CRDA was present and was used last)
2453 * and the pending request came in from a country IE
2454 */
2455
2456 if (!is_valid_rd(rd)) {
2457 pr_err("Invalid regulatory domain detected:\n");
2458 print_regdomain_info(rd);
2459 return -EINVAL;
2460 }
2461
2462 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2463 if (!request_wiphy) {
2464 queue_delayed_work(system_power_efficient_wq,
2465 &reg_timeout, 0);
2466 return -ENODEV;
2467 }
2468
2469 if (country_ie_request->intersect)
2470 return -EINVAL;
2471
2472 reset_regdomains(false, rd);
2473 return 0;
2474 }
2475
2476 /*
2477 * Use this call to set the current regulatory domain. Conflicts with
2478 * multiple drivers can be ironed out later. Caller must've already
2479 * kmalloc'd the rd structure.
2480 */
2481 int set_regdom(const struct ieee80211_regdomain *rd)
2482 {
2483 struct regulatory_request *lr;
2484 int r;
2485
2486 if (!reg_is_valid_request(rd->alpha2)) {
2487 kfree(rd);
2488 return -EINVAL;
2489 }
2490
2491 lr = get_last_request();
2492
2493 /* Note that this doesn't update the wiphys, this is done below */
2494 switch (lr->initiator) {
2495 case NL80211_REGDOM_SET_BY_CORE:
2496 r = reg_set_rd_core(rd);
2497 break;
2498 case NL80211_REGDOM_SET_BY_USER:
2499 r = reg_set_rd_user(rd, lr);
2500 break;
2501 case NL80211_REGDOM_SET_BY_DRIVER:
2502 r = reg_set_rd_driver(rd, lr);
2503 break;
2504 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2505 r = reg_set_rd_country_ie(rd, lr);
2506 break;
2507 default:
2508 WARN(1, "invalid initiator %d\n", lr->initiator);
2509 return -EINVAL;
2510 }
2511
2512 if (r) {
2513 if (r == -EALREADY)
2514 reg_set_request_processed();
2515
2516 kfree(rd);
2517 return r;
2518 }
2519
2520 /* This would make this whole thing pointless */
2521 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2522 return -EINVAL;
2523
2524 /* update all wiphys now with the new established regulatory domain */
2525 update_all_wiphy_regulatory(lr->initiator);
2526
2527 print_regdomain(get_cfg80211_regdom());
2528
2529 nl80211_send_reg_change_event(lr);
2530
2531 reg_set_request_processed();
2532
2533 return 0;
2534 }
2535
2536 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2537 {
2538 struct regulatory_request *lr;
2539 u8 alpha2[2];
2540 bool add = false;
2541
2542 rcu_read_lock();
2543 lr = get_last_request();
2544 if (lr && !lr->processed) {
2545 memcpy(alpha2, lr->alpha2, 2);
2546 add = true;
2547 }
2548 rcu_read_unlock();
2549
2550 if (add)
2551 return add_uevent_var(env, "COUNTRY=%c%c",
2552 alpha2[0], alpha2[1]);
2553 return 0;
2554 }
2555
2556 void wiphy_regulatory_register(struct wiphy *wiphy)
2557 {
2558 struct regulatory_request *lr;
2559
2560 if (!reg_dev_ignore_cell_hint(wiphy))
2561 reg_num_devs_support_basehint++;
2562
2563 lr = get_last_request();
2564 wiphy_update_regulatory(wiphy, lr->initiator);
2565 }
2566
2567 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2568 {
2569 struct wiphy *request_wiphy = NULL;
2570 struct regulatory_request *lr;
2571
2572 lr = get_last_request();
2573
2574 if (!reg_dev_ignore_cell_hint(wiphy))
2575 reg_num_devs_support_basehint--;
2576
2577 rcu_free_regdom(get_wiphy_regdom(wiphy));
2578 rcu_assign_pointer(wiphy->regd, NULL);
2579
2580 if (lr)
2581 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2582
2583 if (!request_wiphy || request_wiphy != wiphy)
2584 return;
2585
2586 lr->wiphy_idx = WIPHY_IDX_INVALID;
2587 lr->country_ie_env = ENVIRON_ANY;
2588 }
2589
2590 static void reg_timeout_work(struct work_struct *work)
2591 {
2592 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2593 rtnl_lock();
2594 restore_regulatory_settings(true);
2595 rtnl_unlock();
2596 }
2597
2598 int __init regulatory_init(void)
2599 {
2600 int err = 0;
2601
2602 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2603 if (IS_ERR(reg_pdev))
2604 return PTR_ERR(reg_pdev);
2605
2606 reg_pdev->dev.type = &reg_device_type;
2607
2608 spin_lock_init(&reg_requests_lock);
2609 spin_lock_init(&reg_pending_beacons_lock);
2610
2611 reg_regdb_size_check();
2612
2613 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2614
2615 user_alpha2[0] = '9';
2616 user_alpha2[1] = '7';
2617
2618 /* We always try to get an update for the static regdomain */
2619 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2620 if (err) {
2621 if (err == -ENOMEM)
2622 return err;
2623 /*
2624 * N.B. kobject_uevent_env() can fail mainly for when we're out
2625 * memory which is handled and propagated appropriately above
2626 * but it can also fail during a netlink_broadcast() or during
2627 * early boot for call_usermodehelper(). For now treat these
2628 * errors as non-fatal.
2629 */
2630 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2631 }
2632
2633 /*
2634 * Finally, if the user set the module parameter treat it
2635 * as a user hint.
2636 */
2637 if (!is_world_regdom(ieee80211_regdom))
2638 regulatory_hint_user(ieee80211_regdom,
2639 NL80211_USER_REG_HINT_USER);
2640
2641 return 0;
2642 }
2643
2644 void regulatory_exit(void)
2645 {
2646 struct regulatory_request *reg_request, *tmp;
2647 struct reg_beacon *reg_beacon, *btmp;
2648
2649 cancel_work_sync(&reg_work);
2650 cancel_delayed_work_sync(&reg_timeout);
2651
2652 /* Lock to suppress warnings */
2653 rtnl_lock();
2654 reset_regdomains(true, NULL);
2655 rtnl_unlock();
2656
2657 dev_set_uevent_suppress(&reg_pdev->dev, true);
2658
2659 platform_device_unregister(reg_pdev);
2660
2661 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2662 list_del(&reg_beacon->list);
2663 kfree(reg_beacon);
2664 }
2665
2666 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2667 list_del(&reg_beacon->list);
2668 kfree(reg_beacon);
2669 }
2670
2671 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2672 list_del(&reg_request->list);
2673 kfree(reg_request);
2674 }
2675 }