]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/wireless/reg.c
cfg80211: decouple regulatory variables from cfg80211_mutex
[mirror_ubuntu-bionic-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 /**
13 * DOC: Wireless regulatory infrastructure
14 *
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
19 *
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
23 *
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
29 *
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
33 *
34 */
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/random.h>
38 #include <linux/nl80211.h>
39 #include <linux/platform_device.h>
40 #include <net/cfg80211.h>
41 #include "core.h"
42 #include "reg.h"
43 #include "nl80211.h"
44
45 /* Receipt of information from last regulatory request */
46 static struct regulatory_request *last_request;
47
48 /* To trigger userspace events */
49 static struct platform_device *reg_pdev;
50
51 /*
52 * Central wireless core regulatory domains, we only need two,
53 * the current one and a world regulatory domain in case we have no
54 * information to give us an alpha2
55 */
56 const struct ieee80211_regdomain *cfg80211_regdomain;
57
58 /*
59 * We use this as a place for the rd structure built from the
60 * last parsed country IE to rest until CRDA gets back to us with
61 * what it thinks should apply for the same country
62 */
63 static const struct ieee80211_regdomain *country_ie_regdomain;
64
65 /*
66 * Protects static reg.c components:
67 * - cfg80211_world_regdom
68 * - cfg80211_regdom
69 * - country_ie_regdomain
70 * - last_request
71 */
72 DEFINE_MUTEX(reg_mutex);
73 #define assert_reg_lock() WARN_ON(!mutex_is_locked(&reg_mutex))
74
75 /* Used to queue up regulatory hints */
76 static LIST_HEAD(reg_requests_list);
77 static spinlock_t reg_requests_lock;
78
79 /* Used to queue up beacon hints for review */
80 static LIST_HEAD(reg_pending_beacons);
81 static spinlock_t reg_pending_beacons_lock;
82
83 /* Used to keep track of processed beacon hints */
84 static LIST_HEAD(reg_beacon_list);
85
86 struct reg_beacon {
87 struct list_head list;
88 struct ieee80211_channel chan;
89 };
90
91 /* We keep a static world regulatory domain in case of the absence of CRDA */
92 static const struct ieee80211_regdomain world_regdom = {
93 .n_reg_rules = 5,
94 .alpha2 = "00",
95 .reg_rules = {
96 /* IEEE 802.11b/g, channels 1..11 */
97 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
98 /* IEEE 802.11b/g, channels 12..13. No HT40
99 * channel fits here. */
100 REG_RULE(2467-10, 2472+10, 20, 6, 20,
101 NL80211_RRF_PASSIVE_SCAN |
102 NL80211_RRF_NO_IBSS),
103 /* IEEE 802.11 channel 14 - Only JP enables
104 * this and for 802.11b only */
105 REG_RULE(2484-10, 2484+10, 20, 6, 20,
106 NL80211_RRF_PASSIVE_SCAN |
107 NL80211_RRF_NO_IBSS |
108 NL80211_RRF_NO_OFDM),
109 /* IEEE 802.11a, channel 36..48 */
110 REG_RULE(5180-10, 5240+10, 40, 6, 20,
111 NL80211_RRF_PASSIVE_SCAN |
112 NL80211_RRF_NO_IBSS),
113
114 /* NB: 5260 MHz - 5700 MHz requies DFS */
115
116 /* IEEE 802.11a, channel 149..165 */
117 REG_RULE(5745-10, 5825+10, 40, 6, 20,
118 NL80211_RRF_PASSIVE_SCAN |
119 NL80211_RRF_NO_IBSS),
120 }
121 };
122
123 static const struct ieee80211_regdomain *cfg80211_world_regdom =
124 &world_regdom;
125
126 static char *ieee80211_regdom = "00";
127
128 module_param(ieee80211_regdom, charp, 0444);
129 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
130
131 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
132 /*
133 * We assume 40 MHz bandwidth for the old regulatory work.
134 * We make emphasis we are using the exact same frequencies
135 * as before
136 */
137
138 static const struct ieee80211_regdomain us_regdom = {
139 .n_reg_rules = 6,
140 .alpha2 = "US",
141 .reg_rules = {
142 /* IEEE 802.11b/g, channels 1..11 */
143 REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
144 /* IEEE 802.11a, channel 36 */
145 REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
146 /* IEEE 802.11a, channel 40 */
147 REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
148 /* IEEE 802.11a, channel 44 */
149 REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
150 /* IEEE 802.11a, channels 48..64 */
151 REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
152 /* IEEE 802.11a, channels 149..165, outdoor */
153 REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
154 }
155 };
156
157 static const struct ieee80211_regdomain jp_regdom = {
158 .n_reg_rules = 3,
159 .alpha2 = "JP",
160 .reg_rules = {
161 /* IEEE 802.11b/g, channels 1..14 */
162 REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
163 /* IEEE 802.11a, channels 34..48 */
164 REG_RULE(5170-10, 5240+10, 40, 6, 20,
165 NL80211_RRF_PASSIVE_SCAN),
166 /* IEEE 802.11a, channels 52..64 */
167 REG_RULE(5260-10, 5320+10, 40, 6, 20,
168 NL80211_RRF_NO_IBSS |
169 NL80211_RRF_DFS),
170 }
171 };
172
173 static const struct ieee80211_regdomain eu_regdom = {
174 .n_reg_rules = 6,
175 /*
176 * This alpha2 is bogus, we leave it here just for stupid
177 * backward compatibility
178 */
179 .alpha2 = "EU",
180 .reg_rules = {
181 /* IEEE 802.11b/g, channels 1..13 */
182 REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
183 /* IEEE 802.11a, channel 36 */
184 REG_RULE(5180-10, 5180+10, 40, 6, 23,
185 NL80211_RRF_PASSIVE_SCAN),
186 /* IEEE 802.11a, channel 40 */
187 REG_RULE(5200-10, 5200+10, 40, 6, 23,
188 NL80211_RRF_PASSIVE_SCAN),
189 /* IEEE 802.11a, channel 44 */
190 REG_RULE(5220-10, 5220+10, 40, 6, 23,
191 NL80211_RRF_PASSIVE_SCAN),
192 /* IEEE 802.11a, channels 48..64 */
193 REG_RULE(5240-10, 5320+10, 40, 6, 20,
194 NL80211_RRF_NO_IBSS |
195 NL80211_RRF_DFS),
196 /* IEEE 802.11a, channels 100..140 */
197 REG_RULE(5500-10, 5700+10, 40, 6, 30,
198 NL80211_RRF_NO_IBSS |
199 NL80211_RRF_DFS),
200 }
201 };
202
203 static const struct ieee80211_regdomain *static_regdom(char *alpha2)
204 {
205 if (alpha2[0] == 'U' && alpha2[1] == 'S')
206 return &us_regdom;
207 if (alpha2[0] == 'J' && alpha2[1] == 'P')
208 return &jp_regdom;
209 if (alpha2[0] == 'E' && alpha2[1] == 'U')
210 return &eu_regdom;
211 /* Default, as per the old rules */
212 return &us_regdom;
213 }
214
215 static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
216 {
217 if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
218 return true;
219 return false;
220 }
221 #else
222 static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
223 {
224 return false;
225 }
226 #endif
227
228 static void reset_regdomains(void)
229 {
230 /* avoid freeing static information or freeing something twice */
231 if (cfg80211_regdomain == cfg80211_world_regdom)
232 cfg80211_regdomain = NULL;
233 if (cfg80211_world_regdom == &world_regdom)
234 cfg80211_world_regdom = NULL;
235 if (cfg80211_regdomain == &world_regdom)
236 cfg80211_regdomain = NULL;
237 if (is_old_static_regdom(cfg80211_regdomain))
238 cfg80211_regdomain = NULL;
239
240 kfree(cfg80211_regdomain);
241 kfree(cfg80211_world_regdom);
242
243 cfg80211_world_regdom = &world_regdom;
244 cfg80211_regdomain = NULL;
245 }
246
247 /*
248 * Dynamic world regulatory domain requested by the wireless
249 * core upon initialization
250 */
251 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
252 {
253 BUG_ON(!last_request);
254
255 reset_regdomains();
256
257 cfg80211_world_regdom = rd;
258 cfg80211_regdomain = rd;
259 }
260
261 bool is_world_regdom(const char *alpha2)
262 {
263 if (!alpha2)
264 return false;
265 if (alpha2[0] == '0' && alpha2[1] == '0')
266 return true;
267 return false;
268 }
269
270 static bool is_alpha2_set(const char *alpha2)
271 {
272 if (!alpha2)
273 return false;
274 if (alpha2[0] != 0 && alpha2[1] != 0)
275 return true;
276 return false;
277 }
278
279 static bool is_alpha_upper(char letter)
280 {
281 /* ASCII A - Z */
282 if (letter >= 65 && letter <= 90)
283 return true;
284 return false;
285 }
286
287 static bool is_unknown_alpha2(const char *alpha2)
288 {
289 if (!alpha2)
290 return false;
291 /*
292 * Special case where regulatory domain was built by driver
293 * but a specific alpha2 cannot be determined
294 */
295 if (alpha2[0] == '9' && alpha2[1] == '9')
296 return true;
297 return false;
298 }
299
300 static bool is_intersected_alpha2(const char *alpha2)
301 {
302 if (!alpha2)
303 return false;
304 /*
305 * Special case where regulatory domain is the
306 * result of an intersection between two regulatory domain
307 * structures
308 */
309 if (alpha2[0] == '9' && alpha2[1] == '8')
310 return true;
311 return false;
312 }
313
314 static bool is_an_alpha2(const char *alpha2)
315 {
316 if (!alpha2)
317 return false;
318 if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
319 return true;
320 return false;
321 }
322
323 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
324 {
325 if (!alpha2_x || !alpha2_y)
326 return false;
327 if (alpha2_x[0] == alpha2_y[0] &&
328 alpha2_x[1] == alpha2_y[1])
329 return true;
330 return false;
331 }
332
333 static bool regdom_changes(const char *alpha2)
334 {
335 assert_cfg80211_lock();
336
337 if (!cfg80211_regdomain)
338 return true;
339 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
340 return false;
341 return true;
342 }
343
344 /**
345 * country_ie_integrity_changes - tells us if the country IE has changed
346 * @checksum: checksum of country IE of fields we are interested in
347 *
348 * If the country IE has not changed you can ignore it safely. This is
349 * useful to determine if two devices are seeing two different country IEs
350 * even on the same alpha2. Note that this will return false if no IE has
351 * been set on the wireless core yet.
352 */
353 static bool country_ie_integrity_changes(u32 checksum)
354 {
355 /* If no IE has been set then the checksum doesn't change */
356 if (unlikely(!last_request->country_ie_checksum))
357 return false;
358 if (unlikely(last_request->country_ie_checksum != checksum))
359 return true;
360 return false;
361 }
362
363 /*
364 * This lets us keep regulatory code which is updated on a regulatory
365 * basis in userspace.
366 */
367 static int call_crda(const char *alpha2)
368 {
369 char country_env[9 + 2] = "COUNTRY=";
370 char *envp[] = {
371 country_env,
372 NULL
373 };
374
375 if (!is_world_regdom((char *) alpha2))
376 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
377 alpha2[0], alpha2[1]);
378 else
379 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
380 "regulatory domain\n");
381
382 country_env[8] = alpha2[0];
383 country_env[9] = alpha2[1];
384
385 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
386 }
387
388 /* Used by nl80211 before kmalloc'ing our regulatory domain */
389 bool reg_is_valid_request(const char *alpha2)
390 {
391 assert_cfg80211_lock();
392
393 if (!last_request)
394 return false;
395
396 return alpha2_equal(last_request->alpha2, alpha2);
397 }
398
399 /* Sanity check on a regulatory rule */
400 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
401 {
402 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
403 u32 freq_diff;
404
405 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
406 return false;
407
408 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
409 return false;
410
411 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
412
413 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
414 freq_range->max_bandwidth_khz > freq_diff)
415 return false;
416
417 return true;
418 }
419
420 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
421 {
422 const struct ieee80211_reg_rule *reg_rule = NULL;
423 unsigned int i;
424
425 if (!rd->n_reg_rules)
426 return false;
427
428 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
429 return false;
430
431 for (i = 0; i < rd->n_reg_rules; i++) {
432 reg_rule = &rd->reg_rules[i];
433 if (!is_valid_reg_rule(reg_rule))
434 return false;
435 }
436
437 return true;
438 }
439
440 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
441 u32 center_freq_khz,
442 u32 bw_khz)
443 {
444 u32 start_freq_khz, end_freq_khz;
445
446 start_freq_khz = center_freq_khz - (bw_khz/2);
447 end_freq_khz = center_freq_khz + (bw_khz/2);
448
449 if (start_freq_khz >= freq_range->start_freq_khz &&
450 end_freq_khz <= freq_range->end_freq_khz)
451 return true;
452
453 return false;
454 }
455
456 /**
457 * freq_in_rule_band - tells us if a frequency is in a frequency band
458 * @freq_range: frequency rule we want to query
459 * @freq_khz: frequency we are inquiring about
460 *
461 * This lets us know if a specific frequency rule is or is not relevant to
462 * a specific frequency's band. Bands are device specific and artificial
463 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
464 * safe for now to assume that a frequency rule should not be part of a
465 * frequency's band if the start freq or end freq are off by more than 2 GHz.
466 * This resolution can be lowered and should be considered as we add
467 * regulatory rule support for other "bands".
468 **/
469 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
470 u32 freq_khz)
471 {
472 #define ONE_GHZ_IN_KHZ 1000000
473 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
474 return true;
475 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
476 return true;
477 return false;
478 #undef ONE_GHZ_IN_KHZ
479 }
480
481 /*
482 * Converts a country IE to a regulatory domain. A regulatory domain
483 * structure has a lot of information which the IE doesn't yet have,
484 * so for the other values we use upper max values as we will intersect
485 * with our userspace regulatory agent to get lower bounds.
486 */
487 static struct ieee80211_regdomain *country_ie_2_rd(
488 u8 *country_ie,
489 u8 country_ie_len,
490 u32 *checksum)
491 {
492 struct ieee80211_regdomain *rd = NULL;
493 unsigned int i = 0;
494 char alpha2[2];
495 u32 flags = 0;
496 u32 num_rules = 0, size_of_regd = 0;
497 u8 *triplets_start = NULL;
498 u8 len_at_triplet = 0;
499 /* the last channel we have registered in a subband (triplet) */
500 int last_sub_max_channel = 0;
501
502 *checksum = 0xDEADBEEF;
503
504 /* Country IE requirements */
505 BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
506 country_ie_len & 0x01);
507
508 alpha2[0] = country_ie[0];
509 alpha2[1] = country_ie[1];
510
511 /*
512 * Third octet can be:
513 * 'I' - Indoor
514 * 'O' - Outdoor
515 *
516 * anything else we assume is no restrictions
517 */
518 if (country_ie[2] == 'I')
519 flags = NL80211_RRF_NO_OUTDOOR;
520 else if (country_ie[2] == 'O')
521 flags = NL80211_RRF_NO_INDOOR;
522
523 country_ie += 3;
524 country_ie_len -= 3;
525
526 triplets_start = country_ie;
527 len_at_triplet = country_ie_len;
528
529 *checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);
530
531 /*
532 * We need to build a reg rule for each triplet, but first we must
533 * calculate the number of reg rules we will need. We will need one
534 * for each channel subband
535 */
536 while (country_ie_len >= 3) {
537 int end_channel = 0;
538 struct ieee80211_country_ie_triplet *triplet =
539 (struct ieee80211_country_ie_triplet *) country_ie;
540 int cur_sub_max_channel = 0, cur_channel = 0;
541
542 if (triplet->ext.reg_extension_id >=
543 IEEE80211_COUNTRY_EXTENSION_ID) {
544 country_ie += 3;
545 country_ie_len -= 3;
546 continue;
547 }
548
549 /* 2 GHz */
550 if (triplet->chans.first_channel <= 14)
551 end_channel = triplet->chans.first_channel +
552 triplet->chans.num_channels;
553 else
554 /*
555 * 5 GHz -- For example in country IEs if the first
556 * channel given is 36 and the number of channels is 4
557 * then the individual channel numbers defined for the
558 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
559 * and not 36, 37, 38, 39.
560 *
561 * See: http://tinyurl.com/11d-clarification
562 */
563 end_channel = triplet->chans.first_channel +
564 (4 * (triplet->chans.num_channels - 1));
565
566 cur_channel = triplet->chans.first_channel;
567 cur_sub_max_channel = end_channel;
568
569 /* Basic sanity check */
570 if (cur_sub_max_channel < cur_channel)
571 return NULL;
572
573 /*
574 * Do not allow overlapping channels. Also channels
575 * passed in each subband must be monotonically
576 * increasing
577 */
578 if (last_sub_max_channel) {
579 if (cur_channel <= last_sub_max_channel)
580 return NULL;
581 if (cur_sub_max_channel <= last_sub_max_channel)
582 return NULL;
583 }
584
585 /*
586 * When dot11RegulatoryClassesRequired is supported
587 * we can throw ext triplets as part of this soup,
588 * for now we don't care when those change as we
589 * don't support them
590 */
591 *checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
592 ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
593 ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);
594
595 last_sub_max_channel = cur_sub_max_channel;
596
597 country_ie += 3;
598 country_ie_len -= 3;
599 num_rules++;
600
601 /*
602 * Note: this is not a IEEE requirement but
603 * simply a memory requirement
604 */
605 if (num_rules > NL80211_MAX_SUPP_REG_RULES)
606 return NULL;
607 }
608
609 country_ie = triplets_start;
610 country_ie_len = len_at_triplet;
611
612 size_of_regd = sizeof(struct ieee80211_regdomain) +
613 (num_rules * sizeof(struct ieee80211_reg_rule));
614
615 rd = kzalloc(size_of_regd, GFP_KERNEL);
616 if (!rd)
617 return NULL;
618
619 rd->n_reg_rules = num_rules;
620 rd->alpha2[0] = alpha2[0];
621 rd->alpha2[1] = alpha2[1];
622
623 /* This time around we fill in the rd */
624 while (country_ie_len >= 3) {
625 int end_channel = 0;
626 struct ieee80211_country_ie_triplet *triplet =
627 (struct ieee80211_country_ie_triplet *) country_ie;
628 struct ieee80211_reg_rule *reg_rule = NULL;
629 struct ieee80211_freq_range *freq_range = NULL;
630 struct ieee80211_power_rule *power_rule = NULL;
631
632 /*
633 * Must parse if dot11RegulatoryClassesRequired is true,
634 * we don't support this yet
635 */
636 if (triplet->ext.reg_extension_id >=
637 IEEE80211_COUNTRY_EXTENSION_ID) {
638 country_ie += 3;
639 country_ie_len -= 3;
640 continue;
641 }
642
643 reg_rule = &rd->reg_rules[i];
644 freq_range = &reg_rule->freq_range;
645 power_rule = &reg_rule->power_rule;
646
647 reg_rule->flags = flags;
648
649 /* 2 GHz */
650 if (triplet->chans.first_channel <= 14)
651 end_channel = triplet->chans.first_channel +
652 triplet->chans.num_channels;
653 else
654 end_channel = triplet->chans.first_channel +
655 (4 * (triplet->chans.num_channels - 1));
656
657 /*
658 * The +10 is since the regulatory domain expects
659 * the actual band edge, not the center of freq for
660 * its start and end freqs, assuming 20 MHz bandwidth on
661 * the channels passed
662 */
663 freq_range->start_freq_khz =
664 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
665 triplet->chans.first_channel) - 10);
666 freq_range->end_freq_khz =
667 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
668 end_channel) + 10);
669
670 /*
671 * These are large arbitrary values we use to intersect later.
672 * Increment this if we ever support >= 40 MHz channels
673 * in IEEE 802.11
674 */
675 freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
676 power_rule->max_antenna_gain = DBI_TO_MBI(100);
677 power_rule->max_eirp = DBM_TO_MBM(100);
678
679 country_ie += 3;
680 country_ie_len -= 3;
681 i++;
682
683 BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
684 }
685
686 return rd;
687 }
688
689
690 /*
691 * Helper for regdom_intersect(), this does the real
692 * mathematical intersection fun
693 */
694 static int reg_rules_intersect(
695 const struct ieee80211_reg_rule *rule1,
696 const struct ieee80211_reg_rule *rule2,
697 struct ieee80211_reg_rule *intersected_rule)
698 {
699 const struct ieee80211_freq_range *freq_range1, *freq_range2;
700 struct ieee80211_freq_range *freq_range;
701 const struct ieee80211_power_rule *power_rule1, *power_rule2;
702 struct ieee80211_power_rule *power_rule;
703 u32 freq_diff;
704
705 freq_range1 = &rule1->freq_range;
706 freq_range2 = &rule2->freq_range;
707 freq_range = &intersected_rule->freq_range;
708
709 power_rule1 = &rule1->power_rule;
710 power_rule2 = &rule2->power_rule;
711 power_rule = &intersected_rule->power_rule;
712
713 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
714 freq_range2->start_freq_khz);
715 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
716 freq_range2->end_freq_khz);
717 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
718 freq_range2->max_bandwidth_khz);
719
720 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
721 if (freq_range->max_bandwidth_khz > freq_diff)
722 freq_range->max_bandwidth_khz = freq_diff;
723
724 power_rule->max_eirp = min(power_rule1->max_eirp,
725 power_rule2->max_eirp);
726 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
727 power_rule2->max_antenna_gain);
728
729 intersected_rule->flags = (rule1->flags | rule2->flags);
730
731 if (!is_valid_reg_rule(intersected_rule))
732 return -EINVAL;
733
734 return 0;
735 }
736
737 /**
738 * regdom_intersect - do the intersection between two regulatory domains
739 * @rd1: first regulatory domain
740 * @rd2: second regulatory domain
741 *
742 * Use this function to get the intersection between two regulatory domains.
743 * Once completed we will mark the alpha2 for the rd as intersected, "98",
744 * as no one single alpha2 can represent this regulatory domain.
745 *
746 * Returns a pointer to the regulatory domain structure which will hold the
747 * resulting intersection of rules between rd1 and rd2. We will
748 * kzalloc() this structure for you.
749 */
750 static struct ieee80211_regdomain *regdom_intersect(
751 const struct ieee80211_regdomain *rd1,
752 const struct ieee80211_regdomain *rd2)
753 {
754 int r, size_of_regd;
755 unsigned int x, y;
756 unsigned int num_rules = 0, rule_idx = 0;
757 const struct ieee80211_reg_rule *rule1, *rule2;
758 struct ieee80211_reg_rule *intersected_rule;
759 struct ieee80211_regdomain *rd;
760 /* This is just a dummy holder to help us count */
761 struct ieee80211_reg_rule irule;
762
763 /* Uses the stack temporarily for counter arithmetic */
764 intersected_rule = &irule;
765
766 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
767
768 if (!rd1 || !rd2)
769 return NULL;
770
771 /*
772 * First we get a count of the rules we'll need, then we actually
773 * build them. This is to so we can malloc() and free() a
774 * regdomain once. The reason we use reg_rules_intersect() here
775 * is it will return -EINVAL if the rule computed makes no sense.
776 * All rules that do check out OK are valid.
777 */
778
779 for (x = 0; x < rd1->n_reg_rules; x++) {
780 rule1 = &rd1->reg_rules[x];
781 for (y = 0; y < rd2->n_reg_rules; y++) {
782 rule2 = &rd2->reg_rules[y];
783 if (!reg_rules_intersect(rule1, rule2,
784 intersected_rule))
785 num_rules++;
786 memset(intersected_rule, 0,
787 sizeof(struct ieee80211_reg_rule));
788 }
789 }
790
791 if (!num_rules)
792 return NULL;
793
794 size_of_regd = sizeof(struct ieee80211_regdomain) +
795 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
796
797 rd = kzalloc(size_of_regd, GFP_KERNEL);
798 if (!rd)
799 return NULL;
800
801 for (x = 0; x < rd1->n_reg_rules; x++) {
802 rule1 = &rd1->reg_rules[x];
803 for (y = 0; y < rd2->n_reg_rules; y++) {
804 rule2 = &rd2->reg_rules[y];
805 /*
806 * This time around instead of using the stack lets
807 * write to the target rule directly saving ourselves
808 * a memcpy()
809 */
810 intersected_rule = &rd->reg_rules[rule_idx];
811 r = reg_rules_intersect(rule1, rule2,
812 intersected_rule);
813 /*
814 * No need to memset here the intersected rule here as
815 * we're not using the stack anymore
816 */
817 if (r)
818 continue;
819 rule_idx++;
820 }
821 }
822
823 if (rule_idx != num_rules) {
824 kfree(rd);
825 return NULL;
826 }
827
828 rd->n_reg_rules = num_rules;
829 rd->alpha2[0] = '9';
830 rd->alpha2[1] = '8';
831
832 return rd;
833 }
834
835 /*
836 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
837 * want to just have the channel structure use these
838 */
839 static u32 map_regdom_flags(u32 rd_flags)
840 {
841 u32 channel_flags = 0;
842 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
843 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
844 if (rd_flags & NL80211_RRF_NO_IBSS)
845 channel_flags |= IEEE80211_CHAN_NO_IBSS;
846 if (rd_flags & NL80211_RRF_DFS)
847 channel_flags |= IEEE80211_CHAN_RADAR;
848 return channel_flags;
849 }
850
851 static int freq_reg_info_regd(struct wiphy *wiphy,
852 u32 center_freq,
853 u32 desired_bw_khz,
854 const struct ieee80211_reg_rule **reg_rule,
855 const struct ieee80211_regdomain *custom_regd)
856 {
857 int i;
858 bool band_rule_found = false;
859 const struct ieee80211_regdomain *regd;
860 bool bw_fits = false;
861
862 if (!desired_bw_khz)
863 desired_bw_khz = MHZ_TO_KHZ(20);
864
865 regd = custom_regd ? custom_regd : cfg80211_regdomain;
866
867 /*
868 * Follow the driver's regulatory domain, if present, unless a country
869 * IE has been processed or a user wants to help complaince further
870 */
871 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
872 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
873 wiphy->regd)
874 regd = wiphy->regd;
875
876 if (!regd)
877 return -EINVAL;
878
879 for (i = 0; i < regd->n_reg_rules; i++) {
880 const struct ieee80211_reg_rule *rr;
881 const struct ieee80211_freq_range *fr = NULL;
882 const struct ieee80211_power_rule *pr = NULL;
883
884 rr = &regd->reg_rules[i];
885 fr = &rr->freq_range;
886 pr = &rr->power_rule;
887
888 /*
889 * We only need to know if one frequency rule was
890 * was in center_freq's band, that's enough, so lets
891 * not overwrite it once found
892 */
893 if (!band_rule_found)
894 band_rule_found = freq_in_rule_band(fr, center_freq);
895
896 bw_fits = reg_does_bw_fit(fr,
897 center_freq,
898 desired_bw_khz);
899
900 if (band_rule_found && bw_fits) {
901 *reg_rule = rr;
902 return 0;
903 }
904 }
905
906 if (!band_rule_found)
907 return -ERANGE;
908
909 return -EINVAL;
910 }
911 EXPORT_SYMBOL(freq_reg_info);
912
913 int freq_reg_info(struct wiphy *wiphy,
914 u32 center_freq,
915 u32 desired_bw_khz,
916 const struct ieee80211_reg_rule **reg_rule)
917 {
918 assert_cfg80211_lock();
919 return freq_reg_info_regd(wiphy,
920 center_freq,
921 desired_bw_khz,
922 reg_rule,
923 NULL);
924 }
925
926 /*
927 * Note that right now we assume the desired channel bandwidth
928 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
929 * per channel, the primary and the extension channel). To support
930 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
931 * new ieee80211_channel.target_bw and re run the regulatory check
932 * on the wiphy with the target_bw specified. Then we can simply use
933 * that below for the desired_bw_khz below.
934 */
935 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
936 unsigned int chan_idx)
937 {
938 int r;
939 u32 flags, bw_flags = 0;
940 u32 desired_bw_khz = MHZ_TO_KHZ(20);
941 const struct ieee80211_reg_rule *reg_rule = NULL;
942 const struct ieee80211_power_rule *power_rule = NULL;
943 const struct ieee80211_freq_range *freq_range = NULL;
944 struct ieee80211_supported_band *sband;
945 struct ieee80211_channel *chan;
946 struct wiphy *request_wiphy = NULL;
947
948 assert_cfg80211_lock();
949
950 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
951
952 sband = wiphy->bands[band];
953 BUG_ON(chan_idx >= sband->n_channels);
954 chan = &sband->channels[chan_idx];
955
956 flags = chan->orig_flags;
957
958 r = freq_reg_info(wiphy,
959 MHZ_TO_KHZ(chan->center_freq),
960 desired_bw_khz,
961 &reg_rule);
962
963 if (r) {
964 /*
965 * This means no regulatory rule was found in the country IE
966 * with a frequency range on the center_freq's band, since
967 * IEEE-802.11 allows for a country IE to have a subset of the
968 * regulatory information provided in a country we ignore
969 * disabling the channel unless at least one reg rule was
970 * found on the center_freq's band. For details see this
971 * clarification:
972 *
973 * http://tinyurl.com/11d-clarification
974 */
975 if (r == -ERANGE &&
976 last_request->initiator ==
977 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
978 #ifdef CONFIG_CFG80211_REG_DEBUG
979 printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
980 "intact on %s - no rule found in band on "
981 "Country IE\n",
982 chan->center_freq, wiphy_name(wiphy));
983 #endif
984 } else {
985 /*
986 * In this case we know the country IE has at least one reg rule
987 * for the band so we respect its band definitions
988 */
989 #ifdef CONFIG_CFG80211_REG_DEBUG
990 if (last_request->initiator ==
991 NL80211_REGDOM_SET_BY_COUNTRY_IE)
992 printk(KERN_DEBUG "cfg80211: Disabling "
993 "channel %d MHz on %s due to "
994 "Country IE\n",
995 chan->center_freq, wiphy_name(wiphy));
996 #endif
997 flags |= IEEE80211_CHAN_DISABLED;
998 chan->flags = flags;
999 }
1000 return;
1001 }
1002
1003 power_rule = &reg_rule->power_rule;
1004 freq_range = &reg_rule->freq_range;
1005
1006 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1007 bw_flags = IEEE80211_CHAN_NO_HT40;
1008
1009 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1010 request_wiphy && request_wiphy == wiphy &&
1011 request_wiphy->strict_regulatory) {
1012 /*
1013 * This gaurantees the driver's requested regulatory domain
1014 * will always be used as a base for further regulatory
1015 * settings
1016 */
1017 chan->flags = chan->orig_flags =
1018 map_regdom_flags(reg_rule->flags) | bw_flags;
1019 chan->max_antenna_gain = chan->orig_mag =
1020 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1021 chan->max_bandwidth = KHZ_TO_MHZ(desired_bw_khz);
1022 chan->max_power = chan->orig_mpwr =
1023 (int) MBM_TO_DBM(power_rule->max_eirp);
1024 return;
1025 }
1026
1027 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1028 chan->max_antenna_gain = min(chan->orig_mag,
1029 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
1030 chan->max_bandwidth = KHZ_TO_MHZ(desired_bw_khz);
1031 if (chan->orig_mpwr)
1032 chan->max_power = min(chan->orig_mpwr,
1033 (int) MBM_TO_DBM(power_rule->max_eirp));
1034 else
1035 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1036 }
1037
1038 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1039 {
1040 unsigned int i;
1041 struct ieee80211_supported_band *sband;
1042
1043 BUG_ON(!wiphy->bands[band]);
1044 sband = wiphy->bands[band];
1045
1046 for (i = 0; i < sband->n_channels; i++)
1047 handle_channel(wiphy, band, i);
1048 }
1049
1050 static bool ignore_reg_update(struct wiphy *wiphy,
1051 enum nl80211_reg_initiator initiator)
1052 {
1053 if (!last_request)
1054 return true;
1055 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1056 wiphy->custom_regulatory)
1057 return true;
1058 /*
1059 * wiphy->regd will be set once the device has its own
1060 * desired regulatory domain set
1061 */
1062 if (wiphy->strict_regulatory && !wiphy->regd &&
1063 !is_world_regdom(last_request->alpha2))
1064 return true;
1065 return false;
1066 }
1067
1068 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1069 {
1070 struct cfg80211_registered_device *rdev;
1071
1072 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1073 wiphy_update_regulatory(&rdev->wiphy, initiator);
1074 }
1075
1076 static void handle_reg_beacon(struct wiphy *wiphy,
1077 unsigned int chan_idx,
1078 struct reg_beacon *reg_beacon)
1079 {
1080 struct ieee80211_supported_band *sband;
1081 struct ieee80211_channel *chan;
1082 bool channel_changed = false;
1083 struct ieee80211_channel chan_before;
1084
1085 assert_cfg80211_lock();
1086
1087 sband = wiphy->bands[reg_beacon->chan.band];
1088 chan = &sband->channels[chan_idx];
1089
1090 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1091 return;
1092
1093 if (chan->beacon_found)
1094 return;
1095
1096 chan->beacon_found = true;
1097
1098 chan_before.center_freq = chan->center_freq;
1099 chan_before.flags = chan->flags;
1100
1101 if ((chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) &&
1102 !(chan->orig_flags & IEEE80211_CHAN_PASSIVE_SCAN)) {
1103 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1104 channel_changed = true;
1105 }
1106
1107 if ((chan->flags & IEEE80211_CHAN_NO_IBSS) &&
1108 !(chan->orig_flags & IEEE80211_CHAN_NO_IBSS)) {
1109 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1110 channel_changed = true;
1111 }
1112
1113 if (channel_changed)
1114 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1115 }
1116
1117 /*
1118 * Called when a scan on a wiphy finds a beacon on
1119 * new channel
1120 */
1121 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1122 struct reg_beacon *reg_beacon)
1123 {
1124 unsigned int i;
1125 struct ieee80211_supported_band *sband;
1126
1127 assert_cfg80211_lock();
1128
1129 if (!wiphy->bands[reg_beacon->chan.band])
1130 return;
1131
1132 sband = wiphy->bands[reg_beacon->chan.band];
1133
1134 for (i = 0; i < sband->n_channels; i++)
1135 handle_reg_beacon(wiphy, i, reg_beacon);
1136 }
1137
1138 /*
1139 * Called upon reg changes or a new wiphy is added
1140 */
1141 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1142 {
1143 unsigned int i;
1144 struct ieee80211_supported_band *sband;
1145 struct reg_beacon *reg_beacon;
1146
1147 assert_cfg80211_lock();
1148
1149 if (list_empty(&reg_beacon_list))
1150 return;
1151
1152 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1153 if (!wiphy->bands[reg_beacon->chan.band])
1154 continue;
1155 sband = wiphy->bands[reg_beacon->chan.band];
1156 for (i = 0; i < sband->n_channels; i++)
1157 handle_reg_beacon(wiphy, i, reg_beacon);
1158 }
1159 }
1160
1161 static bool reg_is_world_roaming(struct wiphy *wiphy)
1162 {
1163 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1164 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1165 return true;
1166 if (last_request &&
1167 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1168 wiphy->custom_regulatory)
1169 return true;
1170 return false;
1171 }
1172
1173 /* Reap the advantages of previously found beacons */
1174 static void reg_process_beacons(struct wiphy *wiphy)
1175 {
1176 /*
1177 * Means we are just firing up cfg80211, so no beacons would
1178 * have been processed yet.
1179 */
1180 if (!last_request)
1181 return;
1182 if (!reg_is_world_roaming(wiphy))
1183 return;
1184 wiphy_update_beacon_reg(wiphy);
1185 }
1186
1187 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1188 {
1189 if (!chan)
1190 return true;
1191 if (chan->flags & IEEE80211_CHAN_DISABLED)
1192 return true;
1193 /* This would happen when regulatory rules disallow HT40 completely */
1194 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1195 return true;
1196 return false;
1197 }
1198
1199 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1200 enum ieee80211_band band,
1201 unsigned int chan_idx)
1202 {
1203 struct ieee80211_supported_band *sband;
1204 struct ieee80211_channel *channel;
1205 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1206 unsigned int i;
1207
1208 assert_cfg80211_lock();
1209
1210 sband = wiphy->bands[band];
1211 BUG_ON(chan_idx >= sband->n_channels);
1212 channel = &sband->channels[chan_idx];
1213
1214 if (is_ht40_not_allowed(channel)) {
1215 channel->flags |= IEEE80211_CHAN_NO_HT40;
1216 return;
1217 }
1218
1219 /*
1220 * We need to ensure the extension channels exist to
1221 * be able to use HT40- or HT40+, this finds them (or not)
1222 */
1223 for (i = 0; i < sband->n_channels; i++) {
1224 struct ieee80211_channel *c = &sband->channels[i];
1225 if (c->center_freq == (channel->center_freq - 20))
1226 channel_before = c;
1227 if (c->center_freq == (channel->center_freq + 20))
1228 channel_after = c;
1229 }
1230
1231 /*
1232 * Please note that this assumes target bandwidth is 20 MHz,
1233 * if that ever changes we also need to change the below logic
1234 * to include that as well.
1235 */
1236 if (is_ht40_not_allowed(channel_before))
1237 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1238 else
1239 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1240
1241 if (is_ht40_not_allowed(channel_after))
1242 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1243 else
1244 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1245 }
1246
1247 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1248 enum ieee80211_band band)
1249 {
1250 unsigned int i;
1251 struct ieee80211_supported_band *sband;
1252
1253 BUG_ON(!wiphy->bands[band]);
1254 sband = wiphy->bands[band];
1255
1256 for (i = 0; i < sband->n_channels; i++)
1257 reg_process_ht_flags_channel(wiphy, band, i);
1258 }
1259
1260 static void reg_process_ht_flags(struct wiphy *wiphy)
1261 {
1262 enum ieee80211_band band;
1263
1264 if (!wiphy)
1265 return;
1266
1267 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1268 if (wiphy->bands[band])
1269 reg_process_ht_flags_band(wiphy, band);
1270 }
1271
1272 }
1273
1274 void wiphy_update_regulatory(struct wiphy *wiphy,
1275 enum nl80211_reg_initiator initiator)
1276 {
1277 enum ieee80211_band band;
1278
1279 if (ignore_reg_update(wiphy, initiator))
1280 goto out;
1281 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1282 if (wiphy->bands[band])
1283 handle_band(wiphy, band);
1284 }
1285 out:
1286 reg_process_beacons(wiphy);
1287 reg_process_ht_flags(wiphy);
1288 if (wiphy->reg_notifier)
1289 wiphy->reg_notifier(wiphy, last_request);
1290 }
1291
1292 static void handle_channel_custom(struct wiphy *wiphy,
1293 enum ieee80211_band band,
1294 unsigned int chan_idx,
1295 const struct ieee80211_regdomain *regd)
1296 {
1297 int r;
1298 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1299 u32 bw_flags = 0;
1300 const struct ieee80211_reg_rule *reg_rule = NULL;
1301 const struct ieee80211_power_rule *power_rule = NULL;
1302 const struct ieee80211_freq_range *freq_range = NULL;
1303 struct ieee80211_supported_band *sband;
1304 struct ieee80211_channel *chan;
1305
1306 assert_reg_lock();
1307
1308 sband = wiphy->bands[band];
1309 BUG_ON(chan_idx >= sband->n_channels);
1310 chan = &sband->channels[chan_idx];
1311
1312 r = freq_reg_info_regd(wiphy,
1313 MHZ_TO_KHZ(chan->center_freq),
1314 desired_bw_khz,
1315 &reg_rule,
1316 regd);
1317
1318 if (r) {
1319 chan->flags = IEEE80211_CHAN_DISABLED;
1320 return;
1321 }
1322
1323 power_rule = &reg_rule->power_rule;
1324 freq_range = &reg_rule->freq_range;
1325
1326 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1327 bw_flags = IEEE80211_CHAN_NO_HT40;
1328
1329 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1330 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1331 chan->max_bandwidth = KHZ_TO_MHZ(desired_bw_khz);
1332 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1333 }
1334
1335 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1336 const struct ieee80211_regdomain *regd)
1337 {
1338 unsigned int i;
1339 struct ieee80211_supported_band *sband;
1340
1341 BUG_ON(!wiphy->bands[band]);
1342 sband = wiphy->bands[band];
1343
1344 for (i = 0; i < sband->n_channels; i++)
1345 handle_channel_custom(wiphy, band, i, regd);
1346 }
1347
1348 /* Used by drivers prior to wiphy registration */
1349 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1350 const struct ieee80211_regdomain *regd)
1351 {
1352 enum ieee80211_band band;
1353 unsigned int bands_set = 0;
1354
1355 mutex_lock(&reg_mutex);
1356 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1357 if (!wiphy->bands[band])
1358 continue;
1359 handle_band_custom(wiphy, band, regd);
1360 bands_set++;
1361 }
1362 mutex_unlock(&reg_mutex);
1363
1364 /*
1365 * no point in calling this if it won't have any effect
1366 * on your device's supportd bands.
1367 */
1368 WARN_ON(!bands_set);
1369 }
1370 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1371
1372 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
1373 const struct ieee80211_regdomain *src_regd)
1374 {
1375 struct ieee80211_regdomain *regd;
1376 int size_of_regd = 0;
1377 unsigned int i;
1378
1379 size_of_regd = sizeof(struct ieee80211_regdomain) +
1380 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
1381
1382 regd = kzalloc(size_of_regd, GFP_KERNEL);
1383 if (!regd)
1384 return -ENOMEM;
1385
1386 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
1387
1388 for (i = 0; i < src_regd->n_reg_rules; i++)
1389 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
1390 sizeof(struct ieee80211_reg_rule));
1391
1392 *dst_regd = regd;
1393 return 0;
1394 }
1395
1396 /*
1397 * Return value which can be used by ignore_request() to indicate
1398 * it has been determined we should intersect two regulatory domains
1399 */
1400 #define REG_INTERSECT 1
1401
1402 /* This has the logic which determines when a new request
1403 * should be ignored. */
1404 static int ignore_request(struct wiphy *wiphy,
1405 struct regulatory_request *pending_request)
1406 {
1407 struct wiphy *last_wiphy = NULL;
1408
1409 assert_cfg80211_lock();
1410
1411 /* All initial requests are respected */
1412 if (!last_request)
1413 return 0;
1414
1415 switch (pending_request->initiator) {
1416 case NL80211_REGDOM_SET_BY_CORE:
1417 return -EINVAL;
1418 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1419
1420 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1421
1422 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1423 return -EINVAL;
1424 if (last_request->initiator ==
1425 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1426 if (last_wiphy != wiphy) {
1427 /*
1428 * Two cards with two APs claiming different
1429 * different Country IE alpha2s. We could
1430 * intersect them, but that seems unlikely
1431 * to be correct. Reject second one for now.
1432 */
1433 if (regdom_changes(pending_request->alpha2))
1434 return -EOPNOTSUPP;
1435 return -EALREADY;
1436 }
1437 /*
1438 * Two consecutive Country IE hints on the same wiphy.
1439 * This should be picked up early by the driver/stack
1440 */
1441 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1442 return 0;
1443 return -EALREADY;
1444 }
1445 return REG_INTERSECT;
1446 case NL80211_REGDOM_SET_BY_DRIVER:
1447 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1448 if (is_old_static_regdom(cfg80211_regdomain))
1449 return 0;
1450 if (regdom_changes(pending_request->alpha2))
1451 return 0;
1452 return -EALREADY;
1453 }
1454
1455 /*
1456 * This would happen if you unplug and plug your card
1457 * back in or if you add a new device for which the previously
1458 * loaded card also agrees on the regulatory domain.
1459 */
1460 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1461 !regdom_changes(pending_request->alpha2))
1462 return -EALREADY;
1463
1464 return REG_INTERSECT;
1465 case NL80211_REGDOM_SET_BY_USER:
1466 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1467 return REG_INTERSECT;
1468 /*
1469 * If the user knows better the user should set the regdom
1470 * to their country before the IE is picked up
1471 */
1472 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1473 last_request->intersect)
1474 return -EOPNOTSUPP;
1475 /*
1476 * Process user requests only after previous user/driver/core
1477 * requests have been processed
1478 */
1479 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1480 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1481 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1482 if (regdom_changes(last_request->alpha2))
1483 return -EAGAIN;
1484 }
1485
1486 if (!is_old_static_regdom(cfg80211_regdomain) &&
1487 !regdom_changes(pending_request->alpha2))
1488 return -EALREADY;
1489
1490 return 0;
1491 }
1492
1493 return -EINVAL;
1494 }
1495
1496 /**
1497 * __regulatory_hint - hint to the wireless core a regulatory domain
1498 * @wiphy: if the hint comes from country information from an AP, this
1499 * is required to be set to the wiphy that received the information
1500 * @pending_request: the regulatory request currently being processed
1501 *
1502 * The Wireless subsystem can use this function to hint to the wireless core
1503 * what it believes should be the current regulatory domain.
1504 *
1505 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1506 * already been set or other standard error codes.
1507 *
1508 * Caller must hold &cfg80211_mutex and &reg_mutex
1509 */
1510 static int __regulatory_hint(struct wiphy *wiphy,
1511 struct regulatory_request *pending_request)
1512 {
1513 bool intersect = false;
1514 int r = 0;
1515
1516 assert_cfg80211_lock();
1517
1518 r = ignore_request(wiphy, pending_request);
1519
1520 if (r == REG_INTERSECT) {
1521 if (pending_request->initiator ==
1522 NL80211_REGDOM_SET_BY_DRIVER) {
1523 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1524 if (r) {
1525 kfree(pending_request);
1526 return r;
1527 }
1528 }
1529 intersect = true;
1530 } else if (r) {
1531 /*
1532 * If the regulatory domain being requested by the
1533 * driver has already been set just copy it to the
1534 * wiphy
1535 */
1536 if (r == -EALREADY &&
1537 pending_request->initiator ==
1538 NL80211_REGDOM_SET_BY_DRIVER) {
1539 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1540 if (r) {
1541 kfree(pending_request);
1542 return r;
1543 }
1544 r = -EALREADY;
1545 goto new_request;
1546 }
1547 kfree(pending_request);
1548 return r;
1549 }
1550
1551 new_request:
1552 kfree(last_request);
1553
1554 last_request = pending_request;
1555 last_request->intersect = intersect;
1556
1557 pending_request = NULL;
1558
1559 /* When r == REG_INTERSECT we do need to call CRDA */
1560 if (r < 0) {
1561 /*
1562 * Since CRDA will not be called in this case as we already
1563 * have applied the requested regulatory domain before we just
1564 * inform userspace we have processed the request
1565 */
1566 if (r == -EALREADY)
1567 nl80211_send_reg_change_event(last_request);
1568 return r;
1569 }
1570
1571 return call_crda(last_request->alpha2);
1572 }
1573
1574 /* This processes *all* regulatory hints */
1575 static void reg_process_hint(struct regulatory_request *reg_request)
1576 {
1577 int r = 0;
1578 struct wiphy *wiphy = NULL;
1579
1580 BUG_ON(!reg_request->alpha2);
1581
1582 mutex_lock(&cfg80211_mutex);
1583 mutex_lock(&reg_mutex);
1584
1585 if (wiphy_idx_valid(reg_request->wiphy_idx))
1586 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1587
1588 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1589 !wiphy) {
1590 kfree(reg_request);
1591 goto out;
1592 }
1593
1594 r = __regulatory_hint(wiphy, reg_request);
1595 /* This is required so that the orig_* parameters are saved */
1596 if (r == -EALREADY && wiphy && wiphy->strict_regulatory)
1597 wiphy_update_regulatory(wiphy, reg_request->initiator);
1598 out:
1599 mutex_unlock(&reg_mutex);
1600 mutex_unlock(&cfg80211_mutex);
1601 }
1602
1603 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1604 static void reg_process_pending_hints(void)
1605 {
1606 struct regulatory_request *reg_request;
1607
1608 spin_lock(&reg_requests_lock);
1609 while (!list_empty(&reg_requests_list)) {
1610 reg_request = list_first_entry(&reg_requests_list,
1611 struct regulatory_request,
1612 list);
1613 list_del_init(&reg_request->list);
1614
1615 spin_unlock(&reg_requests_lock);
1616 reg_process_hint(reg_request);
1617 spin_lock(&reg_requests_lock);
1618 }
1619 spin_unlock(&reg_requests_lock);
1620 }
1621
1622 /* Processes beacon hints -- this has nothing to do with country IEs */
1623 static void reg_process_pending_beacon_hints(void)
1624 {
1625 struct cfg80211_registered_device *rdev;
1626 struct reg_beacon *pending_beacon, *tmp;
1627
1628 /*
1629 * No need to hold the reg_mutex here as we just touch wiphys
1630 * and do not read or access regulatory variables.
1631 */
1632 mutex_lock(&cfg80211_mutex);
1633
1634 /* This goes through the _pending_ beacon list */
1635 spin_lock_bh(&reg_pending_beacons_lock);
1636
1637 if (list_empty(&reg_pending_beacons)) {
1638 spin_unlock_bh(&reg_pending_beacons_lock);
1639 goto out;
1640 }
1641
1642 list_for_each_entry_safe(pending_beacon, tmp,
1643 &reg_pending_beacons, list) {
1644
1645 list_del_init(&pending_beacon->list);
1646
1647 /* Applies the beacon hint to current wiphys */
1648 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1649 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1650
1651 /* Remembers the beacon hint for new wiphys or reg changes */
1652 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1653 }
1654
1655 spin_unlock_bh(&reg_pending_beacons_lock);
1656 out:
1657 mutex_unlock(&cfg80211_mutex);
1658 }
1659
1660 static void reg_todo(struct work_struct *work)
1661 {
1662 reg_process_pending_hints();
1663 reg_process_pending_beacon_hints();
1664 }
1665
1666 static DECLARE_WORK(reg_work, reg_todo);
1667
1668 static void queue_regulatory_request(struct regulatory_request *request)
1669 {
1670 spin_lock(&reg_requests_lock);
1671 list_add_tail(&request->list, &reg_requests_list);
1672 spin_unlock(&reg_requests_lock);
1673
1674 schedule_work(&reg_work);
1675 }
1676
1677 /* Core regulatory hint -- happens once during cfg80211_init() */
1678 static int regulatory_hint_core(const char *alpha2)
1679 {
1680 struct regulatory_request *request;
1681
1682 BUG_ON(last_request);
1683
1684 request = kzalloc(sizeof(struct regulatory_request),
1685 GFP_KERNEL);
1686 if (!request)
1687 return -ENOMEM;
1688
1689 request->alpha2[0] = alpha2[0];
1690 request->alpha2[1] = alpha2[1];
1691 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1692
1693 queue_regulatory_request(request);
1694
1695 /*
1696 * This ensures last_request is populated once modules
1697 * come swinging in and calling regulatory hints and
1698 * wiphy_apply_custom_regulatory().
1699 */
1700 flush_scheduled_work();
1701
1702 return 0;
1703 }
1704
1705 /* User hints */
1706 int regulatory_hint_user(const char *alpha2)
1707 {
1708 struct regulatory_request *request;
1709
1710 BUG_ON(!alpha2);
1711
1712 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1713 if (!request)
1714 return -ENOMEM;
1715
1716 request->wiphy_idx = WIPHY_IDX_STALE;
1717 request->alpha2[0] = alpha2[0];
1718 request->alpha2[1] = alpha2[1];
1719 request->initiator = NL80211_REGDOM_SET_BY_USER,
1720
1721 queue_regulatory_request(request);
1722
1723 return 0;
1724 }
1725
1726 /* Driver hints */
1727 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1728 {
1729 struct regulatory_request *request;
1730
1731 BUG_ON(!alpha2);
1732 BUG_ON(!wiphy);
1733
1734 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1735 if (!request)
1736 return -ENOMEM;
1737
1738 request->wiphy_idx = get_wiphy_idx(wiphy);
1739
1740 /* Must have registered wiphy first */
1741 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1742
1743 request->alpha2[0] = alpha2[0];
1744 request->alpha2[1] = alpha2[1];
1745 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1746
1747 queue_regulatory_request(request);
1748
1749 return 0;
1750 }
1751 EXPORT_SYMBOL(regulatory_hint);
1752
1753 /* Caller must hold reg_mutex */
1754 static bool reg_same_country_ie_hint(struct wiphy *wiphy,
1755 u32 country_ie_checksum)
1756 {
1757 struct wiphy *request_wiphy;
1758
1759 assert_reg_lock();
1760
1761 if (unlikely(last_request->initiator !=
1762 NL80211_REGDOM_SET_BY_COUNTRY_IE))
1763 return false;
1764
1765 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1766
1767 if (!request_wiphy)
1768 return false;
1769
1770 if (likely(request_wiphy != wiphy))
1771 return !country_ie_integrity_changes(country_ie_checksum);
1772 /*
1773 * We should not have let these through at this point, they
1774 * should have been picked up earlier by the first alpha2 check
1775 * on the device
1776 */
1777 if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
1778 return true;
1779 return false;
1780 }
1781
1782 /*
1783 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1784 * therefore cannot iterate over the rdev list here.
1785 */
1786 void regulatory_hint_11d(struct wiphy *wiphy,
1787 u8 *country_ie,
1788 u8 country_ie_len)
1789 {
1790 struct ieee80211_regdomain *rd = NULL;
1791 char alpha2[2];
1792 u32 checksum = 0;
1793 enum environment_cap env = ENVIRON_ANY;
1794 struct regulatory_request *request;
1795
1796 mutex_lock(&reg_mutex);
1797
1798 if (unlikely(!last_request))
1799 goto out;
1800
1801 /* IE len must be evenly divisible by 2 */
1802 if (country_ie_len & 0x01)
1803 goto out;
1804
1805 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1806 goto out;
1807
1808 /*
1809 * Pending country IE processing, this can happen after we
1810 * call CRDA and wait for a response if a beacon was received before
1811 * we were able to process the last regulatory_hint_11d() call
1812 */
1813 if (country_ie_regdomain)
1814 goto out;
1815
1816 alpha2[0] = country_ie[0];
1817 alpha2[1] = country_ie[1];
1818
1819 if (country_ie[2] == 'I')
1820 env = ENVIRON_INDOOR;
1821 else if (country_ie[2] == 'O')
1822 env = ENVIRON_OUTDOOR;
1823
1824 /*
1825 * We will run this for *every* beacon processed for the BSSID, so
1826 * we optimize an early check to exit out early if we don't have to
1827 * do anything
1828 *
1829 * We leave conflict resolution to the workqueue, where can hold
1830 * cfg80211_mutex.
1831 */
1832 if (likely(last_request->initiator ==
1833 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1834 wiphy_idx_valid(last_request->wiphy_idx)))
1835 goto out;
1836
1837 rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
1838 if (!rd)
1839 goto out;
1840
1841 /*
1842 * This will not happen right now but we leave it here for the
1843 * the future when we want to add suspend/resume support and having
1844 * the user move to another country after doing so, or having the user
1845 * move to another AP. Right now we just trust the first AP.
1846 *
1847 * If we hit this before we add this support we want to be informed of
1848 * it as it would indicate a mistake in the current design
1849 */
1850 if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
1851 goto free_rd_out;
1852
1853 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1854 if (!request)
1855 goto free_rd_out;
1856
1857 /*
1858 * We keep this around for when CRDA comes back with a response so
1859 * we can intersect with that
1860 */
1861 country_ie_regdomain = rd;
1862
1863 request->wiphy_idx = get_wiphy_idx(wiphy);
1864 request->alpha2[0] = rd->alpha2[0];
1865 request->alpha2[1] = rd->alpha2[1];
1866 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1867 request->country_ie_checksum = checksum;
1868 request->country_ie_env = env;
1869
1870 mutex_unlock(&reg_mutex);
1871
1872 queue_regulatory_request(request);
1873
1874 return;
1875
1876 free_rd_out:
1877 kfree(rd);
1878 out:
1879 mutex_unlock(&reg_mutex);
1880 }
1881 EXPORT_SYMBOL(regulatory_hint_11d);
1882
1883 static bool freq_is_chan_12_13_14(u16 freq)
1884 {
1885 if (freq == ieee80211_channel_to_frequency(12) ||
1886 freq == ieee80211_channel_to_frequency(13) ||
1887 freq == ieee80211_channel_to_frequency(14))
1888 return true;
1889 return false;
1890 }
1891
1892 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1893 struct ieee80211_channel *beacon_chan,
1894 gfp_t gfp)
1895 {
1896 struct reg_beacon *reg_beacon;
1897
1898 if (likely((beacon_chan->beacon_found ||
1899 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1900 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1901 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1902 return 0;
1903
1904 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1905 if (!reg_beacon)
1906 return -ENOMEM;
1907
1908 #ifdef CONFIG_CFG80211_REG_DEBUG
1909 printk(KERN_DEBUG "cfg80211: Found new beacon on "
1910 "frequency: %d MHz (Ch %d) on %s\n",
1911 beacon_chan->center_freq,
1912 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1913 wiphy_name(wiphy));
1914 #endif
1915 memcpy(&reg_beacon->chan, beacon_chan,
1916 sizeof(struct ieee80211_channel));
1917
1918
1919 /*
1920 * Since we can be called from BH or and non-BH context
1921 * we must use spin_lock_bh()
1922 */
1923 spin_lock_bh(&reg_pending_beacons_lock);
1924 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1925 spin_unlock_bh(&reg_pending_beacons_lock);
1926
1927 schedule_work(&reg_work);
1928
1929 return 0;
1930 }
1931
1932 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1933 {
1934 unsigned int i;
1935 const struct ieee80211_reg_rule *reg_rule = NULL;
1936 const struct ieee80211_freq_range *freq_range = NULL;
1937 const struct ieee80211_power_rule *power_rule = NULL;
1938
1939 printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
1940 "(max_antenna_gain, max_eirp)\n");
1941
1942 for (i = 0; i < rd->n_reg_rules; i++) {
1943 reg_rule = &rd->reg_rules[i];
1944 freq_range = &reg_rule->freq_range;
1945 power_rule = &reg_rule->power_rule;
1946
1947 /*
1948 * There may not be documentation for max antenna gain
1949 * in certain regions
1950 */
1951 if (power_rule->max_antenna_gain)
1952 printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1953 "(%d mBi, %d mBm)\n",
1954 freq_range->start_freq_khz,
1955 freq_range->end_freq_khz,
1956 freq_range->max_bandwidth_khz,
1957 power_rule->max_antenna_gain,
1958 power_rule->max_eirp);
1959 else
1960 printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1961 "(N/A, %d mBm)\n",
1962 freq_range->start_freq_khz,
1963 freq_range->end_freq_khz,
1964 freq_range->max_bandwidth_khz,
1965 power_rule->max_eirp);
1966 }
1967 }
1968
1969 static void print_regdomain(const struct ieee80211_regdomain *rd)
1970 {
1971
1972 if (is_intersected_alpha2(rd->alpha2)) {
1973
1974 if (last_request->initiator ==
1975 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1976 struct cfg80211_registered_device *rdev;
1977 rdev = cfg80211_rdev_by_wiphy_idx(
1978 last_request->wiphy_idx);
1979 if (rdev) {
1980 printk(KERN_INFO "cfg80211: Current regulatory "
1981 "domain updated by AP to: %c%c\n",
1982 rdev->country_ie_alpha2[0],
1983 rdev->country_ie_alpha2[1]);
1984 } else
1985 printk(KERN_INFO "cfg80211: Current regulatory "
1986 "domain intersected: \n");
1987 } else
1988 printk(KERN_INFO "cfg80211: Current regulatory "
1989 "domain intersected: \n");
1990 } else if (is_world_regdom(rd->alpha2))
1991 printk(KERN_INFO "cfg80211: World regulatory "
1992 "domain updated:\n");
1993 else {
1994 if (is_unknown_alpha2(rd->alpha2))
1995 printk(KERN_INFO "cfg80211: Regulatory domain "
1996 "changed to driver built-in settings "
1997 "(unknown country)\n");
1998 else
1999 printk(KERN_INFO "cfg80211: Regulatory domain "
2000 "changed to country: %c%c\n",
2001 rd->alpha2[0], rd->alpha2[1]);
2002 }
2003 print_rd_rules(rd);
2004 }
2005
2006 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2007 {
2008 printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
2009 rd->alpha2[0], rd->alpha2[1]);
2010 print_rd_rules(rd);
2011 }
2012
2013 #ifdef CONFIG_CFG80211_REG_DEBUG
2014 static void reg_country_ie_process_debug(
2015 const struct ieee80211_regdomain *rd,
2016 const struct ieee80211_regdomain *country_ie_regdomain,
2017 const struct ieee80211_regdomain *intersected_rd)
2018 {
2019 printk(KERN_DEBUG "cfg80211: Received country IE:\n");
2020 print_regdomain_info(country_ie_regdomain);
2021 printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
2022 print_regdomain_info(rd);
2023 if (intersected_rd) {
2024 printk(KERN_DEBUG "cfg80211: We intersect both of these "
2025 "and get:\n");
2026 print_regdomain_info(intersected_rd);
2027 return;
2028 }
2029 printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
2030 }
2031 #else
2032 static inline void reg_country_ie_process_debug(
2033 const struct ieee80211_regdomain *rd,
2034 const struct ieee80211_regdomain *country_ie_regdomain,
2035 const struct ieee80211_regdomain *intersected_rd)
2036 {
2037 }
2038 #endif
2039
2040 /* Takes ownership of rd only if it doesn't fail */
2041 static int __set_regdom(const struct ieee80211_regdomain *rd)
2042 {
2043 const struct ieee80211_regdomain *intersected_rd = NULL;
2044 struct cfg80211_registered_device *rdev = NULL;
2045 struct wiphy *request_wiphy;
2046 /* Some basic sanity checks first */
2047
2048 if (is_world_regdom(rd->alpha2)) {
2049 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2050 return -EINVAL;
2051 update_world_regdomain(rd);
2052 return 0;
2053 }
2054
2055 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2056 !is_unknown_alpha2(rd->alpha2))
2057 return -EINVAL;
2058
2059 if (!last_request)
2060 return -EINVAL;
2061
2062 /*
2063 * Lets only bother proceeding on the same alpha2 if the current
2064 * rd is non static (it means CRDA was present and was used last)
2065 * and the pending request came in from a country IE
2066 */
2067 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2068 /*
2069 * If someone else asked us to change the rd lets only bother
2070 * checking if the alpha2 changes if CRDA was already called
2071 */
2072 if (!is_old_static_regdom(cfg80211_regdomain) &&
2073 !regdom_changes(rd->alpha2))
2074 return -EINVAL;
2075 }
2076
2077 /*
2078 * Now lets set the regulatory domain, update all driver channels
2079 * and finally inform them of what we have done, in case they want
2080 * to review or adjust their own settings based on their own
2081 * internal EEPROM data
2082 */
2083
2084 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2085 return -EINVAL;
2086
2087 if (!is_valid_rd(rd)) {
2088 printk(KERN_ERR "cfg80211: Invalid "
2089 "regulatory domain detected:\n");
2090 print_regdomain_info(rd);
2091 return -EINVAL;
2092 }
2093
2094 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2095
2096 if (!last_request->intersect) {
2097 int r;
2098
2099 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2100 reset_regdomains();
2101 cfg80211_regdomain = rd;
2102 return 0;
2103 }
2104
2105 /*
2106 * For a driver hint, lets copy the regulatory domain the
2107 * driver wanted to the wiphy to deal with conflicts
2108 */
2109
2110 /*
2111 * Userspace could have sent two replies with only
2112 * one kernel request.
2113 */
2114 if (request_wiphy->regd)
2115 return -EALREADY;
2116
2117 r = reg_copy_regd(&request_wiphy->regd, rd);
2118 if (r)
2119 return r;
2120
2121 reset_regdomains();
2122 cfg80211_regdomain = rd;
2123 return 0;
2124 }
2125
2126 /* Intersection requires a bit more work */
2127
2128 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2129
2130 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2131 if (!intersected_rd)
2132 return -EINVAL;
2133
2134 /*
2135 * We can trash what CRDA provided now.
2136 * However if a driver requested this specific regulatory
2137 * domain we keep it for its private use
2138 */
2139 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2140 request_wiphy->regd = rd;
2141 else
2142 kfree(rd);
2143
2144 rd = NULL;
2145
2146 reset_regdomains();
2147 cfg80211_regdomain = intersected_rd;
2148
2149 return 0;
2150 }
2151
2152 /*
2153 * Country IE requests are handled a bit differently, we intersect
2154 * the country IE rd with what CRDA believes that country should have
2155 */
2156
2157 /*
2158 * Userspace could have sent two replies with only
2159 * one kernel request. By the second reply we would have
2160 * already processed and consumed the country_ie_regdomain.
2161 */
2162 if (!country_ie_regdomain)
2163 return -EALREADY;
2164 BUG_ON(rd == country_ie_regdomain);
2165
2166 /*
2167 * Intersect what CRDA returned and our what we
2168 * had built from the Country IE received
2169 */
2170
2171 intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2172
2173 reg_country_ie_process_debug(rd,
2174 country_ie_regdomain,
2175 intersected_rd);
2176
2177 kfree(country_ie_regdomain);
2178 country_ie_regdomain = NULL;
2179
2180 if (!intersected_rd)
2181 return -EINVAL;
2182
2183 rdev = wiphy_to_dev(request_wiphy);
2184
2185 rdev->country_ie_alpha2[0] = rd->alpha2[0];
2186 rdev->country_ie_alpha2[1] = rd->alpha2[1];
2187 rdev->env = last_request->country_ie_env;
2188
2189 BUG_ON(intersected_rd == rd);
2190
2191 kfree(rd);
2192 rd = NULL;
2193
2194 reset_regdomains();
2195 cfg80211_regdomain = intersected_rd;
2196
2197 return 0;
2198 }
2199
2200
2201 /*
2202 * Use this call to set the current regulatory domain. Conflicts with
2203 * multiple drivers can be ironed out later. Caller must've already
2204 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2205 */
2206 int set_regdom(const struct ieee80211_regdomain *rd)
2207 {
2208 int r;
2209
2210 assert_cfg80211_lock();
2211
2212 mutex_lock(&reg_mutex);
2213
2214 /* Note that this doesn't update the wiphys, this is done below */
2215 r = __set_regdom(rd);
2216 if (r) {
2217 kfree(rd);
2218 mutex_unlock(&reg_mutex);
2219 return r;
2220 }
2221
2222 /* This would make this whole thing pointless */
2223 if (!last_request->intersect)
2224 BUG_ON(rd != cfg80211_regdomain);
2225
2226 /* update all wiphys now with the new established regulatory domain */
2227 update_all_wiphy_regulatory(last_request->initiator);
2228
2229 print_regdomain(cfg80211_regdomain);
2230
2231 nl80211_send_reg_change_event(last_request);
2232
2233 mutex_unlock(&reg_mutex);
2234
2235 return r;
2236 }
2237
2238 /* Caller must hold cfg80211_mutex */
2239 void reg_device_remove(struct wiphy *wiphy)
2240 {
2241 struct wiphy *request_wiphy = NULL;
2242
2243 assert_cfg80211_lock();
2244
2245 mutex_lock(&reg_mutex);
2246
2247 kfree(wiphy->regd);
2248
2249 if (last_request)
2250 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2251
2252 if (!request_wiphy || request_wiphy != wiphy)
2253 goto out;
2254
2255 last_request->wiphy_idx = WIPHY_IDX_STALE;
2256 last_request->country_ie_env = ENVIRON_ANY;
2257 out:
2258 mutex_unlock(&reg_mutex);
2259 }
2260
2261 int regulatory_init(void)
2262 {
2263 int err = 0;
2264
2265 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2266 if (IS_ERR(reg_pdev))
2267 return PTR_ERR(reg_pdev);
2268
2269 spin_lock_init(&reg_requests_lock);
2270 spin_lock_init(&reg_pending_beacons_lock);
2271
2272 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
2273 cfg80211_regdomain = static_regdom(ieee80211_regdom);
2274
2275 printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
2276 print_regdomain_info(cfg80211_regdomain);
2277 #else
2278 cfg80211_regdomain = cfg80211_world_regdom;
2279
2280 #endif
2281 /* We always try to get an update for the static regdomain */
2282 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2283 if (err) {
2284 if (err == -ENOMEM)
2285 return err;
2286 /*
2287 * N.B. kobject_uevent_env() can fail mainly for when we're out
2288 * memory which is handled and propagated appropriately above
2289 * but it can also fail during a netlink_broadcast() or during
2290 * early boot for call_usermodehelper(). For now treat these
2291 * errors as non-fatal.
2292 */
2293 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2294 "to call CRDA during init");
2295 #ifdef CONFIG_CFG80211_REG_DEBUG
2296 /* We want to find out exactly why when debugging */
2297 WARN_ON(err);
2298 #endif
2299 }
2300
2301 /*
2302 * Finally, if the user set the module parameter treat it
2303 * as a user hint.
2304 */
2305 if (!is_world_regdom(ieee80211_regdom))
2306 regulatory_hint_user(ieee80211_regdom);
2307
2308 return 0;
2309 }
2310
2311 void regulatory_exit(void)
2312 {
2313 struct regulatory_request *reg_request, *tmp;
2314 struct reg_beacon *reg_beacon, *btmp;
2315
2316 cancel_work_sync(&reg_work);
2317
2318 mutex_lock(&cfg80211_mutex);
2319 mutex_lock(&reg_mutex);
2320
2321 reset_regdomains();
2322
2323 kfree(country_ie_regdomain);
2324 country_ie_regdomain = NULL;
2325
2326 kfree(last_request);
2327
2328 platform_device_unregister(reg_pdev);
2329
2330 spin_lock_bh(&reg_pending_beacons_lock);
2331 if (!list_empty(&reg_pending_beacons)) {
2332 list_for_each_entry_safe(reg_beacon, btmp,
2333 &reg_pending_beacons, list) {
2334 list_del(&reg_beacon->list);
2335 kfree(reg_beacon);
2336 }
2337 }
2338 spin_unlock_bh(&reg_pending_beacons_lock);
2339
2340 if (!list_empty(&reg_beacon_list)) {
2341 list_for_each_entry_safe(reg_beacon, btmp,
2342 &reg_beacon_list, list) {
2343 list_del(&reg_beacon->list);
2344 kfree(reg_beacon);
2345 }
2346 }
2347
2348 spin_lock(&reg_requests_lock);
2349 if (!list_empty(&reg_requests_list)) {
2350 list_for_each_entry_safe(reg_request, tmp,
2351 &reg_requests_list, list) {
2352 list_del(&reg_request->list);
2353 kfree(reg_request);
2354 }
2355 }
2356 spin_unlock(&reg_requests_lock);
2357
2358 mutex_unlock(&reg_mutex);
2359 mutex_unlock(&cfg80211_mutex);
2360 }