]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/wireless/reg.c
Merge tag 'usb-3.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[mirror_ubuntu-jammy-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20
21 /**
22 * DOC: Wireless regulatory infrastructure
23 *
24 * The usual implementation is for a driver to read a device EEPROM to
25 * determine which regulatory domain it should be operating under, then
26 * looking up the allowable channels in a driver-local table and finally
27 * registering those channels in the wiphy structure.
28 *
29 * Another set of compliance enforcement is for drivers to use their
30 * own compliance limits which can be stored on the EEPROM. The host
31 * driver or firmware may ensure these are used.
32 *
33 * In addition to all this we provide an extra layer of regulatory
34 * conformance. For drivers which do not have any regulatory
35 * information CRDA provides the complete regulatory solution.
36 * For others it provides a community effort on further restrictions
37 * to enhance compliance.
38 *
39 * Note: When number of rules --> infinity we will not be able to
40 * index on alpha2 any more, instead we'll probably have to
41 * rely on some SHA1 checksum of the regdomain for example.
42 *
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/random.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "regdb.h"
60 #include "nl80211.h"
61
62 #ifdef CONFIG_CFG80211_REG_DEBUG
63 #define REG_DBG_PRINT(format, args...) \
64 printk(KERN_DEBUG pr_fmt(format), ##args)
65 #else
66 #define REG_DBG_PRINT(args...)
67 #endif
68
69 static struct regulatory_request core_request_world = {
70 .initiator = NL80211_REGDOM_SET_BY_CORE,
71 .alpha2[0] = '0',
72 .alpha2[1] = '0',
73 .intersect = false,
74 .processed = true,
75 .country_ie_env = ENVIRON_ANY,
76 };
77
78 /* Receipt of information from last regulatory request */
79 static struct regulatory_request *last_request = &core_request_world;
80
81 /* To trigger userspace events */
82 static struct platform_device *reg_pdev;
83
84 static struct device_type reg_device_type = {
85 .uevent = reg_device_uevent,
86 };
87
88 /*
89 * Central wireless core regulatory domains, we only need two,
90 * the current one and a world regulatory domain in case we have no
91 * information to give us an alpha2
92 */
93 const struct ieee80211_regdomain *cfg80211_regdomain;
94
95 /*
96 * Protects static reg.c components:
97 * - cfg80211_world_regdom
98 * - cfg80211_regdom
99 * - last_request
100 * - reg_num_devs_support_basehint
101 */
102 static DEFINE_MUTEX(reg_mutex);
103
104 /*
105 * Number of devices that registered to the core
106 * that support cellular base station regulatory hints
107 */
108 static int reg_num_devs_support_basehint;
109
110 static inline void assert_reg_lock(void)
111 {
112 lockdep_assert_held(&reg_mutex);
113 }
114
115 /* Used to queue up regulatory hints */
116 static LIST_HEAD(reg_requests_list);
117 static spinlock_t reg_requests_lock;
118
119 /* Used to queue up beacon hints for review */
120 static LIST_HEAD(reg_pending_beacons);
121 static spinlock_t reg_pending_beacons_lock;
122
123 /* Used to keep track of processed beacon hints */
124 static LIST_HEAD(reg_beacon_list);
125
126 struct reg_beacon {
127 struct list_head list;
128 struct ieee80211_channel chan;
129 };
130
131 static void reg_todo(struct work_struct *work);
132 static DECLARE_WORK(reg_work, reg_todo);
133
134 static void reg_timeout_work(struct work_struct *work);
135 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
136
137 /* We keep a static world regulatory domain in case of the absence of CRDA */
138 static const struct ieee80211_regdomain world_regdom = {
139 .n_reg_rules = 6,
140 .alpha2 = "00",
141 .reg_rules = {
142 /* IEEE 802.11b/g, channels 1..11 */
143 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
144 /* IEEE 802.11b/g, channels 12..13. No HT40
145 * channel fits here. */
146 REG_RULE(2467-10, 2472+10, 20, 6, 20,
147 NL80211_RRF_PASSIVE_SCAN |
148 NL80211_RRF_NO_IBSS),
149 /* IEEE 802.11 channel 14 - Only JP enables
150 * this and for 802.11b only */
151 REG_RULE(2484-10, 2484+10, 20, 6, 20,
152 NL80211_RRF_PASSIVE_SCAN |
153 NL80211_RRF_NO_IBSS |
154 NL80211_RRF_NO_OFDM),
155 /* IEEE 802.11a, channel 36..48 */
156 REG_RULE(5180-10, 5240+10, 40, 6, 20,
157 NL80211_RRF_PASSIVE_SCAN |
158 NL80211_RRF_NO_IBSS),
159
160 /* NB: 5260 MHz - 5700 MHz requies DFS */
161
162 /* IEEE 802.11a, channel 149..165 */
163 REG_RULE(5745-10, 5825+10, 40, 6, 20,
164 NL80211_RRF_PASSIVE_SCAN |
165 NL80211_RRF_NO_IBSS),
166
167 /* IEEE 802.11ad (60gHz), channels 1..3 */
168 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
169 }
170 };
171
172 static const struct ieee80211_regdomain *cfg80211_world_regdom =
173 &world_regdom;
174
175 static char *ieee80211_regdom = "00";
176 static char user_alpha2[2];
177
178 module_param(ieee80211_regdom, charp, 0444);
179 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
180
181 static void reset_regdomains(bool full_reset)
182 {
183 /* avoid freeing static information or freeing something twice */
184 if (cfg80211_regdomain == cfg80211_world_regdom)
185 cfg80211_regdomain = NULL;
186 if (cfg80211_world_regdom == &world_regdom)
187 cfg80211_world_regdom = NULL;
188 if (cfg80211_regdomain == &world_regdom)
189 cfg80211_regdomain = NULL;
190
191 kfree(cfg80211_regdomain);
192 kfree(cfg80211_world_regdom);
193
194 cfg80211_world_regdom = &world_regdom;
195 cfg80211_regdomain = NULL;
196
197 if (!full_reset)
198 return;
199
200 if (last_request != &core_request_world)
201 kfree(last_request);
202 last_request = &core_request_world;
203 }
204
205 /*
206 * Dynamic world regulatory domain requested by the wireless
207 * core upon initialization
208 */
209 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
210 {
211 BUG_ON(!last_request);
212
213 reset_regdomains(false);
214
215 cfg80211_world_regdom = rd;
216 cfg80211_regdomain = rd;
217 }
218
219 bool is_world_regdom(const char *alpha2)
220 {
221 if (!alpha2)
222 return false;
223 if (alpha2[0] == '0' && alpha2[1] == '0')
224 return true;
225 return false;
226 }
227
228 static bool is_alpha2_set(const char *alpha2)
229 {
230 if (!alpha2)
231 return false;
232 if (alpha2[0] != 0 && alpha2[1] != 0)
233 return true;
234 return false;
235 }
236
237 static bool is_unknown_alpha2(const char *alpha2)
238 {
239 if (!alpha2)
240 return false;
241 /*
242 * Special case where regulatory domain was built by driver
243 * but a specific alpha2 cannot be determined
244 */
245 if (alpha2[0] == '9' && alpha2[1] == '9')
246 return true;
247 return false;
248 }
249
250 static bool is_intersected_alpha2(const char *alpha2)
251 {
252 if (!alpha2)
253 return false;
254 /*
255 * Special case where regulatory domain is the
256 * result of an intersection between two regulatory domain
257 * structures
258 */
259 if (alpha2[0] == '9' && alpha2[1] == '8')
260 return true;
261 return false;
262 }
263
264 static bool is_an_alpha2(const char *alpha2)
265 {
266 if (!alpha2)
267 return false;
268 if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
269 return true;
270 return false;
271 }
272
273 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
274 {
275 if (!alpha2_x || !alpha2_y)
276 return false;
277 if (alpha2_x[0] == alpha2_y[0] &&
278 alpha2_x[1] == alpha2_y[1])
279 return true;
280 return false;
281 }
282
283 static bool regdom_changes(const char *alpha2)
284 {
285 assert_cfg80211_lock();
286
287 if (!cfg80211_regdomain)
288 return true;
289 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
290 return false;
291 return true;
292 }
293
294 /*
295 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
296 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
297 * has ever been issued.
298 */
299 static bool is_user_regdom_saved(void)
300 {
301 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
302 return false;
303
304 /* This would indicate a mistake on the design */
305 if (WARN((!is_world_regdom(user_alpha2) &&
306 !is_an_alpha2(user_alpha2)),
307 "Unexpected user alpha2: %c%c\n",
308 user_alpha2[0],
309 user_alpha2[1]))
310 return false;
311
312 return true;
313 }
314
315 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
316 const struct ieee80211_regdomain *src_regd)
317 {
318 struct ieee80211_regdomain *regd;
319 int size_of_regd = 0;
320 unsigned int i;
321
322 size_of_regd = sizeof(struct ieee80211_regdomain) +
323 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
324
325 regd = kzalloc(size_of_regd, GFP_KERNEL);
326 if (!regd)
327 return -ENOMEM;
328
329 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
330
331 for (i = 0; i < src_regd->n_reg_rules; i++)
332 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
333 sizeof(struct ieee80211_reg_rule));
334
335 *dst_regd = regd;
336 return 0;
337 }
338
339 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
340 struct reg_regdb_search_request {
341 char alpha2[2];
342 struct list_head list;
343 };
344
345 static LIST_HEAD(reg_regdb_search_list);
346 static DEFINE_MUTEX(reg_regdb_search_mutex);
347
348 static void reg_regdb_search(struct work_struct *work)
349 {
350 struct reg_regdb_search_request *request;
351 const struct ieee80211_regdomain *curdom, *regdom;
352 int i, r;
353
354 mutex_lock(&reg_regdb_search_mutex);
355 while (!list_empty(&reg_regdb_search_list)) {
356 request = list_first_entry(&reg_regdb_search_list,
357 struct reg_regdb_search_request,
358 list);
359 list_del(&request->list);
360
361 for (i=0; i<reg_regdb_size; i++) {
362 curdom = reg_regdb[i];
363
364 if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
365 r = reg_copy_regd(&regdom, curdom);
366 if (r)
367 break;
368 mutex_lock(&cfg80211_mutex);
369 set_regdom(regdom);
370 mutex_unlock(&cfg80211_mutex);
371 break;
372 }
373 }
374
375 kfree(request);
376 }
377 mutex_unlock(&reg_regdb_search_mutex);
378 }
379
380 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
381
382 static void reg_regdb_query(const char *alpha2)
383 {
384 struct reg_regdb_search_request *request;
385
386 if (!alpha2)
387 return;
388
389 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
390 if (!request)
391 return;
392
393 memcpy(request->alpha2, alpha2, 2);
394
395 mutex_lock(&reg_regdb_search_mutex);
396 list_add_tail(&request->list, &reg_regdb_search_list);
397 mutex_unlock(&reg_regdb_search_mutex);
398
399 schedule_work(&reg_regdb_work);
400 }
401
402 /* Feel free to add any other sanity checks here */
403 static void reg_regdb_size_check(void)
404 {
405 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
406 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
407 }
408 #else
409 static inline void reg_regdb_size_check(void) {}
410 static inline void reg_regdb_query(const char *alpha2) {}
411 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
412
413 /*
414 * This lets us keep regulatory code which is updated on a regulatory
415 * basis in userspace. Country information is filled in by
416 * reg_device_uevent
417 */
418 static int call_crda(const char *alpha2)
419 {
420 if (!is_world_regdom((char *) alpha2))
421 pr_info("Calling CRDA for country: %c%c\n",
422 alpha2[0], alpha2[1]);
423 else
424 pr_info("Calling CRDA to update world regulatory domain\n");
425
426 /* query internal regulatory database (if it exists) */
427 reg_regdb_query(alpha2);
428
429 return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
430 }
431
432 /* Used by nl80211 before kmalloc'ing our regulatory domain */
433 bool reg_is_valid_request(const char *alpha2)
434 {
435 assert_cfg80211_lock();
436
437 if (!last_request)
438 return false;
439
440 return alpha2_equal(last_request->alpha2, alpha2);
441 }
442
443 /* Sanity check on a regulatory rule */
444 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
445 {
446 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
447 u32 freq_diff;
448
449 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
450 return false;
451
452 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
453 return false;
454
455 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
456
457 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
458 freq_range->max_bandwidth_khz > freq_diff)
459 return false;
460
461 return true;
462 }
463
464 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
465 {
466 const struct ieee80211_reg_rule *reg_rule = NULL;
467 unsigned int i;
468
469 if (!rd->n_reg_rules)
470 return false;
471
472 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
473 return false;
474
475 for (i = 0; i < rd->n_reg_rules; i++) {
476 reg_rule = &rd->reg_rules[i];
477 if (!is_valid_reg_rule(reg_rule))
478 return false;
479 }
480
481 return true;
482 }
483
484 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
485 u32 center_freq_khz,
486 u32 bw_khz)
487 {
488 u32 start_freq_khz, end_freq_khz;
489
490 start_freq_khz = center_freq_khz - (bw_khz/2);
491 end_freq_khz = center_freq_khz + (bw_khz/2);
492
493 if (start_freq_khz >= freq_range->start_freq_khz &&
494 end_freq_khz <= freq_range->end_freq_khz)
495 return true;
496
497 return false;
498 }
499
500 /**
501 * freq_in_rule_band - tells us if a frequency is in a frequency band
502 * @freq_range: frequency rule we want to query
503 * @freq_khz: frequency we are inquiring about
504 *
505 * This lets us know if a specific frequency rule is or is not relevant to
506 * a specific frequency's band. Bands are device specific and artificial
507 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
508 * safe for now to assume that a frequency rule should not be part of a
509 * frequency's band if the start freq or end freq are off by more than 2 GHz.
510 * This resolution can be lowered and should be considered as we add
511 * regulatory rule support for other "bands".
512 **/
513 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
514 u32 freq_khz)
515 {
516 #define ONE_GHZ_IN_KHZ 1000000
517 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
518 return true;
519 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
520 return true;
521 return false;
522 #undef ONE_GHZ_IN_KHZ
523 }
524
525 /*
526 * Helper for regdom_intersect(), this does the real
527 * mathematical intersection fun
528 */
529 static int reg_rules_intersect(
530 const struct ieee80211_reg_rule *rule1,
531 const struct ieee80211_reg_rule *rule2,
532 struct ieee80211_reg_rule *intersected_rule)
533 {
534 const struct ieee80211_freq_range *freq_range1, *freq_range2;
535 struct ieee80211_freq_range *freq_range;
536 const struct ieee80211_power_rule *power_rule1, *power_rule2;
537 struct ieee80211_power_rule *power_rule;
538 u32 freq_diff;
539
540 freq_range1 = &rule1->freq_range;
541 freq_range2 = &rule2->freq_range;
542 freq_range = &intersected_rule->freq_range;
543
544 power_rule1 = &rule1->power_rule;
545 power_rule2 = &rule2->power_rule;
546 power_rule = &intersected_rule->power_rule;
547
548 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
549 freq_range2->start_freq_khz);
550 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
551 freq_range2->end_freq_khz);
552 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
553 freq_range2->max_bandwidth_khz);
554
555 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
556 if (freq_range->max_bandwidth_khz > freq_diff)
557 freq_range->max_bandwidth_khz = freq_diff;
558
559 power_rule->max_eirp = min(power_rule1->max_eirp,
560 power_rule2->max_eirp);
561 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
562 power_rule2->max_antenna_gain);
563
564 intersected_rule->flags = (rule1->flags | rule2->flags);
565
566 if (!is_valid_reg_rule(intersected_rule))
567 return -EINVAL;
568
569 return 0;
570 }
571
572 /**
573 * regdom_intersect - do the intersection between two regulatory domains
574 * @rd1: first regulatory domain
575 * @rd2: second regulatory domain
576 *
577 * Use this function to get the intersection between two regulatory domains.
578 * Once completed we will mark the alpha2 for the rd as intersected, "98",
579 * as no one single alpha2 can represent this regulatory domain.
580 *
581 * Returns a pointer to the regulatory domain structure which will hold the
582 * resulting intersection of rules between rd1 and rd2. We will
583 * kzalloc() this structure for you.
584 */
585 static struct ieee80211_regdomain *regdom_intersect(
586 const struct ieee80211_regdomain *rd1,
587 const struct ieee80211_regdomain *rd2)
588 {
589 int r, size_of_regd;
590 unsigned int x, y;
591 unsigned int num_rules = 0, rule_idx = 0;
592 const struct ieee80211_reg_rule *rule1, *rule2;
593 struct ieee80211_reg_rule *intersected_rule;
594 struct ieee80211_regdomain *rd;
595 /* This is just a dummy holder to help us count */
596 struct ieee80211_reg_rule irule;
597
598 /* Uses the stack temporarily for counter arithmetic */
599 intersected_rule = &irule;
600
601 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
602
603 if (!rd1 || !rd2)
604 return NULL;
605
606 /*
607 * First we get a count of the rules we'll need, then we actually
608 * build them. This is to so we can malloc() and free() a
609 * regdomain once. The reason we use reg_rules_intersect() here
610 * is it will return -EINVAL if the rule computed makes no sense.
611 * All rules that do check out OK are valid.
612 */
613
614 for (x = 0; x < rd1->n_reg_rules; x++) {
615 rule1 = &rd1->reg_rules[x];
616 for (y = 0; y < rd2->n_reg_rules; y++) {
617 rule2 = &rd2->reg_rules[y];
618 if (!reg_rules_intersect(rule1, rule2,
619 intersected_rule))
620 num_rules++;
621 memset(intersected_rule, 0,
622 sizeof(struct ieee80211_reg_rule));
623 }
624 }
625
626 if (!num_rules)
627 return NULL;
628
629 size_of_regd = sizeof(struct ieee80211_regdomain) +
630 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
631
632 rd = kzalloc(size_of_regd, GFP_KERNEL);
633 if (!rd)
634 return NULL;
635
636 for (x = 0; x < rd1->n_reg_rules; x++) {
637 rule1 = &rd1->reg_rules[x];
638 for (y = 0; y < rd2->n_reg_rules; y++) {
639 rule2 = &rd2->reg_rules[y];
640 /*
641 * This time around instead of using the stack lets
642 * write to the target rule directly saving ourselves
643 * a memcpy()
644 */
645 intersected_rule = &rd->reg_rules[rule_idx];
646 r = reg_rules_intersect(rule1, rule2,
647 intersected_rule);
648 /*
649 * No need to memset here the intersected rule here as
650 * we're not using the stack anymore
651 */
652 if (r)
653 continue;
654 rule_idx++;
655 }
656 }
657
658 if (rule_idx != num_rules) {
659 kfree(rd);
660 return NULL;
661 }
662
663 rd->n_reg_rules = num_rules;
664 rd->alpha2[0] = '9';
665 rd->alpha2[1] = '8';
666
667 return rd;
668 }
669
670 /*
671 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
672 * want to just have the channel structure use these
673 */
674 static u32 map_regdom_flags(u32 rd_flags)
675 {
676 u32 channel_flags = 0;
677 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
678 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
679 if (rd_flags & NL80211_RRF_NO_IBSS)
680 channel_flags |= IEEE80211_CHAN_NO_IBSS;
681 if (rd_flags & NL80211_RRF_DFS)
682 channel_flags |= IEEE80211_CHAN_RADAR;
683 return channel_flags;
684 }
685
686 static int freq_reg_info_regd(struct wiphy *wiphy,
687 u32 center_freq,
688 u32 desired_bw_khz,
689 const struct ieee80211_reg_rule **reg_rule,
690 const struct ieee80211_regdomain *custom_regd)
691 {
692 int i;
693 bool band_rule_found = false;
694 const struct ieee80211_regdomain *regd;
695 bool bw_fits = false;
696
697 if (!desired_bw_khz)
698 desired_bw_khz = MHZ_TO_KHZ(20);
699
700 regd = custom_regd ? custom_regd : cfg80211_regdomain;
701
702 /*
703 * Follow the driver's regulatory domain, if present, unless a country
704 * IE has been processed or a user wants to help complaince further
705 */
706 if (!custom_regd &&
707 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
708 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
709 wiphy->regd)
710 regd = wiphy->regd;
711
712 if (!regd)
713 return -EINVAL;
714
715 for (i = 0; i < regd->n_reg_rules; i++) {
716 const struct ieee80211_reg_rule *rr;
717 const struct ieee80211_freq_range *fr = NULL;
718
719 rr = &regd->reg_rules[i];
720 fr = &rr->freq_range;
721
722 /*
723 * We only need to know if one frequency rule was
724 * was in center_freq's band, that's enough, so lets
725 * not overwrite it once found
726 */
727 if (!band_rule_found)
728 band_rule_found = freq_in_rule_band(fr, center_freq);
729
730 bw_fits = reg_does_bw_fit(fr,
731 center_freq,
732 desired_bw_khz);
733
734 if (band_rule_found && bw_fits) {
735 *reg_rule = rr;
736 return 0;
737 }
738 }
739
740 if (!band_rule_found)
741 return -ERANGE;
742
743 return -EINVAL;
744 }
745
746 int freq_reg_info(struct wiphy *wiphy,
747 u32 center_freq,
748 u32 desired_bw_khz,
749 const struct ieee80211_reg_rule **reg_rule)
750 {
751 assert_cfg80211_lock();
752 return freq_reg_info_regd(wiphy,
753 center_freq,
754 desired_bw_khz,
755 reg_rule,
756 NULL);
757 }
758 EXPORT_SYMBOL(freq_reg_info);
759
760 #ifdef CONFIG_CFG80211_REG_DEBUG
761 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
762 {
763 switch (initiator) {
764 case NL80211_REGDOM_SET_BY_CORE:
765 return "Set by core";
766 case NL80211_REGDOM_SET_BY_USER:
767 return "Set by user";
768 case NL80211_REGDOM_SET_BY_DRIVER:
769 return "Set by driver";
770 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
771 return "Set by country IE";
772 default:
773 WARN_ON(1);
774 return "Set by bug";
775 }
776 }
777
778 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
779 u32 desired_bw_khz,
780 const struct ieee80211_reg_rule *reg_rule)
781 {
782 const struct ieee80211_power_rule *power_rule;
783 const struct ieee80211_freq_range *freq_range;
784 char max_antenna_gain[32];
785
786 power_rule = &reg_rule->power_rule;
787 freq_range = &reg_rule->freq_range;
788
789 if (!power_rule->max_antenna_gain)
790 snprintf(max_antenna_gain, 32, "N/A");
791 else
792 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
793
794 REG_DBG_PRINT("Updating information on frequency %d MHz "
795 "for a %d MHz width channel with regulatory rule:\n",
796 chan->center_freq,
797 KHZ_TO_MHZ(desired_bw_khz));
798
799 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
800 freq_range->start_freq_khz,
801 freq_range->end_freq_khz,
802 freq_range->max_bandwidth_khz,
803 max_antenna_gain,
804 power_rule->max_eirp);
805 }
806 #else
807 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
808 u32 desired_bw_khz,
809 const struct ieee80211_reg_rule *reg_rule)
810 {
811 return;
812 }
813 #endif
814
815 /*
816 * Note that right now we assume the desired channel bandwidth
817 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
818 * per channel, the primary and the extension channel). To support
819 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
820 * new ieee80211_channel.target_bw and re run the regulatory check
821 * on the wiphy with the target_bw specified. Then we can simply use
822 * that below for the desired_bw_khz below.
823 */
824 static void handle_channel(struct wiphy *wiphy,
825 enum nl80211_reg_initiator initiator,
826 enum ieee80211_band band,
827 unsigned int chan_idx)
828 {
829 int r;
830 u32 flags, bw_flags = 0;
831 u32 desired_bw_khz = MHZ_TO_KHZ(20);
832 const struct ieee80211_reg_rule *reg_rule = NULL;
833 const struct ieee80211_power_rule *power_rule = NULL;
834 const struct ieee80211_freq_range *freq_range = NULL;
835 struct ieee80211_supported_band *sband;
836 struct ieee80211_channel *chan;
837 struct wiphy *request_wiphy = NULL;
838
839 assert_cfg80211_lock();
840
841 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
842
843 sband = wiphy->bands[band];
844 BUG_ON(chan_idx >= sband->n_channels);
845 chan = &sband->channels[chan_idx];
846
847 flags = chan->orig_flags;
848
849 r = freq_reg_info(wiphy,
850 MHZ_TO_KHZ(chan->center_freq),
851 desired_bw_khz,
852 &reg_rule);
853
854 if (r) {
855 /*
856 * We will disable all channels that do not match our
857 * received regulatory rule unless the hint is coming
858 * from a Country IE and the Country IE had no information
859 * about a band. The IEEE 802.11 spec allows for an AP
860 * to send only a subset of the regulatory rules allowed,
861 * so an AP in the US that only supports 2.4 GHz may only send
862 * a country IE with information for the 2.4 GHz band
863 * while 5 GHz is still supported.
864 */
865 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
866 r == -ERANGE)
867 return;
868
869 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
870 chan->flags = IEEE80211_CHAN_DISABLED;
871 return;
872 }
873
874 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
875
876 power_rule = &reg_rule->power_rule;
877 freq_range = &reg_rule->freq_range;
878
879 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
880 bw_flags = IEEE80211_CHAN_NO_HT40;
881
882 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
883 request_wiphy && request_wiphy == wiphy &&
884 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
885 /*
886 * This guarantees the driver's requested regulatory domain
887 * will always be used as a base for further regulatory
888 * settings
889 */
890 chan->flags = chan->orig_flags =
891 map_regdom_flags(reg_rule->flags) | bw_flags;
892 chan->max_antenna_gain = chan->orig_mag =
893 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
894 chan->max_power = chan->orig_mpwr =
895 (int) MBM_TO_DBM(power_rule->max_eirp);
896 return;
897 }
898
899 chan->beacon_found = false;
900 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
901 chan->max_antenna_gain = min(chan->orig_mag,
902 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
903 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
904 chan->max_power = min(chan->max_power, chan->max_reg_power);
905 }
906
907 static void handle_band(struct wiphy *wiphy,
908 enum ieee80211_band band,
909 enum nl80211_reg_initiator initiator)
910 {
911 unsigned int i;
912 struct ieee80211_supported_band *sband;
913
914 BUG_ON(!wiphy->bands[band]);
915 sband = wiphy->bands[band];
916
917 for (i = 0; i < sband->n_channels; i++)
918 handle_channel(wiphy, initiator, band, i);
919 }
920
921 static bool reg_request_cell_base(struct regulatory_request *request)
922 {
923 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
924 return false;
925 if (request->user_reg_hint_type != NL80211_USER_REG_HINT_CELL_BASE)
926 return false;
927 return true;
928 }
929
930 bool reg_last_request_cell_base(void)
931 {
932 bool val;
933 assert_cfg80211_lock();
934
935 mutex_lock(&reg_mutex);
936 val = reg_request_cell_base(last_request);
937 mutex_unlock(&reg_mutex);
938 return val;
939 }
940
941 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
942
943 /* Core specific check */
944 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
945 {
946 if (!reg_num_devs_support_basehint)
947 return -EOPNOTSUPP;
948
949 if (reg_request_cell_base(last_request)) {
950 if (!regdom_changes(pending_request->alpha2))
951 return -EALREADY;
952 return 0;
953 }
954 return 0;
955 }
956
957 /* Device specific check */
958 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
959 {
960 if (!(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS))
961 return true;
962 return false;
963 }
964 #else
965 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
966 {
967 return -EOPNOTSUPP;
968 }
969 static int reg_dev_ignore_cell_hint(struct wiphy *wiphy)
970 {
971 return true;
972 }
973 #endif
974
975
976 static bool ignore_reg_update(struct wiphy *wiphy,
977 enum nl80211_reg_initiator initiator)
978 {
979 if (!last_request) {
980 REG_DBG_PRINT("Ignoring regulatory request %s since "
981 "last_request is not set\n",
982 reg_initiator_name(initiator));
983 return true;
984 }
985
986 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
987 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
988 REG_DBG_PRINT("Ignoring regulatory request %s "
989 "since the driver uses its own custom "
990 "regulatory domain\n",
991 reg_initiator_name(initiator));
992 return true;
993 }
994
995 /*
996 * wiphy->regd will be set once the device has its own
997 * desired regulatory domain set
998 */
999 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
1000 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1001 !is_world_regdom(last_request->alpha2)) {
1002 REG_DBG_PRINT("Ignoring regulatory request %s "
1003 "since the driver requires its own regulatory "
1004 "domain to be set first\n",
1005 reg_initiator_name(initiator));
1006 return true;
1007 }
1008
1009 if (reg_request_cell_base(last_request))
1010 return reg_dev_ignore_cell_hint(wiphy);
1011
1012 return false;
1013 }
1014
1015 static void handle_reg_beacon(struct wiphy *wiphy,
1016 unsigned int chan_idx,
1017 struct reg_beacon *reg_beacon)
1018 {
1019 struct ieee80211_supported_band *sband;
1020 struct ieee80211_channel *chan;
1021 bool channel_changed = false;
1022 struct ieee80211_channel chan_before;
1023
1024 assert_cfg80211_lock();
1025
1026 sband = wiphy->bands[reg_beacon->chan.band];
1027 chan = &sband->channels[chan_idx];
1028
1029 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1030 return;
1031
1032 if (chan->beacon_found)
1033 return;
1034
1035 chan->beacon_found = true;
1036
1037 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1038 return;
1039
1040 chan_before.center_freq = chan->center_freq;
1041 chan_before.flags = chan->flags;
1042
1043 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1044 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1045 channel_changed = true;
1046 }
1047
1048 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1049 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1050 channel_changed = true;
1051 }
1052
1053 if (channel_changed)
1054 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1055 }
1056
1057 /*
1058 * Called when a scan on a wiphy finds a beacon on
1059 * new channel
1060 */
1061 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1062 struct reg_beacon *reg_beacon)
1063 {
1064 unsigned int i;
1065 struct ieee80211_supported_band *sband;
1066
1067 assert_cfg80211_lock();
1068
1069 if (!wiphy->bands[reg_beacon->chan.band])
1070 return;
1071
1072 sband = wiphy->bands[reg_beacon->chan.band];
1073
1074 for (i = 0; i < sband->n_channels; i++)
1075 handle_reg_beacon(wiphy, i, reg_beacon);
1076 }
1077
1078 /*
1079 * Called upon reg changes or a new wiphy is added
1080 */
1081 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1082 {
1083 unsigned int i;
1084 struct ieee80211_supported_band *sband;
1085 struct reg_beacon *reg_beacon;
1086
1087 assert_cfg80211_lock();
1088
1089 if (list_empty(&reg_beacon_list))
1090 return;
1091
1092 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1093 if (!wiphy->bands[reg_beacon->chan.band])
1094 continue;
1095 sband = wiphy->bands[reg_beacon->chan.band];
1096 for (i = 0; i < sband->n_channels; i++)
1097 handle_reg_beacon(wiphy, i, reg_beacon);
1098 }
1099 }
1100
1101 static bool reg_is_world_roaming(struct wiphy *wiphy)
1102 {
1103 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1104 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1105 return true;
1106 if (last_request &&
1107 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1108 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1109 return true;
1110 return false;
1111 }
1112
1113 /* Reap the advantages of previously found beacons */
1114 static void reg_process_beacons(struct wiphy *wiphy)
1115 {
1116 /*
1117 * Means we are just firing up cfg80211, so no beacons would
1118 * have been processed yet.
1119 */
1120 if (!last_request)
1121 return;
1122 if (!reg_is_world_roaming(wiphy))
1123 return;
1124 wiphy_update_beacon_reg(wiphy);
1125 }
1126
1127 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1128 {
1129 if (!chan)
1130 return true;
1131 if (chan->flags & IEEE80211_CHAN_DISABLED)
1132 return true;
1133 /* This would happen when regulatory rules disallow HT40 completely */
1134 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1135 return true;
1136 return false;
1137 }
1138
1139 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1140 enum ieee80211_band band,
1141 unsigned int chan_idx)
1142 {
1143 struct ieee80211_supported_band *sband;
1144 struct ieee80211_channel *channel;
1145 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1146 unsigned int i;
1147
1148 assert_cfg80211_lock();
1149
1150 sband = wiphy->bands[band];
1151 BUG_ON(chan_idx >= sband->n_channels);
1152 channel = &sband->channels[chan_idx];
1153
1154 if (is_ht40_not_allowed(channel)) {
1155 channel->flags |= IEEE80211_CHAN_NO_HT40;
1156 return;
1157 }
1158
1159 /*
1160 * We need to ensure the extension channels exist to
1161 * be able to use HT40- or HT40+, this finds them (or not)
1162 */
1163 for (i = 0; i < sband->n_channels; i++) {
1164 struct ieee80211_channel *c = &sband->channels[i];
1165 if (c->center_freq == (channel->center_freq - 20))
1166 channel_before = c;
1167 if (c->center_freq == (channel->center_freq + 20))
1168 channel_after = c;
1169 }
1170
1171 /*
1172 * Please note that this assumes target bandwidth is 20 MHz,
1173 * if that ever changes we also need to change the below logic
1174 * to include that as well.
1175 */
1176 if (is_ht40_not_allowed(channel_before))
1177 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1178 else
1179 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1180
1181 if (is_ht40_not_allowed(channel_after))
1182 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1183 else
1184 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1185 }
1186
1187 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1188 enum ieee80211_band band)
1189 {
1190 unsigned int i;
1191 struct ieee80211_supported_band *sband;
1192
1193 BUG_ON(!wiphy->bands[band]);
1194 sband = wiphy->bands[band];
1195
1196 for (i = 0; i < sband->n_channels; i++)
1197 reg_process_ht_flags_channel(wiphy, band, i);
1198 }
1199
1200 static void reg_process_ht_flags(struct wiphy *wiphy)
1201 {
1202 enum ieee80211_band band;
1203
1204 if (!wiphy)
1205 return;
1206
1207 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1208 if (wiphy->bands[band])
1209 reg_process_ht_flags_band(wiphy, band);
1210 }
1211
1212 }
1213
1214 static void wiphy_update_regulatory(struct wiphy *wiphy,
1215 enum nl80211_reg_initiator initiator)
1216 {
1217 enum ieee80211_band band;
1218
1219 assert_reg_lock();
1220
1221 if (ignore_reg_update(wiphy, initiator))
1222 return;
1223
1224 last_request->dfs_region = cfg80211_regdomain->dfs_region;
1225
1226 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1227 if (wiphy->bands[band])
1228 handle_band(wiphy, band, initiator);
1229 }
1230
1231 reg_process_beacons(wiphy);
1232 reg_process_ht_flags(wiphy);
1233 if (wiphy->reg_notifier)
1234 wiphy->reg_notifier(wiphy, last_request);
1235 }
1236
1237 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1238 {
1239 struct cfg80211_registered_device *rdev;
1240 struct wiphy *wiphy;
1241
1242 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1243 wiphy = &rdev->wiphy;
1244 wiphy_update_regulatory(wiphy, initiator);
1245 /*
1246 * Regulatory updates set by CORE are ignored for custom
1247 * regulatory cards. Let us notify the changes to the driver,
1248 * as some drivers used this to restore its orig_* reg domain.
1249 */
1250 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1251 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1252 wiphy->reg_notifier)
1253 wiphy->reg_notifier(wiphy, last_request);
1254 }
1255 }
1256
1257 static void handle_channel_custom(struct wiphy *wiphy,
1258 enum ieee80211_band band,
1259 unsigned int chan_idx,
1260 const struct ieee80211_regdomain *regd)
1261 {
1262 int r;
1263 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1264 u32 bw_flags = 0;
1265 const struct ieee80211_reg_rule *reg_rule = NULL;
1266 const struct ieee80211_power_rule *power_rule = NULL;
1267 const struct ieee80211_freq_range *freq_range = NULL;
1268 struct ieee80211_supported_band *sband;
1269 struct ieee80211_channel *chan;
1270
1271 assert_reg_lock();
1272
1273 sband = wiphy->bands[band];
1274 BUG_ON(chan_idx >= sband->n_channels);
1275 chan = &sband->channels[chan_idx];
1276
1277 r = freq_reg_info_regd(wiphy,
1278 MHZ_TO_KHZ(chan->center_freq),
1279 desired_bw_khz,
1280 &reg_rule,
1281 regd);
1282
1283 if (r) {
1284 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1285 "regd has no rule that fits a %d MHz "
1286 "wide channel\n",
1287 chan->center_freq,
1288 KHZ_TO_MHZ(desired_bw_khz));
1289 chan->flags = IEEE80211_CHAN_DISABLED;
1290 return;
1291 }
1292
1293 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1294
1295 power_rule = &reg_rule->power_rule;
1296 freq_range = &reg_rule->freq_range;
1297
1298 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1299 bw_flags = IEEE80211_CHAN_NO_HT40;
1300
1301 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1302 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1303 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1304 }
1305
1306 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1307 const struct ieee80211_regdomain *regd)
1308 {
1309 unsigned int i;
1310 struct ieee80211_supported_band *sband;
1311
1312 BUG_ON(!wiphy->bands[band]);
1313 sband = wiphy->bands[band];
1314
1315 for (i = 0; i < sband->n_channels; i++)
1316 handle_channel_custom(wiphy, band, i, regd);
1317 }
1318
1319 /* Used by drivers prior to wiphy registration */
1320 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1321 const struct ieee80211_regdomain *regd)
1322 {
1323 enum ieee80211_band band;
1324 unsigned int bands_set = 0;
1325
1326 mutex_lock(&reg_mutex);
1327 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1328 if (!wiphy->bands[band])
1329 continue;
1330 handle_band_custom(wiphy, band, regd);
1331 bands_set++;
1332 }
1333 mutex_unlock(&reg_mutex);
1334
1335 /*
1336 * no point in calling this if it won't have any effect
1337 * on your device's supportd bands.
1338 */
1339 WARN_ON(!bands_set);
1340 }
1341 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1342
1343 /*
1344 * Return value which can be used by ignore_request() to indicate
1345 * it has been determined we should intersect two regulatory domains
1346 */
1347 #define REG_INTERSECT 1
1348
1349 /* This has the logic which determines when a new request
1350 * should be ignored. */
1351 static int ignore_request(struct wiphy *wiphy,
1352 struct regulatory_request *pending_request)
1353 {
1354 struct wiphy *last_wiphy = NULL;
1355
1356 assert_cfg80211_lock();
1357
1358 /* All initial requests are respected */
1359 if (!last_request)
1360 return 0;
1361
1362 switch (pending_request->initiator) {
1363 case NL80211_REGDOM_SET_BY_CORE:
1364 return 0;
1365 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1366
1367 if (reg_request_cell_base(last_request)) {
1368 /* Trust a Cell base station over the AP's country IE */
1369 if (regdom_changes(pending_request->alpha2))
1370 return -EOPNOTSUPP;
1371 return -EALREADY;
1372 }
1373
1374 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1375
1376 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1377 return -EINVAL;
1378 if (last_request->initiator ==
1379 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1380 if (last_wiphy != wiphy) {
1381 /*
1382 * Two cards with two APs claiming different
1383 * Country IE alpha2s. We could
1384 * intersect them, but that seems unlikely
1385 * to be correct. Reject second one for now.
1386 */
1387 if (regdom_changes(pending_request->alpha2))
1388 return -EOPNOTSUPP;
1389 return -EALREADY;
1390 }
1391 /*
1392 * Two consecutive Country IE hints on the same wiphy.
1393 * This should be picked up early by the driver/stack
1394 */
1395 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1396 return 0;
1397 return -EALREADY;
1398 }
1399 return 0;
1400 case NL80211_REGDOM_SET_BY_DRIVER:
1401 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1402 if (regdom_changes(pending_request->alpha2))
1403 return 0;
1404 return -EALREADY;
1405 }
1406
1407 /*
1408 * This would happen if you unplug and plug your card
1409 * back in or if you add a new device for which the previously
1410 * loaded card also agrees on the regulatory domain.
1411 */
1412 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1413 !regdom_changes(pending_request->alpha2))
1414 return -EALREADY;
1415
1416 return REG_INTERSECT;
1417 case NL80211_REGDOM_SET_BY_USER:
1418 if (reg_request_cell_base(pending_request))
1419 return reg_ignore_cell_hint(pending_request);
1420
1421 if (reg_request_cell_base(last_request))
1422 return -EOPNOTSUPP;
1423
1424 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1425 return REG_INTERSECT;
1426 /*
1427 * If the user knows better the user should set the regdom
1428 * to their country before the IE is picked up
1429 */
1430 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1431 last_request->intersect)
1432 return -EOPNOTSUPP;
1433 /*
1434 * Process user requests only after previous user/driver/core
1435 * requests have been processed
1436 */
1437 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1438 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1439 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1440 if (regdom_changes(last_request->alpha2))
1441 return -EAGAIN;
1442 }
1443
1444 if (!regdom_changes(pending_request->alpha2))
1445 return -EALREADY;
1446
1447 return 0;
1448 }
1449
1450 return -EINVAL;
1451 }
1452
1453 static void reg_set_request_processed(void)
1454 {
1455 bool need_more_processing = false;
1456
1457 last_request->processed = true;
1458
1459 spin_lock(&reg_requests_lock);
1460 if (!list_empty(&reg_requests_list))
1461 need_more_processing = true;
1462 spin_unlock(&reg_requests_lock);
1463
1464 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1465 cancel_delayed_work(&reg_timeout);
1466
1467 if (need_more_processing)
1468 schedule_work(&reg_work);
1469 }
1470
1471 /**
1472 * __regulatory_hint - hint to the wireless core a regulatory domain
1473 * @wiphy: if the hint comes from country information from an AP, this
1474 * is required to be set to the wiphy that received the information
1475 * @pending_request: the regulatory request currently being processed
1476 *
1477 * The Wireless subsystem can use this function to hint to the wireless core
1478 * what it believes should be the current regulatory domain.
1479 *
1480 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1481 * already been set or other standard error codes.
1482 *
1483 * Caller must hold &cfg80211_mutex and &reg_mutex
1484 */
1485 static int __regulatory_hint(struct wiphy *wiphy,
1486 struct regulatory_request *pending_request)
1487 {
1488 bool intersect = false;
1489 int r = 0;
1490
1491 assert_cfg80211_lock();
1492
1493 r = ignore_request(wiphy, pending_request);
1494
1495 if (r == REG_INTERSECT) {
1496 if (pending_request->initiator ==
1497 NL80211_REGDOM_SET_BY_DRIVER) {
1498 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1499 if (r) {
1500 kfree(pending_request);
1501 return r;
1502 }
1503 }
1504 intersect = true;
1505 } else if (r) {
1506 /*
1507 * If the regulatory domain being requested by the
1508 * driver has already been set just copy it to the
1509 * wiphy
1510 */
1511 if (r == -EALREADY &&
1512 pending_request->initiator ==
1513 NL80211_REGDOM_SET_BY_DRIVER) {
1514 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1515 if (r) {
1516 kfree(pending_request);
1517 return r;
1518 }
1519 r = -EALREADY;
1520 goto new_request;
1521 }
1522 kfree(pending_request);
1523 return r;
1524 }
1525
1526 new_request:
1527 if (last_request != &core_request_world)
1528 kfree(last_request);
1529
1530 last_request = pending_request;
1531 last_request->intersect = intersect;
1532
1533 pending_request = NULL;
1534
1535 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1536 user_alpha2[0] = last_request->alpha2[0];
1537 user_alpha2[1] = last_request->alpha2[1];
1538 }
1539
1540 /* When r == REG_INTERSECT we do need to call CRDA */
1541 if (r < 0) {
1542 /*
1543 * Since CRDA will not be called in this case as we already
1544 * have applied the requested regulatory domain before we just
1545 * inform userspace we have processed the request
1546 */
1547 if (r == -EALREADY) {
1548 nl80211_send_reg_change_event(last_request);
1549 reg_set_request_processed();
1550 }
1551 return r;
1552 }
1553
1554 return call_crda(last_request->alpha2);
1555 }
1556
1557 /* This processes *all* regulatory hints */
1558 static void reg_process_hint(struct regulatory_request *reg_request,
1559 enum nl80211_reg_initiator reg_initiator)
1560 {
1561 int r = 0;
1562 struct wiphy *wiphy = NULL;
1563
1564 BUG_ON(!reg_request->alpha2);
1565
1566 if (wiphy_idx_valid(reg_request->wiphy_idx))
1567 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1568
1569 if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1570 !wiphy) {
1571 kfree(reg_request);
1572 return;
1573 }
1574
1575 r = __regulatory_hint(wiphy, reg_request);
1576 /* This is required so that the orig_* parameters are saved */
1577 if (r == -EALREADY && wiphy &&
1578 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1579 wiphy_update_regulatory(wiphy, reg_initiator);
1580 return;
1581 }
1582
1583 /*
1584 * We only time out user hints, given that they should be the only
1585 * source of bogus requests.
1586 */
1587 if (r != -EALREADY &&
1588 reg_initiator == NL80211_REGDOM_SET_BY_USER)
1589 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1590 }
1591
1592 /*
1593 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1594 * Regulatory hints come on a first come first serve basis and we
1595 * must process each one atomically.
1596 */
1597 static void reg_process_pending_hints(void)
1598 {
1599 struct regulatory_request *reg_request;
1600
1601 mutex_lock(&cfg80211_mutex);
1602 mutex_lock(&reg_mutex);
1603
1604 /* When last_request->processed becomes true this will be rescheduled */
1605 if (last_request && !last_request->processed) {
1606 REG_DBG_PRINT("Pending regulatory request, waiting "
1607 "for it to be processed...\n");
1608 goto out;
1609 }
1610
1611 spin_lock(&reg_requests_lock);
1612
1613 if (list_empty(&reg_requests_list)) {
1614 spin_unlock(&reg_requests_lock);
1615 goto out;
1616 }
1617
1618 reg_request = list_first_entry(&reg_requests_list,
1619 struct regulatory_request,
1620 list);
1621 list_del_init(&reg_request->list);
1622
1623 spin_unlock(&reg_requests_lock);
1624
1625 reg_process_hint(reg_request, reg_request->initiator);
1626
1627 out:
1628 mutex_unlock(&reg_mutex);
1629 mutex_unlock(&cfg80211_mutex);
1630 }
1631
1632 /* Processes beacon hints -- this has nothing to do with country IEs */
1633 static void reg_process_pending_beacon_hints(void)
1634 {
1635 struct cfg80211_registered_device *rdev;
1636 struct reg_beacon *pending_beacon, *tmp;
1637
1638 /*
1639 * No need to hold the reg_mutex here as we just touch wiphys
1640 * and do not read or access regulatory variables.
1641 */
1642 mutex_lock(&cfg80211_mutex);
1643
1644 /* This goes through the _pending_ beacon list */
1645 spin_lock_bh(&reg_pending_beacons_lock);
1646
1647 if (list_empty(&reg_pending_beacons)) {
1648 spin_unlock_bh(&reg_pending_beacons_lock);
1649 goto out;
1650 }
1651
1652 list_for_each_entry_safe(pending_beacon, tmp,
1653 &reg_pending_beacons, list) {
1654
1655 list_del_init(&pending_beacon->list);
1656
1657 /* Applies the beacon hint to current wiphys */
1658 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1659 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1660
1661 /* Remembers the beacon hint for new wiphys or reg changes */
1662 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1663 }
1664
1665 spin_unlock_bh(&reg_pending_beacons_lock);
1666 out:
1667 mutex_unlock(&cfg80211_mutex);
1668 }
1669
1670 static void reg_todo(struct work_struct *work)
1671 {
1672 reg_process_pending_hints();
1673 reg_process_pending_beacon_hints();
1674 }
1675
1676 static void queue_regulatory_request(struct regulatory_request *request)
1677 {
1678 if (isalpha(request->alpha2[0]))
1679 request->alpha2[0] = toupper(request->alpha2[0]);
1680 if (isalpha(request->alpha2[1]))
1681 request->alpha2[1] = toupper(request->alpha2[1]);
1682
1683 spin_lock(&reg_requests_lock);
1684 list_add_tail(&request->list, &reg_requests_list);
1685 spin_unlock(&reg_requests_lock);
1686
1687 schedule_work(&reg_work);
1688 }
1689
1690 /*
1691 * Core regulatory hint -- happens during cfg80211_init()
1692 * and when we restore regulatory settings.
1693 */
1694 static int regulatory_hint_core(const char *alpha2)
1695 {
1696 struct regulatory_request *request;
1697
1698 request = kzalloc(sizeof(struct regulatory_request),
1699 GFP_KERNEL);
1700 if (!request)
1701 return -ENOMEM;
1702
1703 request->alpha2[0] = alpha2[0];
1704 request->alpha2[1] = alpha2[1];
1705 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1706
1707 queue_regulatory_request(request);
1708
1709 return 0;
1710 }
1711
1712 /* User hints */
1713 int regulatory_hint_user(const char *alpha2,
1714 enum nl80211_user_reg_hint_type user_reg_hint_type)
1715 {
1716 struct regulatory_request *request;
1717
1718 BUG_ON(!alpha2);
1719
1720 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1721 if (!request)
1722 return -ENOMEM;
1723
1724 request->wiphy_idx = WIPHY_IDX_STALE;
1725 request->alpha2[0] = alpha2[0];
1726 request->alpha2[1] = alpha2[1];
1727 request->initiator = NL80211_REGDOM_SET_BY_USER;
1728 request->user_reg_hint_type = user_reg_hint_type;
1729
1730 queue_regulatory_request(request);
1731
1732 return 0;
1733 }
1734
1735 /* Driver hints */
1736 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1737 {
1738 struct regulatory_request *request;
1739
1740 BUG_ON(!alpha2);
1741 BUG_ON(!wiphy);
1742
1743 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1744 if (!request)
1745 return -ENOMEM;
1746
1747 request->wiphy_idx = get_wiphy_idx(wiphy);
1748
1749 /* Must have registered wiphy first */
1750 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1751
1752 request->alpha2[0] = alpha2[0];
1753 request->alpha2[1] = alpha2[1];
1754 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1755
1756 queue_regulatory_request(request);
1757
1758 return 0;
1759 }
1760 EXPORT_SYMBOL(regulatory_hint);
1761
1762 /*
1763 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1764 * therefore cannot iterate over the rdev list here.
1765 */
1766 void regulatory_hint_11d(struct wiphy *wiphy,
1767 enum ieee80211_band band,
1768 u8 *country_ie,
1769 u8 country_ie_len)
1770 {
1771 char alpha2[2];
1772 enum environment_cap env = ENVIRON_ANY;
1773 struct regulatory_request *request;
1774
1775 mutex_lock(&reg_mutex);
1776
1777 if (unlikely(!last_request))
1778 goto out;
1779
1780 /* IE len must be evenly divisible by 2 */
1781 if (country_ie_len & 0x01)
1782 goto out;
1783
1784 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1785 goto out;
1786
1787 alpha2[0] = country_ie[0];
1788 alpha2[1] = country_ie[1];
1789
1790 if (country_ie[2] == 'I')
1791 env = ENVIRON_INDOOR;
1792 else if (country_ie[2] == 'O')
1793 env = ENVIRON_OUTDOOR;
1794
1795 /*
1796 * We will run this only upon a successful connection on cfg80211.
1797 * We leave conflict resolution to the workqueue, where can hold
1798 * cfg80211_mutex.
1799 */
1800 if (likely(last_request->initiator ==
1801 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1802 wiphy_idx_valid(last_request->wiphy_idx)))
1803 goto out;
1804
1805 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1806 if (!request)
1807 goto out;
1808
1809 request->wiphy_idx = get_wiphy_idx(wiphy);
1810 request->alpha2[0] = alpha2[0];
1811 request->alpha2[1] = alpha2[1];
1812 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1813 request->country_ie_env = env;
1814
1815 mutex_unlock(&reg_mutex);
1816
1817 queue_regulatory_request(request);
1818
1819 return;
1820
1821 out:
1822 mutex_unlock(&reg_mutex);
1823 }
1824
1825 static void restore_alpha2(char *alpha2, bool reset_user)
1826 {
1827 /* indicates there is no alpha2 to consider for restoration */
1828 alpha2[0] = '9';
1829 alpha2[1] = '7';
1830
1831 /* The user setting has precedence over the module parameter */
1832 if (is_user_regdom_saved()) {
1833 /* Unless we're asked to ignore it and reset it */
1834 if (reset_user) {
1835 REG_DBG_PRINT("Restoring regulatory settings "
1836 "including user preference\n");
1837 user_alpha2[0] = '9';
1838 user_alpha2[1] = '7';
1839
1840 /*
1841 * If we're ignoring user settings, we still need to
1842 * check the module parameter to ensure we put things
1843 * back as they were for a full restore.
1844 */
1845 if (!is_world_regdom(ieee80211_regdom)) {
1846 REG_DBG_PRINT("Keeping preference on "
1847 "module parameter ieee80211_regdom: %c%c\n",
1848 ieee80211_regdom[0],
1849 ieee80211_regdom[1]);
1850 alpha2[0] = ieee80211_regdom[0];
1851 alpha2[1] = ieee80211_regdom[1];
1852 }
1853 } else {
1854 REG_DBG_PRINT("Restoring regulatory settings "
1855 "while preserving user preference for: %c%c\n",
1856 user_alpha2[0],
1857 user_alpha2[1]);
1858 alpha2[0] = user_alpha2[0];
1859 alpha2[1] = user_alpha2[1];
1860 }
1861 } else if (!is_world_regdom(ieee80211_regdom)) {
1862 REG_DBG_PRINT("Keeping preference on "
1863 "module parameter ieee80211_regdom: %c%c\n",
1864 ieee80211_regdom[0],
1865 ieee80211_regdom[1]);
1866 alpha2[0] = ieee80211_regdom[0];
1867 alpha2[1] = ieee80211_regdom[1];
1868 } else
1869 REG_DBG_PRINT("Restoring regulatory settings\n");
1870 }
1871
1872 static void restore_custom_reg_settings(struct wiphy *wiphy)
1873 {
1874 struct ieee80211_supported_band *sband;
1875 enum ieee80211_band band;
1876 struct ieee80211_channel *chan;
1877 int i;
1878
1879 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1880 sband = wiphy->bands[band];
1881 if (!sband)
1882 continue;
1883 for (i = 0; i < sband->n_channels; i++) {
1884 chan = &sband->channels[i];
1885 chan->flags = chan->orig_flags;
1886 chan->max_antenna_gain = chan->orig_mag;
1887 chan->max_power = chan->orig_mpwr;
1888 }
1889 }
1890 }
1891
1892 /*
1893 * Restoring regulatory settings involves ingoring any
1894 * possibly stale country IE information and user regulatory
1895 * settings if so desired, this includes any beacon hints
1896 * learned as we could have traveled outside to another country
1897 * after disconnection. To restore regulatory settings we do
1898 * exactly what we did at bootup:
1899 *
1900 * - send a core regulatory hint
1901 * - send a user regulatory hint if applicable
1902 *
1903 * Device drivers that send a regulatory hint for a specific country
1904 * keep their own regulatory domain on wiphy->regd so that does does
1905 * not need to be remembered.
1906 */
1907 static void restore_regulatory_settings(bool reset_user)
1908 {
1909 char alpha2[2];
1910 char world_alpha2[2];
1911 struct reg_beacon *reg_beacon, *btmp;
1912 struct regulatory_request *reg_request, *tmp;
1913 LIST_HEAD(tmp_reg_req_list);
1914 struct cfg80211_registered_device *rdev;
1915
1916 mutex_lock(&cfg80211_mutex);
1917 mutex_lock(&reg_mutex);
1918
1919 reset_regdomains(true);
1920 restore_alpha2(alpha2, reset_user);
1921
1922 /*
1923 * If there's any pending requests we simply
1924 * stash them to a temporary pending queue and
1925 * add then after we've restored regulatory
1926 * settings.
1927 */
1928 spin_lock(&reg_requests_lock);
1929 if (!list_empty(&reg_requests_list)) {
1930 list_for_each_entry_safe(reg_request, tmp,
1931 &reg_requests_list, list) {
1932 if (reg_request->initiator !=
1933 NL80211_REGDOM_SET_BY_USER)
1934 continue;
1935 list_del(&reg_request->list);
1936 list_add_tail(&reg_request->list, &tmp_reg_req_list);
1937 }
1938 }
1939 spin_unlock(&reg_requests_lock);
1940
1941 /* Clear beacon hints */
1942 spin_lock_bh(&reg_pending_beacons_lock);
1943 if (!list_empty(&reg_pending_beacons)) {
1944 list_for_each_entry_safe(reg_beacon, btmp,
1945 &reg_pending_beacons, list) {
1946 list_del(&reg_beacon->list);
1947 kfree(reg_beacon);
1948 }
1949 }
1950 spin_unlock_bh(&reg_pending_beacons_lock);
1951
1952 if (!list_empty(&reg_beacon_list)) {
1953 list_for_each_entry_safe(reg_beacon, btmp,
1954 &reg_beacon_list, list) {
1955 list_del(&reg_beacon->list);
1956 kfree(reg_beacon);
1957 }
1958 }
1959
1960 /* First restore to the basic regulatory settings */
1961 cfg80211_regdomain = cfg80211_world_regdom;
1962 world_alpha2[0] = cfg80211_regdomain->alpha2[0];
1963 world_alpha2[1] = cfg80211_regdomain->alpha2[1];
1964
1965 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1966 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1967 restore_custom_reg_settings(&rdev->wiphy);
1968 }
1969
1970 mutex_unlock(&reg_mutex);
1971 mutex_unlock(&cfg80211_mutex);
1972
1973 regulatory_hint_core(world_alpha2);
1974
1975 /*
1976 * This restores the ieee80211_regdom module parameter
1977 * preference or the last user requested regulatory
1978 * settings, user regulatory settings takes precedence.
1979 */
1980 if (is_an_alpha2(alpha2))
1981 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
1982
1983 if (list_empty(&tmp_reg_req_list))
1984 return;
1985
1986 mutex_lock(&cfg80211_mutex);
1987 mutex_lock(&reg_mutex);
1988
1989 spin_lock(&reg_requests_lock);
1990 list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1991 REG_DBG_PRINT("Adding request for country %c%c back "
1992 "into the queue\n",
1993 reg_request->alpha2[0],
1994 reg_request->alpha2[1]);
1995 list_del(&reg_request->list);
1996 list_add_tail(&reg_request->list, &reg_requests_list);
1997 }
1998 spin_unlock(&reg_requests_lock);
1999
2000 mutex_unlock(&reg_mutex);
2001 mutex_unlock(&cfg80211_mutex);
2002
2003 REG_DBG_PRINT("Kicking the queue\n");
2004
2005 schedule_work(&reg_work);
2006 }
2007
2008 void regulatory_hint_disconnect(void)
2009 {
2010 REG_DBG_PRINT("All devices are disconnected, going to "
2011 "restore regulatory settings\n");
2012 restore_regulatory_settings(false);
2013 }
2014
2015 static bool freq_is_chan_12_13_14(u16 freq)
2016 {
2017 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2018 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2019 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2020 return true;
2021 return false;
2022 }
2023
2024 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2025 struct ieee80211_channel *beacon_chan,
2026 gfp_t gfp)
2027 {
2028 struct reg_beacon *reg_beacon;
2029
2030 if (likely((beacon_chan->beacon_found ||
2031 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
2032 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2033 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
2034 return 0;
2035
2036 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2037 if (!reg_beacon)
2038 return -ENOMEM;
2039
2040 REG_DBG_PRINT("Found new beacon on "
2041 "frequency: %d MHz (Ch %d) on %s\n",
2042 beacon_chan->center_freq,
2043 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2044 wiphy_name(wiphy));
2045
2046 memcpy(&reg_beacon->chan, beacon_chan,
2047 sizeof(struct ieee80211_channel));
2048
2049
2050 /*
2051 * Since we can be called from BH or and non-BH context
2052 * we must use spin_lock_bh()
2053 */
2054 spin_lock_bh(&reg_pending_beacons_lock);
2055 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2056 spin_unlock_bh(&reg_pending_beacons_lock);
2057
2058 schedule_work(&reg_work);
2059
2060 return 0;
2061 }
2062
2063 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2064 {
2065 unsigned int i;
2066 const struct ieee80211_reg_rule *reg_rule = NULL;
2067 const struct ieee80211_freq_range *freq_range = NULL;
2068 const struct ieee80211_power_rule *power_rule = NULL;
2069
2070 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2071
2072 for (i = 0; i < rd->n_reg_rules; i++) {
2073 reg_rule = &rd->reg_rules[i];
2074 freq_range = &reg_rule->freq_range;
2075 power_rule = &reg_rule->power_rule;
2076
2077 /*
2078 * There may not be documentation for max antenna gain
2079 * in certain regions
2080 */
2081 if (power_rule->max_antenna_gain)
2082 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2083 freq_range->start_freq_khz,
2084 freq_range->end_freq_khz,
2085 freq_range->max_bandwidth_khz,
2086 power_rule->max_antenna_gain,
2087 power_rule->max_eirp);
2088 else
2089 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2090 freq_range->start_freq_khz,
2091 freq_range->end_freq_khz,
2092 freq_range->max_bandwidth_khz,
2093 power_rule->max_eirp);
2094 }
2095 }
2096
2097 bool reg_supported_dfs_region(u8 dfs_region)
2098 {
2099 switch (dfs_region) {
2100 case NL80211_DFS_UNSET:
2101 case NL80211_DFS_FCC:
2102 case NL80211_DFS_ETSI:
2103 case NL80211_DFS_JP:
2104 return true;
2105 default:
2106 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2107 dfs_region);
2108 return false;
2109 }
2110 }
2111
2112 static void print_dfs_region(u8 dfs_region)
2113 {
2114 if (!dfs_region)
2115 return;
2116
2117 switch (dfs_region) {
2118 case NL80211_DFS_FCC:
2119 pr_info(" DFS Master region FCC");
2120 break;
2121 case NL80211_DFS_ETSI:
2122 pr_info(" DFS Master region ETSI");
2123 break;
2124 case NL80211_DFS_JP:
2125 pr_info(" DFS Master region JP");
2126 break;
2127 default:
2128 pr_info(" DFS Master region Uknown");
2129 break;
2130 }
2131 }
2132
2133 static void print_regdomain(const struct ieee80211_regdomain *rd)
2134 {
2135
2136 if (is_intersected_alpha2(rd->alpha2)) {
2137
2138 if (last_request->initiator ==
2139 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2140 struct cfg80211_registered_device *rdev;
2141 rdev = cfg80211_rdev_by_wiphy_idx(
2142 last_request->wiphy_idx);
2143 if (rdev) {
2144 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2145 rdev->country_ie_alpha2[0],
2146 rdev->country_ie_alpha2[1]);
2147 } else
2148 pr_info("Current regulatory domain intersected:\n");
2149 } else
2150 pr_info("Current regulatory domain intersected:\n");
2151 } else if (is_world_regdom(rd->alpha2))
2152 pr_info("World regulatory domain updated:\n");
2153 else {
2154 if (is_unknown_alpha2(rd->alpha2))
2155 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2156 else {
2157 if (reg_request_cell_base(last_request))
2158 pr_info("Regulatory domain changed "
2159 "to country: %c%c by Cell Station\n",
2160 rd->alpha2[0], rd->alpha2[1]);
2161 else
2162 pr_info("Regulatory domain changed "
2163 "to country: %c%c\n",
2164 rd->alpha2[0], rd->alpha2[1]);
2165 }
2166 }
2167 print_dfs_region(rd->dfs_region);
2168 print_rd_rules(rd);
2169 }
2170
2171 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2172 {
2173 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2174 print_rd_rules(rd);
2175 }
2176
2177 /* Takes ownership of rd only if it doesn't fail */
2178 static int __set_regdom(const struct ieee80211_regdomain *rd)
2179 {
2180 const struct ieee80211_regdomain *intersected_rd = NULL;
2181 struct cfg80211_registered_device *rdev = NULL;
2182 struct wiphy *request_wiphy;
2183 /* Some basic sanity checks first */
2184
2185 if (is_world_regdom(rd->alpha2)) {
2186 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2187 return -EINVAL;
2188 update_world_regdomain(rd);
2189 return 0;
2190 }
2191
2192 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2193 !is_unknown_alpha2(rd->alpha2))
2194 return -EINVAL;
2195
2196 if (!last_request)
2197 return -EINVAL;
2198
2199 /*
2200 * Lets only bother proceeding on the same alpha2 if the current
2201 * rd is non static (it means CRDA was present and was used last)
2202 * and the pending request came in from a country IE
2203 */
2204 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2205 /*
2206 * If someone else asked us to change the rd lets only bother
2207 * checking if the alpha2 changes if CRDA was already called
2208 */
2209 if (!regdom_changes(rd->alpha2))
2210 return -EALREADY;
2211 }
2212
2213 /*
2214 * Now lets set the regulatory domain, update all driver channels
2215 * and finally inform them of what we have done, in case they want
2216 * to review or adjust their own settings based on their own
2217 * internal EEPROM data
2218 */
2219
2220 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2221 return -EINVAL;
2222
2223 if (!is_valid_rd(rd)) {
2224 pr_err("Invalid regulatory domain detected:\n");
2225 print_regdomain_info(rd);
2226 return -EINVAL;
2227 }
2228
2229 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2230 if (!request_wiphy &&
2231 (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2232 last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2233 schedule_delayed_work(&reg_timeout, 0);
2234 return -ENODEV;
2235 }
2236
2237 if (!last_request->intersect) {
2238 int r;
2239
2240 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2241 reset_regdomains(false);
2242 cfg80211_regdomain = rd;
2243 return 0;
2244 }
2245
2246 /*
2247 * For a driver hint, lets copy the regulatory domain the
2248 * driver wanted to the wiphy to deal with conflicts
2249 */
2250
2251 /*
2252 * Userspace could have sent two replies with only
2253 * one kernel request.
2254 */
2255 if (request_wiphy->regd)
2256 return -EALREADY;
2257
2258 r = reg_copy_regd(&request_wiphy->regd, rd);
2259 if (r)
2260 return r;
2261
2262 reset_regdomains(false);
2263 cfg80211_regdomain = rd;
2264 return 0;
2265 }
2266
2267 /* Intersection requires a bit more work */
2268
2269 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2270
2271 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2272 if (!intersected_rd)
2273 return -EINVAL;
2274
2275 /*
2276 * We can trash what CRDA provided now.
2277 * However if a driver requested this specific regulatory
2278 * domain we keep it for its private use
2279 */
2280 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2281 request_wiphy->regd = rd;
2282 else
2283 kfree(rd);
2284
2285 rd = NULL;
2286
2287 reset_regdomains(false);
2288 cfg80211_regdomain = intersected_rd;
2289
2290 return 0;
2291 }
2292
2293 if (!intersected_rd)
2294 return -EINVAL;
2295
2296 rdev = wiphy_to_dev(request_wiphy);
2297
2298 rdev->country_ie_alpha2[0] = rd->alpha2[0];
2299 rdev->country_ie_alpha2[1] = rd->alpha2[1];
2300 rdev->env = last_request->country_ie_env;
2301
2302 BUG_ON(intersected_rd == rd);
2303
2304 kfree(rd);
2305 rd = NULL;
2306
2307 reset_regdomains(false);
2308 cfg80211_regdomain = intersected_rd;
2309
2310 return 0;
2311 }
2312
2313
2314 /*
2315 * Use this call to set the current regulatory domain. Conflicts with
2316 * multiple drivers can be ironed out later. Caller must've already
2317 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2318 */
2319 int set_regdom(const struct ieee80211_regdomain *rd)
2320 {
2321 int r;
2322
2323 assert_cfg80211_lock();
2324
2325 mutex_lock(&reg_mutex);
2326
2327 /* Note that this doesn't update the wiphys, this is done below */
2328 r = __set_regdom(rd);
2329 if (r) {
2330 if (r == -EALREADY)
2331 reg_set_request_processed();
2332
2333 kfree(rd);
2334 mutex_unlock(&reg_mutex);
2335 return r;
2336 }
2337
2338 /* This would make this whole thing pointless */
2339 if (!last_request->intersect)
2340 BUG_ON(rd != cfg80211_regdomain);
2341
2342 /* update all wiphys now with the new established regulatory domain */
2343 update_all_wiphy_regulatory(last_request->initiator);
2344
2345 print_regdomain(cfg80211_regdomain);
2346
2347 nl80211_send_reg_change_event(last_request);
2348
2349 reg_set_request_processed();
2350
2351 mutex_unlock(&reg_mutex);
2352
2353 return r;
2354 }
2355
2356 #ifdef CONFIG_HOTPLUG
2357 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2358 {
2359 if (last_request && !last_request->processed) {
2360 if (add_uevent_var(env, "COUNTRY=%c%c",
2361 last_request->alpha2[0],
2362 last_request->alpha2[1]))
2363 return -ENOMEM;
2364 }
2365
2366 return 0;
2367 }
2368 #else
2369 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2370 {
2371 return -ENODEV;
2372 }
2373 #endif /* CONFIG_HOTPLUG */
2374
2375 void wiphy_regulatory_register(struct wiphy *wiphy)
2376 {
2377 assert_cfg80211_lock();
2378
2379 mutex_lock(&reg_mutex);
2380
2381 if (!reg_dev_ignore_cell_hint(wiphy))
2382 reg_num_devs_support_basehint++;
2383
2384 wiphy_update_regulatory(wiphy, NL80211_REGDOM_SET_BY_CORE);
2385
2386 mutex_unlock(&reg_mutex);
2387 }
2388
2389 /* Caller must hold cfg80211_mutex */
2390 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2391 {
2392 struct wiphy *request_wiphy = NULL;
2393
2394 assert_cfg80211_lock();
2395
2396 mutex_lock(&reg_mutex);
2397
2398 if (!reg_dev_ignore_cell_hint(wiphy))
2399 reg_num_devs_support_basehint--;
2400
2401 kfree(wiphy->regd);
2402
2403 if (last_request)
2404 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2405
2406 if (!request_wiphy || request_wiphy != wiphy)
2407 goto out;
2408
2409 last_request->wiphy_idx = WIPHY_IDX_STALE;
2410 last_request->country_ie_env = ENVIRON_ANY;
2411 out:
2412 mutex_unlock(&reg_mutex);
2413 }
2414
2415 static void reg_timeout_work(struct work_struct *work)
2416 {
2417 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2418 "restoring regulatory settings\n");
2419 restore_regulatory_settings(true);
2420 }
2421
2422 int __init regulatory_init(void)
2423 {
2424 int err = 0;
2425
2426 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2427 if (IS_ERR(reg_pdev))
2428 return PTR_ERR(reg_pdev);
2429
2430 reg_pdev->dev.type = &reg_device_type;
2431
2432 spin_lock_init(&reg_requests_lock);
2433 spin_lock_init(&reg_pending_beacons_lock);
2434
2435 reg_regdb_size_check();
2436
2437 cfg80211_regdomain = cfg80211_world_regdom;
2438
2439 user_alpha2[0] = '9';
2440 user_alpha2[1] = '7';
2441
2442 /* We always try to get an update for the static regdomain */
2443 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2444 if (err) {
2445 if (err == -ENOMEM)
2446 return err;
2447 /*
2448 * N.B. kobject_uevent_env() can fail mainly for when we're out
2449 * memory which is handled and propagated appropriately above
2450 * but it can also fail during a netlink_broadcast() or during
2451 * early boot for call_usermodehelper(). For now treat these
2452 * errors as non-fatal.
2453 */
2454 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2455 #ifdef CONFIG_CFG80211_REG_DEBUG
2456 /* We want to find out exactly why when debugging */
2457 WARN_ON(err);
2458 #endif
2459 }
2460
2461 /*
2462 * Finally, if the user set the module parameter treat it
2463 * as a user hint.
2464 */
2465 if (!is_world_regdom(ieee80211_regdom))
2466 regulatory_hint_user(ieee80211_regdom,
2467 NL80211_USER_REG_HINT_USER);
2468
2469 return 0;
2470 }
2471
2472 void /* __init_or_exit */ regulatory_exit(void)
2473 {
2474 struct regulatory_request *reg_request, *tmp;
2475 struct reg_beacon *reg_beacon, *btmp;
2476
2477 cancel_work_sync(&reg_work);
2478 cancel_delayed_work_sync(&reg_timeout);
2479
2480 mutex_lock(&cfg80211_mutex);
2481 mutex_lock(&reg_mutex);
2482
2483 reset_regdomains(true);
2484
2485 dev_set_uevent_suppress(&reg_pdev->dev, true);
2486
2487 platform_device_unregister(reg_pdev);
2488
2489 spin_lock_bh(&reg_pending_beacons_lock);
2490 if (!list_empty(&reg_pending_beacons)) {
2491 list_for_each_entry_safe(reg_beacon, btmp,
2492 &reg_pending_beacons, list) {
2493 list_del(&reg_beacon->list);
2494 kfree(reg_beacon);
2495 }
2496 }
2497 spin_unlock_bh(&reg_pending_beacons_lock);
2498
2499 if (!list_empty(&reg_beacon_list)) {
2500 list_for_each_entry_safe(reg_beacon, btmp,
2501 &reg_beacon_list, list) {
2502 list_del(&reg_beacon->list);
2503 kfree(reg_beacon);
2504 }
2505 }
2506
2507 spin_lock(&reg_requests_lock);
2508 if (!list_empty(&reg_requests_list)) {
2509 list_for_each_entry_safe(reg_request, tmp,
2510 &reg_requests_list, list) {
2511 list_del(&reg_request->list);
2512 kfree(reg_request);
2513 }
2514 }
2515 spin_unlock(&reg_requests_lock);
2516
2517 mutex_unlock(&reg_mutex);
2518 mutex_unlock(&cfg80211_mutex);
2519 }