]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/wireless/reg.c
cfg80211: print bandwidth in chan_reg_rule_print_dbg()
[mirror_ubuntu-bionic-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 /**
13 * DOC: Wireless regulatory infrastructure
14 *
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
19 *
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
23 *
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
29 *
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
33 *
34 */
35
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37
38 #include <linux/kernel.h>
39 #include <linux/slab.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/ctype.h>
43 #include <linux/nl80211.h>
44 #include <linux/platform_device.h>
45 #include <net/cfg80211.h>
46 #include "core.h"
47 #include "reg.h"
48 #include "regdb.h"
49 #include "nl80211.h"
50
51 #ifdef CONFIG_CFG80211_REG_DEBUG
52 #define REG_DBG_PRINT(format, args...) \
53 printk(KERN_DEBUG pr_fmt(format), ##args)
54 #else
55 #define REG_DBG_PRINT(args...)
56 #endif
57
58 /* Receipt of information from last regulatory request */
59 static struct regulatory_request *last_request;
60
61 /* To trigger userspace events */
62 static struct platform_device *reg_pdev;
63
64 static struct device_type reg_device_type = {
65 .uevent = reg_device_uevent,
66 };
67
68 /*
69 * Central wireless core regulatory domains, we only need two,
70 * the current one and a world regulatory domain in case we have no
71 * information to give us an alpha2
72 */
73 const struct ieee80211_regdomain *cfg80211_regdomain;
74
75 /*
76 * Protects static reg.c components:
77 * - cfg80211_world_regdom
78 * - cfg80211_regdom
79 * - last_request
80 */
81 static DEFINE_MUTEX(reg_mutex);
82
83 static inline void assert_reg_lock(void)
84 {
85 lockdep_assert_held(&reg_mutex);
86 }
87
88 /* Used to queue up regulatory hints */
89 static LIST_HEAD(reg_requests_list);
90 static spinlock_t reg_requests_lock;
91
92 /* Used to queue up beacon hints for review */
93 static LIST_HEAD(reg_pending_beacons);
94 static spinlock_t reg_pending_beacons_lock;
95
96 /* Used to keep track of processed beacon hints */
97 static LIST_HEAD(reg_beacon_list);
98
99 struct reg_beacon {
100 struct list_head list;
101 struct ieee80211_channel chan;
102 };
103
104 static void reg_todo(struct work_struct *work);
105 static DECLARE_WORK(reg_work, reg_todo);
106
107 static void reg_timeout_work(struct work_struct *work);
108 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
109
110 /* We keep a static world regulatory domain in case of the absence of CRDA */
111 static const struct ieee80211_regdomain world_regdom = {
112 .n_reg_rules = 5,
113 .alpha2 = "00",
114 .reg_rules = {
115 /* IEEE 802.11b/g, channels 1..11 */
116 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
117 /* IEEE 802.11b/g, channels 12..13. No HT40
118 * channel fits here. */
119 REG_RULE(2467-10, 2472+10, 20, 6, 20,
120 NL80211_RRF_PASSIVE_SCAN |
121 NL80211_RRF_NO_IBSS),
122 /* IEEE 802.11 channel 14 - Only JP enables
123 * this and for 802.11b only */
124 REG_RULE(2484-10, 2484+10, 20, 6, 20,
125 NL80211_RRF_PASSIVE_SCAN |
126 NL80211_RRF_NO_IBSS |
127 NL80211_RRF_NO_OFDM),
128 /* IEEE 802.11a, channel 36..48 */
129 REG_RULE(5180-10, 5240+10, 40, 6, 20,
130 NL80211_RRF_PASSIVE_SCAN |
131 NL80211_RRF_NO_IBSS),
132
133 /* NB: 5260 MHz - 5700 MHz requies DFS */
134
135 /* IEEE 802.11a, channel 149..165 */
136 REG_RULE(5745-10, 5825+10, 40, 6, 20,
137 NL80211_RRF_PASSIVE_SCAN |
138 NL80211_RRF_NO_IBSS),
139 }
140 };
141
142 static const struct ieee80211_regdomain *cfg80211_world_regdom =
143 &world_regdom;
144
145 static char *ieee80211_regdom = "00";
146 static char user_alpha2[2];
147
148 module_param(ieee80211_regdom, charp, 0444);
149 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
150
151 static void reset_regdomains(void)
152 {
153 /* avoid freeing static information or freeing something twice */
154 if (cfg80211_regdomain == cfg80211_world_regdom)
155 cfg80211_regdomain = NULL;
156 if (cfg80211_world_regdom == &world_regdom)
157 cfg80211_world_regdom = NULL;
158 if (cfg80211_regdomain == &world_regdom)
159 cfg80211_regdomain = NULL;
160
161 kfree(cfg80211_regdomain);
162 kfree(cfg80211_world_regdom);
163
164 cfg80211_world_regdom = &world_regdom;
165 cfg80211_regdomain = NULL;
166 }
167
168 /*
169 * Dynamic world regulatory domain requested by the wireless
170 * core upon initialization
171 */
172 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
173 {
174 BUG_ON(!last_request);
175
176 reset_regdomains();
177
178 cfg80211_world_regdom = rd;
179 cfg80211_regdomain = rd;
180 }
181
182 bool is_world_regdom(const char *alpha2)
183 {
184 if (!alpha2)
185 return false;
186 if (alpha2[0] == '0' && alpha2[1] == '0')
187 return true;
188 return false;
189 }
190
191 static bool is_alpha2_set(const char *alpha2)
192 {
193 if (!alpha2)
194 return false;
195 if (alpha2[0] != 0 && alpha2[1] != 0)
196 return true;
197 return false;
198 }
199
200 static bool is_unknown_alpha2(const char *alpha2)
201 {
202 if (!alpha2)
203 return false;
204 /*
205 * Special case where regulatory domain was built by driver
206 * but a specific alpha2 cannot be determined
207 */
208 if (alpha2[0] == '9' && alpha2[1] == '9')
209 return true;
210 return false;
211 }
212
213 static bool is_intersected_alpha2(const char *alpha2)
214 {
215 if (!alpha2)
216 return false;
217 /*
218 * Special case where regulatory domain is the
219 * result of an intersection between two regulatory domain
220 * structures
221 */
222 if (alpha2[0] == '9' && alpha2[1] == '8')
223 return true;
224 return false;
225 }
226
227 static bool is_an_alpha2(const char *alpha2)
228 {
229 if (!alpha2)
230 return false;
231 if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
232 return true;
233 return false;
234 }
235
236 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
237 {
238 if (!alpha2_x || !alpha2_y)
239 return false;
240 if (alpha2_x[0] == alpha2_y[0] &&
241 alpha2_x[1] == alpha2_y[1])
242 return true;
243 return false;
244 }
245
246 static bool regdom_changes(const char *alpha2)
247 {
248 assert_cfg80211_lock();
249
250 if (!cfg80211_regdomain)
251 return true;
252 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
253 return false;
254 return true;
255 }
256
257 /*
258 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
259 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
260 * has ever been issued.
261 */
262 static bool is_user_regdom_saved(void)
263 {
264 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
265 return false;
266
267 /* This would indicate a mistake on the design */
268 if (WARN((!is_world_regdom(user_alpha2) &&
269 !is_an_alpha2(user_alpha2)),
270 "Unexpected user alpha2: %c%c\n",
271 user_alpha2[0],
272 user_alpha2[1]))
273 return false;
274
275 return true;
276 }
277
278 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
279 const struct ieee80211_regdomain *src_regd)
280 {
281 struct ieee80211_regdomain *regd;
282 int size_of_regd = 0;
283 unsigned int i;
284
285 size_of_regd = sizeof(struct ieee80211_regdomain) +
286 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
287
288 regd = kzalloc(size_of_regd, GFP_KERNEL);
289 if (!regd)
290 return -ENOMEM;
291
292 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
293
294 for (i = 0; i < src_regd->n_reg_rules; i++)
295 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
296 sizeof(struct ieee80211_reg_rule));
297
298 *dst_regd = regd;
299 return 0;
300 }
301
302 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
303 struct reg_regdb_search_request {
304 char alpha2[2];
305 struct list_head list;
306 };
307
308 static LIST_HEAD(reg_regdb_search_list);
309 static DEFINE_MUTEX(reg_regdb_search_mutex);
310
311 static void reg_regdb_search(struct work_struct *work)
312 {
313 struct reg_regdb_search_request *request;
314 const struct ieee80211_regdomain *curdom, *regdom;
315 int i, r;
316
317 mutex_lock(&reg_regdb_search_mutex);
318 while (!list_empty(&reg_regdb_search_list)) {
319 request = list_first_entry(&reg_regdb_search_list,
320 struct reg_regdb_search_request,
321 list);
322 list_del(&request->list);
323
324 for (i=0; i<reg_regdb_size; i++) {
325 curdom = reg_regdb[i];
326
327 if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
328 r = reg_copy_regd(&regdom, curdom);
329 if (r)
330 break;
331 mutex_lock(&cfg80211_mutex);
332 set_regdom(regdom);
333 mutex_unlock(&cfg80211_mutex);
334 break;
335 }
336 }
337
338 kfree(request);
339 }
340 mutex_unlock(&reg_regdb_search_mutex);
341 }
342
343 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
344
345 static void reg_regdb_query(const char *alpha2)
346 {
347 struct reg_regdb_search_request *request;
348
349 if (!alpha2)
350 return;
351
352 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
353 if (!request)
354 return;
355
356 memcpy(request->alpha2, alpha2, 2);
357
358 mutex_lock(&reg_regdb_search_mutex);
359 list_add_tail(&request->list, &reg_regdb_search_list);
360 mutex_unlock(&reg_regdb_search_mutex);
361
362 schedule_work(&reg_regdb_work);
363 }
364 #else
365 static inline void reg_regdb_query(const char *alpha2) {}
366 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
367
368 /*
369 * This lets us keep regulatory code which is updated on a regulatory
370 * basis in userspace. Country information is filled in by
371 * reg_device_uevent
372 */
373 static int call_crda(const char *alpha2)
374 {
375 if (!is_world_regdom((char *) alpha2))
376 pr_info("Calling CRDA for country: %c%c\n",
377 alpha2[0], alpha2[1]);
378 else
379 pr_info("Calling CRDA to update world regulatory domain\n");
380
381 /* query internal regulatory database (if it exists) */
382 reg_regdb_query(alpha2);
383
384 return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
385 }
386
387 /* Used by nl80211 before kmalloc'ing our regulatory domain */
388 bool reg_is_valid_request(const char *alpha2)
389 {
390 assert_cfg80211_lock();
391
392 if (!last_request)
393 return false;
394
395 return alpha2_equal(last_request->alpha2, alpha2);
396 }
397
398 /* Sanity check on a regulatory rule */
399 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
400 {
401 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
402 u32 freq_diff;
403
404 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
405 return false;
406
407 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
408 return false;
409
410 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
411
412 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
413 freq_range->max_bandwidth_khz > freq_diff)
414 return false;
415
416 return true;
417 }
418
419 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
420 {
421 const struct ieee80211_reg_rule *reg_rule = NULL;
422 unsigned int i;
423
424 if (!rd->n_reg_rules)
425 return false;
426
427 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
428 return false;
429
430 for (i = 0; i < rd->n_reg_rules; i++) {
431 reg_rule = &rd->reg_rules[i];
432 if (!is_valid_reg_rule(reg_rule))
433 return false;
434 }
435
436 return true;
437 }
438
439 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
440 u32 center_freq_khz,
441 u32 bw_khz)
442 {
443 u32 start_freq_khz, end_freq_khz;
444
445 start_freq_khz = center_freq_khz - (bw_khz/2);
446 end_freq_khz = center_freq_khz + (bw_khz/2);
447
448 if (start_freq_khz >= freq_range->start_freq_khz &&
449 end_freq_khz <= freq_range->end_freq_khz)
450 return true;
451
452 return false;
453 }
454
455 /**
456 * freq_in_rule_band - tells us if a frequency is in a frequency band
457 * @freq_range: frequency rule we want to query
458 * @freq_khz: frequency we are inquiring about
459 *
460 * This lets us know if a specific frequency rule is or is not relevant to
461 * a specific frequency's band. Bands are device specific and artificial
462 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
463 * safe for now to assume that a frequency rule should not be part of a
464 * frequency's band if the start freq or end freq are off by more than 2 GHz.
465 * This resolution can be lowered and should be considered as we add
466 * regulatory rule support for other "bands".
467 **/
468 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
469 u32 freq_khz)
470 {
471 #define ONE_GHZ_IN_KHZ 1000000
472 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
473 return true;
474 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
475 return true;
476 return false;
477 #undef ONE_GHZ_IN_KHZ
478 }
479
480 /*
481 * Helper for regdom_intersect(), this does the real
482 * mathematical intersection fun
483 */
484 static int reg_rules_intersect(
485 const struct ieee80211_reg_rule *rule1,
486 const struct ieee80211_reg_rule *rule2,
487 struct ieee80211_reg_rule *intersected_rule)
488 {
489 const struct ieee80211_freq_range *freq_range1, *freq_range2;
490 struct ieee80211_freq_range *freq_range;
491 const struct ieee80211_power_rule *power_rule1, *power_rule2;
492 struct ieee80211_power_rule *power_rule;
493 u32 freq_diff;
494
495 freq_range1 = &rule1->freq_range;
496 freq_range2 = &rule2->freq_range;
497 freq_range = &intersected_rule->freq_range;
498
499 power_rule1 = &rule1->power_rule;
500 power_rule2 = &rule2->power_rule;
501 power_rule = &intersected_rule->power_rule;
502
503 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
504 freq_range2->start_freq_khz);
505 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
506 freq_range2->end_freq_khz);
507 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
508 freq_range2->max_bandwidth_khz);
509
510 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
511 if (freq_range->max_bandwidth_khz > freq_diff)
512 freq_range->max_bandwidth_khz = freq_diff;
513
514 power_rule->max_eirp = min(power_rule1->max_eirp,
515 power_rule2->max_eirp);
516 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
517 power_rule2->max_antenna_gain);
518
519 intersected_rule->flags = (rule1->flags | rule2->flags);
520
521 if (!is_valid_reg_rule(intersected_rule))
522 return -EINVAL;
523
524 return 0;
525 }
526
527 /**
528 * regdom_intersect - do the intersection between two regulatory domains
529 * @rd1: first regulatory domain
530 * @rd2: second regulatory domain
531 *
532 * Use this function to get the intersection between two regulatory domains.
533 * Once completed we will mark the alpha2 for the rd as intersected, "98",
534 * as no one single alpha2 can represent this regulatory domain.
535 *
536 * Returns a pointer to the regulatory domain structure which will hold the
537 * resulting intersection of rules between rd1 and rd2. We will
538 * kzalloc() this structure for you.
539 */
540 static struct ieee80211_regdomain *regdom_intersect(
541 const struct ieee80211_regdomain *rd1,
542 const struct ieee80211_regdomain *rd2)
543 {
544 int r, size_of_regd;
545 unsigned int x, y;
546 unsigned int num_rules = 0, rule_idx = 0;
547 const struct ieee80211_reg_rule *rule1, *rule2;
548 struct ieee80211_reg_rule *intersected_rule;
549 struct ieee80211_regdomain *rd;
550 /* This is just a dummy holder to help us count */
551 struct ieee80211_reg_rule irule;
552
553 /* Uses the stack temporarily for counter arithmetic */
554 intersected_rule = &irule;
555
556 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
557
558 if (!rd1 || !rd2)
559 return NULL;
560
561 /*
562 * First we get a count of the rules we'll need, then we actually
563 * build them. This is to so we can malloc() and free() a
564 * regdomain once. The reason we use reg_rules_intersect() here
565 * is it will return -EINVAL if the rule computed makes no sense.
566 * All rules that do check out OK are valid.
567 */
568
569 for (x = 0; x < rd1->n_reg_rules; x++) {
570 rule1 = &rd1->reg_rules[x];
571 for (y = 0; y < rd2->n_reg_rules; y++) {
572 rule2 = &rd2->reg_rules[y];
573 if (!reg_rules_intersect(rule1, rule2,
574 intersected_rule))
575 num_rules++;
576 memset(intersected_rule, 0,
577 sizeof(struct ieee80211_reg_rule));
578 }
579 }
580
581 if (!num_rules)
582 return NULL;
583
584 size_of_regd = sizeof(struct ieee80211_regdomain) +
585 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
586
587 rd = kzalloc(size_of_regd, GFP_KERNEL);
588 if (!rd)
589 return NULL;
590
591 for (x = 0; x < rd1->n_reg_rules; x++) {
592 rule1 = &rd1->reg_rules[x];
593 for (y = 0; y < rd2->n_reg_rules; y++) {
594 rule2 = &rd2->reg_rules[y];
595 /*
596 * This time around instead of using the stack lets
597 * write to the target rule directly saving ourselves
598 * a memcpy()
599 */
600 intersected_rule = &rd->reg_rules[rule_idx];
601 r = reg_rules_intersect(rule1, rule2,
602 intersected_rule);
603 /*
604 * No need to memset here the intersected rule here as
605 * we're not using the stack anymore
606 */
607 if (r)
608 continue;
609 rule_idx++;
610 }
611 }
612
613 if (rule_idx != num_rules) {
614 kfree(rd);
615 return NULL;
616 }
617
618 rd->n_reg_rules = num_rules;
619 rd->alpha2[0] = '9';
620 rd->alpha2[1] = '8';
621
622 return rd;
623 }
624
625 /*
626 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
627 * want to just have the channel structure use these
628 */
629 static u32 map_regdom_flags(u32 rd_flags)
630 {
631 u32 channel_flags = 0;
632 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
633 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
634 if (rd_flags & NL80211_RRF_NO_IBSS)
635 channel_flags |= IEEE80211_CHAN_NO_IBSS;
636 if (rd_flags & NL80211_RRF_DFS)
637 channel_flags |= IEEE80211_CHAN_RADAR;
638 return channel_flags;
639 }
640
641 static int freq_reg_info_regd(struct wiphy *wiphy,
642 u32 center_freq,
643 u32 desired_bw_khz,
644 const struct ieee80211_reg_rule **reg_rule,
645 const struct ieee80211_regdomain *custom_regd)
646 {
647 int i;
648 bool band_rule_found = false;
649 const struct ieee80211_regdomain *regd;
650 bool bw_fits = false;
651
652 if (!desired_bw_khz)
653 desired_bw_khz = MHZ_TO_KHZ(20);
654
655 regd = custom_regd ? custom_regd : cfg80211_regdomain;
656
657 /*
658 * Follow the driver's regulatory domain, if present, unless a country
659 * IE has been processed or a user wants to help complaince further
660 */
661 if (!custom_regd &&
662 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
663 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
664 wiphy->regd)
665 regd = wiphy->regd;
666
667 if (!regd)
668 return -EINVAL;
669
670 for (i = 0; i < regd->n_reg_rules; i++) {
671 const struct ieee80211_reg_rule *rr;
672 const struct ieee80211_freq_range *fr = NULL;
673
674 rr = &regd->reg_rules[i];
675 fr = &rr->freq_range;
676
677 /*
678 * We only need to know if one frequency rule was
679 * was in center_freq's band, that's enough, so lets
680 * not overwrite it once found
681 */
682 if (!band_rule_found)
683 band_rule_found = freq_in_rule_band(fr, center_freq);
684
685 bw_fits = reg_does_bw_fit(fr,
686 center_freq,
687 desired_bw_khz);
688
689 if (band_rule_found && bw_fits) {
690 *reg_rule = rr;
691 return 0;
692 }
693 }
694
695 if (!band_rule_found)
696 return -ERANGE;
697
698 return -EINVAL;
699 }
700
701 int freq_reg_info(struct wiphy *wiphy,
702 u32 center_freq,
703 u32 desired_bw_khz,
704 const struct ieee80211_reg_rule **reg_rule)
705 {
706 assert_cfg80211_lock();
707 return freq_reg_info_regd(wiphy,
708 center_freq,
709 desired_bw_khz,
710 reg_rule,
711 NULL);
712 }
713 EXPORT_SYMBOL(freq_reg_info);
714
715 #ifdef CONFIG_CFG80211_REG_DEBUG
716 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
717 {
718 switch (initiator) {
719 case NL80211_REGDOM_SET_BY_CORE:
720 return "Set by core";
721 case NL80211_REGDOM_SET_BY_USER:
722 return "Set by user";
723 case NL80211_REGDOM_SET_BY_DRIVER:
724 return "Set by driver";
725 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
726 return "Set by country IE";
727 default:
728 WARN_ON(1);
729 return "Set by bug";
730 }
731 }
732
733 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
734 u32 desired_bw_khz,
735 const struct ieee80211_reg_rule *reg_rule)
736 {
737 const struct ieee80211_power_rule *power_rule;
738 const struct ieee80211_freq_range *freq_range;
739 char max_antenna_gain[32];
740
741 power_rule = &reg_rule->power_rule;
742 freq_range = &reg_rule->freq_range;
743
744 if (!power_rule->max_antenna_gain)
745 snprintf(max_antenna_gain, 32, "N/A");
746 else
747 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
748
749 REG_DBG_PRINT("Updating information on frequency %d MHz "
750 "for a %d MHz width channel with regulatory rule:\n",
751 chan->center_freq,
752 KHZ_TO_MHZ(desired_bw_khz));
753
754 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
755 freq_range->start_freq_khz,
756 freq_range->end_freq_khz,
757 freq_range->max_bandwidth_khz,
758 max_antenna_gain,
759 power_rule->max_eirp);
760 }
761 #else
762 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
763 u32 desired_bw_khz,
764 const struct ieee80211_reg_rule *reg_rule)
765 {
766 return;
767 }
768 #endif
769
770 /*
771 * Note that right now we assume the desired channel bandwidth
772 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
773 * per channel, the primary and the extension channel). To support
774 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
775 * new ieee80211_channel.target_bw and re run the regulatory check
776 * on the wiphy with the target_bw specified. Then we can simply use
777 * that below for the desired_bw_khz below.
778 */
779 static void handle_channel(struct wiphy *wiphy,
780 enum nl80211_reg_initiator initiator,
781 enum ieee80211_band band,
782 unsigned int chan_idx)
783 {
784 int r;
785 u32 flags, bw_flags = 0;
786 u32 desired_bw_khz = MHZ_TO_KHZ(20);
787 const struct ieee80211_reg_rule *reg_rule = NULL;
788 const struct ieee80211_power_rule *power_rule = NULL;
789 const struct ieee80211_freq_range *freq_range = NULL;
790 struct ieee80211_supported_band *sband;
791 struct ieee80211_channel *chan;
792 struct wiphy *request_wiphy = NULL;
793
794 assert_cfg80211_lock();
795
796 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
797
798 sband = wiphy->bands[band];
799 BUG_ON(chan_idx >= sband->n_channels);
800 chan = &sband->channels[chan_idx];
801
802 flags = chan->orig_flags;
803
804 r = freq_reg_info(wiphy,
805 MHZ_TO_KHZ(chan->center_freq),
806 desired_bw_khz,
807 &reg_rule);
808
809 if (r) {
810 /*
811 * We will disable all channels that do not match our
812 * received regulatory rule unless the hint is coming
813 * from a Country IE and the Country IE had no information
814 * about a band. The IEEE 802.11 spec allows for an AP
815 * to send only a subset of the regulatory rules allowed,
816 * so an AP in the US that only supports 2.4 GHz may only send
817 * a country IE with information for the 2.4 GHz band
818 * while 5 GHz is still supported.
819 */
820 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
821 r == -ERANGE)
822 return;
823
824 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
825 chan->flags = IEEE80211_CHAN_DISABLED;
826 return;
827 }
828
829 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
830
831 power_rule = &reg_rule->power_rule;
832 freq_range = &reg_rule->freq_range;
833
834 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
835 bw_flags = IEEE80211_CHAN_NO_HT40;
836
837 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
838 request_wiphy && request_wiphy == wiphy &&
839 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
840 /*
841 * This guarantees the driver's requested regulatory domain
842 * will always be used as a base for further regulatory
843 * settings
844 */
845 chan->flags = chan->orig_flags =
846 map_regdom_flags(reg_rule->flags) | bw_flags;
847 chan->max_antenna_gain = chan->orig_mag =
848 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
849 chan->max_power = chan->orig_mpwr =
850 (int) MBM_TO_DBM(power_rule->max_eirp);
851 return;
852 }
853
854 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
855 chan->max_antenna_gain = min(chan->orig_mag,
856 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
857 if (chan->orig_mpwr)
858 chan->max_power = min(chan->orig_mpwr,
859 (int) MBM_TO_DBM(power_rule->max_eirp));
860 else
861 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
862 }
863
864 static void handle_band(struct wiphy *wiphy,
865 enum ieee80211_band band,
866 enum nl80211_reg_initiator initiator)
867 {
868 unsigned int i;
869 struct ieee80211_supported_band *sband;
870
871 BUG_ON(!wiphy->bands[band]);
872 sband = wiphy->bands[band];
873
874 for (i = 0; i < sband->n_channels; i++)
875 handle_channel(wiphy, initiator, band, i);
876 }
877
878 static bool ignore_reg_update(struct wiphy *wiphy,
879 enum nl80211_reg_initiator initiator)
880 {
881 if (!last_request) {
882 REG_DBG_PRINT("Ignoring regulatory request %s since "
883 "last_request is not set\n",
884 reg_initiator_name(initiator));
885 return true;
886 }
887
888 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
889 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
890 REG_DBG_PRINT("Ignoring regulatory request %s "
891 "since the driver uses its own custom "
892 "regulatory domain\n",
893 reg_initiator_name(initiator));
894 return true;
895 }
896
897 /*
898 * wiphy->regd will be set once the device has its own
899 * desired regulatory domain set
900 */
901 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
902 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
903 !is_world_regdom(last_request->alpha2)) {
904 REG_DBG_PRINT("Ignoring regulatory request %s "
905 "since the driver requires its own regulatory "
906 "domain to be set first\n",
907 reg_initiator_name(initiator));
908 return true;
909 }
910
911 return false;
912 }
913
914 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
915 {
916 struct cfg80211_registered_device *rdev;
917
918 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
919 wiphy_update_regulatory(&rdev->wiphy, initiator);
920 }
921
922 static void handle_reg_beacon(struct wiphy *wiphy,
923 unsigned int chan_idx,
924 struct reg_beacon *reg_beacon)
925 {
926 struct ieee80211_supported_band *sband;
927 struct ieee80211_channel *chan;
928 bool channel_changed = false;
929 struct ieee80211_channel chan_before;
930
931 assert_cfg80211_lock();
932
933 sband = wiphy->bands[reg_beacon->chan.band];
934 chan = &sband->channels[chan_idx];
935
936 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
937 return;
938
939 if (chan->beacon_found)
940 return;
941
942 chan->beacon_found = true;
943
944 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
945 return;
946
947 chan_before.center_freq = chan->center_freq;
948 chan_before.flags = chan->flags;
949
950 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
951 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
952 channel_changed = true;
953 }
954
955 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
956 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
957 channel_changed = true;
958 }
959
960 if (channel_changed)
961 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
962 }
963
964 /*
965 * Called when a scan on a wiphy finds a beacon on
966 * new channel
967 */
968 static void wiphy_update_new_beacon(struct wiphy *wiphy,
969 struct reg_beacon *reg_beacon)
970 {
971 unsigned int i;
972 struct ieee80211_supported_band *sband;
973
974 assert_cfg80211_lock();
975
976 if (!wiphy->bands[reg_beacon->chan.band])
977 return;
978
979 sband = wiphy->bands[reg_beacon->chan.band];
980
981 for (i = 0; i < sband->n_channels; i++)
982 handle_reg_beacon(wiphy, i, reg_beacon);
983 }
984
985 /*
986 * Called upon reg changes or a new wiphy is added
987 */
988 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
989 {
990 unsigned int i;
991 struct ieee80211_supported_band *sband;
992 struct reg_beacon *reg_beacon;
993
994 assert_cfg80211_lock();
995
996 if (list_empty(&reg_beacon_list))
997 return;
998
999 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1000 if (!wiphy->bands[reg_beacon->chan.band])
1001 continue;
1002 sband = wiphy->bands[reg_beacon->chan.band];
1003 for (i = 0; i < sband->n_channels; i++)
1004 handle_reg_beacon(wiphy, i, reg_beacon);
1005 }
1006 }
1007
1008 static bool reg_is_world_roaming(struct wiphy *wiphy)
1009 {
1010 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1011 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1012 return true;
1013 if (last_request &&
1014 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1015 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1016 return true;
1017 return false;
1018 }
1019
1020 /* Reap the advantages of previously found beacons */
1021 static void reg_process_beacons(struct wiphy *wiphy)
1022 {
1023 /*
1024 * Means we are just firing up cfg80211, so no beacons would
1025 * have been processed yet.
1026 */
1027 if (!last_request)
1028 return;
1029 if (!reg_is_world_roaming(wiphy))
1030 return;
1031 wiphy_update_beacon_reg(wiphy);
1032 }
1033
1034 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1035 {
1036 if (!chan)
1037 return true;
1038 if (chan->flags & IEEE80211_CHAN_DISABLED)
1039 return true;
1040 /* This would happen when regulatory rules disallow HT40 completely */
1041 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1042 return true;
1043 return false;
1044 }
1045
1046 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1047 enum ieee80211_band band,
1048 unsigned int chan_idx)
1049 {
1050 struct ieee80211_supported_band *sband;
1051 struct ieee80211_channel *channel;
1052 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1053 unsigned int i;
1054
1055 assert_cfg80211_lock();
1056
1057 sband = wiphy->bands[band];
1058 BUG_ON(chan_idx >= sband->n_channels);
1059 channel = &sband->channels[chan_idx];
1060
1061 if (is_ht40_not_allowed(channel)) {
1062 channel->flags |= IEEE80211_CHAN_NO_HT40;
1063 return;
1064 }
1065
1066 /*
1067 * We need to ensure the extension channels exist to
1068 * be able to use HT40- or HT40+, this finds them (or not)
1069 */
1070 for (i = 0; i < sband->n_channels; i++) {
1071 struct ieee80211_channel *c = &sband->channels[i];
1072 if (c->center_freq == (channel->center_freq - 20))
1073 channel_before = c;
1074 if (c->center_freq == (channel->center_freq + 20))
1075 channel_after = c;
1076 }
1077
1078 /*
1079 * Please note that this assumes target bandwidth is 20 MHz,
1080 * if that ever changes we also need to change the below logic
1081 * to include that as well.
1082 */
1083 if (is_ht40_not_allowed(channel_before))
1084 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1085 else
1086 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1087
1088 if (is_ht40_not_allowed(channel_after))
1089 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1090 else
1091 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1092 }
1093
1094 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1095 enum ieee80211_band band)
1096 {
1097 unsigned int i;
1098 struct ieee80211_supported_band *sband;
1099
1100 BUG_ON(!wiphy->bands[band]);
1101 sband = wiphy->bands[band];
1102
1103 for (i = 0; i < sband->n_channels; i++)
1104 reg_process_ht_flags_channel(wiphy, band, i);
1105 }
1106
1107 static void reg_process_ht_flags(struct wiphy *wiphy)
1108 {
1109 enum ieee80211_band band;
1110
1111 if (!wiphy)
1112 return;
1113
1114 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1115 if (wiphy->bands[band])
1116 reg_process_ht_flags_band(wiphy, band);
1117 }
1118
1119 }
1120
1121 void wiphy_update_regulatory(struct wiphy *wiphy,
1122 enum nl80211_reg_initiator initiator)
1123 {
1124 enum ieee80211_band band;
1125
1126 if (ignore_reg_update(wiphy, initiator))
1127 return;
1128
1129 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1130 if (wiphy->bands[band])
1131 handle_band(wiphy, band, initiator);
1132 }
1133
1134 reg_process_beacons(wiphy);
1135 reg_process_ht_flags(wiphy);
1136 if (wiphy->reg_notifier)
1137 wiphy->reg_notifier(wiphy, last_request);
1138 }
1139
1140 static void handle_channel_custom(struct wiphy *wiphy,
1141 enum ieee80211_band band,
1142 unsigned int chan_idx,
1143 const struct ieee80211_regdomain *regd)
1144 {
1145 int r;
1146 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1147 u32 bw_flags = 0;
1148 const struct ieee80211_reg_rule *reg_rule = NULL;
1149 const struct ieee80211_power_rule *power_rule = NULL;
1150 const struct ieee80211_freq_range *freq_range = NULL;
1151 struct ieee80211_supported_band *sband;
1152 struct ieee80211_channel *chan;
1153
1154 assert_reg_lock();
1155
1156 sband = wiphy->bands[band];
1157 BUG_ON(chan_idx >= sband->n_channels);
1158 chan = &sband->channels[chan_idx];
1159
1160 r = freq_reg_info_regd(wiphy,
1161 MHZ_TO_KHZ(chan->center_freq),
1162 desired_bw_khz,
1163 &reg_rule,
1164 regd);
1165
1166 if (r) {
1167 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1168 "regd has no rule that fits a %d MHz "
1169 "wide channel\n",
1170 chan->center_freq,
1171 KHZ_TO_MHZ(desired_bw_khz));
1172 chan->flags = IEEE80211_CHAN_DISABLED;
1173 return;
1174 }
1175
1176 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1177
1178 power_rule = &reg_rule->power_rule;
1179 freq_range = &reg_rule->freq_range;
1180
1181 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1182 bw_flags = IEEE80211_CHAN_NO_HT40;
1183
1184 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1185 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1186 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1187 }
1188
1189 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1190 const struct ieee80211_regdomain *regd)
1191 {
1192 unsigned int i;
1193 struct ieee80211_supported_band *sband;
1194
1195 BUG_ON(!wiphy->bands[band]);
1196 sband = wiphy->bands[band];
1197
1198 for (i = 0; i < sband->n_channels; i++)
1199 handle_channel_custom(wiphy, band, i, regd);
1200 }
1201
1202 /* Used by drivers prior to wiphy registration */
1203 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1204 const struct ieee80211_regdomain *regd)
1205 {
1206 enum ieee80211_band band;
1207 unsigned int bands_set = 0;
1208
1209 mutex_lock(&reg_mutex);
1210 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1211 if (!wiphy->bands[band])
1212 continue;
1213 handle_band_custom(wiphy, band, regd);
1214 bands_set++;
1215 }
1216 mutex_unlock(&reg_mutex);
1217
1218 /*
1219 * no point in calling this if it won't have any effect
1220 * on your device's supportd bands.
1221 */
1222 WARN_ON(!bands_set);
1223 }
1224 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1225
1226 /*
1227 * Return value which can be used by ignore_request() to indicate
1228 * it has been determined we should intersect two regulatory domains
1229 */
1230 #define REG_INTERSECT 1
1231
1232 /* This has the logic which determines when a new request
1233 * should be ignored. */
1234 static int ignore_request(struct wiphy *wiphy,
1235 struct regulatory_request *pending_request)
1236 {
1237 struct wiphy *last_wiphy = NULL;
1238
1239 assert_cfg80211_lock();
1240
1241 /* All initial requests are respected */
1242 if (!last_request)
1243 return 0;
1244
1245 switch (pending_request->initiator) {
1246 case NL80211_REGDOM_SET_BY_CORE:
1247 return 0;
1248 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1249
1250 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1251
1252 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1253 return -EINVAL;
1254 if (last_request->initiator ==
1255 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1256 if (last_wiphy != wiphy) {
1257 /*
1258 * Two cards with two APs claiming different
1259 * Country IE alpha2s. We could
1260 * intersect them, but that seems unlikely
1261 * to be correct. Reject second one for now.
1262 */
1263 if (regdom_changes(pending_request->alpha2))
1264 return -EOPNOTSUPP;
1265 return -EALREADY;
1266 }
1267 /*
1268 * Two consecutive Country IE hints on the same wiphy.
1269 * This should be picked up early by the driver/stack
1270 */
1271 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1272 return 0;
1273 return -EALREADY;
1274 }
1275 return 0;
1276 case NL80211_REGDOM_SET_BY_DRIVER:
1277 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1278 if (regdom_changes(pending_request->alpha2))
1279 return 0;
1280 return -EALREADY;
1281 }
1282
1283 /*
1284 * This would happen if you unplug and plug your card
1285 * back in or if you add a new device for which the previously
1286 * loaded card also agrees on the regulatory domain.
1287 */
1288 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1289 !regdom_changes(pending_request->alpha2))
1290 return -EALREADY;
1291
1292 return REG_INTERSECT;
1293 case NL80211_REGDOM_SET_BY_USER:
1294 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1295 return REG_INTERSECT;
1296 /*
1297 * If the user knows better the user should set the regdom
1298 * to their country before the IE is picked up
1299 */
1300 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1301 last_request->intersect)
1302 return -EOPNOTSUPP;
1303 /*
1304 * Process user requests only after previous user/driver/core
1305 * requests have been processed
1306 */
1307 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1308 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1309 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1310 if (regdom_changes(last_request->alpha2))
1311 return -EAGAIN;
1312 }
1313
1314 if (!regdom_changes(pending_request->alpha2))
1315 return -EALREADY;
1316
1317 return 0;
1318 }
1319
1320 return -EINVAL;
1321 }
1322
1323 static void reg_set_request_processed(void)
1324 {
1325 bool need_more_processing = false;
1326
1327 last_request->processed = true;
1328
1329 spin_lock(&reg_requests_lock);
1330 if (!list_empty(&reg_requests_list))
1331 need_more_processing = true;
1332 spin_unlock(&reg_requests_lock);
1333
1334 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1335 cancel_delayed_work_sync(&reg_timeout);
1336
1337 if (need_more_processing)
1338 schedule_work(&reg_work);
1339 }
1340
1341 /**
1342 * __regulatory_hint - hint to the wireless core a regulatory domain
1343 * @wiphy: if the hint comes from country information from an AP, this
1344 * is required to be set to the wiphy that received the information
1345 * @pending_request: the regulatory request currently being processed
1346 *
1347 * The Wireless subsystem can use this function to hint to the wireless core
1348 * what it believes should be the current regulatory domain.
1349 *
1350 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1351 * already been set or other standard error codes.
1352 *
1353 * Caller must hold &cfg80211_mutex and &reg_mutex
1354 */
1355 static int __regulatory_hint(struct wiphy *wiphy,
1356 struct regulatory_request *pending_request)
1357 {
1358 bool intersect = false;
1359 int r = 0;
1360
1361 assert_cfg80211_lock();
1362
1363 r = ignore_request(wiphy, pending_request);
1364
1365 if (r == REG_INTERSECT) {
1366 if (pending_request->initiator ==
1367 NL80211_REGDOM_SET_BY_DRIVER) {
1368 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1369 if (r) {
1370 kfree(pending_request);
1371 return r;
1372 }
1373 }
1374 intersect = true;
1375 } else if (r) {
1376 /*
1377 * If the regulatory domain being requested by the
1378 * driver has already been set just copy it to the
1379 * wiphy
1380 */
1381 if (r == -EALREADY &&
1382 pending_request->initiator ==
1383 NL80211_REGDOM_SET_BY_DRIVER) {
1384 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1385 if (r) {
1386 kfree(pending_request);
1387 return r;
1388 }
1389 r = -EALREADY;
1390 goto new_request;
1391 }
1392 kfree(pending_request);
1393 return r;
1394 }
1395
1396 new_request:
1397 kfree(last_request);
1398
1399 last_request = pending_request;
1400 last_request->intersect = intersect;
1401
1402 pending_request = NULL;
1403
1404 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1405 user_alpha2[0] = last_request->alpha2[0];
1406 user_alpha2[1] = last_request->alpha2[1];
1407 }
1408
1409 /* When r == REG_INTERSECT we do need to call CRDA */
1410 if (r < 0) {
1411 /*
1412 * Since CRDA will not be called in this case as we already
1413 * have applied the requested regulatory domain before we just
1414 * inform userspace we have processed the request
1415 */
1416 if (r == -EALREADY) {
1417 nl80211_send_reg_change_event(last_request);
1418 reg_set_request_processed();
1419 }
1420 return r;
1421 }
1422
1423 return call_crda(last_request->alpha2);
1424 }
1425
1426 /* This processes *all* regulatory hints */
1427 static void reg_process_hint(struct regulatory_request *reg_request)
1428 {
1429 int r = 0;
1430 struct wiphy *wiphy = NULL;
1431 enum nl80211_reg_initiator initiator = reg_request->initiator;
1432
1433 BUG_ON(!reg_request->alpha2);
1434
1435 if (wiphy_idx_valid(reg_request->wiphy_idx))
1436 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1437
1438 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1439 !wiphy) {
1440 kfree(reg_request);
1441 return;
1442 }
1443
1444 r = __regulatory_hint(wiphy, reg_request);
1445 /* This is required so that the orig_* parameters are saved */
1446 if (r == -EALREADY && wiphy &&
1447 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1448 wiphy_update_regulatory(wiphy, initiator);
1449 return;
1450 }
1451
1452 /*
1453 * We only time out user hints, given that they should be the only
1454 * source of bogus requests.
1455 */
1456 if (r != -EALREADY &&
1457 reg_request->initiator == NL80211_REGDOM_SET_BY_USER)
1458 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1459 }
1460
1461 /*
1462 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1463 * Regulatory hints come on a first come first serve basis and we
1464 * must process each one atomically.
1465 */
1466 static void reg_process_pending_hints(void)
1467 {
1468 struct regulatory_request *reg_request;
1469
1470 mutex_lock(&cfg80211_mutex);
1471 mutex_lock(&reg_mutex);
1472
1473 /* When last_request->processed becomes true this will be rescheduled */
1474 if (last_request && !last_request->processed) {
1475 REG_DBG_PRINT("Pending regulatory request, waiting "
1476 "for it to be processed...\n");
1477 goto out;
1478 }
1479
1480 spin_lock(&reg_requests_lock);
1481
1482 if (list_empty(&reg_requests_list)) {
1483 spin_unlock(&reg_requests_lock);
1484 goto out;
1485 }
1486
1487 reg_request = list_first_entry(&reg_requests_list,
1488 struct regulatory_request,
1489 list);
1490 list_del_init(&reg_request->list);
1491
1492 spin_unlock(&reg_requests_lock);
1493
1494 reg_process_hint(reg_request);
1495
1496 out:
1497 mutex_unlock(&reg_mutex);
1498 mutex_unlock(&cfg80211_mutex);
1499 }
1500
1501 /* Processes beacon hints -- this has nothing to do with country IEs */
1502 static void reg_process_pending_beacon_hints(void)
1503 {
1504 struct cfg80211_registered_device *rdev;
1505 struct reg_beacon *pending_beacon, *tmp;
1506
1507 /*
1508 * No need to hold the reg_mutex here as we just touch wiphys
1509 * and do not read or access regulatory variables.
1510 */
1511 mutex_lock(&cfg80211_mutex);
1512
1513 /* This goes through the _pending_ beacon list */
1514 spin_lock_bh(&reg_pending_beacons_lock);
1515
1516 if (list_empty(&reg_pending_beacons)) {
1517 spin_unlock_bh(&reg_pending_beacons_lock);
1518 goto out;
1519 }
1520
1521 list_for_each_entry_safe(pending_beacon, tmp,
1522 &reg_pending_beacons, list) {
1523
1524 list_del_init(&pending_beacon->list);
1525
1526 /* Applies the beacon hint to current wiphys */
1527 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1528 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1529
1530 /* Remembers the beacon hint for new wiphys or reg changes */
1531 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1532 }
1533
1534 spin_unlock_bh(&reg_pending_beacons_lock);
1535 out:
1536 mutex_unlock(&cfg80211_mutex);
1537 }
1538
1539 static void reg_todo(struct work_struct *work)
1540 {
1541 reg_process_pending_hints();
1542 reg_process_pending_beacon_hints();
1543 }
1544
1545 static void queue_regulatory_request(struct regulatory_request *request)
1546 {
1547 if (isalpha(request->alpha2[0]))
1548 request->alpha2[0] = toupper(request->alpha2[0]);
1549 if (isalpha(request->alpha2[1]))
1550 request->alpha2[1] = toupper(request->alpha2[1]);
1551
1552 spin_lock(&reg_requests_lock);
1553 list_add_tail(&request->list, &reg_requests_list);
1554 spin_unlock(&reg_requests_lock);
1555
1556 schedule_work(&reg_work);
1557 }
1558
1559 /*
1560 * Core regulatory hint -- happens during cfg80211_init()
1561 * and when we restore regulatory settings.
1562 */
1563 static int regulatory_hint_core(const char *alpha2)
1564 {
1565 struct regulatory_request *request;
1566
1567 kfree(last_request);
1568 last_request = NULL;
1569
1570 request = kzalloc(sizeof(struct regulatory_request),
1571 GFP_KERNEL);
1572 if (!request)
1573 return -ENOMEM;
1574
1575 request->alpha2[0] = alpha2[0];
1576 request->alpha2[1] = alpha2[1];
1577 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1578
1579 queue_regulatory_request(request);
1580
1581 return 0;
1582 }
1583
1584 /* User hints */
1585 int regulatory_hint_user(const char *alpha2)
1586 {
1587 struct regulatory_request *request;
1588
1589 BUG_ON(!alpha2);
1590
1591 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1592 if (!request)
1593 return -ENOMEM;
1594
1595 request->wiphy_idx = WIPHY_IDX_STALE;
1596 request->alpha2[0] = alpha2[0];
1597 request->alpha2[1] = alpha2[1];
1598 request->initiator = NL80211_REGDOM_SET_BY_USER;
1599
1600 queue_regulatory_request(request);
1601
1602 return 0;
1603 }
1604
1605 /* Driver hints */
1606 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1607 {
1608 struct regulatory_request *request;
1609
1610 BUG_ON(!alpha2);
1611 BUG_ON(!wiphy);
1612
1613 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1614 if (!request)
1615 return -ENOMEM;
1616
1617 request->wiphy_idx = get_wiphy_idx(wiphy);
1618
1619 /* Must have registered wiphy first */
1620 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1621
1622 request->alpha2[0] = alpha2[0];
1623 request->alpha2[1] = alpha2[1];
1624 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1625
1626 queue_regulatory_request(request);
1627
1628 return 0;
1629 }
1630 EXPORT_SYMBOL(regulatory_hint);
1631
1632 /*
1633 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1634 * therefore cannot iterate over the rdev list here.
1635 */
1636 void regulatory_hint_11d(struct wiphy *wiphy,
1637 enum ieee80211_band band,
1638 u8 *country_ie,
1639 u8 country_ie_len)
1640 {
1641 char alpha2[2];
1642 enum environment_cap env = ENVIRON_ANY;
1643 struct regulatory_request *request;
1644
1645 mutex_lock(&reg_mutex);
1646
1647 if (unlikely(!last_request))
1648 goto out;
1649
1650 /* IE len must be evenly divisible by 2 */
1651 if (country_ie_len & 0x01)
1652 goto out;
1653
1654 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1655 goto out;
1656
1657 alpha2[0] = country_ie[0];
1658 alpha2[1] = country_ie[1];
1659
1660 if (country_ie[2] == 'I')
1661 env = ENVIRON_INDOOR;
1662 else if (country_ie[2] == 'O')
1663 env = ENVIRON_OUTDOOR;
1664
1665 /*
1666 * We will run this only upon a successful connection on cfg80211.
1667 * We leave conflict resolution to the workqueue, where can hold
1668 * cfg80211_mutex.
1669 */
1670 if (likely(last_request->initiator ==
1671 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1672 wiphy_idx_valid(last_request->wiphy_idx)))
1673 goto out;
1674
1675 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1676 if (!request)
1677 goto out;
1678
1679 request->wiphy_idx = get_wiphy_idx(wiphy);
1680 request->alpha2[0] = alpha2[0];
1681 request->alpha2[1] = alpha2[1];
1682 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1683 request->country_ie_env = env;
1684
1685 mutex_unlock(&reg_mutex);
1686
1687 queue_regulatory_request(request);
1688
1689 return;
1690
1691 out:
1692 mutex_unlock(&reg_mutex);
1693 }
1694
1695 static void restore_alpha2(char *alpha2, bool reset_user)
1696 {
1697 /* indicates there is no alpha2 to consider for restoration */
1698 alpha2[0] = '9';
1699 alpha2[1] = '7';
1700
1701 /* The user setting has precedence over the module parameter */
1702 if (is_user_regdom_saved()) {
1703 /* Unless we're asked to ignore it and reset it */
1704 if (reset_user) {
1705 REG_DBG_PRINT("Restoring regulatory settings "
1706 "including user preference\n");
1707 user_alpha2[0] = '9';
1708 user_alpha2[1] = '7';
1709
1710 /*
1711 * If we're ignoring user settings, we still need to
1712 * check the module parameter to ensure we put things
1713 * back as they were for a full restore.
1714 */
1715 if (!is_world_regdom(ieee80211_regdom)) {
1716 REG_DBG_PRINT("Keeping preference on "
1717 "module parameter ieee80211_regdom: %c%c\n",
1718 ieee80211_regdom[0],
1719 ieee80211_regdom[1]);
1720 alpha2[0] = ieee80211_regdom[0];
1721 alpha2[1] = ieee80211_regdom[1];
1722 }
1723 } else {
1724 REG_DBG_PRINT("Restoring regulatory settings "
1725 "while preserving user preference for: %c%c\n",
1726 user_alpha2[0],
1727 user_alpha2[1]);
1728 alpha2[0] = user_alpha2[0];
1729 alpha2[1] = user_alpha2[1];
1730 }
1731 } else if (!is_world_regdom(ieee80211_regdom)) {
1732 REG_DBG_PRINT("Keeping preference on "
1733 "module parameter ieee80211_regdom: %c%c\n",
1734 ieee80211_regdom[0],
1735 ieee80211_regdom[1]);
1736 alpha2[0] = ieee80211_regdom[0];
1737 alpha2[1] = ieee80211_regdom[1];
1738 } else
1739 REG_DBG_PRINT("Restoring regulatory settings\n");
1740 }
1741
1742 /*
1743 * Restoring regulatory settings involves ingoring any
1744 * possibly stale country IE information and user regulatory
1745 * settings if so desired, this includes any beacon hints
1746 * learned as we could have traveled outside to another country
1747 * after disconnection. To restore regulatory settings we do
1748 * exactly what we did at bootup:
1749 *
1750 * - send a core regulatory hint
1751 * - send a user regulatory hint if applicable
1752 *
1753 * Device drivers that send a regulatory hint for a specific country
1754 * keep their own regulatory domain on wiphy->regd so that does does
1755 * not need to be remembered.
1756 */
1757 static void restore_regulatory_settings(bool reset_user)
1758 {
1759 char alpha2[2];
1760 struct reg_beacon *reg_beacon, *btmp;
1761 struct regulatory_request *reg_request, *tmp;
1762 LIST_HEAD(tmp_reg_req_list);
1763
1764 mutex_lock(&cfg80211_mutex);
1765 mutex_lock(&reg_mutex);
1766
1767 reset_regdomains();
1768 restore_alpha2(alpha2, reset_user);
1769
1770 /*
1771 * If there's any pending requests we simply
1772 * stash them to a temporary pending queue and
1773 * add then after we've restored regulatory
1774 * settings.
1775 */
1776 spin_lock(&reg_requests_lock);
1777 if (!list_empty(&reg_requests_list)) {
1778 list_for_each_entry_safe(reg_request, tmp,
1779 &reg_requests_list, list) {
1780 if (reg_request->initiator !=
1781 NL80211_REGDOM_SET_BY_USER)
1782 continue;
1783 list_del(&reg_request->list);
1784 list_add_tail(&reg_request->list, &tmp_reg_req_list);
1785 }
1786 }
1787 spin_unlock(&reg_requests_lock);
1788
1789 /* Clear beacon hints */
1790 spin_lock_bh(&reg_pending_beacons_lock);
1791 if (!list_empty(&reg_pending_beacons)) {
1792 list_for_each_entry_safe(reg_beacon, btmp,
1793 &reg_pending_beacons, list) {
1794 list_del(&reg_beacon->list);
1795 kfree(reg_beacon);
1796 }
1797 }
1798 spin_unlock_bh(&reg_pending_beacons_lock);
1799
1800 if (!list_empty(&reg_beacon_list)) {
1801 list_for_each_entry_safe(reg_beacon, btmp,
1802 &reg_beacon_list, list) {
1803 list_del(&reg_beacon->list);
1804 kfree(reg_beacon);
1805 }
1806 }
1807
1808 /* First restore to the basic regulatory settings */
1809 cfg80211_regdomain = cfg80211_world_regdom;
1810
1811 mutex_unlock(&reg_mutex);
1812 mutex_unlock(&cfg80211_mutex);
1813
1814 regulatory_hint_core(cfg80211_regdomain->alpha2);
1815
1816 /*
1817 * This restores the ieee80211_regdom module parameter
1818 * preference or the last user requested regulatory
1819 * settings, user regulatory settings takes precedence.
1820 */
1821 if (is_an_alpha2(alpha2))
1822 regulatory_hint_user(user_alpha2);
1823
1824 if (list_empty(&tmp_reg_req_list))
1825 return;
1826
1827 mutex_lock(&cfg80211_mutex);
1828 mutex_lock(&reg_mutex);
1829
1830 spin_lock(&reg_requests_lock);
1831 list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1832 REG_DBG_PRINT("Adding request for country %c%c back "
1833 "into the queue\n",
1834 reg_request->alpha2[0],
1835 reg_request->alpha2[1]);
1836 list_del(&reg_request->list);
1837 list_add_tail(&reg_request->list, &reg_requests_list);
1838 }
1839 spin_unlock(&reg_requests_lock);
1840
1841 mutex_unlock(&reg_mutex);
1842 mutex_unlock(&cfg80211_mutex);
1843
1844 REG_DBG_PRINT("Kicking the queue\n");
1845
1846 schedule_work(&reg_work);
1847 }
1848
1849 void regulatory_hint_disconnect(void)
1850 {
1851 REG_DBG_PRINT("All devices are disconnected, going to "
1852 "restore regulatory settings\n");
1853 restore_regulatory_settings(false);
1854 }
1855
1856 static bool freq_is_chan_12_13_14(u16 freq)
1857 {
1858 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1859 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1860 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1861 return true;
1862 return false;
1863 }
1864
1865 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1866 struct ieee80211_channel *beacon_chan,
1867 gfp_t gfp)
1868 {
1869 struct reg_beacon *reg_beacon;
1870
1871 if (likely((beacon_chan->beacon_found ||
1872 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1873 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1874 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1875 return 0;
1876
1877 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1878 if (!reg_beacon)
1879 return -ENOMEM;
1880
1881 REG_DBG_PRINT("Found new beacon on "
1882 "frequency: %d MHz (Ch %d) on %s\n",
1883 beacon_chan->center_freq,
1884 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1885 wiphy_name(wiphy));
1886
1887 memcpy(&reg_beacon->chan, beacon_chan,
1888 sizeof(struct ieee80211_channel));
1889
1890
1891 /*
1892 * Since we can be called from BH or and non-BH context
1893 * we must use spin_lock_bh()
1894 */
1895 spin_lock_bh(&reg_pending_beacons_lock);
1896 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1897 spin_unlock_bh(&reg_pending_beacons_lock);
1898
1899 schedule_work(&reg_work);
1900
1901 return 0;
1902 }
1903
1904 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1905 {
1906 unsigned int i;
1907 const struct ieee80211_reg_rule *reg_rule = NULL;
1908 const struct ieee80211_freq_range *freq_range = NULL;
1909 const struct ieee80211_power_rule *power_rule = NULL;
1910
1911 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1912
1913 for (i = 0; i < rd->n_reg_rules; i++) {
1914 reg_rule = &rd->reg_rules[i];
1915 freq_range = &reg_rule->freq_range;
1916 power_rule = &reg_rule->power_rule;
1917
1918 /*
1919 * There may not be documentation for max antenna gain
1920 * in certain regions
1921 */
1922 if (power_rule->max_antenna_gain)
1923 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1924 freq_range->start_freq_khz,
1925 freq_range->end_freq_khz,
1926 freq_range->max_bandwidth_khz,
1927 power_rule->max_antenna_gain,
1928 power_rule->max_eirp);
1929 else
1930 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1931 freq_range->start_freq_khz,
1932 freq_range->end_freq_khz,
1933 freq_range->max_bandwidth_khz,
1934 power_rule->max_eirp);
1935 }
1936 }
1937
1938 static void print_regdomain(const struct ieee80211_regdomain *rd)
1939 {
1940
1941 if (is_intersected_alpha2(rd->alpha2)) {
1942
1943 if (last_request->initiator ==
1944 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1945 struct cfg80211_registered_device *rdev;
1946 rdev = cfg80211_rdev_by_wiphy_idx(
1947 last_request->wiphy_idx);
1948 if (rdev) {
1949 pr_info("Current regulatory domain updated by AP to: %c%c\n",
1950 rdev->country_ie_alpha2[0],
1951 rdev->country_ie_alpha2[1]);
1952 } else
1953 pr_info("Current regulatory domain intersected:\n");
1954 } else
1955 pr_info("Current regulatory domain intersected:\n");
1956 } else if (is_world_regdom(rd->alpha2))
1957 pr_info("World regulatory domain updated:\n");
1958 else {
1959 if (is_unknown_alpha2(rd->alpha2))
1960 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
1961 else
1962 pr_info("Regulatory domain changed to country: %c%c\n",
1963 rd->alpha2[0], rd->alpha2[1]);
1964 }
1965 print_rd_rules(rd);
1966 }
1967
1968 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1969 {
1970 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
1971 print_rd_rules(rd);
1972 }
1973
1974 /* Takes ownership of rd only if it doesn't fail */
1975 static int __set_regdom(const struct ieee80211_regdomain *rd)
1976 {
1977 const struct ieee80211_regdomain *intersected_rd = NULL;
1978 struct cfg80211_registered_device *rdev = NULL;
1979 struct wiphy *request_wiphy;
1980 /* Some basic sanity checks first */
1981
1982 if (is_world_regdom(rd->alpha2)) {
1983 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1984 return -EINVAL;
1985 update_world_regdomain(rd);
1986 return 0;
1987 }
1988
1989 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1990 !is_unknown_alpha2(rd->alpha2))
1991 return -EINVAL;
1992
1993 if (!last_request)
1994 return -EINVAL;
1995
1996 /*
1997 * Lets only bother proceeding on the same alpha2 if the current
1998 * rd is non static (it means CRDA was present and was used last)
1999 * and the pending request came in from a country IE
2000 */
2001 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2002 /*
2003 * If someone else asked us to change the rd lets only bother
2004 * checking if the alpha2 changes if CRDA was already called
2005 */
2006 if (!regdom_changes(rd->alpha2))
2007 return -EINVAL;
2008 }
2009
2010 /*
2011 * Now lets set the regulatory domain, update all driver channels
2012 * and finally inform them of what we have done, in case they want
2013 * to review or adjust their own settings based on their own
2014 * internal EEPROM data
2015 */
2016
2017 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2018 return -EINVAL;
2019
2020 if (!is_valid_rd(rd)) {
2021 pr_err("Invalid regulatory domain detected:\n");
2022 print_regdomain_info(rd);
2023 return -EINVAL;
2024 }
2025
2026 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2027
2028 if (!last_request->intersect) {
2029 int r;
2030
2031 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2032 reset_regdomains();
2033 cfg80211_regdomain = rd;
2034 return 0;
2035 }
2036
2037 /*
2038 * For a driver hint, lets copy the regulatory domain the
2039 * driver wanted to the wiphy to deal with conflicts
2040 */
2041
2042 /*
2043 * Userspace could have sent two replies with only
2044 * one kernel request.
2045 */
2046 if (request_wiphy->regd)
2047 return -EALREADY;
2048
2049 r = reg_copy_regd(&request_wiphy->regd, rd);
2050 if (r)
2051 return r;
2052
2053 reset_regdomains();
2054 cfg80211_regdomain = rd;
2055 return 0;
2056 }
2057
2058 /* Intersection requires a bit more work */
2059
2060 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2061
2062 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2063 if (!intersected_rd)
2064 return -EINVAL;
2065
2066 /*
2067 * We can trash what CRDA provided now.
2068 * However if a driver requested this specific regulatory
2069 * domain we keep it for its private use
2070 */
2071 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2072 request_wiphy->regd = rd;
2073 else
2074 kfree(rd);
2075
2076 rd = NULL;
2077
2078 reset_regdomains();
2079 cfg80211_regdomain = intersected_rd;
2080
2081 return 0;
2082 }
2083
2084 if (!intersected_rd)
2085 return -EINVAL;
2086
2087 rdev = wiphy_to_dev(request_wiphy);
2088
2089 rdev->country_ie_alpha2[0] = rd->alpha2[0];
2090 rdev->country_ie_alpha2[1] = rd->alpha2[1];
2091 rdev->env = last_request->country_ie_env;
2092
2093 BUG_ON(intersected_rd == rd);
2094
2095 kfree(rd);
2096 rd = NULL;
2097
2098 reset_regdomains();
2099 cfg80211_regdomain = intersected_rd;
2100
2101 return 0;
2102 }
2103
2104
2105 /*
2106 * Use this call to set the current regulatory domain. Conflicts with
2107 * multiple drivers can be ironed out later. Caller must've already
2108 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2109 */
2110 int set_regdom(const struct ieee80211_regdomain *rd)
2111 {
2112 int r;
2113
2114 assert_cfg80211_lock();
2115
2116 mutex_lock(&reg_mutex);
2117
2118 /* Note that this doesn't update the wiphys, this is done below */
2119 r = __set_regdom(rd);
2120 if (r) {
2121 kfree(rd);
2122 mutex_unlock(&reg_mutex);
2123 return r;
2124 }
2125
2126 /* This would make this whole thing pointless */
2127 if (!last_request->intersect)
2128 BUG_ON(rd != cfg80211_regdomain);
2129
2130 /* update all wiphys now with the new established regulatory domain */
2131 update_all_wiphy_regulatory(last_request->initiator);
2132
2133 print_regdomain(cfg80211_regdomain);
2134
2135 nl80211_send_reg_change_event(last_request);
2136
2137 reg_set_request_processed();
2138
2139 mutex_unlock(&reg_mutex);
2140
2141 return r;
2142 }
2143
2144 #ifdef CONFIG_HOTPLUG
2145 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2146 {
2147 if (last_request && !last_request->processed) {
2148 if (add_uevent_var(env, "COUNTRY=%c%c",
2149 last_request->alpha2[0],
2150 last_request->alpha2[1]))
2151 return -ENOMEM;
2152 }
2153
2154 return 0;
2155 }
2156 #else
2157 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2158 {
2159 return -ENODEV;
2160 }
2161 #endif /* CONFIG_HOTPLUG */
2162
2163 /* Caller must hold cfg80211_mutex */
2164 void reg_device_remove(struct wiphy *wiphy)
2165 {
2166 struct wiphy *request_wiphy = NULL;
2167
2168 assert_cfg80211_lock();
2169
2170 mutex_lock(&reg_mutex);
2171
2172 kfree(wiphy->regd);
2173
2174 if (last_request)
2175 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2176
2177 if (!request_wiphy || request_wiphy != wiphy)
2178 goto out;
2179
2180 last_request->wiphy_idx = WIPHY_IDX_STALE;
2181 last_request->country_ie_env = ENVIRON_ANY;
2182 out:
2183 mutex_unlock(&reg_mutex);
2184 }
2185
2186 static void reg_timeout_work(struct work_struct *work)
2187 {
2188 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2189 "restoring regulatory settings\n");
2190 restore_regulatory_settings(true);
2191 }
2192
2193 int __init regulatory_init(void)
2194 {
2195 int err = 0;
2196
2197 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2198 if (IS_ERR(reg_pdev))
2199 return PTR_ERR(reg_pdev);
2200
2201 reg_pdev->dev.type = &reg_device_type;
2202
2203 spin_lock_init(&reg_requests_lock);
2204 spin_lock_init(&reg_pending_beacons_lock);
2205
2206 cfg80211_regdomain = cfg80211_world_regdom;
2207
2208 user_alpha2[0] = '9';
2209 user_alpha2[1] = '7';
2210
2211 /* We always try to get an update for the static regdomain */
2212 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2213 if (err) {
2214 if (err == -ENOMEM)
2215 return err;
2216 /*
2217 * N.B. kobject_uevent_env() can fail mainly for when we're out
2218 * memory which is handled and propagated appropriately above
2219 * but it can also fail during a netlink_broadcast() or during
2220 * early boot for call_usermodehelper(). For now treat these
2221 * errors as non-fatal.
2222 */
2223 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2224 #ifdef CONFIG_CFG80211_REG_DEBUG
2225 /* We want to find out exactly why when debugging */
2226 WARN_ON(err);
2227 #endif
2228 }
2229
2230 /*
2231 * Finally, if the user set the module parameter treat it
2232 * as a user hint.
2233 */
2234 if (!is_world_regdom(ieee80211_regdom))
2235 regulatory_hint_user(ieee80211_regdom);
2236
2237 return 0;
2238 }
2239
2240 void /* __init_or_exit */ regulatory_exit(void)
2241 {
2242 struct regulatory_request *reg_request, *tmp;
2243 struct reg_beacon *reg_beacon, *btmp;
2244
2245 cancel_work_sync(&reg_work);
2246 cancel_delayed_work_sync(&reg_timeout);
2247
2248 mutex_lock(&cfg80211_mutex);
2249 mutex_lock(&reg_mutex);
2250
2251 reset_regdomains();
2252
2253 kfree(last_request);
2254
2255 platform_device_unregister(reg_pdev);
2256
2257 spin_lock_bh(&reg_pending_beacons_lock);
2258 if (!list_empty(&reg_pending_beacons)) {
2259 list_for_each_entry_safe(reg_beacon, btmp,
2260 &reg_pending_beacons, list) {
2261 list_del(&reg_beacon->list);
2262 kfree(reg_beacon);
2263 }
2264 }
2265 spin_unlock_bh(&reg_pending_beacons_lock);
2266
2267 if (!list_empty(&reg_beacon_list)) {
2268 list_for_each_entry_safe(reg_beacon, btmp,
2269 &reg_beacon_list, list) {
2270 list_del(&reg_beacon->list);
2271 kfree(reg_beacon);
2272 }
2273 }
2274
2275 spin_lock(&reg_requests_lock);
2276 if (!list_empty(&reg_requests_list)) {
2277 list_for_each_entry_safe(reg_request, tmp,
2278 &reg_requests_list, list) {
2279 list_del(&reg_request->list);
2280 kfree(reg_request);
2281 }
2282 }
2283 spin_unlock(&reg_requests_lock);
2284
2285 mutex_unlock(&reg_mutex);
2286 mutex_unlock(&cfg80211_mutex);
2287 }