]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/wireless/reg.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[mirror_ubuntu-bionic-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 *
8 * Permission to use, copy, modify, and/or distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21
22 /**
23 * DOC: Wireless regulatory infrastructure
24 *
25 * The usual implementation is for a driver to read a device EEPROM to
26 * determine which regulatory domain it should be operating under, then
27 * looking up the allowable channels in a driver-local table and finally
28 * registering those channels in the wiphy structure.
29 *
30 * Another set of compliance enforcement is for drivers to use their
31 * own compliance limits which can be stored on the EEPROM. The host
32 * driver or firmware may ensure these are used.
33 *
34 * In addition to all this we provide an extra layer of regulatory
35 * conformance. For drivers which do not have any regulatory
36 * information CRDA provides the complete regulatory solution.
37 * For others it provides a community effort on further restrictions
38 * to enhance compliance.
39 *
40 * Note: When number of rules --> infinity we will not be able to
41 * index on alpha2 any more, instead we'll probably have to
42 * rely on some SHA1 checksum of the regdomain for example.
43 *
44 */
45
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "rdev-ops.h"
60 #include "regdb.h"
61 #include "nl80211.h"
62
63 #ifdef CONFIG_CFG80211_REG_DEBUG
64 #define REG_DBG_PRINT(format, args...) \
65 printk(KERN_DEBUG pr_fmt(format), ##args)
66 #else
67 #define REG_DBG_PRINT(args...)
68 #endif
69
70 /*
71 * Grace period we give before making sure all current interfaces reside on
72 * channels allowed by the current regulatory domain.
73 */
74 #define REG_ENFORCE_GRACE_MS 60000
75
76 /**
77 * enum reg_request_treatment - regulatory request treatment
78 *
79 * @REG_REQ_OK: continue processing the regulatory request
80 * @REG_REQ_IGNORE: ignore the regulatory request
81 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
82 * be intersected with the current one.
83 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
84 * regulatory settings, and no further processing is required.
85 * @REG_REQ_USER_HINT_HANDLED: a non alpha2 user hint was handled and no
86 * further processing is required, i.e., not need to update last_request
87 * etc. This should be used for user hints that do not provide an alpha2
88 * but some other type of regulatory hint, i.e., indoor operation.
89 */
90 enum reg_request_treatment {
91 REG_REQ_OK,
92 REG_REQ_IGNORE,
93 REG_REQ_INTERSECT,
94 REG_REQ_ALREADY_SET,
95 REG_REQ_USER_HINT_HANDLED,
96 };
97
98 static struct regulatory_request core_request_world = {
99 .initiator = NL80211_REGDOM_SET_BY_CORE,
100 .alpha2[0] = '0',
101 .alpha2[1] = '0',
102 .intersect = false,
103 .processed = true,
104 .country_ie_env = ENVIRON_ANY,
105 };
106
107 /*
108 * Receipt of information from last regulatory request,
109 * protected by RTNL (and can be accessed with RCU protection)
110 */
111 static struct regulatory_request __rcu *last_request =
112 (void __rcu *)&core_request_world;
113
114 /* To trigger userspace events */
115 static struct platform_device *reg_pdev;
116
117 /*
118 * Central wireless core regulatory domains, we only need two,
119 * the current one and a world regulatory domain in case we have no
120 * information to give us an alpha2.
121 * (protected by RTNL, can be read under RCU)
122 */
123 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
124
125 /*
126 * Number of devices that registered to the core
127 * that support cellular base station regulatory hints
128 * (protected by RTNL)
129 */
130 static int reg_num_devs_support_basehint;
131
132 /*
133 * State variable indicating if the platform on which the devices
134 * are attached is operating in an indoor environment. The state variable
135 * is relevant for all registered devices.
136 * (protected by RTNL)
137 */
138 static bool reg_is_indoor;
139
140 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
141 {
142 return rtnl_dereference(cfg80211_regdomain);
143 }
144
145 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
146 {
147 return rtnl_dereference(wiphy->regd);
148 }
149
150 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
151 {
152 switch (dfs_region) {
153 case NL80211_DFS_UNSET:
154 return "unset";
155 case NL80211_DFS_FCC:
156 return "FCC";
157 case NL80211_DFS_ETSI:
158 return "ETSI";
159 case NL80211_DFS_JP:
160 return "JP";
161 }
162 return "Unknown";
163 }
164
165 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
166 {
167 const struct ieee80211_regdomain *regd = NULL;
168 const struct ieee80211_regdomain *wiphy_regd = NULL;
169
170 regd = get_cfg80211_regdom();
171 if (!wiphy)
172 goto out;
173
174 wiphy_regd = get_wiphy_regdom(wiphy);
175 if (!wiphy_regd)
176 goto out;
177
178 if (wiphy_regd->dfs_region == regd->dfs_region)
179 goto out;
180
181 REG_DBG_PRINT("%s: device specific dfs_region "
182 "(%s) disagrees with cfg80211's "
183 "central dfs_region (%s)\n",
184 dev_name(&wiphy->dev),
185 reg_dfs_region_str(wiphy_regd->dfs_region),
186 reg_dfs_region_str(regd->dfs_region));
187
188 out:
189 return regd->dfs_region;
190 }
191
192 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
193 {
194 if (!r)
195 return;
196 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
197 }
198
199 static struct regulatory_request *get_last_request(void)
200 {
201 return rcu_dereference_rtnl(last_request);
202 }
203
204 /* Used to queue up regulatory hints */
205 static LIST_HEAD(reg_requests_list);
206 static spinlock_t reg_requests_lock;
207
208 /* Used to queue up beacon hints for review */
209 static LIST_HEAD(reg_pending_beacons);
210 static spinlock_t reg_pending_beacons_lock;
211
212 /* Used to keep track of processed beacon hints */
213 static LIST_HEAD(reg_beacon_list);
214
215 struct reg_beacon {
216 struct list_head list;
217 struct ieee80211_channel chan;
218 };
219
220 static void reg_check_chans_work(struct work_struct *work);
221 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
222
223 static void reg_todo(struct work_struct *work);
224 static DECLARE_WORK(reg_work, reg_todo);
225
226 static void reg_timeout_work(struct work_struct *work);
227 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
228
229 /* We keep a static world regulatory domain in case of the absence of CRDA */
230 static const struct ieee80211_regdomain world_regdom = {
231 .n_reg_rules = 6,
232 .alpha2 = "00",
233 .reg_rules = {
234 /* IEEE 802.11b/g, channels 1..11 */
235 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
236 /* IEEE 802.11b/g, channels 12..13. */
237 REG_RULE(2467-10, 2472+10, 40, 6, 20,
238 NL80211_RRF_NO_IR),
239 /* IEEE 802.11 channel 14 - Only JP enables
240 * this and for 802.11b only */
241 REG_RULE(2484-10, 2484+10, 20, 6, 20,
242 NL80211_RRF_NO_IR |
243 NL80211_RRF_NO_OFDM),
244 /* IEEE 802.11a, channel 36..48 */
245 REG_RULE(5180-10, 5240+10, 160, 6, 20,
246 NL80211_RRF_NO_IR),
247
248 /* IEEE 802.11a, channel 52..64 - DFS required */
249 REG_RULE(5260-10, 5320+10, 160, 6, 20,
250 NL80211_RRF_NO_IR |
251 NL80211_RRF_DFS),
252
253 /* IEEE 802.11a, channel 100..144 - DFS required */
254 REG_RULE(5500-10, 5720+10, 160, 6, 20,
255 NL80211_RRF_NO_IR |
256 NL80211_RRF_DFS),
257
258 /* IEEE 802.11a, channel 149..165 */
259 REG_RULE(5745-10, 5825+10, 80, 6, 20,
260 NL80211_RRF_NO_IR),
261
262 /* IEEE 802.11ad (60gHz), channels 1..3 */
263 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
264 }
265 };
266
267 /* protected by RTNL */
268 static const struct ieee80211_regdomain *cfg80211_world_regdom =
269 &world_regdom;
270
271 static char *ieee80211_regdom = "00";
272 static char user_alpha2[2];
273
274 module_param(ieee80211_regdom, charp, 0444);
275 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
276
277 static void reg_free_request(struct regulatory_request *request)
278 {
279 if (request != get_last_request())
280 kfree(request);
281 }
282
283 static void reg_free_last_request(void)
284 {
285 struct regulatory_request *lr = get_last_request();
286
287 if (lr != &core_request_world && lr)
288 kfree_rcu(lr, rcu_head);
289 }
290
291 static void reg_update_last_request(struct regulatory_request *request)
292 {
293 struct regulatory_request *lr;
294
295 lr = get_last_request();
296 if (lr == request)
297 return;
298
299 reg_free_last_request();
300 rcu_assign_pointer(last_request, request);
301 }
302
303 static void reset_regdomains(bool full_reset,
304 const struct ieee80211_regdomain *new_regdom)
305 {
306 const struct ieee80211_regdomain *r;
307
308 ASSERT_RTNL();
309
310 r = get_cfg80211_regdom();
311
312 /* avoid freeing static information or freeing something twice */
313 if (r == cfg80211_world_regdom)
314 r = NULL;
315 if (cfg80211_world_regdom == &world_regdom)
316 cfg80211_world_regdom = NULL;
317 if (r == &world_regdom)
318 r = NULL;
319
320 rcu_free_regdom(r);
321 rcu_free_regdom(cfg80211_world_regdom);
322
323 cfg80211_world_regdom = &world_regdom;
324 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
325
326 if (!full_reset)
327 return;
328
329 reg_update_last_request(&core_request_world);
330 }
331
332 /*
333 * Dynamic world regulatory domain requested by the wireless
334 * core upon initialization
335 */
336 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
337 {
338 struct regulatory_request *lr;
339
340 lr = get_last_request();
341
342 WARN_ON(!lr);
343
344 reset_regdomains(false, rd);
345
346 cfg80211_world_regdom = rd;
347 }
348
349 bool is_world_regdom(const char *alpha2)
350 {
351 if (!alpha2)
352 return false;
353 return alpha2[0] == '0' && alpha2[1] == '0';
354 }
355
356 static bool is_alpha2_set(const char *alpha2)
357 {
358 if (!alpha2)
359 return false;
360 return alpha2[0] && alpha2[1];
361 }
362
363 static bool is_unknown_alpha2(const char *alpha2)
364 {
365 if (!alpha2)
366 return false;
367 /*
368 * Special case where regulatory domain was built by driver
369 * but a specific alpha2 cannot be determined
370 */
371 return alpha2[0] == '9' && alpha2[1] == '9';
372 }
373
374 static bool is_intersected_alpha2(const char *alpha2)
375 {
376 if (!alpha2)
377 return false;
378 /*
379 * Special case where regulatory domain is the
380 * result of an intersection between two regulatory domain
381 * structures
382 */
383 return alpha2[0] == '9' && alpha2[1] == '8';
384 }
385
386 static bool is_an_alpha2(const char *alpha2)
387 {
388 if (!alpha2)
389 return false;
390 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
391 }
392
393 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
394 {
395 if (!alpha2_x || !alpha2_y)
396 return false;
397 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
398 }
399
400 static bool regdom_changes(const char *alpha2)
401 {
402 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
403
404 if (!r)
405 return true;
406 return !alpha2_equal(r->alpha2, alpha2);
407 }
408
409 /*
410 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
411 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
412 * has ever been issued.
413 */
414 static bool is_user_regdom_saved(void)
415 {
416 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
417 return false;
418
419 /* This would indicate a mistake on the design */
420 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
421 "Unexpected user alpha2: %c%c\n",
422 user_alpha2[0], user_alpha2[1]))
423 return false;
424
425 return true;
426 }
427
428 static const struct ieee80211_regdomain *
429 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
430 {
431 struct ieee80211_regdomain *regd;
432 int size_of_regd;
433 unsigned int i;
434
435 size_of_regd =
436 sizeof(struct ieee80211_regdomain) +
437 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
438
439 regd = kzalloc(size_of_regd, GFP_KERNEL);
440 if (!regd)
441 return ERR_PTR(-ENOMEM);
442
443 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
444
445 for (i = 0; i < src_regd->n_reg_rules; i++)
446 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
447 sizeof(struct ieee80211_reg_rule));
448
449 return regd;
450 }
451
452 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
453 struct reg_regdb_search_request {
454 char alpha2[2];
455 struct list_head list;
456 };
457
458 static LIST_HEAD(reg_regdb_search_list);
459 static DEFINE_MUTEX(reg_regdb_search_mutex);
460
461 static void reg_regdb_search(struct work_struct *work)
462 {
463 struct reg_regdb_search_request *request;
464 const struct ieee80211_regdomain *curdom, *regdom = NULL;
465 int i;
466
467 rtnl_lock();
468
469 mutex_lock(&reg_regdb_search_mutex);
470 while (!list_empty(&reg_regdb_search_list)) {
471 request = list_first_entry(&reg_regdb_search_list,
472 struct reg_regdb_search_request,
473 list);
474 list_del(&request->list);
475
476 for (i = 0; i < reg_regdb_size; i++) {
477 curdom = reg_regdb[i];
478
479 if (alpha2_equal(request->alpha2, curdom->alpha2)) {
480 regdom = reg_copy_regd(curdom);
481 break;
482 }
483 }
484
485 kfree(request);
486 }
487 mutex_unlock(&reg_regdb_search_mutex);
488
489 if (!IS_ERR_OR_NULL(regdom))
490 set_regdom(regdom);
491
492 rtnl_unlock();
493 }
494
495 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
496
497 static void reg_regdb_query(const char *alpha2)
498 {
499 struct reg_regdb_search_request *request;
500
501 if (!alpha2)
502 return;
503
504 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
505 if (!request)
506 return;
507
508 memcpy(request->alpha2, alpha2, 2);
509
510 mutex_lock(&reg_regdb_search_mutex);
511 list_add_tail(&request->list, &reg_regdb_search_list);
512 mutex_unlock(&reg_regdb_search_mutex);
513
514 schedule_work(&reg_regdb_work);
515 }
516
517 /* Feel free to add any other sanity checks here */
518 static void reg_regdb_size_check(void)
519 {
520 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
521 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
522 }
523 #else
524 static inline void reg_regdb_size_check(void) {}
525 static inline void reg_regdb_query(const char *alpha2) {}
526 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
527
528 /*
529 * This lets us keep regulatory code which is updated on a regulatory
530 * basis in userspace.
531 */
532 static int call_crda(const char *alpha2)
533 {
534 char country[12];
535 char *env[] = { country, NULL };
536
537 snprintf(country, sizeof(country), "COUNTRY=%c%c",
538 alpha2[0], alpha2[1]);
539
540 if (!is_world_regdom((char *) alpha2))
541 pr_info("Calling CRDA for country: %c%c\n",
542 alpha2[0], alpha2[1]);
543 else
544 pr_info("Calling CRDA to update world regulatory domain\n");
545
546 /* query internal regulatory database (if it exists) */
547 reg_regdb_query(alpha2);
548
549 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
550 }
551
552 static enum reg_request_treatment
553 reg_call_crda(struct regulatory_request *request)
554 {
555 if (call_crda(request->alpha2))
556 return REG_REQ_IGNORE;
557 return REG_REQ_OK;
558 }
559
560 bool reg_is_valid_request(const char *alpha2)
561 {
562 struct regulatory_request *lr = get_last_request();
563
564 if (!lr || lr->processed)
565 return false;
566
567 return alpha2_equal(lr->alpha2, alpha2);
568 }
569
570 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
571 {
572 struct regulatory_request *lr = get_last_request();
573
574 /*
575 * Follow the driver's regulatory domain, if present, unless a country
576 * IE has been processed or a user wants to help complaince further
577 */
578 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
579 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
580 wiphy->regd)
581 return get_wiphy_regdom(wiphy);
582
583 return get_cfg80211_regdom();
584 }
585
586 static unsigned int
587 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
588 const struct ieee80211_reg_rule *rule)
589 {
590 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
591 const struct ieee80211_freq_range *freq_range_tmp;
592 const struct ieee80211_reg_rule *tmp;
593 u32 start_freq, end_freq, idx, no;
594
595 for (idx = 0; idx < rd->n_reg_rules; idx++)
596 if (rule == &rd->reg_rules[idx])
597 break;
598
599 if (idx == rd->n_reg_rules)
600 return 0;
601
602 /* get start_freq */
603 no = idx;
604
605 while (no) {
606 tmp = &rd->reg_rules[--no];
607 freq_range_tmp = &tmp->freq_range;
608
609 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
610 break;
611
612 freq_range = freq_range_tmp;
613 }
614
615 start_freq = freq_range->start_freq_khz;
616
617 /* get end_freq */
618 freq_range = &rule->freq_range;
619 no = idx;
620
621 while (no < rd->n_reg_rules - 1) {
622 tmp = &rd->reg_rules[++no];
623 freq_range_tmp = &tmp->freq_range;
624
625 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
626 break;
627
628 freq_range = freq_range_tmp;
629 }
630
631 end_freq = freq_range->end_freq_khz;
632
633 return end_freq - start_freq;
634 }
635
636 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
637 const struct ieee80211_reg_rule *rule)
638 {
639 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
640
641 if (rule->flags & NL80211_RRF_NO_160MHZ)
642 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
643 if (rule->flags & NL80211_RRF_NO_80MHZ)
644 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
645
646 /*
647 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
648 * are not allowed.
649 */
650 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
651 rule->flags & NL80211_RRF_NO_HT40PLUS)
652 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
653
654 return bw;
655 }
656
657 /* Sanity check on a regulatory rule */
658 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
659 {
660 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
661 u32 freq_diff;
662
663 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
664 return false;
665
666 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
667 return false;
668
669 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
670
671 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
672 freq_range->max_bandwidth_khz > freq_diff)
673 return false;
674
675 return true;
676 }
677
678 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
679 {
680 const struct ieee80211_reg_rule *reg_rule = NULL;
681 unsigned int i;
682
683 if (!rd->n_reg_rules)
684 return false;
685
686 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
687 return false;
688
689 for (i = 0; i < rd->n_reg_rules; i++) {
690 reg_rule = &rd->reg_rules[i];
691 if (!is_valid_reg_rule(reg_rule))
692 return false;
693 }
694
695 return true;
696 }
697
698 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
699 u32 center_freq_khz, u32 bw_khz)
700 {
701 u32 start_freq_khz, end_freq_khz;
702
703 start_freq_khz = center_freq_khz - (bw_khz/2);
704 end_freq_khz = center_freq_khz + (bw_khz/2);
705
706 if (start_freq_khz >= freq_range->start_freq_khz &&
707 end_freq_khz <= freq_range->end_freq_khz)
708 return true;
709
710 return false;
711 }
712
713 /**
714 * freq_in_rule_band - tells us if a frequency is in a frequency band
715 * @freq_range: frequency rule we want to query
716 * @freq_khz: frequency we are inquiring about
717 *
718 * This lets us know if a specific frequency rule is or is not relevant to
719 * a specific frequency's band. Bands are device specific and artificial
720 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
721 * however it is safe for now to assume that a frequency rule should not be
722 * part of a frequency's band if the start freq or end freq are off by more
723 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
724 * 60 GHz band.
725 * This resolution can be lowered and should be considered as we add
726 * regulatory rule support for other "bands".
727 **/
728 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
729 u32 freq_khz)
730 {
731 #define ONE_GHZ_IN_KHZ 1000000
732 /*
733 * From 802.11ad: directional multi-gigabit (DMG):
734 * Pertaining to operation in a frequency band containing a channel
735 * with the Channel starting frequency above 45 GHz.
736 */
737 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
738 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
739 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
740 return true;
741 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
742 return true;
743 return false;
744 #undef ONE_GHZ_IN_KHZ
745 }
746
747 /*
748 * Later on we can perhaps use the more restrictive DFS
749 * region but we don't have information for that yet so
750 * for now simply disallow conflicts.
751 */
752 static enum nl80211_dfs_regions
753 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
754 const enum nl80211_dfs_regions dfs_region2)
755 {
756 if (dfs_region1 != dfs_region2)
757 return NL80211_DFS_UNSET;
758 return dfs_region1;
759 }
760
761 /*
762 * Helper for regdom_intersect(), this does the real
763 * mathematical intersection fun
764 */
765 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
766 const struct ieee80211_regdomain *rd2,
767 const struct ieee80211_reg_rule *rule1,
768 const struct ieee80211_reg_rule *rule2,
769 struct ieee80211_reg_rule *intersected_rule)
770 {
771 const struct ieee80211_freq_range *freq_range1, *freq_range2;
772 struct ieee80211_freq_range *freq_range;
773 const struct ieee80211_power_rule *power_rule1, *power_rule2;
774 struct ieee80211_power_rule *power_rule;
775 u32 freq_diff, max_bandwidth1, max_bandwidth2;
776
777 freq_range1 = &rule1->freq_range;
778 freq_range2 = &rule2->freq_range;
779 freq_range = &intersected_rule->freq_range;
780
781 power_rule1 = &rule1->power_rule;
782 power_rule2 = &rule2->power_rule;
783 power_rule = &intersected_rule->power_rule;
784
785 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
786 freq_range2->start_freq_khz);
787 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
788 freq_range2->end_freq_khz);
789
790 max_bandwidth1 = freq_range1->max_bandwidth_khz;
791 max_bandwidth2 = freq_range2->max_bandwidth_khz;
792
793 if (rule1->flags & NL80211_RRF_AUTO_BW)
794 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
795 if (rule2->flags & NL80211_RRF_AUTO_BW)
796 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
797
798 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
799
800 intersected_rule->flags = rule1->flags | rule2->flags;
801
802 /*
803 * In case NL80211_RRF_AUTO_BW requested for both rules
804 * set AUTO_BW in intersected rule also. Next we will
805 * calculate BW correctly in handle_channel function.
806 * In other case remove AUTO_BW flag while we calculate
807 * maximum bandwidth correctly and auto calculation is
808 * not required.
809 */
810 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
811 (rule2->flags & NL80211_RRF_AUTO_BW))
812 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
813 else
814 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
815
816 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
817 if (freq_range->max_bandwidth_khz > freq_diff)
818 freq_range->max_bandwidth_khz = freq_diff;
819
820 power_rule->max_eirp = min(power_rule1->max_eirp,
821 power_rule2->max_eirp);
822 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
823 power_rule2->max_antenna_gain);
824
825 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
826 rule2->dfs_cac_ms);
827
828 if (!is_valid_reg_rule(intersected_rule))
829 return -EINVAL;
830
831 return 0;
832 }
833
834 /* check whether old rule contains new rule */
835 static bool rule_contains(struct ieee80211_reg_rule *r1,
836 struct ieee80211_reg_rule *r2)
837 {
838 /* for simplicity, currently consider only same flags */
839 if (r1->flags != r2->flags)
840 return false;
841
842 /* verify r1 is more restrictive */
843 if ((r1->power_rule.max_antenna_gain >
844 r2->power_rule.max_antenna_gain) ||
845 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
846 return false;
847
848 /* make sure r2's range is contained within r1 */
849 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
850 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
851 return false;
852
853 /* and finally verify that r1.max_bw >= r2.max_bw */
854 if (r1->freq_range.max_bandwidth_khz <
855 r2->freq_range.max_bandwidth_khz)
856 return false;
857
858 return true;
859 }
860
861 /* add or extend current rules. do nothing if rule is already contained */
862 static void add_rule(struct ieee80211_reg_rule *rule,
863 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
864 {
865 struct ieee80211_reg_rule *tmp_rule;
866 int i;
867
868 for (i = 0; i < *n_rules; i++) {
869 tmp_rule = &reg_rules[i];
870 /* rule is already contained - do nothing */
871 if (rule_contains(tmp_rule, rule))
872 return;
873
874 /* extend rule if possible */
875 if (rule_contains(rule, tmp_rule)) {
876 memcpy(tmp_rule, rule, sizeof(*rule));
877 return;
878 }
879 }
880
881 memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
882 (*n_rules)++;
883 }
884
885 /**
886 * regdom_intersect - do the intersection between two regulatory domains
887 * @rd1: first regulatory domain
888 * @rd2: second regulatory domain
889 *
890 * Use this function to get the intersection between two regulatory domains.
891 * Once completed we will mark the alpha2 for the rd as intersected, "98",
892 * as no one single alpha2 can represent this regulatory domain.
893 *
894 * Returns a pointer to the regulatory domain structure which will hold the
895 * resulting intersection of rules between rd1 and rd2. We will
896 * kzalloc() this structure for you.
897 */
898 static struct ieee80211_regdomain *
899 regdom_intersect(const struct ieee80211_regdomain *rd1,
900 const struct ieee80211_regdomain *rd2)
901 {
902 int r, size_of_regd;
903 unsigned int x, y;
904 unsigned int num_rules = 0;
905 const struct ieee80211_reg_rule *rule1, *rule2;
906 struct ieee80211_reg_rule intersected_rule;
907 struct ieee80211_regdomain *rd;
908
909 if (!rd1 || !rd2)
910 return NULL;
911
912 /*
913 * First we get a count of the rules we'll need, then we actually
914 * build them. This is to so we can malloc() and free() a
915 * regdomain once. The reason we use reg_rules_intersect() here
916 * is it will return -EINVAL if the rule computed makes no sense.
917 * All rules that do check out OK are valid.
918 */
919
920 for (x = 0; x < rd1->n_reg_rules; x++) {
921 rule1 = &rd1->reg_rules[x];
922 for (y = 0; y < rd2->n_reg_rules; y++) {
923 rule2 = &rd2->reg_rules[y];
924 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
925 &intersected_rule))
926 num_rules++;
927 }
928 }
929
930 if (!num_rules)
931 return NULL;
932
933 size_of_regd = sizeof(struct ieee80211_regdomain) +
934 num_rules * sizeof(struct ieee80211_reg_rule);
935
936 rd = kzalloc(size_of_regd, GFP_KERNEL);
937 if (!rd)
938 return NULL;
939
940 for (x = 0; x < rd1->n_reg_rules; x++) {
941 rule1 = &rd1->reg_rules[x];
942 for (y = 0; y < rd2->n_reg_rules; y++) {
943 rule2 = &rd2->reg_rules[y];
944 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
945 &intersected_rule);
946 /*
947 * No need to memset here the intersected rule here as
948 * we're not using the stack anymore
949 */
950 if (r)
951 continue;
952
953 add_rule(&intersected_rule, rd->reg_rules,
954 &rd->n_reg_rules);
955 }
956 }
957
958 rd->alpha2[0] = '9';
959 rd->alpha2[1] = '8';
960 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
961 rd2->dfs_region);
962
963 return rd;
964 }
965
966 /*
967 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
968 * want to just have the channel structure use these
969 */
970 static u32 map_regdom_flags(u32 rd_flags)
971 {
972 u32 channel_flags = 0;
973 if (rd_flags & NL80211_RRF_NO_IR_ALL)
974 channel_flags |= IEEE80211_CHAN_NO_IR;
975 if (rd_flags & NL80211_RRF_DFS)
976 channel_flags |= IEEE80211_CHAN_RADAR;
977 if (rd_flags & NL80211_RRF_NO_OFDM)
978 channel_flags |= IEEE80211_CHAN_NO_OFDM;
979 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
980 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
981 if (rd_flags & NL80211_RRF_GO_CONCURRENT)
982 channel_flags |= IEEE80211_CHAN_GO_CONCURRENT;
983 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
984 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
985 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
986 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
987 if (rd_flags & NL80211_RRF_NO_80MHZ)
988 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
989 if (rd_flags & NL80211_RRF_NO_160MHZ)
990 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
991 return channel_flags;
992 }
993
994 static const struct ieee80211_reg_rule *
995 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
996 const struct ieee80211_regdomain *regd)
997 {
998 int i;
999 bool band_rule_found = false;
1000 bool bw_fits = false;
1001
1002 if (!regd)
1003 return ERR_PTR(-EINVAL);
1004
1005 for (i = 0; i < regd->n_reg_rules; i++) {
1006 const struct ieee80211_reg_rule *rr;
1007 const struct ieee80211_freq_range *fr = NULL;
1008
1009 rr = &regd->reg_rules[i];
1010 fr = &rr->freq_range;
1011
1012 /*
1013 * We only need to know if one frequency rule was
1014 * was in center_freq's band, that's enough, so lets
1015 * not overwrite it once found
1016 */
1017 if (!band_rule_found)
1018 band_rule_found = freq_in_rule_band(fr, center_freq);
1019
1020 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
1021
1022 if (band_rule_found && bw_fits)
1023 return rr;
1024 }
1025
1026 if (!band_rule_found)
1027 return ERR_PTR(-ERANGE);
1028
1029 return ERR_PTR(-EINVAL);
1030 }
1031
1032 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1033 u32 center_freq)
1034 {
1035 const struct ieee80211_regdomain *regd;
1036
1037 regd = reg_get_regdomain(wiphy);
1038
1039 return freq_reg_info_regd(wiphy, center_freq, regd);
1040 }
1041 EXPORT_SYMBOL(freq_reg_info);
1042
1043 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1044 {
1045 switch (initiator) {
1046 case NL80211_REGDOM_SET_BY_CORE:
1047 return "core";
1048 case NL80211_REGDOM_SET_BY_USER:
1049 return "user";
1050 case NL80211_REGDOM_SET_BY_DRIVER:
1051 return "driver";
1052 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1053 return "country IE";
1054 default:
1055 WARN_ON(1);
1056 return "bug";
1057 }
1058 }
1059 EXPORT_SYMBOL(reg_initiator_name);
1060
1061 #ifdef CONFIG_CFG80211_REG_DEBUG
1062 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1063 struct ieee80211_channel *chan,
1064 const struct ieee80211_reg_rule *reg_rule)
1065 {
1066 const struct ieee80211_power_rule *power_rule;
1067 const struct ieee80211_freq_range *freq_range;
1068 char max_antenna_gain[32], bw[32];
1069
1070 power_rule = &reg_rule->power_rule;
1071 freq_range = &reg_rule->freq_range;
1072
1073 if (!power_rule->max_antenna_gain)
1074 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1075 else
1076 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
1077 power_rule->max_antenna_gain);
1078
1079 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1080 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1081 freq_range->max_bandwidth_khz,
1082 reg_get_max_bandwidth(regd, reg_rule));
1083 else
1084 snprintf(bw, sizeof(bw), "%d KHz",
1085 freq_range->max_bandwidth_khz);
1086
1087 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1088 chan->center_freq);
1089
1090 REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
1091 freq_range->start_freq_khz, freq_range->end_freq_khz,
1092 bw, max_antenna_gain,
1093 power_rule->max_eirp);
1094 }
1095 #else
1096 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1097 struct ieee80211_channel *chan,
1098 const struct ieee80211_reg_rule *reg_rule)
1099 {
1100 return;
1101 }
1102 #endif
1103
1104 /*
1105 * Note that right now we assume the desired channel bandwidth
1106 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1107 * per channel, the primary and the extension channel).
1108 */
1109 static void handle_channel(struct wiphy *wiphy,
1110 enum nl80211_reg_initiator initiator,
1111 struct ieee80211_channel *chan)
1112 {
1113 u32 flags, bw_flags = 0;
1114 const struct ieee80211_reg_rule *reg_rule = NULL;
1115 const struct ieee80211_power_rule *power_rule = NULL;
1116 const struct ieee80211_freq_range *freq_range = NULL;
1117 struct wiphy *request_wiphy = NULL;
1118 struct regulatory_request *lr = get_last_request();
1119 const struct ieee80211_regdomain *regd;
1120 u32 max_bandwidth_khz;
1121
1122 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1123
1124 flags = chan->orig_flags;
1125
1126 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1127 if (IS_ERR(reg_rule)) {
1128 /*
1129 * We will disable all channels that do not match our
1130 * received regulatory rule unless the hint is coming
1131 * from a Country IE and the Country IE had no information
1132 * about a band. The IEEE 802.11 spec allows for an AP
1133 * to send only a subset of the regulatory rules allowed,
1134 * so an AP in the US that only supports 2.4 GHz may only send
1135 * a country IE with information for the 2.4 GHz band
1136 * while 5 GHz is still supported.
1137 */
1138 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1139 PTR_ERR(reg_rule) == -ERANGE)
1140 return;
1141
1142 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1143 request_wiphy && request_wiphy == wiphy &&
1144 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1145 REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1146 chan->center_freq);
1147 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1148 chan->flags = chan->orig_flags;
1149 } else {
1150 REG_DBG_PRINT("Disabling freq %d MHz\n",
1151 chan->center_freq);
1152 chan->flags |= IEEE80211_CHAN_DISABLED;
1153 }
1154 return;
1155 }
1156
1157 regd = reg_get_regdomain(wiphy);
1158 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1159
1160 power_rule = &reg_rule->power_rule;
1161 freq_range = &reg_rule->freq_range;
1162
1163 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1164 /* Check if auto calculation requested */
1165 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1166 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1167
1168 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1169 bw_flags = IEEE80211_CHAN_NO_HT40;
1170 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1171 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1172 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1173 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1174
1175 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1176 request_wiphy && request_wiphy == wiphy &&
1177 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1178 /*
1179 * This guarantees the driver's requested regulatory domain
1180 * will always be used as a base for further regulatory
1181 * settings
1182 */
1183 chan->flags = chan->orig_flags =
1184 map_regdom_flags(reg_rule->flags) | bw_flags;
1185 chan->max_antenna_gain = chan->orig_mag =
1186 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1187 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1188 (int) MBM_TO_DBM(power_rule->max_eirp);
1189
1190 if (chan->flags & IEEE80211_CHAN_RADAR) {
1191 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1192 if (reg_rule->dfs_cac_ms)
1193 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1194 }
1195
1196 return;
1197 }
1198
1199 chan->dfs_state = NL80211_DFS_USABLE;
1200 chan->dfs_state_entered = jiffies;
1201
1202 chan->beacon_found = false;
1203 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1204 chan->max_antenna_gain =
1205 min_t(int, chan->orig_mag,
1206 MBI_TO_DBI(power_rule->max_antenna_gain));
1207 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1208
1209 if (chan->flags & IEEE80211_CHAN_RADAR) {
1210 if (reg_rule->dfs_cac_ms)
1211 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1212 else
1213 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1214 }
1215
1216 if (chan->orig_mpwr) {
1217 /*
1218 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1219 * will always follow the passed country IE power settings.
1220 */
1221 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1222 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1223 chan->max_power = chan->max_reg_power;
1224 else
1225 chan->max_power = min(chan->orig_mpwr,
1226 chan->max_reg_power);
1227 } else
1228 chan->max_power = chan->max_reg_power;
1229 }
1230
1231 static void handle_band(struct wiphy *wiphy,
1232 enum nl80211_reg_initiator initiator,
1233 struct ieee80211_supported_band *sband)
1234 {
1235 unsigned int i;
1236
1237 if (!sband)
1238 return;
1239
1240 for (i = 0; i < sband->n_channels; i++)
1241 handle_channel(wiphy, initiator, &sband->channels[i]);
1242 }
1243
1244 static bool reg_request_cell_base(struct regulatory_request *request)
1245 {
1246 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1247 return false;
1248 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1249 }
1250
1251 static bool reg_request_indoor(struct regulatory_request *request)
1252 {
1253 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1254 return false;
1255 return request->user_reg_hint_type == NL80211_USER_REG_HINT_INDOOR;
1256 }
1257
1258 bool reg_last_request_cell_base(void)
1259 {
1260 return reg_request_cell_base(get_last_request());
1261 }
1262
1263 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1264 /* Core specific check */
1265 static enum reg_request_treatment
1266 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1267 {
1268 struct regulatory_request *lr = get_last_request();
1269
1270 if (!reg_num_devs_support_basehint)
1271 return REG_REQ_IGNORE;
1272
1273 if (reg_request_cell_base(lr) &&
1274 !regdom_changes(pending_request->alpha2))
1275 return REG_REQ_ALREADY_SET;
1276
1277 return REG_REQ_OK;
1278 }
1279
1280 /* Device specific check */
1281 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1282 {
1283 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1284 }
1285 #else
1286 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1287 {
1288 return REG_REQ_IGNORE;
1289 }
1290
1291 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1292 {
1293 return true;
1294 }
1295 #endif
1296
1297 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1298 {
1299 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1300 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1301 return true;
1302 return false;
1303 }
1304
1305 static bool ignore_reg_update(struct wiphy *wiphy,
1306 enum nl80211_reg_initiator initiator)
1307 {
1308 struct regulatory_request *lr = get_last_request();
1309
1310 if (!lr) {
1311 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1312 "since last_request is not set\n",
1313 reg_initiator_name(initiator));
1314 return true;
1315 }
1316
1317 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1318 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1319 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1320 "since the driver uses its own custom "
1321 "regulatory domain\n",
1322 reg_initiator_name(initiator));
1323 return true;
1324 }
1325
1326 /*
1327 * wiphy->regd will be set once the device has its own
1328 * desired regulatory domain set
1329 */
1330 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1331 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1332 !is_world_regdom(lr->alpha2)) {
1333 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1334 "since the driver requires its own regulatory "
1335 "domain to be set first\n",
1336 reg_initiator_name(initiator));
1337 return true;
1338 }
1339
1340 if (reg_request_cell_base(lr))
1341 return reg_dev_ignore_cell_hint(wiphy);
1342
1343 return false;
1344 }
1345
1346 static bool reg_is_world_roaming(struct wiphy *wiphy)
1347 {
1348 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1349 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1350 struct regulatory_request *lr = get_last_request();
1351
1352 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1353 return true;
1354
1355 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1356 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1357 return true;
1358
1359 return false;
1360 }
1361
1362 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1363 struct reg_beacon *reg_beacon)
1364 {
1365 struct ieee80211_supported_band *sband;
1366 struct ieee80211_channel *chan;
1367 bool channel_changed = false;
1368 struct ieee80211_channel chan_before;
1369
1370 sband = wiphy->bands[reg_beacon->chan.band];
1371 chan = &sband->channels[chan_idx];
1372
1373 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1374 return;
1375
1376 if (chan->beacon_found)
1377 return;
1378
1379 chan->beacon_found = true;
1380
1381 if (!reg_is_world_roaming(wiphy))
1382 return;
1383
1384 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1385 return;
1386
1387 chan_before.center_freq = chan->center_freq;
1388 chan_before.flags = chan->flags;
1389
1390 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1391 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1392 channel_changed = true;
1393 }
1394
1395 if (channel_changed)
1396 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1397 }
1398
1399 /*
1400 * Called when a scan on a wiphy finds a beacon on
1401 * new channel
1402 */
1403 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1404 struct reg_beacon *reg_beacon)
1405 {
1406 unsigned int i;
1407 struct ieee80211_supported_band *sband;
1408
1409 if (!wiphy->bands[reg_beacon->chan.band])
1410 return;
1411
1412 sband = wiphy->bands[reg_beacon->chan.band];
1413
1414 for (i = 0; i < sband->n_channels; i++)
1415 handle_reg_beacon(wiphy, i, reg_beacon);
1416 }
1417
1418 /*
1419 * Called upon reg changes or a new wiphy is added
1420 */
1421 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1422 {
1423 unsigned int i;
1424 struct ieee80211_supported_band *sband;
1425 struct reg_beacon *reg_beacon;
1426
1427 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1428 if (!wiphy->bands[reg_beacon->chan.band])
1429 continue;
1430 sband = wiphy->bands[reg_beacon->chan.band];
1431 for (i = 0; i < sband->n_channels; i++)
1432 handle_reg_beacon(wiphy, i, reg_beacon);
1433 }
1434 }
1435
1436 /* Reap the advantages of previously found beacons */
1437 static void reg_process_beacons(struct wiphy *wiphy)
1438 {
1439 /*
1440 * Means we are just firing up cfg80211, so no beacons would
1441 * have been processed yet.
1442 */
1443 if (!last_request)
1444 return;
1445 wiphy_update_beacon_reg(wiphy);
1446 }
1447
1448 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1449 {
1450 if (!chan)
1451 return false;
1452 if (chan->flags & IEEE80211_CHAN_DISABLED)
1453 return false;
1454 /* This would happen when regulatory rules disallow HT40 completely */
1455 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1456 return false;
1457 return true;
1458 }
1459
1460 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1461 struct ieee80211_channel *channel)
1462 {
1463 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1464 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1465 unsigned int i;
1466
1467 if (!is_ht40_allowed(channel)) {
1468 channel->flags |= IEEE80211_CHAN_NO_HT40;
1469 return;
1470 }
1471
1472 /*
1473 * We need to ensure the extension channels exist to
1474 * be able to use HT40- or HT40+, this finds them (or not)
1475 */
1476 for (i = 0; i < sband->n_channels; i++) {
1477 struct ieee80211_channel *c = &sband->channels[i];
1478
1479 if (c->center_freq == (channel->center_freq - 20))
1480 channel_before = c;
1481 if (c->center_freq == (channel->center_freq + 20))
1482 channel_after = c;
1483 }
1484
1485 /*
1486 * Please note that this assumes target bandwidth is 20 MHz,
1487 * if that ever changes we also need to change the below logic
1488 * to include that as well.
1489 */
1490 if (!is_ht40_allowed(channel_before))
1491 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1492 else
1493 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1494
1495 if (!is_ht40_allowed(channel_after))
1496 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1497 else
1498 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1499 }
1500
1501 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1502 struct ieee80211_supported_band *sband)
1503 {
1504 unsigned int i;
1505
1506 if (!sband)
1507 return;
1508
1509 for (i = 0; i < sband->n_channels; i++)
1510 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1511 }
1512
1513 static void reg_process_ht_flags(struct wiphy *wiphy)
1514 {
1515 enum ieee80211_band band;
1516
1517 if (!wiphy)
1518 return;
1519
1520 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1521 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1522 }
1523
1524 static void reg_call_notifier(struct wiphy *wiphy,
1525 struct regulatory_request *request)
1526 {
1527 if (wiphy->reg_notifier)
1528 wiphy->reg_notifier(wiphy, request);
1529 }
1530
1531 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1532 {
1533 struct cfg80211_chan_def chandef;
1534 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1535 enum nl80211_iftype iftype;
1536
1537 wdev_lock(wdev);
1538 iftype = wdev->iftype;
1539
1540 /* make sure the interface is active */
1541 if (!wdev->netdev || !netif_running(wdev->netdev))
1542 goto wdev_inactive_unlock;
1543
1544 switch (iftype) {
1545 case NL80211_IFTYPE_AP:
1546 case NL80211_IFTYPE_P2P_GO:
1547 if (!wdev->beacon_interval)
1548 goto wdev_inactive_unlock;
1549 chandef = wdev->chandef;
1550 break;
1551 case NL80211_IFTYPE_ADHOC:
1552 if (!wdev->ssid_len)
1553 goto wdev_inactive_unlock;
1554 chandef = wdev->chandef;
1555 break;
1556 case NL80211_IFTYPE_STATION:
1557 case NL80211_IFTYPE_P2P_CLIENT:
1558 if (!wdev->current_bss ||
1559 !wdev->current_bss->pub.channel)
1560 goto wdev_inactive_unlock;
1561
1562 if (!rdev->ops->get_channel ||
1563 rdev_get_channel(rdev, wdev, &chandef))
1564 cfg80211_chandef_create(&chandef,
1565 wdev->current_bss->pub.channel,
1566 NL80211_CHAN_NO_HT);
1567 break;
1568 case NL80211_IFTYPE_MONITOR:
1569 case NL80211_IFTYPE_AP_VLAN:
1570 case NL80211_IFTYPE_P2P_DEVICE:
1571 /* no enforcement required */
1572 break;
1573 default:
1574 /* others not implemented for now */
1575 WARN_ON(1);
1576 break;
1577 }
1578
1579 wdev_unlock(wdev);
1580
1581 switch (iftype) {
1582 case NL80211_IFTYPE_AP:
1583 case NL80211_IFTYPE_P2P_GO:
1584 case NL80211_IFTYPE_ADHOC:
1585 return cfg80211_reg_can_beacon(wiphy, &chandef, iftype);
1586 case NL80211_IFTYPE_STATION:
1587 case NL80211_IFTYPE_P2P_CLIENT:
1588 return cfg80211_chandef_usable(wiphy, &chandef,
1589 IEEE80211_CHAN_DISABLED);
1590 default:
1591 break;
1592 }
1593
1594 return true;
1595
1596 wdev_inactive_unlock:
1597 wdev_unlock(wdev);
1598 return true;
1599 }
1600
1601 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1602 {
1603 struct wireless_dev *wdev;
1604 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1605
1606 ASSERT_RTNL();
1607
1608 list_for_each_entry(wdev, &rdev->wdev_list, list)
1609 if (!reg_wdev_chan_valid(wiphy, wdev))
1610 cfg80211_leave(rdev, wdev);
1611 }
1612
1613 static void reg_check_chans_work(struct work_struct *work)
1614 {
1615 struct cfg80211_registered_device *rdev;
1616
1617 REG_DBG_PRINT("Verifying active interfaces after reg change\n");
1618 rtnl_lock();
1619
1620 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1621 if (!(rdev->wiphy.regulatory_flags &
1622 REGULATORY_IGNORE_STALE_KICKOFF))
1623 reg_leave_invalid_chans(&rdev->wiphy);
1624
1625 rtnl_unlock();
1626 }
1627
1628 static void reg_check_channels(void)
1629 {
1630 /*
1631 * Give usermode a chance to do something nicer (move to another
1632 * channel, orderly disconnection), before forcing a disconnection.
1633 */
1634 mod_delayed_work(system_power_efficient_wq,
1635 &reg_check_chans,
1636 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1637 }
1638
1639 static void wiphy_update_regulatory(struct wiphy *wiphy,
1640 enum nl80211_reg_initiator initiator)
1641 {
1642 enum ieee80211_band band;
1643 struct regulatory_request *lr = get_last_request();
1644
1645 if (ignore_reg_update(wiphy, initiator)) {
1646 /*
1647 * Regulatory updates set by CORE are ignored for custom
1648 * regulatory cards. Let us notify the changes to the driver,
1649 * as some drivers used this to restore its orig_* reg domain.
1650 */
1651 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1652 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1653 reg_call_notifier(wiphy, lr);
1654 return;
1655 }
1656
1657 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1658
1659 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1660 handle_band(wiphy, initiator, wiphy->bands[band]);
1661
1662 reg_process_beacons(wiphy);
1663 reg_process_ht_flags(wiphy);
1664 reg_call_notifier(wiphy, lr);
1665 }
1666
1667 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1668 {
1669 struct cfg80211_registered_device *rdev;
1670 struct wiphy *wiphy;
1671
1672 ASSERT_RTNL();
1673
1674 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1675 wiphy = &rdev->wiphy;
1676 wiphy_update_regulatory(wiphy, initiator);
1677 }
1678
1679 reg_check_channels();
1680 }
1681
1682 static void handle_channel_custom(struct wiphy *wiphy,
1683 struct ieee80211_channel *chan,
1684 const struct ieee80211_regdomain *regd)
1685 {
1686 u32 bw_flags = 0;
1687 const struct ieee80211_reg_rule *reg_rule = NULL;
1688 const struct ieee80211_power_rule *power_rule = NULL;
1689 const struct ieee80211_freq_range *freq_range = NULL;
1690 u32 max_bandwidth_khz;
1691
1692 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1693 regd);
1694
1695 if (IS_ERR(reg_rule)) {
1696 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1697 chan->center_freq);
1698 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1699 chan->flags = chan->orig_flags;
1700 return;
1701 }
1702
1703 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1704
1705 power_rule = &reg_rule->power_rule;
1706 freq_range = &reg_rule->freq_range;
1707
1708 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1709 /* Check if auto calculation requested */
1710 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1711 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1712
1713 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1714 bw_flags = IEEE80211_CHAN_NO_HT40;
1715 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1716 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1717 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1718 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1719
1720 chan->dfs_state_entered = jiffies;
1721 chan->dfs_state = NL80211_DFS_USABLE;
1722
1723 chan->beacon_found = false;
1724 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1725 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1726 chan->max_reg_power = chan->max_power =
1727 (int) MBM_TO_DBM(power_rule->max_eirp);
1728
1729 if (chan->flags & IEEE80211_CHAN_RADAR) {
1730 if (reg_rule->dfs_cac_ms)
1731 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1732 else
1733 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1734 }
1735
1736 chan->max_power = chan->max_reg_power;
1737 }
1738
1739 static void handle_band_custom(struct wiphy *wiphy,
1740 struct ieee80211_supported_band *sband,
1741 const struct ieee80211_regdomain *regd)
1742 {
1743 unsigned int i;
1744
1745 if (!sband)
1746 return;
1747
1748 for (i = 0; i < sband->n_channels; i++)
1749 handle_channel_custom(wiphy, &sband->channels[i], regd);
1750 }
1751
1752 /* Used by drivers prior to wiphy registration */
1753 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1754 const struct ieee80211_regdomain *regd)
1755 {
1756 enum ieee80211_band band;
1757 unsigned int bands_set = 0;
1758
1759 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1760 "wiphy should have REGULATORY_CUSTOM_REG\n");
1761 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1762
1763 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1764 if (!wiphy->bands[band])
1765 continue;
1766 handle_band_custom(wiphy, wiphy->bands[band], regd);
1767 bands_set++;
1768 }
1769
1770 /*
1771 * no point in calling this if it won't have any effect
1772 * on your device's supported bands.
1773 */
1774 WARN_ON(!bands_set);
1775 }
1776 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1777
1778 static void reg_set_request_processed(void)
1779 {
1780 bool need_more_processing = false;
1781 struct regulatory_request *lr = get_last_request();
1782
1783 lr->processed = true;
1784
1785 spin_lock(&reg_requests_lock);
1786 if (!list_empty(&reg_requests_list))
1787 need_more_processing = true;
1788 spin_unlock(&reg_requests_lock);
1789
1790 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1791 cancel_delayed_work(&reg_timeout);
1792
1793 if (need_more_processing)
1794 schedule_work(&reg_work);
1795 }
1796
1797 /**
1798 * reg_process_hint_core - process core regulatory requests
1799 * @pending_request: a pending core regulatory request
1800 *
1801 * The wireless subsystem can use this function to process
1802 * a regulatory request issued by the regulatory core.
1803 *
1804 * Returns one of the different reg request treatment values.
1805 */
1806 static enum reg_request_treatment
1807 reg_process_hint_core(struct regulatory_request *core_request)
1808 {
1809
1810 core_request->intersect = false;
1811 core_request->processed = false;
1812
1813 reg_update_last_request(core_request);
1814
1815 return reg_call_crda(core_request);
1816 }
1817
1818 static enum reg_request_treatment
1819 __reg_process_hint_user(struct regulatory_request *user_request)
1820 {
1821 struct regulatory_request *lr = get_last_request();
1822
1823 if (reg_request_indoor(user_request)) {
1824 reg_is_indoor = true;
1825 return REG_REQ_USER_HINT_HANDLED;
1826 }
1827
1828 if (reg_request_cell_base(user_request))
1829 return reg_ignore_cell_hint(user_request);
1830
1831 if (reg_request_cell_base(lr))
1832 return REG_REQ_IGNORE;
1833
1834 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1835 return REG_REQ_INTERSECT;
1836 /*
1837 * If the user knows better the user should set the regdom
1838 * to their country before the IE is picked up
1839 */
1840 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1841 lr->intersect)
1842 return REG_REQ_IGNORE;
1843 /*
1844 * Process user requests only after previous user/driver/core
1845 * requests have been processed
1846 */
1847 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1848 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1849 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1850 regdom_changes(lr->alpha2))
1851 return REG_REQ_IGNORE;
1852
1853 if (!regdom_changes(user_request->alpha2))
1854 return REG_REQ_ALREADY_SET;
1855
1856 return REG_REQ_OK;
1857 }
1858
1859 /**
1860 * reg_process_hint_user - process user regulatory requests
1861 * @user_request: a pending user regulatory request
1862 *
1863 * The wireless subsystem can use this function to process
1864 * a regulatory request initiated by userspace.
1865 *
1866 * Returns one of the different reg request treatment values.
1867 */
1868 static enum reg_request_treatment
1869 reg_process_hint_user(struct regulatory_request *user_request)
1870 {
1871 enum reg_request_treatment treatment;
1872
1873 treatment = __reg_process_hint_user(user_request);
1874 if (treatment == REG_REQ_IGNORE ||
1875 treatment == REG_REQ_ALREADY_SET ||
1876 treatment == REG_REQ_USER_HINT_HANDLED) {
1877 reg_free_request(user_request);
1878 return treatment;
1879 }
1880
1881 user_request->intersect = treatment == REG_REQ_INTERSECT;
1882 user_request->processed = false;
1883
1884 reg_update_last_request(user_request);
1885
1886 user_alpha2[0] = user_request->alpha2[0];
1887 user_alpha2[1] = user_request->alpha2[1];
1888
1889 return reg_call_crda(user_request);
1890 }
1891
1892 static enum reg_request_treatment
1893 __reg_process_hint_driver(struct regulatory_request *driver_request)
1894 {
1895 struct regulatory_request *lr = get_last_request();
1896
1897 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1898 if (regdom_changes(driver_request->alpha2))
1899 return REG_REQ_OK;
1900 return REG_REQ_ALREADY_SET;
1901 }
1902
1903 /*
1904 * This would happen if you unplug and plug your card
1905 * back in or if you add a new device for which the previously
1906 * loaded card also agrees on the regulatory domain.
1907 */
1908 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1909 !regdom_changes(driver_request->alpha2))
1910 return REG_REQ_ALREADY_SET;
1911
1912 return REG_REQ_INTERSECT;
1913 }
1914
1915 /**
1916 * reg_process_hint_driver - process driver regulatory requests
1917 * @driver_request: a pending driver regulatory request
1918 *
1919 * The wireless subsystem can use this function to process
1920 * a regulatory request issued by an 802.11 driver.
1921 *
1922 * Returns one of the different reg request treatment values.
1923 */
1924 static enum reg_request_treatment
1925 reg_process_hint_driver(struct wiphy *wiphy,
1926 struct regulatory_request *driver_request)
1927 {
1928 const struct ieee80211_regdomain *regd, *tmp;
1929 enum reg_request_treatment treatment;
1930
1931 treatment = __reg_process_hint_driver(driver_request);
1932
1933 switch (treatment) {
1934 case REG_REQ_OK:
1935 break;
1936 case REG_REQ_IGNORE:
1937 case REG_REQ_USER_HINT_HANDLED:
1938 reg_free_request(driver_request);
1939 return treatment;
1940 case REG_REQ_INTERSECT:
1941 /* fall through */
1942 case REG_REQ_ALREADY_SET:
1943 regd = reg_copy_regd(get_cfg80211_regdom());
1944 if (IS_ERR(regd)) {
1945 reg_free_request(driver_request);
1946 return REG_REQ_IGNORE;
1947 }
1948
1949 tmp = get_wiphy_regdom(wiphy);
1950 rcu_assign_pointer(wiphy->regd, regd);
1951 rcu_free_regdom(tmp);
1952 }
1953
1954
1955 driver_request->intersect = treatment == REG_REQ_INTERSECT;
1956 driver_request->processed = false;
1957
1958 reg_update_last_request(driver_request);
1959
1960 /*
1961 * Since CRDA will not be called in this case as we already
1962 * have applied the requested regulatory domain before we just
1963 * inform userspace we have processed the request
1964 */
1965 if (treatment == REG_REQ_ALREADY_SET) {
1966 nl80211_send_reg_change_event(driver_request);
1967 reg_set_request_processed();
1968 return treatment;
1969 }
1970
1971 return reg_call_crda(driver_request);
1972 }
1973
1974 static enum reg_request_treatment
1975 __reg_process_hint_country_ie(struct wiphy *wiphy,
1976 struct regulatory_request *country_ie_request)
1977 {
1978 struct wiphy *last_wiphy = NULL;
1979 struct regulatory_request *lr = get_last_request();
1980
1981 if (reg_request_cell_base(lr)) {
1982 /* Trust a Cell base station over the AP's country IE */
1983 if (regdom_changes(country_ie_request->alpha2))
1984 return REG_REQ_IGNORE;
1985 return REG_REQ_ALREADY_SET;
1986 } else {
1987 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1988 return REG_REQ_IGNORE;
1989 }
1990
1991 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
1992 return -EINVAL;
1993
1994 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
1995 return REG_REQ_OK;
1996
1997 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1998
1999 if (last_wiphy != wiphy) {
2000 /*
2001 * Two cards with two APs claiming different
2002 * Country IE alpha2s. We could
2003 * intersect them, but that seems unlikely
2004 * to be correct. Reject second one for now.
2005 */
2006 if (regdom_changes(country_ie_request->alpha2))
2007 return REG_REQ_IGNORE;
2008 return REG_REQ_ALREADY_SET;
2009 }
2010
2011 if (regdom_changes(country_ie_request->alpha2))
2012 return REG_REQ_OK;
2013 return REG_REQ_ALREADY_SET;
2014 }
2015
2016 /**
2017 * reg_process_hint_country_ie - process regulatory requests from country IEs
2018 * @country_ie_request: a regulatory request from a country IE
2019 *
2020 * The wireless subsystem can use this function to process
2021 * a regulatory request issued by a country Information Element.
2022 *
2023 * Returns one of the different reg request treatment values.
2024 */
2025 static enum reg_request_treatment
2026 reg_process_hint_country_ie(struct wiphy *wiphy,
2027 struct regulatory_request *country_ie_request)
2028 {
2029 enum reg_request_treatment treatment;
2030
2031 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2032
2033 switch (treatment) {
2034 case REG_REQ_OK:
2035 break;
2036 case REG_REQ_IGNORE:
2037 case REG_REQ_USER_HINT_HANDLED:
2038 /* fall through */
2039 case REG_REQ_ALREADY_SET:
2040 reg_free_request(country_ie_request);
2041 return treatment;
2042 case REG_REQ_INTERSECT:
2043 reg_free_request(country_ie_request);
2044 /*
2045 * This doesn't happen yet, not sure we
2046 * ever want to support it for this case.
2047 */
2048 WARN_ONCE(1, "Unexpected intersection for country IEs");
2049 return REG_REQ_IGNORE;
2050 }
2051
2052 country_ie_request->intersect = false;
2053 country_ie_request->processed = false;
2054
2055 reg_update_last_request(country_ie_request);
2056
2057 return reg_call_crda(country_ie_request);
2058 }
2059
2060 /* This processes *all* regulatory hints */
2061 static void reg_process_hint(struct regulatory_request *reg_request)
2062 {
2063 struct wiphy *wiphy = NULL;
2064 enum reg_request_treatment treatment;
2065
2066 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2067 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2068
2069 switch (reg_request->initiator) {
2070 case NL80211_REGDOM_SET_BY_CORE:
2071 reg_process_hint_core(reg_request);
2072 return;
2073 case NL80211_REGDOM_SET_BY_USER:
2074 treatment = reg_process_hint_user(reg_request);
2075 if (treatment == REG_REQ_IGNORE ||
2076 treatment == REG_REQ_ALREADY_SET ||
2077 treatment == REG_REQ_USER_HINT_HANDLED)
2078 return;
2079 queue_delayed_work(system_power_efficient_wq,
2080 &reg_timeout, msecs_to_jiffies(3142));
2081 return;
2082 case NL80211_REGDOM_SET_BY_DRIVER:
2083 if (!wiphy)
2084 goto out_free;
2085 treatment = reg_process_hint_driver(wiphy, reg_request);
2086 break;
2087 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2088 if (!wiphy)
2089 goto out_free;
2090 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2091 break;
2092 default:
2093 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2094 goto out_free;
2095 }
2096
2097 /* This is required so that the orig_* parameters are saved */
2098 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2099 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2100 wiphy_update_regulatory(wiphy, reg_request->initiator);
2101 reg_check_channels();
2102 }
2103
2104 return;
2105
2106 out_free:
2107 reg_free_request(reg_request);
2108 }
2109
2110 /*
2111 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2112 * Regulatory hints come on a first come first serve basis and we
2113 * must process each one atomically.
2114 */
2115 static void reg_process_pending_hints(void)
2116 {
2117 struct regulatory_request *reg_request, *lr;
2118
2119 lr = get_last_request();
2120
2121 /* When last_request->processed becomes true this will be rescheduled */
2122 if (lr && !lr->processed) {
2123 reg_process_hint(lr);
2124 return;
2125 }
2126
2127 spin_lock(&reg_requests_lock);
2128
2129 if (list_empty(&reg_requests_list)) {
2130 spin_unlock(&reg_requests_lock);
2131 return;
2132 }
2133
2134 reg_request = list_first_entry(&reg_requests_list,
2135 struct regulatory_request,
2136 list);
2137 list_del_init(&reg_request->list);
2138
2139 spin_unlock(&reg_requests_lock);
2140
2141 reg_process_hint(reg_request);
2142 }
2143
2144 /* Processes beacon hints -- this has nothing to do with country IEs */
2145 static void reg_process_pending_beacon_hints(void)
2146 {
2147 struct cfg80211_registered_device *rdev;
2148 struct reg_beacon *pending_beacon, *tmp;
2149
2150 /* This goes through the _pending_ beacon list */
2151 spin_lock_bh(&reg_pending_beacons_lock);
2152
2153 list_for_each_entry_safe(pending_beacon, tmp,
2154 &reg_pending_beacons, list) {
2155 list_del_init(&pending_beacon->list);
2156
2157 /* Applies the beacon hint to current wiphys */
2158 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2159 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2160
2161 /* Remembers the beacon hint for new wiphys or reg changes */
2162 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2163 }
2164
2165 spin_unlock_bh(&reg_pending_beacons_lock);
2166 }
2167
2168 static void reg_todo(struct work_struct *work)
2169 {
2170 rtnl_lock();
2171 reg_process_pending_hints();
2172 reg_process_pending_beacon_hints();
2173 rtnl_unlock();
2174 }
2175
2176 static void queue_regulatory_request(struct regulatory_request *request)
2177 {
2178 request->alpha2[0] = toupper(request->alpha2[0]);
2179 request->alpha2[1] = toupper(request->alpha2[1]);
2180
2181 spin_lock(&reg_requests_lock);
2182 list_add_tail(&request->list, &reg_requests_list);
2183 spin_unlock(&reg_requests_lock);
2184
2185 schedule_work(&reg_work);
2186 }
2187
2188 /*
2189 * Core regulatory hint -- happens during cfg80211_init()
2190 * and when we restore regulatory settings.
2191 */
2192 static int regulatory_hint_core(const char *alpha2)
2193 {
2194 struct regulatory_request *request;
2195
2196 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2197 if (!request)
2198 return -ENOMEM;
2199
2200 request->alpha2[0] = alpha2[0];
2201 request->alpha2[1] = alpha2[1];
2202 request->initiator = NL80211_REGDOM_SET_BY_CORE;
2203
2204 queue_regulatory_request(request);
2205
2206 return 0;
2207 }
2208
2209 /* User hints */
2210 int regulatory_hint_user(const char *alpha2,
2211 enum nl80211_user_reg_hint_type user_reg_hint_type)
2212 {
2213 struct regulatory_request *request;
2214
2215 if (WARN_ON(!alpha2))
2216 return -EINVAL;
2217
2218 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2219 if (!request)
2220 return -ENOMEM;
2221
2222 request->wiphy_idx = WIPHY_IDX_INVALID;
2223 request->alpha2[0] = alpha2[0];
2224 request->alpha2[1] = alpha2[1];
2225 request->initiator = NL80211_REGDOM_SET_BY_USER;
2226 request->user_reg_hint_type = user_reg_hint_type;
2227
2228 queue_regulatory_request(request);
2229
2230 return 0;
2231 }
2232
2233 int regulatory_hint_indoor_user(void)
2234 {
2235 struct regulatory_request *request;
2236
2237 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2238 if (!request)
2239 return -ENOMEM;
2240
2241 request->wiphy_idx = WIPHY_IDX_INVALID;
2242 request->initiator = NL80211_REGDOM_SET_BY_USER;
2243 request->user_reg_hint_type = NL80211_USER_REG_HINT_INDOOR;
2244 queue_regulatory_request(request);
2245
2246 return 0;
2247 }
2248
2249 /* Driver hints */
2250 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2251 {
2252 struct regulatory_request *request;
2253
2254 if (WARN_ON(!alpha2 || !wiphy))
2255 return -EINVAL;
2256
2257 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2258
2259 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2260 if (!request)
2261 return -ENOMEM;
2262
2263 request->wiphy_idx = get_wiphy_idx(wiphy);
2264
2265 request->alpha2[0] = alpha2[0];
2266 request->alpha2[1] = alpha2[1];
2267 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2268
2269 queue_regulatory_request(request);
2270
2271 return 0;
2272 }
2273 EXPORT_SYMBOL(regulatory_hint);
2274
2275 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2276 const u8 *country_ie, u8 country_ie_len)
2277 {
2278 char alpha2[2];
2279 enum environment_cap env = ENVIRON_ANY;
2280 struct regulatory_request *request = NULL, *lr;
2281
2282 /* IE len must be evenly divisible by 2 */
2283 if (country_ie_len & 0x01)
2284 return;
2285
2286 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2287 return;
2288
2289 request = kzalloc(sizeof(*request), GFP_KERNEL);
2290 if (!request)
2291 return;
2292
2293 alpha2[0] = country_ie[0];
2294 alpha2[1] = country_ie[1];
2295
2296 if (country_ie[2] == 'I')
2297 env = ENVIRON_INDOOR;
2298 else if (country_ie[2] == 'O')
2299 env = ENVIRON_OUTDOOR;
2300
2301 rcu_read_lock();
2302 lr = get_last_request();
2303
2304 if (unlikely(!lr))
2305 goto out;
2306
2307 /*
2308 * We will run this only upon a successful connection on cfg80211.
2309 * We leave conflict resolution to the workqueue, where can hold
2310 * the RTNL.
2311 */
2312 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2313 lr->wiphy_idx != WIPHY_IDX_INVALID)
2314 goto out;
2315
2316 request->wiphy_idx = get_wiphy_idx(wiphy);
2317 request->alpha2[0] = alpha2[0];
2318 request->alpha2[1] = alpha2[1];
2319 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2320 request->country_ie_env = env;
2321
2322 queue_regulatory_request(request);
2323 request = NULL;
2324 out:
2325 kfree(request);
2326 rcu_read_unlock();
2327 }
2328
2329 static void restore_alpha2(char *alpha2, bool reset_user)
2330 {
2331 /* indicates there is no alpha2 to consider for restoration */
2332 alpha2[0] = '9';
2333 alpha2[1] = '7';
2334
2335 /* The user setting has precedence over the module parameter */
2336 if (is_user_regdom_saved()) {
2337 /* Unless we're asked to ignore it and reset it */
2338 if (reset_user) {
2339 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2340 user_alpha2[0] = '9';
2341 user_alpha2[1] = '7';
2342
2343 /*
2344 * If we're ignoring user settings, we still need to
2345 * check the module parameter to ensure we put things
2346 * back as they were for a full restore.
2347 */
2348 if (!is_world_regdom(ieee80211_regdom)) {
2349 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2350 ieee80211_regdom[0], ieee80211_regdom[1]);
2351 alpha2[0] = ieee80211_regdom[0];
2352 alpha2[1] = ieee80211_regdom[1];
2353 }
2354 } else {
2355 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2356 user_alpha2[0], user_alpha2[1]);
2357 alpha2[0] = user_alpha2[0];
2358 alpha2[1] = user_alpha2[1];
2359 }
2360 } else if (!is_world_regdom(ieee80211_regdom)) {
2361 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2362 ieee80211_regdom[0], ieee80211_regdom[1]);
2363 alpha2[0] = ieee80211_regdom[0];
2364 alpha2[1] = ieee80211_regdom[1];
2365 } else
2366 REG_DBG_PRINT("Restoring regulatory settings\n");
2367 }
2368
2369 static void restore_custom_reg_settings(struct wiphy *wiphy)
2370 {
2371 struct ieee80211_supported_band *sband;
2372 enum ieee80211_band band;
2373 struct ieee80211_channel *chan;
2374 int i;
2375
2376 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2377 sband = wiphy->bands[band];
2378 if (!sband)
2379 continue;
2380 for (i = 0; i < sband->n_channels; i++) {
2381 chan = &sband->channels[i];
2382 chan->flags = chan->orig_flags;
2383 chan->max_antenna_gain = chan->orig_mag;
2384 chan->max_power = chan->orig_mpwr;
2385 chan->beacon_found = false;
2386 }
2387 }
2388 }
2389
2390 /*
2391 * Restoring regulatory settings involves ingoring any
2392 * possibly stale country IE information and user regulatory
2393 * settings if so desired, this includes any beacon hints
2394 * learned as we could have traveled outside to another country
2395 * after disconnection. To restore regulatory settings we do
2396 * exactly what we did at bootup:
2397 *
2398 * - send a core regulatory hint
2399 * - send a user regulatory hint if applicable
2400 *
2401 * Device drivers that send a regulatory hint for a specific country
2402 * keep their own regulatory domain on wiphy->regd so that does does
2403 * not need to be remembered.
2404 */
2405 static void restore_regulatory_settings(bool reset_user)
2406 {
2407 char alpha2[2];
2408 char world_alpha2[2];
2409 struct reg_beacon *reg_beacon, *btmp;
2410 struct regulatory_request *reg_request, *tmp;
2411 LIST_HEAD(tmp_reg_req_list);
2412 struct cfg80211_registered_device *rdev;
2413
2414 ASSERT_RTNL();
2415
2416 reg_is_indoor = false;
2417
2418 reset_regdomains(true, &world_regdom);
2419 restore_alpha2(alpha2, reset_user);
2420
2421 /*
2422 * If there's any pending requests we simply
2423 * stash them to a temporary pending queue and
2424 * add then after we've restored regulatory
2425 * settings.
2426 */
2427 spin_lock(&reg_requests_lock);
2428 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2429 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
2430 continue;
2431 list_move_tail(&reg_request->list, &tmp_reg_req_list);
2432 }
2433 spin_unlock(&reg_requests_lock);
2434
2435 /* Clear beacon hints */
2436 spin_lock_bh(&reg_pending_beacons_lock);
2437 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2438 list_del(&reg_beacon->list);
2439 kfree(reg_beacon);
2440 }
2441 spin_unlock_bh(&reg_pending_beacons_lock);
2442
2443 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2444 list_del(&reg_beacon->list);
2445 kfree(reg_beacon);
2446 }
2447
2448 /* First restore to the basic regulatory settings */
2449 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2450 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2451
2452 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2453 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2454 restore_custom_reg_settings(&rdev->wiphy);
2455 }
2456
2457 regulatory_hint_core(world_alpha2);
2458
2459 /*
2460 * This restores the ieee80211_regdom module parameter
2461 * preference or the last user requested regulatory
2462 * settings, user regulatory settings takes precedence.
2463 */
2464 if (is_an_alpha2(alpha2))
2465 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2466
2467 spin_lock(&reg_requests_lock);
2468 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2469 spin_unlock(&reg_requests_lock);
2470
2471 REG_DBG_PRINT("Kicking the queue\n");
2472
2473 schedule_work(&reg_work);
2474 }
2475
2476 void regulatory_hint_disconnect(void)
2477 {
2478 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2479 restore_regulatory_settings(false);
2480 }
2481
2482 static bool freq_is_chan_12_13_14(u16 freq)
2483 {
2484 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2485 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2486 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2487 return true;
2488 return false;
2489 }
2490
2491 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2492 {
2493 struct reg_beacon *pending_beacon;
2494
2495 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2496 if (beacon_chan->center_freq ==
2497 pending_beacon->chan.center_freq)
2498 return true;
2499 return false;
2500 }
2501
2502 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2503 struct ieee80211_channel *beacon_chan,
2504 gfp_t gfp)
2505 {
2506 struct reg_beacon *reg_beacon;
2507 bool processing;
2508
2509 if (beacon_chan->beacon_found ||
2510 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2511 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2512 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2513 return 0;
2514
2515 spin_lock_bh(&reg_pending_beacons_lock);
2516 processing = pending_reg_beacon(beacon_chan);
2517 spin_unlock_bh(&reg_pending_beacons_lock);
2518
2519 if (processing)
2520 return 0;
2521
2522 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2523 if (!reg_beacon)
2524 return -ENOMEM;
2525
2526 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2527 beacon_chan->center_freq,
2528 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2529 wiphy_name(wiphy));
2530
2531 memcpy(&reg_beacon->chan, beacon_chan,
2532 sizeof(struct ieee80211_channel));
2533
2534 /*
2535 * Since we can be called from BH or and non-BH context
2536 * we must use spin_lock_bh()
2537 */
2538 spin_lock_bh(&reg_pending_beacons_lock);
2539 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2540 spin_unlock_bh(&reg_pending_beacons_lock);
2541
2542 schedule_work(&reg_work);
2543
2544 return 0;
2545 }
2546
2547 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2548 {
2549 unsigned int i;
2550 const struct ieee80211_reg_rule *reg_rule = NULL;
2551 const struct ieee80211_freq_range *freq_range = NULL;
2552 const struct ieee80211_power_rule *power_rule = NULL;
2553 char bw[32], cac_time[32];
2554
2555 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2556
2557 for (i = 0; i < rd->n_reg_rules; i++) {
2558 reg_rule = &rd->reg_rules[i];
2559 freq_range = &reg_rule->freq_range;
2560 power_rule = &reg_rule->power_rule;
2561
2562 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2563 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2564 freq_range->max_bandwidth_khz,
2565 reg_get_max_bandwidth(rd, reg_rule));
2566 else
2567 snprintf(bw, sizeof(bw), "%d KHz",
2568 freq_range->max_bandwidth_khz);
2569
2570 if (reg_rule->flags & NL80211_RRF_DFS)
2571 scnprintf(cac_time, sizeof(cac_time), "%u s",
2572 reg_rule->dfs_cac_ms/1000);
2573 else
2574 scnprintf(cac_time, sizeof(cac_time), "N/A");
2575
2576
2577 /*
2578 * There may not be documentation for max antenna gain
2579 * in certain regions
2580 */
2581 if (power_rule->max_antenna_gain)
2582 pr_info(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2583 freq_range->start_freq_khz,
2584 freq_range->end_freq_khz,
2585 bw,
2586 power_rule->max_antenna_gain,
2587 power_rule->max_eirp,
2588 cac_time);
2589 else
2590 pr_info(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2591 freq_range->start_freq_khz,
2592 freq_range->end_freq_khz,
2593 bw,
2594 power_rule->max_eirp,
2595 cac_time);
2596 }
2597 }
2598
2599 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2600 {
2601 switch (dfs_region) {
2602 case NL80211_DFS_UNSET:
2603 case NL80211_DFS_FCC:
2604 case NL80211_DFS_ETSI:
2605 case NL80211_DFS_JP:
2606 return true;
2607 default:
2608 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2609 dfs_region);
2610 return false;
2611 }
2612 }
2613
2614 static void print_regdomain(const struct ieee80211_regdomain *rd)
2615 {
2616 struct regulatory_request *lr = get_last_request();
2617
2618 if (is_intersected_alpha2(rd->alpha2)) {
2619 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2620 struct cfg80211_registered_device *rdev;
2621 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2622 if (rdev) {
2623 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2624 rdev->country_ie_alpha2[0],
2625 rdev->country_ie_alpha2[1]);
2626 } else
2627 pr_info("Current regulatory domain intersected:\n");
2628 } else
2629 pr_info("Current regulatory domain intersected:\n");
2630 } else if (is_world_regdom(rd->alpha2)) {
2631 pr_info("World regulatory domain updated:\n");
2632 } else {
2633 if (is_unknown_alpha2(rd->alpha2))
2634 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2635 else {
2636 if (reg_request_cell_base(lr))
2637 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2638 rd->alpha2[0], rd->alpha2[1]);
2639 else
2640 pr_info("Regulatory domain changed to country: %c%c\n",
2641 rd->alpha2[0], rd->alpha2[1]);
2642 }
2643 }
2644
2645 pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2646 print_rd_rules(rd);
2647 }
2648
2649 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2650 {
2651 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2652 print_rd_rules(rd);
2653 }
2654
2655 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2656 {
2657 if (!is_world_regdom(rd->alpha2))
2658 return -EINVAL;
2659 update_world_regdomain(rd);
2660 return 0;
2661 }
2662
2663 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2664 struct regulatory_request *user_request)
2665 {
2666 const struct ieee80211_regdomain *intersected_rd = NULL;
2667
2668 if (!regdom_changes(rd->alpha2))
2669 return -EALREADY;
2670
2671 if (!is_valid_rd(rd)) {
2672 pr_err("Invalid regulatory domain detected:\n");
2673 print_regdomain_info(rd);
2674 return -EINVAL;
2675 }
2676
2677 if (!user_request->intersect) {
2678 reset_regdomains(false, rd);
2679 return 0;
2680 }
2681
2682 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2683 if (!intersected_rd)
2684 return -EINVAL;
2685
2686 kfree(rd);
2687 rd = NULL;
2688 reset_regdomains(false, intersected_rd);
2689
2690 return 0;
2691 }
2692
2693 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2694 struct regulatory_request *driver_request)
2695 {
2696 const struct ieee80211_regdomain *regd;
2697 const struct ieee80211_regdomain *intersected_rd = NULL;
2698 const struct ieee80211_regdomain *tmp;
2699 struct wiphy *request_wiphy;
2700
2701 if (is_world_regdom(rd->alpha2))
2702 return -EINVAL;
2703
2704 if (!regdom_changes(rd->alpha2))
2705 return -EALREADY;
2706
2707 if (!is_valid_rd(rd)) {
2708 pr_err("Invalid regulatory domain detected:\n");
2709 print_regdomain_info(rd);
2710 return -EINVAL;
2711 }
2712
2713 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2714 if (!request_wiphy) {
2715 queue_delayed_work(system_power_efficient_wq,
2716 &reg_timeout, 0);
2717 return -ENODEV;
2718 }
2719
2720 if (!driver_request->intersect) {
2721 if (request_wiphy->regd)
2722 return -EALREADY;
2723
2724 regd = reg_copy_regd(rd);
2725 if (IS_ERR(regd))
2726 return PTR_ERR(regd);
2727
2728 rcu_assign_pointer(request_wiphy->regd, regd);
2729 reset_regdomains(false, rd);
2730 return 0;
2731 }
2732
2733 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2734 if (!intersected_rd)
2735 return -EINVAL;
2736
2737 /*
2738 * We can trash what CRDA provided now.
2739 * However if a driver requested this specific regulatory
2740 * domain we keep it for its private use
2741 */
2742 tmp = get_wiphy_regdom(request_wiphy);
2743 rcu_assign_pointer(request_wiphy->regd, rd);
2744 rcu_free_regdom(tmp);
2745
2746 rd = NULL;
2747
2748 reset_regdomains(false, intersected_rd);
2749
2750 return 0;
2751 }
2752
2753 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2754 struct regulatory_request *country_ie_request)
2755 {
2756 struct wiphy *request_wiphy;
2757
2758 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2759 !is_unknown_alpha2(rd->alpha2))
2760 return -EINVAL;
2761
2762 /*
2763 * Lets only bother proceeding on the same alpha2 if the current
2764 * rd is non static (it means CRDA was present and was used last)
2765 * and the pending request came in from a country IE
2766 */
2767
2768 if (!is_valid_rd(rd)) {
2769 pr_err("Invalid regulatory domain detected:\n");
2770 print_regdomain_info(rd);
2771 return -EINVAL;
2772 }
2773
2774 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2775 if (!request_wiphy) {
2776 queue_delayed_work(system_power_efficient_wq,
2777 &reg_timeout, 0);
2778 return -ENODEV;
2779 }
2780
2781 if (country_ie_request->intersect)
2782 return -EINVAL;
2783
2784 reset_regdomains(false, rd);
2785 return 0;
2786 }
2787
2788 /*
2789 * Use this call to set the current regulatory domain. Conflicts with
2790 * multiple drivers can be ironed out later. Caller must've already
2791 * kmalloc'd the rd structure.
2792 */
2793 int set_regdom(const struct ieee80211_regdomain *rd)
2794 {
2795 struct regulatory_request *lr;
2796 bool user_reset = false;
2797 int r;
2798
2799 if (!reg_is_valid_request(rd->alpha2)) {
2800 kfree(rd);
2801 return -EINVAL;
2802 }
2803
2804 lr = get_last_request();
2805
2806 /* Note that this doesn't update the wiphys, this is done below */
2807 switch (lr->initiator) {
2808 case NL80211_REGDOM_SET_BY_CORE:
2809 r = reg_set_rd_core(rd);
2810 break;
2811 case NL80211_REGDOM_SET_BY_USER:
2812 r = reg_set_rd_user(rd, lr);
2813 user_reset = true;
2814 break;
2815 case NL80211_REGDOM_SET_BY_DRIVER:
2816 r = reg_set_rd_driver(rd, lr);
2817 break;
2818 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2819 r = reg_set_rd_country_ie(rd, lr);
2820 break;
2821 default:
2822 WARN(1, "invalid initiator %d\n", lr->initiator);
2823 return -EINVAL;
2824 }
2825
2826 if (r) {
2827 switch (r) {
2828 case -EALREADY:
2829 reg_set_request_processed();
2830 break;
2831 default:
2832 /* Back to world regulatory in case of errors */
2833 restore_regulatory_settings(user_reset);
2834 }
2835
2836 kfree(rd);
2837 return r;
2838 }
2839
2840 /* This would make this whole thing pointless */
2841 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2842 return -EINVAL;
2843
2844 /* update all wiphys now with the new established regulatory domain */
2845 update_all_wiphy_regulatory(lr->initiator);
2846
2847 print_regdomain(get_cfg80211_regdom());
2848
2849 nl80211_send_reg_change_event(lr);
2850
2851 reg_set_request_processed();
2852
2853 return 0;
2854 }
2855
2856 void wiphy_regulatory_register(struct wiphy *wiphy)
2857 {
2858 struct regulatory_request *lr;
2859
2860 if (!reg_dev_ignore_cell_hint(wiphy))
2861 reg_num_devs_support_basehint++;
2862
2863 lr = get_last_request();
2864 wiphy_update_regulatory(wiphy, lr->initiator);
2865 }
2866
2867 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2868 {
2869 struct wiphy *request_wiphy = NULL;
2870 struct regulatory_request *lr;
2871
2872 lr = get_last_request();
2873
2874 if (!reg_dev_ignore_cell_hint(wiphy))
2875 reg_num_devs_support_basehint--;
2876
2877 rcu_free_regdom(get_wiphy_regdom(wiphy));
2878 RCU_INIT_POINTER(wiphy->regd, NULL);
2879
2880 if (lr)
2881 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2882
2883 if (!request_wiphy || request_wiphy != wiphy)
2884 return;
2885
2886 lr->wiphy_idx = WIPHY_IDX_INVALID;
2887 lr->country_ie_env = ENVIRON_ANY;
2888 }
2889
2890 static void reg_timeout_work(struct work_struct *work)
2891 {
2892 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2893 rtnl_lock();
2894 restore_regulatory_settings(true);
2895 rtnl_unlock();
2896 }
2897
2898 /*
2899 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
2900 * UNII band definitions
2901 */
2902 int cfg80211_get_unii(int freq)
2903 {
2904 /* UNII-1 */
2905 if (freq >= 5150 && freq <= 5250)
2906 return 0;
2907
2908 /* UNII-2A */
2909 if (freq > 5250 && freq <= 5350)
2910 return 1;
2911
2912 /* UNII-2B */
2913 if (freq > 5350 && freq <= 5470)
2914 return 2;
2915
2916 /* UNII-2C */
2917 if (freq > 5470 && freq <= 5725)
2918 return 3;
2919
2920 /* UNII-3 */
2921 if (freq > 5725 && freq <= 5825)
2922 return 4;
2923
2924 return -EINVAL;
2925 }
2926
2927 bool regulatory_indoor_allowed(void)
2928 {
2929 return reg_is_indoor;
2930 }
2931
2932 int __init regulatory_init(void)
2933 {
2934 int err = 0;
2935
2936 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2937 if (IS_ERR(reg_pdev))
2938 return PTR_ERR(reg_pdev);
2939
2940 spin_lock_init(&reg_requests_lock);
2941 spin_lock_init(&reg_pending_beacons_lock);
2942
2943 reg_regdb_size_check();
2944
2945 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2946
2947 user_alpha2[0] = '9';
2948 user_alpha2[1] = '7';
2949
2950 /* We always try to get an update for the static regdomain */
2951 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2952 if (err) {
2953 if (err == -ENOMEM)
2954 return err;
2955 /*
2956 * N.B. kobject_uevent_env() can fail mainly for when we're out
2957 * memory which is handled and propagated appropriately above
2958 * but it can also fail during a netlink_broadcast() or during
2959 * early boot for call_usermodehelper(). For now treat these
2960 * errors as non-fatal.
2961 */
2962 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2963 }
2964
2965 /*
2966 * Finally, if the user set the module parameter treat it
2967 * as a user hint.
2968 */
2969 if (!is_world_regdom(ieee80211_regdom))
2970 regulatory_hint_user(ieee80211_regdom,
2971 NL80211_USER_REG_HINT_USER);
2972
2973 return 0;
2974 }
2975
2976 void regulatory_exit(void)
2977 {
2978 struct regulatory_request *reg_request, *tmp;
2979 struct reg_beacon *reg_beacon, *btmp;
2980
2981 cancel_work_sync(&reg_work);
2982 cancel_delayed_work_sync(&reg_timeout);
2983 cancel_delayed_work_sync(&reg_check_chans);
2984
2985 /* Lock to suppress warnings */
2986 rtnl_lock();
2987 reset_regdomains(true, NULL);
2988 rtnl_unlock();
2989
2990 dev_set_uevent_suppress(&reg_pdev->dev, true);
2991
2992 platform_device_unregister(reg_pdev);
2993
2994 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2995 list_del(&reg_beacon->list);
2996 kfree(reg_beacon);
2997 }
2998
2999 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3000 list_del(&reg_beacon->list);
3001 kfree(reg_beacon);
3002 }
3003
3004 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3005 list_del(&reg_request->list);
3006 kfree(reg_request);
3007 }
3008 }