]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - net/wireless/reg.c
Merge tag 'clk-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-focal-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 Intel Corporation
9 *
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23
24 /**
25 * DOC: Wireless regulatory infrastructure
26 *
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
31 *
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
35 *
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
41 *
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
45 *
46 */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
69 */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73 * enum reg_request_treatment - regulatory request treatment
74 *
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
81 */
82 enum reg_request_treatment {
83 REG_REQ_OK,
84 REG_REQ_IGNORE,
85 REG_REQ_INTERSECT,
86 REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90 .initiator = NL80211_REGDOM_SET_BY_CORE,
91 .alpha2[0] = '0',
92 .alpha2[1] = '0',
93 .intersect = false,
94 .processed = true,
95 .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
101 */
102 static struct regulatory_request __rcu *last_request =
103 (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
113 */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
120 */
121 static int reg_num_devs_support_basehint;
122
123 /*
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
127 */
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user);
135
136 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
137 {
138 return rcu_dereference_rtnl(cfg80211_regdomain);
139 }
140
141 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
142 {
143 return rcu_dereference_rtnl(wiphy->regd);
144 }
145
146 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
147 {
148 switch (dfs_region) {
149 case NL80211_DFS_UNSET:
150 return "unset";
151 case NL80211_DFS_FCC:
152 return "FCC";
153 case NL80211_DFS_ETSI:
154 return "ETSI";
155 case NL80211_DFS_JP:
156 return "JP";
157 }
158 return "Unknown";
159 }
160
161 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
162 {
163 const struct ieee80211_regdomain *regd = NULL;
164 const struct ieee80211_regdomain *wiphy_regd = NULL;
165
166 regd = get_cfg80211_regdom();
167 if (!wiphy)
168 goto out;
169
170 wiphy_regd = get_wiphy_regdom(wiphy);
171 if (!wiphy_regd)
172 goto out;
173
174 if (wiphy_regd->dfs_region == regd->dfs_region)
175 goto out;
176
177 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
178 dev_name(&wiphy->dev),
179 reg_dfs_region_str(wiphy_regd->dfs_region),
180 reg_dfs_region_str(regd->dfs_region));
181
182 out:
183 return regd->dfs_region;
184 }
185
186 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
187 {
188 if (!r)
189 return;
190 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
191 }
192
193 static struct regulatory_request *get_last_request(void)
194 {
195 return rcu_dereference_rtnl(last_request);
196 }
197
198 /* Used to queue up regulatory hints */
199 static LIST_HEAD(reg_requests_list);
200 static spinlock_t reg_requests_lock;
201
202 /* Used to queue up beacon hints for review */
203 static LIST_HEAD(reg_pending_beacons);
204 static spinlock_t reg_pending_beacons_lock;
205
206 /* Used to keep track of processed beacon hints */
207 static LIST_HEAD(reg_beacon_list);
208
209 struct reg_beacon {
210 struct list_head list;
211 struct ieee80211_channel chan;
212 };
213
214 static void reg_check_chans_work(struct work_struct *work);
215 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
216
217 static void reg_todo(struct work_struct *work);
218 static DECLARE_WORK(reg_work, reg_todo);
219
220 /* We keep a static world regulatory domain in case of the absence of CRDA */
221 static const struct ieee80211_regdomain world_regdom = {
222 .n_reg_rules = 8,
223 .alpha2 = "00",
224 .reg_rules = {
225 /* IEEE 802.11b/g, channels 1..11 */
226 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
227 /* IEEE 802.11b/g, channels 12..13. */
228 REG_RULE(2467-10, 2472+10, 20, 6, 20,
229 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
230 /* IEEE 802.11 channel 14 - Only JP enables
231 * this and for 802.11b only */
232 REG_RULE(2484-10, 2484+10, 20, 6, 20,
233 NL80211_RRF_NO_IR |
234 NL80211_RRF_NO_OFDM),
235 /* IEEE 802.11a, channel 36..48 */
236 REG_RULE(5180-10, 5240+10, 80, 6, 20,
237 NL80211_RRF_NO_IR |
238 NL80211_RRF_AUTO_BW),
239
240 /* IEEE 802.11a, channel 52..64 - DFS required */
241 REG_RULE(5260-10, 5320+10, 80, 6, 20,
242 NL80211_RRF_NO_IR |
243 NL80211_RRF_AUTO_BW |
244 NL80211_RRF_DFS),
245
246 /* IEEE 802.11a, channel 100..144 - DFS required */
247 REG_RULE(5500-10, 5720+10, 160, 6, 20,
248 NL80211_RRF_NO_IR |
249 NL80211_RRF_DFS),
250
251 /* IEEE 802.11a, channel 149..165 */
252 REG_RULE(5745-10, 5825+10, 80, 6, 20,
253 NL80211_RRF_NO_IR),
254
255 /* IEEE 802.11ad (60GHz), channels 1..3 */
256 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
257 }
258 };
259
260 /* protected by RTNL */
261 static const struct ieee80211_regdomain *cfg80211_world_regdom =
262 &world_regdom;
263
264 static char *ieee80211_regdom = "00";
265 static char user_alpha2[2];
266
267 module_param(ieee80211_regdom, charp, 0444);
268 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
269
270 static void reg_free_request(struct regulatory_request *request)
271 {
272 if (request == &core_request_world)
273 return;
274
275 if (request != get_last_request())
276 kfree(request);
277 }
278
279 static void reg_free_last_request(void)
280 {
281 struct regulatory_request *lr = get_last_request();
282
283 if (lr != &core_request_world && lr)
284 kfree_rcu(lr, rcu_head);
285 }
286
287 static void reg_update_last_request(struct regulatory_request *request)
288 {
289 struct regulatory_request *lr;
290
291 lr = get_last_request();
292 if (lr == request)
293 return;
294
295 reg_free_last_request();
296 rcu_assign_pointer(last_request, request);
297 }
298
299 static void reset_regdomains(bool full_reset,
300 const struct ieee80211_regdomain *new_regdom)
301 {
302 const struct ieee80211_regdomain *r;
303
304 ASSERT_RTNL();
305
306 r = get_cfg80211_regdom();
307
308 /* avoid freeing static information or freeing something twice */
309 if (r == cfg80211_world_regdom)
310 r = NULL;
311 if (cfg80211_world_regdom == &world_regdom)
312 cfg80211_world_regdom = NULL;
313 if (r == &world_regdom)
314 r = NULL;
315
316 rcu_free_regdom(r);
317 rcu_free_regdom(cfg80211_world_regdom);
318
319 cfg80211_world_regdom = &world_regdom;
320 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
321
322 if (!full_reset)
323 return;
324
325 reg_update_last_request(&core_request_world);
326 }
327
328 /*
329 * Dynamic world regulatory domain requested by the wireless
330 * core upon initialization
331 */
332 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
333 {
334 struct regulatory_request *lr;
335
336 lr = get_last_request();
337
338 WARN_ON(!lr);
339
340 reset_regdomains(false, rd);
341
342 cfg80211_world_regdom = rd;
343 }
344
345 bool is_world_regdom(const char *alpha2)
346 {
347 if (!alpha2)
348 return false;
349 return alpha2[0] == '0' && alpha2[1] == '0';
350 }
351
352 static bool is_alpha2_set(const char *alpha2)
353 {
354 if (!alpha2)
355 return false;
356 return alpha2[0] && alpha2[1];
357 }
358
359 static bool is_unknown_alpha2(const char *alpha2)
360 {
361 if (!alpha2)
362 return false;
363 /*
364 * Special case where regulatory domain was built by driver
365 * but a specific alpha2 cannot be determined
366 */
367 return alpha2[0] == '9' && alpha2[1] == '9';
368 }
369
370 static bool is_intersected_alpha2(const char *alpha2)
371 {
372 if (!alpha2)
373 return false;
374 /*
375 * Special case where regulatory domain is the
376 * result of an intersection between two regulatory domain
377 * structures
378 */
379 return alpha2[0] == '9' && alpha2[1] == '8';
380 }
381
382 static bool is_an_alpha2(const char *alpha2)
383 {
384 if (!alpha2)
385 return false;
386 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
387 }
388
389 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
390 {
391 if (!alpha2_x || !alpha2_y)
392 return false;
393 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
394 }
395
396 static bool regdom_changes(const char *alpha2)
397 {
398 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
399
400 if (!r)
401 return true;
402 return !alpha2_equal(r->alpha2, alpha2);
403 }
404
405 /*
406 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
407 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
408 * has ever been issued.
409 */
410 static bool is_user_regdom_saved(void)
411 {
412 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
413 return false;
414
415 /* This would indicate a mistake on the design */
416 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
417 "Unexpected user alpha2: %c%c\n",
418 user_alpha2[0], user_alpha2[1]))
419 return false;
420
421 return true;
422 }
423
424 static const struct ieee80211_regdomain *
425 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
426 {
427 struct ieee80211_regdomain *regd;
428 int size_of_regd;
429 unsigned int i;
430
431 size_of_regd =
432 sizeof(struct ieee80211_regdomain) +
433 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
434
435 regd = kzalloc(size_of_regd, GFP_KERNEL);
436 if (!regd)
437 return ERR_PTR(-ENOMEM);
438
439 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
440
441 for (i = 0; i < src_regd->n_reg_rules; i++)
442 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
443 sizeof(struct ieee80211_reg_rule));
444
445 return regd;
446 }
447
448 struct reg_regdb_apply_request {
449 struct list_head list;
450 const struct ieee80211_regdomain *regdom;
451 };
452
453 static LIST_HEAD(reg_regdb_apply_list);
454 static DEFINE_MUTEX(reg_regdb_apply_mutex);
455
456 static void reg_regdb_apply(struct work_struct *work)
457 {
458 struct reg_regdb_apply_request *request;
459
460 rtnl_lock();
461
462 mutex_lock(&reg_regdb_apply_mutex);
463 while (!list_empty(&reg_regdb_apply_list)) {
464 request = list_first_entry(&reg_regdb_apply_list,
465 struct reg_regdb_apply_request,
466 list);
467 list_del(&request->list);
468
469 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
470 kfree(request);
471 }
472 mutex_unlock(&reg_regdb_apply_mutex);
473
474 rtnl_unlock();
475 }
476
477 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
478
479 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
480 {
481 struct reg_regdb_apply_request *request;
482
483 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
484 if (!request) {
485 kfree(regdom);
486 return -ENOMEM;
487 }
488
489 request->regdom = regdom;
490
491 mutex_lock(&reg_regdb_apply_mutex);
492 list_add_tail(&request->list, &reg_regdb_apply_list);
493 mutex_unlock(&reg_regdb_apply_mutex);
494
495 schedule_work(&reg_regdb_work);
496 return 0;
497 }
498
499 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
500 /* Max number of consecutive attempts to communicate with CRDA */
501 #define REG_MAX_CRDA_TIMEOUTS 10
502
503 static u32 reg_crda_timeouts;
504
505 static void crda_timeout_work(struct work_struct *work);
506 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
507
508 static void crda_timeout_work(struct work_struct *work)
509 {
510 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
511 rtnl_lock();
512 reg_crda_timeouts++;
513 restore_regulatory_settings(true);
514 rtnl_unlock();
515 }
516
517 static void cancel_crda_timeout(void)
518 {
519 cancel_delayed_work(&crda_timeout);
520 }
521
522 static void cancel_crda_timeout_sync(void)
523 {
524 cancel_delayed_work_sync(&crda_timeout);
525 }
526
527 static void reset_crda_timeouts(void)
528 {
529 reg_crda_timeouts = 0;
530 }
531
532 /*
533 * This lets us keep regulatory code which is updated on a regulatory
534 * basis in userspace.
535 */
536 static int call_crda(const char *alpha2)
537 {
538 char country[12];
539 char *env[] = { country, NULL };
540 int ret;
541
542 snprintf(country, sizeof(country), "COUNTRY=%c%c",
543 alpha2[0], alpha2[1]);
544
545 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
546 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
547 return -EINVAL;
548 }
549
550 if (!is_world_regdom((char *) alpha2))
551 pr_debug("Calling CRDA for country: %c%c\n",
552 alpha2[0], alpha2[1]);
553 else
554 pr_debug("Calling CRDA to update world regulatory domain\n");
555
556 ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
557 if (ret)
558 return ret;
559
560 queue_delayed_work(system_power_efficient_wq,
561 &crda_timeout, msecs_to_jiffies(3142));
562 return 0;
563 }
564 #else
565 static inline void cancel_crda_timeout(void) {}
566 static inline void cancel_crda_timeout_sync(void) {}
567 static inline void reset_crda_timeouts(void) {}
568 static inline int call_crda(const char *alpha2)
569 {
570 return -ENODATA;
571 }
572 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
573
574 /* code to directly load a firmware database through request_firmware */
575 static const struct fwdb_header *regdb;
576
577 struct fwdb_country {
578 u8 alpha2[2];
579 __be16 coll_ptr;
580 /* this struct cannot be extended */
581 } __packed __aligned(4);
582
583 struct fwdb_collection {
584 u8 len;
585 u8 n_rules;
586 u8 dfs_region;
587 /* no optional data yet */
588 /* aligned to 2, then followed by __be16 array of rule pointers */
589 } __packed __aligned(4);
590
591 enum fwdb_flags {
592 FWDB_FLAG_NO_OFDM = BIT(0),
593 FWDB_FLAG_NO_OUTDOOR = BIT(1),
594 FWDB_FLAG_DFS = BIT(2),
595 FWDB_FLAG_NO_IR = BIT(3),
596 FWDB_FLAG_AUTO_BW = BIT(4),
597 };
598
599 struct fwdb_wmm_ac {
600 u8 ecw;
601 u8 aifsn;
602 __be16 cot;
603 } __packed;
604
605 struct fwdb_wmm_rule {
606 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
607 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
608 } __packed;
609
610 struct fwdb_rule {
611 u8 len;
612 u8 flags;
613 __be16 max_eirp;
614 __be32 start, end, max_bw;
615 /* start of optional data */
616 __be16 cac_timeout;
617 __be16 wmm_ptr;
618 } __packed __aligned(4);
619
620 #define FWDB_MAGIC 0x52474442
621 #define FWDB_VERSION 20
622
623 struct fwdb_header {
624 __be32 magic;
625 __be32 version;
626 struct fwdb_country country[];
627 } __packed __aligned(4);
628
629 static int ecw2cw(int ecw)
630 {
631 return (1 << ecw) - 1;
632 }
633
634 static bool valid_wmm(struct fwdb_wmm_rule *rule)
635 {
636 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
637 int i;
638
639 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
640 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
641 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
642 u8 aifsn = ac[i].aifsn;
643
644 if (cw_min >= cw_max)
645 return false;
646
647 if (aifsn < 1)
648 return false;
649 }
650
651 return true;
652 }
653
654 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
655 {
656 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
657
658 if ((u8 *)rule + sizeof(rule->len) > data + size)
659 return false;
660
661 /* mandatory fields */
662 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
663 return false;
664 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
665 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
666 struct fwdb_wmm_rule *wmm;
667
668 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
669 return false;
670
671 wmm = (void *)(data + wmm_ptr);
672
673 if (!valid_wmm(wmm))
674 return false;
675 }
676 return true;
677 }
678
679 static bool valid_country(const u8 *data, unsigned int size,
680 const struct fwdb_country *country)
681 {
682 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
683 struct fwdb_collection *coll = (void *)(data + ptr);
684 __be16 *rules_ptr;
685 unsigned int i;
686
687 /* make sure we can read len/n_rules */
688 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
689 return false;
690
691 /* make sure base struct and all rules fit */
692 if ((u8 *)coll + ALIGN(coll->len, 2) +
693 (coll->n_rules * 2) > data + size)
694 return false;
695
696 /* mandatory fields must exist */
697 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
698 return false;
699
700 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
701
702 for (i = 0; i < coll->n_rules; i++) {
703 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
704
705 if (!valid_rule(data, size, rule_ptr))
706 return false;
707 }
708
709 return true;
710 }
711
712 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
713 static struct key *builtin_regdb_keys;
714
715 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
716 {
717 const u8 *end = p + buflen;
718 size_t plen;
719 key_ref_t key;
720
721 while (p < end) {
722 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
723 * than 256 bytes in size.
724 */
725 if (end - p < 4)
726 goto dodgy_cert;
727 if (p[0] != 0x30 &&
728 p[1] != 0x82)
729 goto dodgy_cert;
730 plen = (p[2] << 8) | p[3];
731 plen += 4;
732 if (plen > end - p)
733 goto dodgy_cert;
734
735 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
736 "asymmetric", NULL, p, plen,
737 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
738 KEY_USR_VIEW | KEY_USR_READ),
739 KEY_ALLOC_NOT_IN_QUOTA |
740 KEY_ALLOC_BUILT_IN |
741 KEY_ALLOC_BYPASS_RESTRICTION);
742 if (IS_ERR(key)) {
743 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
744 PTR_ERR(key));
745 } else {
746 pr_notice("Loaded X.509 cert '%s'\n",
747 key_ref_to_ptr(key)->description);
748 key_ref_put(key);
749 }
750 p += plen;
751 }
752
753 return;
754
755 dodgy_cert:
756 pr_err("Problem parsing in-kernel X.509 certificate list\n");
757 }
758
759 static int __init load_builtin_regdb_keys(void)
760 {
761 builtin_regdb_keys =
762 keyring_alloc(".builtin_regdb_keys",
763 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
764 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
765 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
766 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
767 if (IS_ERR(builtin_regdb_keys))
768 return PTR_ERR(builtin_regdb_keys);
769
770 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
771
772 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
773 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
774 #endif
775 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
776 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
777 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
778 #endif
779
780 return 0;
781 }
782
783 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
784 {
785 const struct firmware *sig;
786 bool result;
787
788 if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
789 return false;
790
791 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
792 builtin_regdb_keys,
793 VERIFYING_UNSPECIFIED_SIGNATURE,
794 NULL, NULL) == 0;
795
796 release_firmware(sig);
797
798 return result;
799 }
800
801 static void free_regdb_keyring(void)
802 {
803 key_put(builtin_regdb_keys);
804 }
805 #else
806 static int load_builtin_regdb_keys(void)
807 {
808 return 0;
809 }
810
811 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
812 {
813 return true;
814 }
815
816 static void free_regdb_keyring(void)
817 {
818 }
819 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
820
821 static bool valid_regdb(const u8 *data, unsigned int size)
822 {
823 const struct fwdb_header *hdr = (void *)data;
824 const struct fwdb_country *country;
825
826 if (size < sizeof(*hdr))
827 return false;
828
829 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
830 return false;
831
832 if (hdr->version != cpu_to_be32(FWDB_VERSION))
833 return false;
834
835 if (!regdb_has_valid_signature(data, size))
836 return false;
837
838 country = &hdr->country[0];
839 while ((u8 *)(country + 1) <= data + size) {
840 if (!country->coll_ptr)
841 break;
842 if (!valid_country(data, size, country))
843 return false;
844 country++;
845 }
846
847 return true;
848 }
849
850 static void set_wmm_rule(const struct fwdb_header *db,
851 const struct fwdb_country *country,
852 const struct fwdb_rule *rule,
853 struct ieee80211_reg_rule *rrule)
854 {
855 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
856 struct fwdb_wmm_rule *wmm;
857 unsigned int i, wmm_ptr;
858
859 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
860 wmm = (void *)((u8 *)db + wmm_ptr);
861
862 if (!valid_wmm(wmm)) {
863 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
864 be32_to_cpu(rule->start), be32_to_cpu(rule->end),
865 country->alpha2[0], country->alpha2[1]);
866 return;
867 }
868
869 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
870 wmm_rule->client[i].cw_min =
871 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
872 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
873 wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
874 wmm_rule->client[i].cot =
875 1000 * be16_to_cpu(wmm->client[i].cot);
876 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
877 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
878 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
879 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
880 }
881
882 rrule->has_wmm = true;
883 }
884
885 static int __regdb_query_wmm(const struct fwdb_header *db,
886 const struct fwdb_country *country, int freq,
887 struct ieee80211_reg_rule *rrule)
888 {
889 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
890 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
891 int i;
892
893 for (i = 0; i < coll->n_rules; i++) {
894 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
895 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
896 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
897
898 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
899 continue;
900
901 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
902 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
903 set_wmm_rule(db, country, rule, rrule);
904 return 0;
905 }
906 }
907
908 return -ENODATA;
909 }
910
911 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
912 {
913 const struct fwdb_header *hdr = regdb;
914 const struct fwdb_country *country;
915
916 if (!regdb)
917 return -ENODATA;
918
919 if (IS_ERR(regdb))
920 return PTR_ERR(regdb);
921
922 country = &hdr->country[0];
923 while (country->coll_ptr) {
924 if (alpha2_equal(alpha2, country->alpha2))
925 return __regdb_query_wmm(regdb, country, freq, rule);
926
927 country++;
928 }
929
930 return -ENODATA;
931 }
932 EXPORT_SYMBOL(reg_query_regdb_wmm);
933
934 static int regdb_query_country(const struct fwdb_header *db,
935 const struct fwdb_country *country)
936 {
937 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
938 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
939 struct ieee80211_regdomain *regdom;
940 unsigned int size_of_regd, i;
941
942 size_of_regd = sizeof(struct ieee80211_regdomain) +
943 coll->n_rules * sizeof(struct ieee80211_reg_rule);
944
945 regdom = kzalloc(size_of_regd, GFP_KERNEL);
946 if (!regdom)
947 return -ENOMEM;
948
949 regdom->n_reg_rules = coll->n_rules;
950 regdom->alpha2[0] = country->alpha2[0];
951 regdom->alpha2[1] = country->alpha2[1];
952 regdom->dfs_region = coll->dfs_region;
953
954 for (i = 0; i < regdom->n_reg_rules; i++) {
955 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
956 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
957 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
958 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
959
960 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
961 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
962 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
963
964 rrule->power_rule.max_antenna_gain = 0;
965 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
966
967 rrule->flags = 0;
968 if (rule->flags & FWDB_FLAG_NO_OFDM)
969 rrule->flags |= NL80211_RRF_NO_OFDM;
970 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
971 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
972 if (rule->flags & FWDB_FLAG_DFS)
973 rrule->flags |= NL80211_RRF_DFS;
974 if (rule->flags & FWDB_FLAG_NO_IR)
975 rrule->flags |= NL80211_RRF_NO_IR;
976 if (rule->flags & FWDB_FLAG_AUTO_BW)
977 rrule->flags |= NL80211_RRF_AUTO_BW;
978
979 rrule->dfs_cac_ms = 0;
980
981 /* handle optional data */
982 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
983 rrule->dfs_cac_ms =
984 1000 * be16_to_cpu(rule->cac_timeout);
985 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
986 set_wmm_rule(db, country, rule, rrule);
987 }
988
989 return reg_schedule_apply(regdom);
990 }
991
992 static int query_regdb(const char *alpha2)
993 {
994 const struct fwdb_header *hdr = regdb;
995 const struct fwdb_country *country;
996
997 ASSERT_RTNL();
998
999 if (IS_ERR(regdb))
1000 return PTR_ERR(regdb);
1001
1002 country = &hdr->country[0];
1003 while (country->coll_ptr) {
1004 if (alpha2_equal(alpha2, country->alpha2))
1005 return regdb_query_country(regdb, country);
1006 country++;
1007 }
1008
1009 return -ENODATA;
1010 }
1011
1012 static void regdb_fw_cb(const struct firmware *fw, void *context)
1013 {
1014 int set_error = 0;
1015 bool restore = true;
1016 void *db;
1017
1018 if (!fw) {
1019 pr_info("failed to load regulatory.db\n");
1020 set_error = -ENODATA;
1021 } else if (!valid_regdb(fw->data, fw->size)) {
1022 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1023 set_error = -EINVAL;
1024 }
1025
1026 rtnl_lock();
1027 if (regdb && !IS_ERR(regdb)) {
1028 /* negative case - a bug
1029 * positive case - can happen due to race in case of multiple cb's in
1030 * queue, due to usage of asynchronous callback
1031 *
1032 * Either case, just restore and free new db.
1033 */
1034 } else if (set_error) {
1035 regdb = ERR_PTR(set_error);
1036 } else if (fw) {
1037 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1038 if (db) {
1039 regdb = db;
1040 restore = context && query_regdb(context);
1041 } else {
1042 restore = true;
1043 }
1044 }
1045
1046 if (restore)
1047 restore_regulatory_settings(true);
1048
1049 rtnl_unlock();
1050
1051 kfree(context);
1052
1053 release_firmware(fw);
1054 }
1055
1056 static int query_regdb_file(const char *alpha2)
1057 {
1058 ASSERT_RTNL();
1059
1060 if (regdb)
1061 return query_regdb(alpha2);
1062
1063 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1064 if (!alpha2)
1065 return -ENOMEM;
1066
1067 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1068 &reg_pdev->dev, GFP_KERNEL,
1069 (void *)alpha2, regdb_fw_cb);
1070 }
1071
1072 int reg_reload_regdb(void)
1073 {
1074 const struct firmware *fw;
1075 void *db;
1076 int err;
1077
1078 err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1079 if (err)
1080 return err;
1081
1082 if (!valid_regdb(fw->data, fw->size)) {
1083 err = -ENODATA;
1084 goto out;
1085 }
1086
1087 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1088 if (!db) {
1089 err = -ENOMEM;
1090 goto out;
1091 }
1092
1093 rtnl_lock();
1094 if (!IS_ERR_OR_NULL(regdb))
1095 kfree(regdb);
1096 regdb = db;
1097 rtnl_unlock();
1098
1099 out:
1100 release_firmware(fw);
1101 return err;
1102 }
1103
1104 static bool reg_query_database(struct regulatory_request *request)
1105 {
1106 if (query_regdb_file(request->alpha2) == 0)
1107 return true;
1108
1109 if (call_crda(request->alpha2) == 0)
1110 return true;
1111
1112 return false;
1113 }
1114
1115 bool reg_is_valid_request(const char *alpha2)
1116 {
1117 struct regulatory_request *lr = get_last_request();
1118
1119 if (!lr || lr->processed)
1120 return false;
1121
1122 return alpha2_equal(lr->alpha2, alpha2);
1123 }
1124
1125 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1126 {
1127 struct regulatory_request *lr = get_last_request();
1128
1129 /*
1130 * Follow the driver's regulatory domain, if present, unless a country
1131 * IE has been processed or a user wants to help complaince further
1132 */
1133 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1134 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1135 wiphy->regd)
1136 return get_wiphy_regdom(wiphy);
1137
1138 return get_cfg80211_regdom();
1139 }
1140
1141 static unsigned int
1142 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1143 const struct ieee80211_reg_rule *rule)
1144 {
1145 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1146 const struct ieee80211_freq_range *freq_range_tmp;
1147 const struct ieee80211_reg_rule *tmp;
1148 u32 start_freq, end_freq, idx, no;
1149
1150 for (idx = 0; idx < rd->n_reg_rules; idx++)
1151 if (rule == &rd->reg_rules[idx])
1152 break;
1153
1154 if (idx == rd->n_reg_rules)
1155 return 0;
1156
1157 /* get start_freq */
1158 no = idx;
1159
1160 while (no) {
1161 tmp = &rd->reg_rules[--no];
1162 freq_range_tmp = &tmp->freq_range;
1163
1164 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1165 break;
1166
1167 freq_range = freq_range_tmp;
1168 }
1169
1170 start_freq = freq_range->start_freq_khz;
1171
1172 /* get end_freq */
1173 freq_range = &rule->freq_range;
1174 no = idx;
1175
1176 while (no < rd->n_reg_rules - 1) {
1177 tmp = &rd->reg_rules[++no];
1178 freq_range_tmp = &tmp->freq_range;
1179
1180 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1181 break;
1182
1183 freq_range = freq_range_tmp;
1184 }
1185
1186 end_freq = freq_range->end_freq_khz;
1187
1188 return end_freq - start_freq;
1189 }
1190
1191 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1192 const struct ieee80211_reg_rule *rule)
1193 {
1194 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1195
1196 if (rule->flags & NL80211_RRF_NO_160MHZ)
1197 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1198 if (rule->flags & NL80211_RRF_NO_80MHZ)
1199 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1200
1201 /*
1202 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1203 * are not allowed.
1204 */
1205 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1206 rule->flags & NL80211_RRF_NO_HT40PLUS)
1207 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1208
1209 return bw;
1210 }
1211
1212 /* Sanity check on a regulatory rule */
1213 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1214 {
1215 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1216 u32 freq_diff;
1217
1218 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1219 return false;
1220
1221 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1222 return false;
1223
1224 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1225
1226 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1227 freq_range->max_bandwidth_khz > freq_diff)
1228 return false;
1229
1230 return true;
1231 }
1232
1233 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1234 {
1235 const struct ieee80211_reg_rule *reg_rule = NULL;
1236 unsigned int i;
1237
1238 if (!rd->n_reg_rules)
1239 return false;
1240
1241 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1242 return false;
1243
1244 for (i = 0; i < rd->n_reg_rules; i++) {
1245 reg_rule = &rd->reg_rules[i];
1246 if (!is_valid_reg_rule(reg_rule))
1247 return false;
1248 }
1249
1250 return true;
1251 }
1252
1253 /**
1254 * freq_in_rule_band - tells us if a frequency is in a frequency band
1255 * @freq_range: frequency rule we want to query
1256 * @freq_khz: frequency we are inquiring about
1257 *
1258 * This lets us know if a specific frequency rule is or is not relevant to
1259 * a specific frequency's band. Bands are device specific and artificial
1260 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1261 * however it is safe for now to assume that a frequency rule should not be
1262 * part of a frequency's band if the start freq or end freq are off by more
1263 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1264 * 60 GHz band.
1265 * This resolution can be lowered and should be considered as we add
1266 * regulatory rule support for other "bands".
1267 **/
1268 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1269 u32 freq_khz)
1270 {
1271 #define ONE_GHZ_IN_KHZ 1000000
1272 /*
1273 * From 802.11ad: directional multi-gigabit (DMG):
1274 * Pertaining to operation in a frequency band containing a channel
1275 * with the Channel starting frequency above 45 GHz.
1276 */
1277 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1278 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1279 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1280 return true;
1281 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1282 return true;
1283 return false;
1284 #undef ONE_GHZ_IN_KHZ
1285 }
1286
1287 /*
1288 * Later on we can perhaps use the more restrictive DFS
1289 * region but we don't have information for that yet so
1290 * for now simply disallow conflicts.
1291 */
1292 static enum nl80211_dfs_regions
1293 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1294 const enum nl80211_dfs_regions dfs_region2)
1295 {
1296 if (dfs_region1 != dfs_region2)
1297 return NL80211_DFS_UNSET;
1298 return dfs_region1;
1299 }
1300
1301 /*
1302 * Helper for regdom_intersect(), this does the real
1303 * mathematical intersection fun
1304 */
1305 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1306 const struct ieee80211_regdomain *rd2,
1307 const struct ieee80211_reg_rule *rule1,
1308 const struct ieee80211_reg_rule *rule2,
1309 struct ieee80211_reg_rule *intersected_rule)
1310 {
1311 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1312 struct ieee80211_freq_range *freq_range;
1313 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1314 struct ieee80211_power_rule *power_rule;
1315 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1316
1317 freq_range1 = &rule1->freq_range;
1318 freq_range2 = &rule2->freq_range;
1319 freq_range = &intersected_rule->freq_range;
1320
1321 power_rule1 = &rule1->power_rule;
1322 power_rule2 = &rule2->power_rule;
1323 power_rule = &intersected_rule->power_rule;
1324
1325 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1326 freq_range2->start_freq_khz);
1327 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1328 freq_range2->end_freq_khz);
1329
1330 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1331 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1332
1333 if (rule1->flags & NL80211_RRF_AUTO_BW)
1334 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1335 if (rule2->flags & NL80211_RRF_AUTO_BW)
1336 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1337
1338 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1339
1340 intersected_rule->flags = rule1->flags | rule2->flags;
1341
1342 /*
1343 * In case NL80211_RRF_AUTO_BW requested for both rules
1344 * set AUTO_BW in intersected rule also. Next we will
1345 * calculate BW correctly in handle_channel function.
1346 * In other case remove AUTO_BW flag while we calculate
1347 * maximum bandwidth correctly and auto calculation is
1348 * not required.
1349 */
1350 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1351 (rule2->flags & NL80211_RRF_AUTO_BW))
1352 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1353 else
1354 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1355
1356 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1357 if (freq_range->max_bandwidth_khz > freq_diff)
1358 freq_range->max_bandwidth_khz = freq_diff;
1359
1360 power_rule->max_eirp = min(power_rule1->max_eirp,
1361 power_rule2->max_eirp);
1362 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1363 power_rule2->max_antenna_gain);
1364
1365 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1366 rule2->dfs_cac_ms);
1367
1368 if (!is_valid_reg_rule(intersected_rule))
1369 return -EINVAL;
1370
1371 return 0;
1372 }
1373
1374 /* check whether old rule contains new rule */
1375 static bool rule_contains(struct ieee80211_reg_rule *r1,
1376 struct ieee80211_reg_rule *r2)
1377 {
1378 /* for simplicity, currently consider only same flags */
1379 if (r1->flags != r2->flags)
1380 return false;
1381
1382 /* verify r1 is more restrictive */
1383 if ((r1->power_rule.max_antenna_gain >
1384 r2->power_rule.max_antenna_gain) ||
1385 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1386 return false;
1387
1388 /* make sure r2's range is contained within r1 */
1389 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1390 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1391 return false;
1392
1393 /* and finally verify that r1.max_bw >= r2.max_bw */
1394 if (r1->freq_range.max_bandwidth_khz <
1395 r2->freq_range.max_bandwidth_khz)
1396 return false;
1397
1398 return true;
1399 }
1400
1401 /* add or extend current rules. do nothing if rule is already contained */
1402 static void add_rule(struct ieee80211_reg_rule *rule,
1403 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1404 {
1405 struct ieee80211_reg_rule *tmp_rule;
1406 int i;
1407
1408 for (i = 0; i < *n_rules; i++) {
1409 tmp_rule = &reg_rules[i];
1410 /* rule is already contained - do nothing */
1411 if (rule_contains(tmp_rule, rule))
1412 return;
1413
1414 /* extend rule if possible */
1415 if (rule_contains(rule, tmp_rule)) {
1416 memcpy(tmp_rule, rule, sizeof(*rule));
1417 return;
1418 }
1419 }
1420
1421 memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1422 (*n_rules)++;
1423 }
1424
1425 /**
1426 * regdom_intersect - do the intersection between two regulatory domains
1427 * @rd1: first regulatory domain
1428 * @rd2: second regulatory domain
1429 *
1430 * Use this function to get the intersection between two regulatory domains.
1431 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1432 * as no one single alpha2 can represent this regulatory domain.
1433 *
1434 * Returns a pointer to the regulatory domain structure which will hold the
1435 * resulting intersection of rules between rd1 and rd2. We will
1436 * kzalloc() this structure for you.
1437 */
1438 static struct ieee80211_regdomain *
1439 regdom_intersect(const struct ieee80211_regdomain *rd1,
1440 const struct ieee80211_regdomain *rd2)
1441 {
1442 int r, size_of_regd;
1443 unsigned int x, y;
1444 unsigned int num_rules = 0;
1445 const struct ieee80211_reg_rule *rule1, *rule2;
1446 struct ieee80211_reg_rule intersected_rule;
1447 struct ieee80211_regdomain *rd;
1448
1449 if (!rd1 || !rd2)
1450 return NULL;
1451
1452 /*
1453 * First we get a count of the rules we'll need, then we actually
1454 * build them. This is to so we can malloc() and free() a
1455 * regdomain once. The reason we use reg_rules_intersect() here
1456 * is it will return -EINVAL if the rule computed makes no sense.
1457 * All rules that do check out OK are valid.
1458 */
1459
1460 for (x = 0; x < rd1->n_reg_rules; x++) {
1461 rule1 = &rd1->reg_rules[x];
1462 for (y = 0; y < rd2->n_reg_rules; y++) {
1463 rule2 = &rd2->reg_rules[y];
1464 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1465 &intersected_rule))
1466 num_rules++;
1467 }
1468 }
1469
1470 if (!num_rules)
1471 return NULL;
1472
1473 size_of_regd = sizeof(struct ieee80211_regdomain) +
1474 num_rules * sizeof(struct ieee80211_reg_rule);
1475
1476 rd = kzalloc(size_of_regd, GFP_KERNEL);
1477 if (!rd)
1478 return NULL;
1479
1480 for (x = 0; x < rd1->n_reg_rules; x++) {
1481 rule1 = &rd1->reg_rules[x];
1482 for (y = 0; y < rd2->n_reg_rules; y++) {
1483 rule2 = &rd2->reg_rules[y];
1484 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1485 &intersected_rule);
1486 /*
1487 * No need to memset here the intersected rule here as
1488 * we're not using the stack anymore
1489 */
1490 if (r)
1491 continue;
1492
1493 add_rule(&intersected_rule, rd->reg_rules,
1494 &rd->n_reg_rules);
1495 }
1496 }
1497
1498 rd->alpha2[0] = '9';
1499 rd->alpha2[1] = '8';
1500 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1501 rd2->dfs_region);
1502
1503 return rd;
1504 }
1505
1506 /*
1507 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1508 * want to just have the channel structure use these
1509 */
1510 static u32 map_regdom_flags(u32 rd_flags)
1511 {
1512 u32 channel_flags = 0;
1513 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1514 channel_flags |= IEEE80211_CHAN_NO_IR;
1515 if (rd_flags & NL80211_RRF_DFS)
1516 channel_flags |= IEEE80211_CHAN_RADAR;
1517 if (rd_flags & NL80211_RRF_NO_OFDM)
1518 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1519 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1520 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1521 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1522 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1523 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1524 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1525 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1526 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1527 if (rd_flags & NL80211_RRF_NO_80MHZ)
1528 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1529 if (rd_flags & NL80211_RRF_NO_160MHZ)
1530 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1531 return channel_flags;
1532 }
1533
1534 static const struct ieee80211_reg_rule *
1535 freq_reg_info_regd(u32 center_freq,
1536 const struct ieee80211_regdomain *regd, u32 bw)
1537 {
1538 int i;
1539 bool band_rule_found = false;
1540 bool bw_fits = false;
1541
1542 if (!regd)
1543 return ERR_PTR(-EINVAL);
1544
1545 for (i = 0; i < regd->n_reg_rules; i++) {
1546 const struct ieee80211_reg_rule *rr;
1547 const struct ieee80211_freq_range *fr = NULL;
1548
1549 rr = &regd->reg_rules[i];
1550 fr = &rr->freq_range;
1551
1552 /*
1553 * We only need to know if one frequency rule was
1554 * was in center_freq's band, that's enough, so lets
1555 * not overwrite it once found
1556 */
1557 if (!band_rule_found)
1558 band_rule_found = freq_in_rule_band(fr, center_freq);
1559
1560 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1561
1562 if (band_rule_found && bw_fits)
1563 return rr;
1564 }
1565
1566 if (!band_rule_found)
1567 return ERR_PTR(-ERANGE);
1568
1569 return ERR_PTR(-EINVAL);
1570 }
1571
1572 static const struct ieee80211_reg_rule *
1573 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1574 {
1575 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1576 const struct ieee80211_reg_rule *reg_rule = NULL;
1577 u32 bw;
1578
1579 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1580 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1581 if (!IS_ERR(reg_rule))
1582 return reg_rule;
1583 }
1584
1585 return reg_rule;
1586 }
1587
1588 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1589 u32 center_freq)
1590 {
1591 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1592 }
1593 EXPORT_SYMBOL(freq_reg_info);
1594
1595 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1596 {
1597 switch (initiator) {
1598 case NL80211_REGDOM_SET_BY_CORE:
1599 return "core";
1600 case NL80211_REGDOM_SET_BY_USER:
1601 return "user";
1602 case NL80211_REGDOM_SET_BY_DRIVER:
1603 return "driver";
1604 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1605 return "country element";
1606 default:
1607 WARN_ON(1);
1608 return "bug";
1609 }
1610 }
1611 EXPORT_SYMBOL(reg_initiator_name);
1612
1613 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1614 const struct ieee80211_reg_rule *reg_rule,
1615 const struct ieee80211_channel *chan)
1616 {
1617 const struct ieee80211_freq_range *freq_range = NULL;
1618 u32 max_bandwidth_khz, bw_flags = 0;
1619
1620 freq_range = &reg_rule->freq_range;
1621
1622 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1623 /* Check if auto calculation requested */
1624 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1625 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1626
1627 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1628 if (!cfg80211_does_bw_fit_range(freq_range,
1629 MHZ_TO_KHZ(chan->center_freq),
1630 MHZ_TO_KHZ(10)))
1631 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1632 if (!cfg80211_does_bw_fit_range(freq_range,
1633 MHZ_TO_KHZ(chan->center_freq),
1634 MHZ_TO_KHZ(20)))
1635 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1636
1637 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1638 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1639 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1640 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1641 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1642 bw_flags |= IEEE80211_CHAN_NO_HT40;
1643 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1644 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1645 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1646 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1647 return bw_flags;
1648 }
1649
1650 /*
1651 * Note that right now we assume the desired channel bandwidth
1652 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1653 * per channel, the primary and the extension channel).
1654 */
1655 static void handle_channel(struct wiphy *wiphy,
1656 enum nl80211_reg_initiator initiator,
1657 struct ieee80211_channel *chan)
1658 {
1659 u32 flags, bw_flags = 0;
1660 const struct ieee80211_reg_rule *reg_rule = NULL;
1661 const struct ieee80211_power_rule *power_rule = NULL;
1662 struct wiphy *request_wiphy = NULL;
1663 struct regulatory_request *lr = get_last_request();
1664 const struct ieee80211_regdomain *regd;
1665
1666 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1667
1668 flags = chan->orig_flags;
1669
1670 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1671 if (IS_ERR(reg_rule)) {
1672 /*
1673 * We will disable all channels that do not match our
1674 * received regulatory rule unless the hint is coming
1675 * from a Country IE and the Country IE had no information
1676 * about a band. The IEEE 802.11 spec allows for an AP
1677 * to send only a subset of the regulatory rules allowed,
1678 * so an AP in the US that only supports 2.4 GHz may only send
1679 * a country IE with information for the 2.4 GHz band
1680 * while 5 GHz is still supported.
1681 */
1682 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1683 PTR_ERR(reg_rule) == -ERANGE)
1684 return;
1685
1686 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1687 request_wiphy && request_wiphy == wiphy &&
1688 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1689 pr_debug("Disabling freq %d MHz for good\n",
1690 chan->center_freq);
1691 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1692 chan->flags = chan->orig_flags;
1693 } else {
1694 pr_debug("Disabling freq %d MHz\n",
1695 chan->center_freq);
1696 chan->flags |= IEEE80211_CHAN_DISABLED;
1697 }
1698 return;
1699 }
1700
1701 regd = reg_get_regdomain(wiphy);
1702
1703 power_rule = &reg_rule->power_rule;
1704 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1705
1706 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1707 request_wiphy && request_wiphy == wiphy &&
1708 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1709 /*
1710 * This guarantees the driver's requested regulatory domain
1711 * will always be used as a base for further regulatory
1712 * settings
1713 */
1714 chan->flags = chan->orig_flags =
1715 map_regdom_flags(reg_rule->flags) | bw_flags;
1716 chan->max_antenna_gain = chan->orig_mag =
1717 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1718 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1719 (int) MBM_TO_DBM(power_rule->max_eirp);
1720
1721 if (chan->flags & IEEE80211_CHAN_RADAR) {
1722 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1723 if (reg_rule->dfs_cac_ms)
1724 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1725 }
1726
1727 return;
1728 }
1729
1730 chan->dfs_state = NL80211_DFS_USABLE;
1731 chan->dfs_state_entered = jiffies;
1732
1733 chan->beacon_found = false;
1734 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1735 chan->max_antenna_gain =
1736 min_t(int, chan->orig_mag,
1737 MBI_TO_DBI(power_rule->max_antenna_gain));
1738 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1739
1740 if (chan->flags & IEEE80211_CHAN_RADAR) {
1741 if (reg_rule->dfs_cac_ms)
1742 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1743 else
1744 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1745 }
1746
1747 if (chan->orig_mpwr) {
1748 /*
1749 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1750 * will always follow the passed country IE power settings.
1751 */
1752 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1753 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1754 chan->max_power = chan->max_reg_power;
1755 else
1756 chan->max_power = min(chan->orig_mpwr,
1757 chan->max_reg_power);
1758 } else
1759 chan->max_power = chan->max_reg_power;
1760 }
1761
1762 static void handle_band(struct wiphy *wiphy,
1763 enum nl80211_reg_initiator initiator,
1764 struct ieee80211_supported_band *sband)
1765 {
1766 unsigned int i;
1767
1768 if (!sband)
1769 return;
1770
1771 for (i = 0; i < sband->n_channels; i++)
1772 handle_channel(wiphy, initiator, &sband->channels[i]);
1773 }
1774
1775 static bool reg_request_cell_base(struct regulatory_request *request)
1776 {
1777 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1778 return false;
1779 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1780 }
1781
1782 bool reg_last_request_cell_base(void)
1783 {
1784 return reg_request_cell_base(get_last_request());
1785 }
1786
1787 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1788 /* Core specific check */
1789 static enum reg_request_treatment
1790 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1791 {
1792 struct regulatory_request *lr = get_last_request();
1793
1794 if (!reg_num_devs_support_basehint)
1795 return REG_REQ_IGNORE;
1796
1797 if (reg_request_cell_base(lr) &&
1798 !regdom_changes(pending_request->alpha2))
1799 return REG_REQ_ALREADY_SET;
1800
1801 return REG_REQ_OK;
1802 }
1803
1804 /* Device specific check */
1805 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1806 {
1807 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1808 }
1809 #else
1810 static enum reg_request_treatment
1811 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1812 {
1813 return REG_REQ_IGNORE;
1814 }
1815
1816 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1817 {
1818 return true;
1819 }
1820 #endif
1821
1822 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1823 {
1824 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1825 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1826 return true;
1827 return false;
1828 }
1829
1830 static bool ignore_reg_update(struct wiphy *wiphy,
1831 enum nl80211_reg_initiator initiator)
1832 {
1833 struct regulatory_request *lr = get_last_request();
1834
1835 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1836 return true;
1837
1838 if (!lr) {
1839 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1840 reg_initiator_name(initiator));
1841 return true;
1842 }
1843
1844 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1845 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1846 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1847 reg_initiator_name(initiator));
1848 return true;
1849 }
1850
1851 /*
1852 * wiphy->regd will be set once the device has its own
1853 * desired regulatory domain set
1854 */
1855 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1856 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1857 !is_world_regdom(lr->alpha2)) {
1858 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1859 reg_initiator_name(initiator));
1860 return true;
1861 }
1862
1863 if (reg_request_cell_base(lr))
1864 return reg_dev_ignore_cell_hint(wiphy);
1865
1866 return false;
1867 }
1868
1869 static bool reg_is_world_roaming(struct wiphy *wiphy)
1870 {
1871 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1872 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1873 struct regulatory_request *lr = get_last_request();
1874
1875 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1876 return true;
1877
1878 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1879 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1880 return true;
1881
1882 return false;
1883 }
1884
1885 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1886 struct reg_beacon *reg_beacon)
1887 {
1888 struct ieee80211_supported_band *sband;
1889 struct ieee80211_channel *chan;
1890 bool channel_changed = false;
1891 struct ieee80211_channel chan_before;
1892
1893 sband = wiphy->bands[reg_beacon->chan.band];
1894 chan = &sband->channels[chan_idx];
1895
1896 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1897 return;
1898
1899 if (chan->beacon_found)
1900 return;
1901
1902 chan->beacon_found = true;
1903
1904 if (!reg_is_world_roaming(wiphy))
1905 return;
1906
1907 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1908 return;
1909
1910 chan_before = *chan;
1911
1912 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1913 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1914 channel_changed = true;
1915 }
1916
1917 if (channel_changed)
1918 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1919 }
1920
1921 /*
1922 * Called when a scan on a wiphy finds a beacon on
1923 * new channel
1924 */
1925 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1926 struct reg_beacon *reg_beacon)
1927 {
1928 unsigned int i;
1929 struct ieee80211_supported_band *sband;
1930
1931 if (!wiphy->bands[reg_beacon->chan.band])
1932 return;
1933
1934 sband = wiphy->bands[reg_beacon->chan.band];
1935
1936 for (i = 0; i < sband->n_channels; i++)
1937 handle_reg_beacon(wiphy, i, reg_beacon);
1938 }
1939
1940 /*
1941 * Called upon reg changes or a new wiphy is added
1942 */
1943 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1944 {
1945 unsigned int i;
1946 struct ieee80211_supported_band *sband;
1947 struct reg_beacon *reg_beacon;
1948
1949 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1950 if (!wiphy->bands[reg_beacon->chan.band])
1951 continue;
1952 sband = wiphy->bands[reg_beacon->chan.band];
1953 for (i = 0; i < sband->n_channels; i++)
1954 handle_reg_beacon(wiphy, i, reg_beacon);
1955 }
1956 }
1957
1958 /* Reap the advantages of previously found beacons */
1959 static void reg_process_beacons(struct wiphy *wiphy)
1960 {
1961 /*
1962 * Means we are just firing up cfg80211, so no beacons would
1963 * have been processed yet.
1964 */
1965 if (!last_request)
1966 return;
1967 wiphy_update_beacon_reg(wiphy);
1968 }
1969
1970 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1971 {
1972 if (!chan)
1973 return false;
1974 if (chan->flags & IEEE80211_CHAN_DISABLED)
1975 return false;
1976 /* This would happen when regulatory rules disallow HT40 completely */
1977 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1978 return false;
1979 return true;
1980 }
1981
1982 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1983 struct ieee80211_channel *channel)
1984 {
1985 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1986 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1987 const struct ieee80211_regdomain *regd;
1988 unsigned int i;
1989 u32 flags;
1990
1991 if (!is_ht40_allowed(channel)) {
1992 channel->flags |= IEEE80211_CHAN_NO_HT40;
1993 return;
1994 }
1995
1996 /*
1997 * We need to ensure the extension channels exist to
1998 * be able to use HT40- or HT40+, this finds them (or not)
1999 */
2000 for (i = 0; i < sband->n_channels; i++) {
2001 struct ieee80211_channel *c = &sband->channels[i];
2002
2003 if (c->center_freq == (channel->center_freq - 20))
2004 channel_before = c;
2005 if (c->center_freq == (channel->center_freq + 20))
2006 channel_after = c;
2007 }
2008
2009 flags = 0;
2010 regd = get_wiphy_regdom(wiphy);
2011 if (regd) {
2012 const struct ieee80211_reg_rule *reg_rule =
2013 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2014 regd, MHZ_TO_KHZ(20));
2015
2016 if (!IS_ERR(reg_rule))
2017 flags = reg_rule->flags;
2018 }
2019
2020 /*
2021 * Please note that this assumes target bandwidth is 20 MHz,
2022 * if that ever changes we also need to change the below logic
2023 * to include that as well.
2024 */
2025 if (!is_ht40_allowed(channel_before) ||
2026 flags & NL80211_RRF_NO_HT40MINUS)
2027 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2028 else
2029 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2030
2031 if (!is_ht40_allowed(channel_after) ||
2032 flags & NL80211_RRF_NO_HT40PLUS)
2033 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2034 else
2035 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2036 }
2037
2038 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2039 struct ieee80211_supported_band *sband)
2040 {
2041 unsigned int i;
2042
2043 if (!sband)
2044 return;
2045
2046 for (i = 0; i < sband->n_channels; i++)
2047 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2048 }
2049
2050 static void reg_process_ht_flags(struct wiphy *wiphy)
2051 {
2052 enum nl80211_band band;
2053
2054 if (!wiphy)
2055 return;
2056
2057 for (band = 0; band < NUM_NL80211_BANDS; band++)
2058 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2059 }
2060
2061 static void reg_call_notifier(struct wiphy *wiphy,
2062 struct regulatory_request *request)
2063 {
2064 if (wiphy->reg_notifier)
2065 wiphy->reg_notifier(wiphy, request);
2066 }
2067
2068 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2069 {
2070 struct cfg80211_chan_def chandef;
2071 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2072 enum nl80211_iftype iftype;
2073
2074 wdev_lock(wdev);
2075 iftype = wdev->iftype;
2076
2077 /* make sure the interface is active */
2078 if (!wdev->netdev || !netif_running(wdev->netdev))
2079 goto wdev_inactive_unlock;
2080
2081 switch (iftype) {
2082 case NL80211_IFTYPE_AP:
2083 case NL80211_IFTYPE_P2P_GO:
2084 if (!wdev->beacon_interval)
2085 goto wdev_inactive_unlock;
2086 chandef = wdev->chandef;
2087 break;
2088 case NL80211_IFTYPE_ADHOC:
2089 if (!wdev->ssid_len)
2090 goto wdev_inactive_unlock;
2091 chandef = wdev->chandef;
2092 break;
2093 case NL80211_IFTYPE_STATION:
2094 case NL80211_IFTYPE_P2P_CLIENT:
2095 if (!wdev->current_bss ||
2096 !wdev->current_bss->pub.channel)
2097 goto wdev_inactive_unlock;
2098
2099 if (!rdev->ops->get_channel ||
2100 rdev_get_channel(rdev, wdev, &chandef))
2101 cfg80211_chandef_create(&chandef,
2102 wdev->current_bss->pub.channel,
2103 NL80211_CHAN_NO_HT);
2104 break;
2105 case NL80211_IFTYPE_MONITOR:
2106 case NL80211_IFTYPE_AP_VLAN:
2107 case NL80211_IFTYPE_P2P_DEVICE:
2108 /* no enforcement required */
2109 break;
2110 default:
2111 /* others not implemented for now */
2112 WARN_ON(1);
2113 break;
2114 }
2115
2116 wdev_unlock(wdev);
2117
2118 switch (iftype) {
2119 case NL80211_IFTYPE_AP:
2120 case NL80211_IFTYPE_P2P_GO:
2121 case NL80211_IFTYPE_ADHOC:
2122 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2123 case NL80211_IFTYPE_STATION:
2124 case NL80211_IFTYPE_P2P_CLIENT:
2125 return cfg80211_chandef_usable(wiphy, &chandef,
2126 IEEE80211_CHAN_DISABLED);
2127 default:
2128 break;
2129 }
2130
2131 return true;
2132
2133 wdev_inactive_unlock:
2134 wdev_unlock(wdev);
2135 return true;
2136 }
2137
2138 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2139 {
2140 struct wireless_dev *wdev;
2141 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2142
2143 ASSERT_RTNL();
2144
2145 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2146 if (!reg_wdev_chan_valid(wiphy, wdev))
2147 cfg80211_leave(rdev, wdev);
2148 }
2149
2150 static void reg_check_chans_work(struct work_struct *work)
2151 {
2152 struct cfg80211_registered_device *rdev;
2153
2154 pr_debug("Verifying active interfaces after reg change\n");
2155 rtnl_lock();
2156
2157 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2158 if (!(rdev->wiphy.regulatory_flags &
2159 REGULATORY_IGNORE_STALE_KICKOFF))
2160 reg_leave_invalid_chans(&rdev->wiphy);
2161
2162 rtnl_unlock();
2163 }
2164
2165 static void reg_check_channels(void)
2166 {
2167 /*
2168 * Give usermode a chance to do something nicer (move to another
2169 * channel, orderly disconnection), before forcing a disconnection.
2170 */
2171 mod_delayed_work(system_power_efficient_wq,
2172 &reg_check_chans,
2173 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2174 }
2175
2176 static void wiphy_update_regulatory(struct wiphy *wiphy,
2177 enum nl80211_reg_initiator initiator)
2178 {
2179 enum nl80211_band band;
2180 struct regulatory_request *lr = get_last_request();
2181
2182 if (ignore_reg_update(wiphy, initiator)) {
2183 /*
2184 * Regulatory updates set by CORE are ignored for custom
2185 * regulatory cards. Let us notify the changes to the driver,
2186 * as some drivers used this to restore its orig_* reg domain.
2187 */
2188 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2189 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2190 !(wiphy->regulatory_flags &
2191 REGULATORY_WIPHY_SELF_MANAGED))
2192 reg_call_notifier(wiphy, lr);
2193 return;
2194 }
2195
2196 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2197
2198 for (band = 0; band < NUM_NL80211_BANDS; band++)
2199 handle_band(wiphy, initiator, wiphy->bands[band]);
2200
2201 reg_process_beacons(wiphy);
2202 reg_process_ht_flags(wiphy);
2203 reg_call_notifier(wiphy, lr);
2204 }
2205
2206 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2207 {
2208 struct cfg80211_registered_device *rdev;
2209 struct wiphy *wiphy;
2210
2211 ASSERT_RTNL();
2212
2213 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2214 wiphy = &rdev->wiphy;
2215 wiphy_update_regulatory(wiphy, initiator);
2216 }
2217
2218 reg_check_channels();
2219 }
2220
2221 static void handle_channel_custom(struct wiphy *wiphy,
2222 struct ieee80211_channel *chan,
2223 const struct ieee80211_regdomain *regd)
2224 {
2225 u32 bw_flags = 0;
2226 const struct ieee80211_reg_rule *reg_rule = NULL;
2227 const struct ieee80211_power_rule *power_rule = NULL;
2228 u32 bw;
2229
2230 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
2231 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
2232 regd, bw);
2233 if (!IS_ERR(reg_rule))
2234 break;
2235 }
2236
2237 if (IS_ERR(reg_rule)) {
2238 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2239 chan->center_freq);
2240 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2241 chan->flags |= IEEE80211_CHAN_DISABLED;
2242 } else {
2243 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2244 chan->flags = chan->orig_flags;
2245 }
2246 return;
2247 }
2248
2249 power_rule = &reg_rule->power_rule;
2250 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2251
2252 chan->dfs_state_entered = jiffies;
2253 chan->dfs_state = NL80211_DFS_USABLE;
2254
2255 chan->beacon_found = false;
2256
2257 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2258 chan->flags = chan->orig_flags | bw_flags |
2259 map_regdom_flags(reg_rule->flags);
2260 else
2261 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2262
2263 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2264 chan->max_reg_power = chan->max_power =
2265 (int) MBM_TO_DBM(power_rule->max_eirp);
2266
2267 if (chan->flags & IEEE80211_CHAN_RADAR) {
2268 if (reg_rule->dfs_cac_ms)
2269 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2270 else
2271 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2272 }
2273
2274 chan->max_power = chan->max_reg_power;
2275 }
2276
2277 static void handle_band_custom(struct wiphy *wiphy,
2278 struct ieee80211_supported_band *sband,
2279 const struct ieee80211_regdomain *regd)
2280 {
2281 unsigned int i;
2282
2283 if (!sband)
2284 return;
2285
2286 for (i = 0; i < sband->n_channels; i++)
2287 handle_channel_custom(wiphy, &sband->channels[i], regd);
2288 }
2289
2290 /* Used by drivers prior to wiphy registration */
2291 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2292 const struct ieee80211_regdomain *regd)
2293 {
2294 enum nl80211_band band;
2295 unsigned int bands_set = 0;
2296
2297 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2298 "wiphy should have REGULATORY_CUSTOM_REG\n");
2299 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2300
2301 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2302 if (!wiphy->bands[band])
2303 continue;
2304 handle_band_custom(wiphy, wiphy->bands[band], regd);
2305 bands_set++;
2306 }
2307
2308 /*
2309 * no point in calling this if it won't have any effect
2310 * on your device's supported bands.
2311 */
2312 WARN_ON(!bands_set);
2313 }
2314 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2315
2316 static void reg_set_request_processed(void)
2317 {
2318 bool need_more_processing = false;
2319 struct regulatory_request *lr = get_last_request();
2320
2321 lr->processed = true;
2322
2323 spin_lock(&reg_requests_lock);
2324 if (!list_empty(&reg_requests_list))
2325 need_more_processing = true;
2326 spin_unlock(&reg_requests_lock);
2327
2328 cancel_crda_timeout();
2329
2330 if (need_more_processing)
2331 schedule_work(&reg_work);
2332 }
2333
2334 /**
2335 * reg_process_hint_core - process core regulatory requests
2336 * @pending_request: a pending core regulatory request
2337 *
2338 * The wireless subsystem can use this function to process
2339 * a regulatory request issued by the regulatory core.
2340 */
2341 static enum reg_request_treatment
2342 reg_process_hint_core(struct regulatory_request *core_request)
2343 {
2344 if (reg_query_database(core_request)) {
2345 core_request->intersect = false;
2346 core_request->processed = false;
2347 reg_update_last_request(core_request);
2348 return REG_REQ_OK;
2349 }
2350
2351 return REG_REQ_IGNORE;
2352 }
2353
2354 static enum reg_request_treatment
2355 __reg_process_hint_user(struct regulatory_request *user_request)
2356 {
2357 struct regulatory_request *lr = get_last_request();
2358
2359 if (reg_request_cell_base(user_request))
2360 return reg_ignore_cell_hint(user_request);
2361
2362 if (reg_request_cell_base(lr))
2363 return REG_REQ_IGNORE;
2364
2365 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2366 return REG_REQ_INTERSECT;
2367 /*
2368 * If the user knows better the user should set the regdom
2369 * to their country before the IE is picked up
2370 */
2371 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2372 lr->intersect)
2373 return REG_REQ_IGNORE;
2374 /*
2375 * Process user requests only after previous user/driver/core
2376 * requests have been processed
2377 */
2378 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2379 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2380 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2381 regdom_changes(lr->alpha2))
2382 return REG_REQ_IGNORE;
2383
2384 if (!regdom_changes(user_request->alpha2))
2385 return REG_REQ_ALREADY_SET;
2386
2387 return REG_REQ_OK;
2388 }
2389
2390 /**
2391 * reg_process_hint_user - process user regulatory requests
2392 * @user_request: a pending user regulatory request
2393 *
2394 * The wireless subsystem can use this function to process
2395 * a regulatory request initiated by userspace.
2396 */
2397 static enum reg_request_treatment
2398 reg_process_hint_user(struct regulatory_request *user_request)
2399 {
2400 enum reg_request_treatment treatment;
2401
2402 treatment = __reg_process_hint_user(user_request);
2403 if (treatment == REG_REQ_IGNORE ||
2404 treatment == REG_REQ_ALREADY_SET)
2405 return REG_REQ_IGNORE;
2406
2407 user_request->intersect = treatment == REG_REQ_INTERSECT;
2408 user_request->processed = false;
2409
2410 if (reg_query_database(user_request)) {
2411 reg_update_last_request(user_request);
2412 user_alpha2[0] = user_request->alpha2[0];
2413 user_alpha2[1] = user_request->alpha2[1];
2414 return REG_REQ_OK;
2415 }
2416
2417 return REG_REQ_IGNORE;
2418 }
2419
2420 static enum reg_request_treatment
2421 __reg_process_hint_driver(struct regulatory_request *driver_request)
2422 {
2423 struct regulatory_request *lr = get_last_request();
2424
2425 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2426 if (regdom_changes(driver_request->alpha2))
2427 return REG_REQ_OK;
2428 return REG_REQ_ALREADY_SET;
2429 }
2430
2431 /*
2432 * This would happen if you unplug and plug your card
2433 * back in or if you add a new device for which the previously
2434 * loaded card also agrees on the regulatory domain.
2435 */
2436 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2437 !regdom_changes(driver_request->alpha2))
2438 return REG_REQ_ALREADY_SET;
2439
2440 return REG_REQ_INTERSECT;
2441 }
2442
2443 /**
2444 * reg_process_hint_driver - process driver regulatory requests
2445 * @driver_request: a pending driver regulatory request
2446 *
2447 * The wireless subsystem can use this function to process
2448 * a regulatory request issued by an 802.11 driver.
2449 *
2450 * Returns one of the different reg request treatment values.
2451 */
2452 static enum reg_request_treatment
2453 reg_process_hint_driver(struct wiphy *wiphy,
2454 struct regulatory_request *driver_request)
2455 {
2456 const struct ieee80211_regdomain *regd, *tmp;
2457 enum reg_request_treatment treatment;
2458
2459 treatment = __reg_process_hint_driver(driver_request);
2460
2461 switch (treatment) {
2462 case REG_REQ_OK:
2463 break;
2464 case REG_REQ_IGNORE:
2465 return REG_REQ_IGNORE;
2466 case REG_REQ_INTERSECT:
2467 case REG_REQ_ALREADY_SET:
2468 regd = reg_copy_regd(get_cfg80211_regdom());
2469 if (IS_ERR(regd))
2470 return REG_REQ_IGNORE;
2471
2472 tmp = get_wiphy_regdom(wiphy);
2473 rcu_assign_pointer(wiphy->regd, regd);
2474 rcu_free_regdom(tmp);
2475 }
2476
2477
2478 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2479 driver_request->processed = false;
2480
2481 /*
2482 * Since CRDA will not be called in this case as we already
2483 * have applied the requested regulatory domain before we just
2484 * inform userspace we have processed the request
2485 */
2486 if (treatment == REG_REQ_ALREADY_SET) {
2487 nl80211_send_reg_change_event(driver_request);
2488 reg_update_last_request(driver_request);
2489 reg_set_request_processed();
2490 return REG_REQ_ALREADY_SET;
2491 }
2492
2493 if (reg_query_database(driver_request)) {
2494 reg_update_last_request(driver_request);
2495 return REG_REQ_OK;
2496 }
2497
2498 return REG_REQ_IGNORE;
2499 }
2500
2501 static enum reg_request_treatment
2502 __reg_process_hint_country_ie(struct wiphy *wiphy,
2503 struct regulatory_request *country_ie_request)
2504 {
2505 struct wiphy *last_wiphy = NULL;
2506 struct regulatory_request *lr = get_last_request();
2507
2508 if (reg_request_cell_base(lr)) {
2509 /* Trust a Cell base station over the AP's country IE */
2510 if (regdom_changes(country_ie_request->alpha2))
2511 return REG_REQ_IGNORE;
2512 return REG_REQ_ALREADY_SET;
2513 } else {
2514 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2515 return REG_REQ_IGNORE;
2516 }
2517
2518 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2519 return -EINVAL;
2520
2521 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2522 return REG_REQ_OK;
2523
2524 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2525
2526 if (last_wiphy != wiphy) {
2527 /*
2528 * Two cards with two APs claiming different
2529 * Country IE alpha2s. We could
2530 * intersect them, but that seems unlikely
2531 * to be correct. Reject second one for now.
2532 */
2533 if (regdom_changes(country_ie_request->alpha2))
2534 return REG_REQ_IGNORE;
2535 return REG_REQ_ALREADY_SET;
2536 }
2537
2538 if (regdom_changes(country_ie_request->alpha2))
2539 return REG_REQ_OK;
2540 return REG_REQ_ALREADY_SET;
2541 }
2542
2543 /**
2544 * reg_process_hint_country_ie - process regulatory requests from country IEs
2545 * @country_ie_request: a regulatory request from a country IE
2546 *
2547 * The wireless subsystem can use this function to process
2548 * a regulatory request issued by a country Information Element.
2549 *
2550 * Returns one of the different reg request treatment values.
2551 */
2552 static enum reg_request_treatment
2553 reg_process_hint_country_ie(struct wiphy *wiphy,
2554 struct regulatory_request *country_ie_request)
2555 {
2556 enum reg_request_treatment treatment;
2557
2558 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2559
2560 switch (treatment) {
2561 case REG_REQ_OK:
2562 break;
2563 case REG_REQ_IGNORE:
2564 return REG_REQ_IGNORE;
2565 case REG_REQ_ALREADY_SET:
2566 reg_free_request(country_ie_request);
2567 return REG_REQ_ALREADY_SET;
2568 case REG_REQ_INTERSECT:
2569 /*
2570 * This doesn't happen yet, not sure we
2571 * ever want to support it for this case.
2572 */
2573 WARN_ONCE(1, "Unexpected intersection for country elements");
2574 return REG_REQ_IGNORE;
2575 }
2576
2577 country_ie_request->intersect = false;
2578 country_ie_request->processed = false;
2579
2580 if (reg_query_database(country_ie_request)) {
2581 reg_update_last_request(country_ie_request);
2582 return REG_REQ_OK;
2583 }
2584
2585 return REG_REQ_IGNORE;
2586 }
2587
2588 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2589 {
2590 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2591 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2592 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2593 bool dfs_domain_same;
2594
2595 rcu_read_lock();
2596
2597 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2598 wiphy1_regd = rcu_dereference(wiphy1->regd);
2599 if (!wiphy1_regd)
2600 wiphy1_regd = cfg80211_regd;
2601
2602 wiphy2_regd = rcu_dereference(wiphy2->regd);
2603 if (!wiphy2_regd)
2604 wiphy2_regd = cfg80211_regd;
2605
2606 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2607
2608 rcu_read_unlock();
2609
2610 return dfs_domain_same;
2611 }
2612
2613 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2614 struct ieee80211_channel *src_chan)
2615 {
2616 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2617 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2618 return;
2619
2620 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2621 src_chan->flags & IEEE80211_CHAN_DISABLED)
2622 return;
2623
2624 if (src_chan->center_freq == dst_chan->center_freq &&
2625 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2626 dst_chan->dfs_state = src_chan->dfs_state;
2627 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2628 }
2629 }
2630
2631 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2632 struct wiphy *src_wiphy)
2633 {
2634 struct ieee80211_supported_band *src_sband, *dst_sband;
2635 struct ieee80211_channel *src_chan, *dst_chan;
2636 int i, j, band;
2637
2638 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2639 return;
2640
2641 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2642 dst_sband = dst_wiphy->bands[band];
2643 src_sband = src_wiphy->bands[band];
2644 if (!dst_sband || !src_sband)
2645 continue;
2646
2647 for (i = 0; i < dst_sband->n_channels; i++) {
2648 dst_chan = &dst_sband->channels[i];
2649 for (j = 0; j < src_sband->n_channels; j++) {
2650 src_chan = &src_sband->channels[j];
2651 reg_copy_dfs_chan_state(dst_chan, src_chan);
2652 }
2653 }
2654 }
2655 }
2656
2657 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2658 {
2659 struct cfg80211_registered_device *rdev;
2660
2661 ASSERT_RTNL();
2662
2663 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2664 if (wiphy == &rdev->wiphy)
2665 continue;
2666 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2667 }
2668 }
2669
2670 /* This processes *all* regulatory hints */
2671 static void reg_process_hint(struct regulatory_request *reg_request)
2672 {
2673 struct wiphy *wiphy = NULL;
2674 enum reg_request_treatment treatment;
2675 enum nl80211_reg_initiator initiator = reg_request->initiator;
2676
2677 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2678 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2679
2680 switch (initiator) {
2681 case NL80211_REGDOM_SET_BY_CORE:
2682 treatment = reg_process_hint_core(reg_request);
2683 break;
2684 case NL80211_REGDOM_SET_BY_USER:
2685 treatment = reg_process_hint_user(reg_request);
2686 break;
2687 case NL80211_REGDOM_SET_BY_DRIVER:
2688 if (!wiphy)
2689 goto out_free;
2690 treatment = reg_process_hint_driver(wiphy, reg_request);
2691 break;
2692 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2693 if (!wiphy)
2694 goto out_free;
2695 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2696 break;
2697 default:
2698 WARN(1, "invalid initiator %d\n", initiator);
2699 goto out_free;
2700 }
2701
2702 if (treatment == REG_REQ_IGNORE)
2703 goto out_free;
2704
2705 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2706 "unexpected treatment value %d\n", treatment);
2707
2708 /* This is required so that the orig_* parameters are saved.
2709 * NOTE: treatment must be set for any case that reaches here!
2710 */
2711 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2712 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2713 wiphy_update_regulatory(wiphy, initiator);
2714 wiphy_all_share_dfs_chan_state(wiphy);
2715 reg_check_channels();
2716 }
2717
2718 return;
2719
2720 out_free:
2721 reg_free_request(reg_request);
2722 }
2723
2724 static void notify_self_managed_wiphys(struct regulatory_request *request)
2725 {
2726 struct cfg80211_registered_device *rdev;
2727 struct wiphy *wiphy;
2728
2729 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2730 wiphy = &rdev->wiphy;
2731 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
2732 request->initiator == NL80211_REGDOM_SET_BY_USER &&
2733 request->user_reg_hint_type ==
2734 NL80211_USER_REG_HINT_CELL_BASE)
2735 reg_call_notifier(wiphy, request);
2736 }
2737 }
2738
2739 /*
2740 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2741 * Regulatory hints come on a first come first serve basis and we
2742 * must process each one atomically.
2743 */
2744 static void reg_process_pending_hints(void)
2745 {
2746 struct regulatory_request *reg_request, *lr;
2747
2748 lr = get_last_request();
2749
2750 /* When last_request->processed becomes true this will be rescheduled */
2751 if (lr && !lr->processed) {
2752 reg_process_hint(lr);
2753 return;
2754 }
2755
2756 spin_lock(&reg_requests_lock);
2757
2758 if (list_empty(&reg_requests_list)) {
2759 spin_unlock(&reg_requests_lock);
2760 return;
2761 }
2762
2763 reg_request = list_first_entry(&reg_requests_list,
2764 struct regulatory_request,
2765 list);
2766 list_del_init(&reg_request->list);
2767
2768 spin_unlock(&reg_requests_lock);
2769
2770 notify_self_managed_wiphys(reg_request);
2771
2772 reg_process_hint(reg_request);
2773
2774 lr = get_last_request();
2775
2776 spin_lock(&reg_requests_lock);
2777 if (!list_empty(&reg_requests_list) && lr && lr->processed)
2778 schedule_work(&reg_work);
2779 spin_unlock(&reg_requests_lock);
2780 }
2781
2782 /* Processes beacon hints -- this has nothing to do with country IEs */
2783 static void reg_process_pending_beacon_hints(void)
2784 {
2785 struct cfg80211_registered_device *rdev;
2786 struct reg_beacon *pending_beacon, *tmp;
2787
2788 /* This goes through the _pending_ beacon list */
2789 spin_lock_bh(&reg_pending_beacons_lock);
2790
2791 list_for_each_entry_safe(pending_beacon, tmp,
2792 &reg_pending_beacons, list) {
2793 list_del_init(&pending_beacon->list);
2794
2795 /* Applies the beacon hint to current wiphys */
2796 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2797 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2798
2799 /* Remembers the beacon hint for new wiphys or reg changes */
2800 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2801 }
2802
2803 spin_unlock_bh(&reg_pending_beacons_lock);
2804 }
2805
2806 static void reg_process_self_managed_hints(void)
2807 {
2808 struct cfg80211_registered_device *rdev;
2809 struct wiphy *wiphy;
2810 const struct ieee80211_regdomain *tmp;
2811 const struct ieee80211_regdomain *regd;
2812 enum nl80211_band band;
2813 struct regulatory_request request = {};
2814
2815 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2816 wiphy = &rdev->wiphy;
2817
2818 spin_lock(&reg_requests_lock);
2819 regd = rdev->requested_regd;
2820 rdev->requested_regd = NULL;
2821 spin_unlock(&reg_requests_lock);
2822
2823 if (regd == NULL)
2824 continue;
2825
2826 tmp = get_wiphy_regdom(wiphy);
2827 rcu_assign_pointer(wiphy->regd, regd);
2828 rcu_free_regdom(tmp);
2829
2830 for (band = 0; band < NUM_NL80211_BANDS; band++)
2831 handle_band_custom(wiphy, wiphy->bands[band], regd);
2832
2833 reg_process_ht_flags(wiphy);
2834
2835 request.wiphy_idx = get_wiphy_idx(wiphy);
2836 request.alpha2[0] = regd->alpha2[0];
2837 request.alpha2[1] = regd->alpha2[1];
2838 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2839
2840 nl80211_send_wiphy_reg_change_event(&request);
2841 }
2842
2843 reg_check_channels();
2844 }
2845
2846 static void reg_todo(struct work_struct *work)
2847 {
2848 rtnl_lock();
2849 reg_process_pending_hints();
2850 reg_process_pending_beacon_hints();
2851 reg_process_self_managed_hints();
2852 rtnl_unlock();
2853 }
2854
2855 static void queue_regulatory_request(struct regulatory_request *request)
2856 {
2857 request->alpha2[0] = toupper(request->alpha2[0]);
2858 request->alpha2[1] = toupper(request->alpha2[1]);
2859
2860 spin_lock(&reg_requests_lock);
2861 list_add_tail(&request->list, &reg_requests_list);
2862 spin_unlock(&reg_requests_lock);
2863
2864 schedule_work(&reg_work);
2865 }
2866
2867 /*
2868 * Core regulatory hint -- happens during cfg80211_init()
2869 * and when we restore regulatory settings.
2870 */
2871 static int regulatory_hint_core(const char *alpha2)
2872 {
2873 struct regulatory_request *request;
2874
2875 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2876 if (!request)
2877 return -ENOMEM;
2878
2879 request->alpha2[0] = alpha2[0];
2880 request->alpha2[1] = alpha2[1];
2881 request->initiator = NL80211_REGDOM_SET_BY_CORE;
2882 request->wiphy_idx = WIPHY_IDX_INVALID;
2883
2884 queue_regulatory_request(request);
2885
2886 return 0;
2887 }
2888
2889 /* User hints */
2890 int regulatory_hint_user(const char *alpha2,
2891 enum nl80211_user_reg_hint_type user_reg_hint_type)
2892 {
2893 struct regulatory_request *request;
2894
2895 if (WARN_ON(!alpha2))
2896 return -EINVAL;
2897
2898 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2899 if (!request)
2900 return -ENOMEM;
2901
2902 request->wiphy_idx = WIPHY_IDX_INVALID;
2903 request->alpha2[0] = alpha2[0];
2904 request->alpha2[1] = alpha2[1];
2905 request->initiator = NL80211_REGDOM_SET_BY_USER;
2906 request->user_reg_hint_type = user_reg_hint_type;
2907
2908 /* Allow calling CRDA again */
2909 reset_crda_timeouts();
2910
2911 queue_regulatory_request(request);
2912
2913 return 0;
2914 }
2915
2916 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2917 {
2918 spin_lock(&reg_indoor_lock);
2919
2920 /* It is possible that more than one user space process is trying to
2921 * configure the indoor setting. To handle such cases, clear the indoor
2922 * setting in case that some process does not think that the device
2923 * is operating in an indoor environment. In addition, if a user space
2924 * process indicates that it is controlling the indoor setting, save its
2925 * portid, i.e., make it the owner.
2926 */
2927 reg_is_indoor = is_indoor;
2928 if (reg_is_indoor) {
2929 if (!reg_is_indoor_portid)
2930 reg_is_indoor_portid = portid;
2931 } else {
2932 reg_is_indoor_portid = 0;
2933 }
2934
2935 spin_unlock(&reg_indoor_lock);
2936
2937 if (!is_indoor)
2938 reg_check_channels();
2939
2940 return 0;
2941 }
2942
2943 void regulatory_netlink_notify(u32 portid)
2944 {
2945 spin_lock(&reg_indoor_lock);
2946
2947 if (reg_is_indoor_portid != portid) {
2948 spin_unlock(&reg_indoor_lock);
2949 return;
2950 }
2951
2952 reg_is_indoor = false;
2953 reg_is_indoor_portid = 0;
2954
2955 spin_unlock(&reg_indoor_lock);
2956
2957 reg_check_channels();
2958 }
2959
2960 /* Driver hints */
2961 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2962 {
2963 struct regulatory_request *request;
2964
2965 if (WARN_ON(!alpha2 || !wiphy))
2966 return -EINVAL;
2967
2968 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2969
2970 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2971 if (!request)
2972 return -ENOMEM;
2973
2974 request->wiphy_idx = get_wiphy_idx(wiphy);
2975
2976 request->alpha2[0] = alpha2[0];
2977 request->alpha2[1] = alpha2[1];
2978 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2979
2980 /* Allow calling CRDA again */
2981 reset_crda_timeouts();
2982
2983 queue_regulatory_request(request);
2984
2985 return 0;
2986 }
2987 EXPORT_SYMBOL(regulatory_hint);
2988
2989 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
2990 const u8 *country_ie, u8 country_ie_len)
2991 {
2992 char alpha2[2];
2993 enum environment_cap env = ENVIRON_ANY;
2994 struct regulatory_request *request = NULL, *lr;
2995
2996 /* IE len must be evenly divisible by 2 */
2997 if (country_ie_len & 0x01)
2998 return;
2999
3000 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3001 return;
3002
3003 request = kzalloc(sizeof(*request), GFP_KERNEL);
3004 if (!request)
3005 return;
3006
3007 alpha2[0] = country_ie[0];
3008 alpha2[1] = country_ie[1];
3009
3010 if (country_ie[2] == 'I')
3011 env = ENVIRON_INDOOR;
3012 else if (country_ie[2] == 'O')
3013 env = ENVIRON_OUTDOOR;
3014
3015 rcu_read_lock();
3016 lr = get_last_request();
3017
3018 if (unlikely(!lr))
3019 goto out;
3020
3021 /*
3022 * We will run this only upon a successful connection on cfg80211.
3023 * We leave conflict resolution to the workqueue, where can hold
3024 * the RTNL.
3025 */
3026 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3027 lr->wiphy_idx != WIPHY_IDX_INVALID)
3028 goto out;
3029
3030 request->wiphy_idx = get_wiphy_idx(wiphy);
3031 request->alpha2[0] = alpha2[0];
3032 request->alpha2[1] = alpha2[1];
3033 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3034 request->country_ie_env = env;
3035
3036 /* Allow calling CRDA again */
3037 reset_crda_timeouts();
3038
3039 queue_regulatory_request(request);
3040 request = NULL;
3041 out:
3042 kfree(request);
3043 rcu_read_unlock();
3044 }
3045
3046 static void restore_alpha2(char *alpha2, bool reset_user)
3047 {
3048 /* indicates there is no alpha2 to consider for restoration */
3049 alpha2[0] = '9';
3050 alpha2[1] = '7';
3051
3052 /* The user setting has precedence over the module parameter */
3053 if (is_user_regdom_saved()) {
3054 /* Unless we're asked to ignore it and reset it */
3055 if (reset_user) {
3056 pr_debug("Restoring regulatory settings including user preference\n");
3057 user_alpha2[0] = '9';
3058 user_alpha2[1] = '7';
3059
3060 /*
3061 * If we're ignoring user settings, we still need to
3062 * check the module parameter to ensure we put things
3063 * back as they were for a full restore.
3064 */
3065 if (!is_world_regdom(ieee80211_regdom)) {
3066 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3067 ieee80211_regdom[0], ieee80211_regdom[1]);
3068 alpha2[0] = ieee80211_regdom[0];
3069 alpha2[1] = ieee80211_regdom[1];
3070 }
3071 } else {
3072 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3073 user_alpha2[0], user_alpha2[1]);
3074 alpha2[0] = user_alpha2[0];
3075 alpha2[1] = user_alpha2[1];
3076 }
3077 } else if (!is_world_regdom(ieee80211_regdom)) {
3078 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3079 ieee80211_regdom[0], ieee80211_regdom[1]);
3080 alpha2[0] = ieee80211_regdom[0];
3081 alpha2[1] = ieee80211_regdom[1];
3082 } else
3083 pr_debug("Restoring regulatory settings\n");
3084 }
3085
3086 static void restore_custom_reg_settings(struct wiphy *wiphy)
3087 {
3088 struct ieee80211_supported_band *sband;
3089 enum nl80211_band band;
3090 struct ieee80211_channel *chan;
3091 int i;
3092
3093 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3094 sband = wiphy->bands[band];
3095 if (!sband)
3096 continue;
3097 for (i = 0; i < sband->n_channels; i++) {
3098 chan = &sband->channels[i];
3099 chan->flags = chan->orig_flags;
3100 chan->max_antenna_gain = chan->orig_mag;
3101 chan->max_power = chan->orig_mpwr;
3102 chan->beacon_found = false;
3103 }
3104 }
3105 }
3106
3107 /*
3108 * Restoring regulatory settings involves ingoring any
3109 * possibly stale country IE information and user regulatory
3110 * settings if so desired, this includes any beacon hints
3111 * learned as we could have traveled outside to another country
3112 * after disconnection. To restore regulatory settings we do
3113 * exactly what we did at bootup:
3114 *
3115 * - send a core regulatory hint
3116 * - send a user regulatory hint if applicable
3117 *
3118 * Device drivers that send a regulatory hint for a specific country
3119 * keep their own regulatory domain on wiphy->regd so that does does
3120 * not need to be remembered.
3121 */
3122 static void restore_regulatory_settings(bool reset_user)
3123 {
3124 char alpha2[2];
3125 char world_alpha2[2];
3126 struct reg_beacon *reg_beacon, *btmp;
3127 LIST_HEAD(tmp_reg_req_list);
3128 struct cfg80211_registered_device *rdev;
3129
3130 ASSERT_RTNL();
3131
3132 /*
3133 * Clear the indoor setting in case that it is not controlled by user
3134 * space, as otherwise there is no guarantee that the device is still
3135 * operating in an indoor environment.
3136 */
3137 spin_lock(&reg_indoor_lock);
3138 if (reg_is_indoor && !reg_is_indoor_portid) {
3139 reg_is_indoor = false;
3140 reg_check_channels();
3141 }
3142 spin_unlock(&reg_indoor_lock);
3143
3144 reset_regdomains(true, &world_regdom);
3145 restore_alpha2(alpha2, reset_user);
3146
3147 /*
3148 * If there's any pending requests we simply
3149 * stash them to a temporary pending queue and
3150 * add then after we've restored regulatory
3151 * settings.
3152 */
3153 spin_lock(&reg_requests_lock);
3154 list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3155 spin_unlock(&reg_requests_lock);
3156
3157 /* Clear beacon hints */
3158 spin_lock_bh(&reg_pending_beacons_lock);
3159 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3160 list_del(&reg_beacon->list);
3161 kfree(reg_beacon);
3162 }
3163 spin_unlock_bh(&reg_pending_beacons_lock);
3164
3165 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3166 list_del(&reg_beacon->list);
3167 kfree(reg_beacon);
3168 }
3169
3170 /* First restore to the basic regulatory settings */
3171 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3172 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3173
3174 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3175 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3176 continue;
3177 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3178 restore_custom_reg_settings(&rdev->wiphy);
3179 }
3180
3181 regulatory_hint_core(world_alpha2);
3182
3183 /*
3184 * This restores the ieee80211_regdom module parameter
3185 * preference or the last user requested regulatory
3186 * settings, user regulatory settings takes precedence.
3187 */
3188 if (is_an_alpha2(alpha2))
3189 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3190
3191 spin_lock(&reg_requests_lock);
3192 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3193 spin_unlock(&reg_requests_lock);
3194
3195 pr_debug("Kicking the queue\n");
3196
3197 schedule_work(&reg_work);
3198 }
3199
3200 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3201 {
3202 struct cfg80211_registered_device *rdev;
3203 struct wireless_dev *wdev;
3204
3205 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3206 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3207 wdev_lock(wdev);
3208 if (!(wdev->wiphy->regulatory_flags & flag)) {
3209 wdev_unlock(wdev);
3210 return false;
3211 }
3212 wdev_unlock(wdev);
3213 }
3214 }
3215
3216 return true;
3217 }
3218
3219 void regulatory_hint_disconnect(void)
3220 {
3221 /* Restore of regulatory settings is not required when wiphy(s)
3222 * ignore IE from connected access point but clearance of beacon hints
3223 * is required when wiphy(s) supports beacon hints.
3224 */
3225 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3226 struct reg_beacon *reg_beacon, *btmp;
3227
3228 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3229 return;
3230
3231 spin_lock_bh(&reg_pending_beacons_lock);
3232 list_for_each_entry_safe(reg_beacon, btmp,
3233 &reg_pending_beacons, list) {
3234 list_del(&reg_beacon->list);
3235 kfree(reg_beacon);
3236 }
3237 spin_unlock_bh(&reg_pending_beacons_lock);
3238
3239 list_for_each_entry_safe(reg_beacon, btmp,
3240 &reg_beacon_list, list) {
3241 list_del(&reg_beacon->list);
3242 kfree(reg_beacon);
3243 }
3244
3245 return;
3246 }
3247
3248 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3249 restore_regulatory_settings(false);
3250 }
3251
3252 static bool freq_is_chan_12_13_14(u32 freq)
3253 {
3254 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3255 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3256 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3257 return true;
3258 return false;
3259 }
3260
3261 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3262 {
3263 struct reg_beacon *pending_beacon;
3264
3265 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3266 if (beacon_chan->center_freq ==
3267 pending_beacon->chan.center_freq)
3268 return true;
3269 return false;
3270 }
3271
3272 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3273 struct ieee80211_channel *beacon_chan,
3274 gfp_t gfp)
3275 {
3276 struct reg_beacon *reg_beacon;
3277 bool processing;
3278
3279 if (beacon_chan->beacon_found ||
3280 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3281 (beacon_chan->band == NL80211_BAND_2GHZ &&
3282 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3283 return 0;
3284
3285 spin_lock_bh(&reg_pending_beacons_lock);
3286 processing = pending_reg_beacon(beacon_chan);
3287 spin_unlock_bh(&reg_pending_beacons_lock);
3288
3289 if (processing)
3290 return 0;
3291
3292 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3293 if (!reg_beacon)
3294 return -ENOMEM;
3295
3296 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3297 beacon_chan->center_freq,
3298 ieee80211_frequency_to_channel(beacon_chan->center_freq),
3299 wiphy_name(wiphy));
3300
3301 memcpy(&reg_beacon->chan, beacon_chan,
3302 sizeof(struct ieee80211_channel));
3303
3304 /*
3305 * Since we can be called from BH or and non-BH context
3306 * we must use spin_lock_bh()
3307 */
3308 spin_lock_bh(&reg_pending_beacons_lock);
3309 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3310 spin_unlock_bh(&reg_pending_beacons_lock);
3311
3312 schedule_work(&reg_work);
3313
3314 return 0;
3315 }
3316
3317 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3318 {
3319 unsigned int i;
3320 const struct ieee80211_reg_rule *reg_rule = NULL;
3321 const struct ieee80211_freq_range *freq_range = NULL;
3322 const struct ieee80211_power_rule *power_rule = NULL;
3323 char bw[32], cac_time[32];
3324
3325 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3326
3327 for (i = 0; i < rd->n_reg_rules; i++) {
3328 reg_rule = &rd->reg_rules[i];
3329 freq_range = &reg_rule->freq_range;
3330 power_rule = &reg_rule->power_rule;
3331
3332 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3333 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3334 freq_range->max_bandwidth_khz,
3335 reg_get_max_bandwidth(rd, reg_rule));
3336 else
3337 snprintf(bw, sizeof(bw), "%d KHz",
3338 freq_range->max_bandwidth_khz);
3339
3340 if (reg_rule->flags & NL80211_RRF_DFS)
3341 scnprintf(cac_time, sizeof(cac_time), "%u s",
3342 reg_rule->dfs_cac_ms/1000);
3343 else
3344 scnprintf(cac_time, sizeof(cac_time), "N/A");
3345
3346
3347 /*
3348 * There may not be documentation for max antenna gain
3349 * in certain regions
3350 */
3351 if (power_rule->max_antenna_gain)
3352 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3353 freq_range->start_freq_khz,
3354 freq_range->end_freq_khz,
3355 bw,
3356 power_rule->max_antenna_gain,
3357 power_rule->max_eirp,
3358 cac_time);
3359 else
3360 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3361 freq_range->start_freq_khz,
3362 freq_range->end_freq_khz,
3363 bw,
3364 power_rule->max_eirp,
3365 cac_time);
3366 }
3367 }
3368
3369 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3370 {
3371 switch (dfs_region) {
3372 case NL80211_DFS_UNSET:
3373 case NL80211_DFS_FCC:
3374 case NL80211_DFS_ETSI:
3375 case NL80211_DFS_JP:
3376 return true;
3377 default:
3378 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3379 return false;
3380 }
3381 }
3382
3383 static void print_regdomain(const struct ieee80211_regdomain *rd)
3384 {
3385 struct regulatory_request *lr = get_last_request();
3386
3387 if (is_intersected_alpha2(rd->alpha2)) {
3388 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3389 struct cfg80211_registered_device *rdev;
3390 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3391 if (rdev) {
3392 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3393 rdev->country_ie_alpha2[0],
3394 rdev->country_ie_alpha2[1]);
3395 } else
3396 pr_debug("Current regulatory domain intersected:\n");
3397 } else
3398 pr_debug("Current regulatory domain intersected:\n");
3399 } else if (is_world_regdom(rd->alpha2)) {
3400 pr_debug("World regulatory domain updated:\n");
3401 } else {
3402 if (is_unknown_alpha2(rd->alpha2))
3403 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3404 else {
3405 if (reg_request_cell_base(lr))
3406 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3407 rd->alpha2[0], rd->alpha2[1]);
3408 else
3409 pr_debug("Regulatory domain changed to country: %c%c\n",
3410 rd->alpha2[0], rd->alpha2[1]);
3411 }
3412 }
3413
3414 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3415 print_rd_rules(rd);
3416 }
3417
3418 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3419 {
3420 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3421 print_rd_rules(rd);
3422 }
3423
3424 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3425 {
3426 if (!is_world_regdom(rd->alpha2))
3427 return -EINVAL;
3428 update_world_regdomain(rd);
3429 return 0;
3430 }
3431
3432 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3433 struct regulatory_request *user_request)
3434 {
3435 const struct ieee80211_regdomain *intersected_rd = NULL;
3436
3437 if (!regdom_changes(rd->alpha2))
3438 return -EALREADY;
3439
3440 if (!is_valid_rd(rd)) {
3441 pr_err("Invalid regulatory domain detected: %c%c\n",
3442 rd->alpha2[0], rd->alpha2[1]);
3443 print_regdomain_info(rd);
3444 return -EINVAL;
3445 }
3446
3447 if (!user_request->intersect) {
3448 reset_regdomains(false, rd);
3449 return 0;
3450 }
3451
3452 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3453 if (!intersected_rd)
3454 return -EINVAL;
3455
3456 kfree(rd);
3457 rd = NULL;
3458 reset_regdomains(false, intersected_rd);
3459
3460 return 0;
3461 }
3462
3463 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3464 struct regulatory_request *driver_request)
3465 {
3466 const struct ieee80211_regdomain *regd;
3467 const struct ieee80211_regdomain *intersected_rd = NULL;
3468 const struct ieee80211_regdomain *tmp;
3469 struct wiphy *request_wiphy;
3470
3471 if (is_world_regdom(rd->alpha2))
3472 return -EINVAL;
3473
3474 if (!regdom_changes(rd->alpha2))
3475 return -EALREADY;
3476
3477 if (!is_valid_rd(rd)) {
3478 pr_err("Invalid regulatory domain detected: %c%c\n",
3479 rd->alpha2[0], rd->alpha2[1]);
3480 print_regdomain_info(rd);
3481 return -EINVAL;
3482 }
3483
3484 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3485 if (!request_wiphy)
3486 return -ENODEV;
3487
3488 if (!driver_request->intersect) {
3489 if (request_wiphy->regd)
3490 return -EALREADY;
3491
3492 regd = reg_copy_regd(rd);
3493 if (IS_ERR(regd))
3494 return PTR_ERR(regd);
3495
3496 rcu_assign_pointer(request_wiphy->regd, regd);
3497 reset_regdomains(false, rd);
3498 return 0;
3499 }
3500
3501 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3502 if (!intersected_rd)
3503 return -EINVAL;
3504
3505 /*
3506 * We can trash what CRDA provided now.
3507 * However if a driver requested this specific regulatory
3508 * domain we keep it for its private use
3509 */
3510 tmp = get_wiphy_regdom(request_wiphy);
3511 rcu_assign_pointer(request_wiphy->regd, rd);
3512 rcu_free_regdom(tmp);
3513
3514 rd = NULL;
3515
3516 reset_regdomains(false, intersected_rd);
3517
3518 return 0;
3519 }
3520
3521 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3522 struct regulatory_request *country_ie_request)
3523 {
3524 struct wiphy *request_wiphy;
3525
3526 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3527 !is_unknown_alpha2(rd->alpha2))
3528 return -EINVAL;
3529
3530 /*
3531 * Lets only bother proceeding on the same alpha2 if the current
3532 * rd is non static (it means CRDA was present and was used last)
3533 * and the pending request came in from a country IE
3534 */
3535
3536 if (!is_valid_rd(rd)) {
3537 pr_err("Invalid regulatory domain detected: %c%c\n",
3538 rd->alpha2[0], rd->alpha2[1]);
3539 print_regdomain_info(rd);
3540 return -EINVAL;
3541 }
3542
3543 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3544 if (!request_wiphy)
3545 return -ENODEV;
3546
3547 if (country_ie_request->intersect)
3548 return -EINVAL;
3549
3550 reset_regdomains(false, rd);
3551 return 0;
3552 }
3553
3554 /*
3555 * Use this call to set the current regulatory domain. Conflicts with
3556 * multiple drivers can be ironed out later. Caller must've already
3557 * kmalloc'd the rd structure.
3558 */
3559 int set_regdom(const struct ieee80211_regdomain *rd,
3560 enum ieee80211_regd_source regd_src)
3561 {
3562 struct regulatory_request *lr;
3563 bool user_reset = false;
3564 int r;
3565
3566 if (!reg_is_valid_request(rd->alpha2)) {
3567 kfree(rd);
3568 return -EINVAL;
3569 }
3570
3571 if (regd_src == REGD_SOURCE_CRDA)
3572 reset_crda_timeouts();
3573
3574 lr = get_last_request();
3575
3576 /* Note that this doesn't update the wiphys, this is done below */
3577 switch (lr->initiator) {
3578 case NL80211_REGDOM_SET_BY_CORE:
3579 r = reg_set_rd_core(rd);
3580 break;
3581 case NL80211_REGDOM_SET_BY_USER:
3582 r = reg_set_rd_user(rd, lr);
3583 user_reset = true;
3584 break;
3585 case NL80211_REGDOM_SET_BY_DRIVER:
3586 r = reg_set_rd_driver(rd, lr);
3587 break;
3588 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3589 r = reg_set_rd_country_ie(rd, lr);
3590 break;
3591 default:
3592 WARN(1, "invalid initiator %d\n", lr->initiator);
3593 kfree(rd);
3594 return -EINVAL;
3595 }
3596
3597 if (r) {
3598 switch (r) {
3599 case -EALREADY:
3600 reg_set_request_processed();
3601 break;
3602 default:
3603 /* Back to world regulatory in case of errors */
3604 restore_regulatory_settings(user_reset);
3605 }
3606
3607 kfree(rd);
3608 return r;
3609 }
3610
3611 /* This would make this whole thing pointless */
3612 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3613 return -EINVAL;
3614
3615 /* update all wiphys now with the new established regulatory domain */
3616 update_all_wiphy_regulatory(lr->initiator);
3617
3618 print_regdomain(get_cfg80211_regdom());
3619
3620 nl80211_send_reg_change_event(lr);
3621
3622 reg_set_request_processed();
3623
3624 return 0;
3625 }
3626
3627 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3628 struct ieee80211_regdomain *rd)
3629 {
3630 const struct ieee80211_regdomain *regd;
3631 const struct ieee80211_regdomain *prev_regd;
3632 struct cfg80211_registered_device *rdev;
3633
3634 if (WARN_ON(!wiphy || !rd))
3635 return -EINVAL;
3636
3637 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3638 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3639 return -EPERM;
3640
3641 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3642 print_regdomain_info(rd);
3643 return -EINVAL;
3644 }
3645
3646 regd = reg_copy_regd(rd);
3647 if (IS_ERR(regd))
3648 return PTR_ERR(regd);
3649
3650 rdev = wiphy_to_rdev(wiphy);
3651
3652 spin_lock(&reg_requests_lock);
3653 prev_regd = rdev->requested_regd;
3654 rdev->requested_regd = regd;
3655 spin_unlock(&reg_requests_lock);
3656
3657 kfree(prev_regd);
3658 return 0;
3659 }
3660
3661 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3662 struct ieee80211_regdomain *rd)
3663 {
3664 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3665
3666 if (ret)
3667 return ret;
3668
3669 schedule_work(&reg_work);
3670 return 0;
3671 }
3672 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3673
3674 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3675 struct ieee80211_regdomain *rd)
3676 {
3677 int ret;
3678
3679 ASSERT_RTNL();
3680
3681 ret = __regulatory_set_wiphy_regd(wiphy, rd);
3682 if (ret)
3683 return ret;
3684
3685 /* process the request immediately */
3686 reg_process_self_managed_hints();
3687 return 0;
3688 }
3689 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3690
3691 void wiphy_regulatory_register(struct wiphy *wiphy)
3692 {
3693 struct regulatory_request *lr = get_last_request();
3694
3695 /* self-managed devices ignore beacon hints and country IE */
3696 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3697 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3698 REGULATORY_COUNTRY_IE_IGNORE;
3699
3700 /*
3701 * The last request may have been received before this
3702 * registration call. Call the driver notifier if
3703 * initiator is USER and user type is CELL_BASE.
3704 */
3705 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
3706 lr->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE)
3707 reg_call_notifier(wiphy, lr);
3708 }
3709
3710 if (!reg_dev_ignore_cell_hint(wiphy))
3711 reg_num_devs_support_basehint++;
3712
3713 wiphy_update_regulatory(wiphy, lr->initiator);
3714 wiphy_all_share_dfs_chan_state(wiphy);
3715 }
3716
3717 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3718 {
3719 struct wiphy *request_wiphy = NULL;
3720 struct regulatory_request *lr;
3721
3722 lr = get_last_request();
3723
3724 if (!reg_dev_ignore_cell_hint(wiphy))
3725 reg_num_devs_support_basehint--;
3726
3727 rcu_free_regdom(get_wiphy_regdom(wiphy));
3728 RCU_INIT_POINTER(wiphy->regd, NULL);
3729
3730 if (lr)
3731 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3732
3733 if (!request_wiphy || request_wiphy != wiphy)
3734 return;
3735
3736 lr->wiphy_idx = WIPHY_IDX_INVALID;
3737 lr->country_ie_env = ENVIRON_ANY;
3738 }
3739
3740 /*
3741 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3742 * UNII band definitions
3743 */
3744 int cfg80211_get_unii(int freq)
3745 {
3746 /* UNII-1 */
3747 if (freq >= 5150 && freq <= 5250)
3748 return 0;
3749
3750 /* UNII-2A */
3751 if (freq > 5250 && freq <= 5350)
3752 return 1;
3753
3754 /* UNII-2B */
3755 if (freq > 5350 && freq <= 5470)
3756 return 2;
3757
3758 /* UNII-2C */
3759 if (freq > 5470 && freq <= 5725)
3760 return 3;
3761
3762 /* UNII-3 */
3763 if (freq > 5725 && freq <= 5825)
3764 return 4;
3765
3766 return -EINVAL;
3767 }
3768
3769 bool regulatory_indoor_allowed(void)
3770 {
3771 return reg_is_indoor;
3772 }
3773
3774 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3775 {
3776 const struct ieee80211_regdomain *regd = NULL;
3777 const struct ieee80211_regdomain *wiphy_regd = NULL;
3778 bool pre_cac_allowed = false;
3779
3780 rcu_read_lock();
3781
3782 regd = rcu_dereference(cfg80211_regdomain);
3783 wiphy_regd = rcu_dereference(wiphy->regd);
3784 if (!wiphy_regd) {
3785 if (regd->dfs_region == NL80211_DFS_ETSI)
3786 pre_cac_allowed = true;
3787
3788 rcu_read_unlock();
3789
3790 return pre_cac_allowed;
3791 }
3792
3793 if (regd->dfs_region == wiphy_regd->dfs_region &&
3794 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3795 pre_cac_allowed = true;
3796
3797 rcu_read_unlock();
3798
3799 return pre_cac_allowed;
3800 }
3801
3802 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3803 struct cfg80211_chan_def *chandef,
3804 enum nl80211_dfs_state dfs_state,
3805 enum nl80211_radar_event event)
3806 {
3807 struct cfg80211_registered_device *rdev;
3808
3809 ASSERT_RTNL();
3810
3811 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3812 return;
3813
3814 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3815 if (wiphy == &rdev->wiphy)
3816 continue;
3817
3818 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3819 continue;
3820
3821 if (!ieee80211_get_channel(&rdev->wiphy,
3822 chandef->chan->center_freq))
3823 continue;
3824
3825 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3826
3827 if (event == NL80211_RADAR_DETECTED ||
3828 event == NL80211_RADAR_CAC_FINISHED)
3829 cfg80211_sched_dfs_chan_update(rdev);
3830
3831 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3832 }
3833 }
3834
3835 static int __init regulatory_init_db(void)
3836 {
3837 int err;
3838
3839 /*
3840 * It's possible that - due to other bugs/issues - cfg80211
3841 * never called regulatory_init() below, or that it failed;
3842 * in that case, don't try to do any further work here as
3843 * it's doomed to lead to crashes.
3844 */
3845 if (IS_ERR_OR_NULL(reg_pdev))
3846 return -EINVAL;
3847
3848 err = load_builtin_regdb_keys();
3849 if (err)
3850 return err;
3851
3852 /* We always try to get an update for the static regdomain */
3853 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3854 if (err) {
3855 if (err == -ENOMEM) {
3856 platform_device_unregister(reg_pdev);
3857 return err;
3858 }
3859 /*
3860 * N.B. kobject_uevent_env() can fail mainly for when we're out
3861 * memory which is handled and propagated appropriately above
3862 * but it can also fail during a netlink_broadcast() or during
3863 * early boot for call_usermodehelper(). For now treat these
3864 * errors as non-fatal.
3865 */
3866 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3867 }
3868
3869 /*
3870 * Finally, if the user set the module parameter treat it
3871 * as a user hint.
3872 */
3873 if (!is_world_regdom(ieee80211_regdom))
3874 regulatory_hint_user(ieee80211_regdom,
3875 NL80211_USER_REG_HINT_USER);
3876
3877 return 0;
3878 }
3879 #ifndef MODULE
3880 late_initcall(regulatory_init_db);
3881 #endif
3882
3883 int __init regulatory_init(void)
3884 {
3885 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3886 if (IS_ERR(reg_pdev))
3887 return PTR_ERR(reg_pdev);
3888
3889 spin_lock_init(&reg_requests_lock);
3890 spin_lock_init(&reg_pending_beacons_lock);
3891 spin_lock_init(&reg_indoor_lock);
3892
3893 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3894
3895 user_alpha2[0] = '9';
3896 user_alpha2[1] = '7';
3897
3898 #ifdef MODULE
3899 return regulatory_init_db();
3900 #else
3901 return 0;
3902 #endif
3903 }
3904
3905 void regulatory_exit(void)
3906 {
3907 struct regulatory_request *reg_request, *tmp;
3908 struct reg_beacon *reg_beacon, *btmp;
3909
3910 cancel_work_sync(&reg_work);
3911 cancel_crda_timeout_sync();
3912 cancel_delayed_work_sync(&reg_check_chans);
3913
3914 /* Lock to suppress warnings */
3915 rtnl_lock();
3916 reset_regdomains(true, NULL);
3917 rtnl_unlock();
3918
3919 dev_set_uevent_suppress(&reg_pdev->dev, true);
3920
3921 platform_device_unregister(reg_pdev);
3922
3923 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3924 list_del(&reg_beacon->list);
3925 kfree(reg_beacon);
3926 }
3927
3928 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3929 list_del(&reg_beacon->list);
3930 kfree(reg_beacon);
3931 }
3932
3933 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3934 list_del(&reg_request->list);
3935 kfree(reg_request);
3936 }
3937
3938 if (!IS_ERR_OR_NULL(regdb))
3939 kfree(regdb);
3940
3941 free_regdb_keyring();
3942 }