]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/wireless/reg.c
Merge remote-tracking branches 'asoc/topic/mediatek', 'asoc/topic/mtk', 'asoc/topic...
[mirror_ubuntu-zesty-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 *
8 * Permission to use, copy, modify, and/or distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21
22 /**
23 * DOC: Wireless regulatory infrastructure
24 *
25 * The usual implementation is for a driver to read a device EEPROM to
26 * determine which regulatory domain it should be operating under, then
27 * looking up the allowable channels in a driver-local table and finally
28 * registering those channels in the wiphy structure.
29 *
30 * Another set of compliance enforcement is for drivers to use their
31 * own compliance limits which can be stored on the EEPROM. The host
32 * driver or firmware may ensure these are used.
33 *
34 * In addition to all this we provide an extra layer of regulatory
35 * conformance. For drivers which do not have any regulatory
36 * information CRDA provides the complete regulatory solution.
37 * For others it provides a community effort on further restrictions
38 * to enhance compliance.
39 *
40 * Note: When number of rules --> infinity we will not be able to
41 * index on alpha2 any more, instead we'll probably have to
42 * rely on some SHA1 checksum of the regdomain for example.
43 *
44 */
45
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "rdev-ops.h"
60 #include "regdb.h"
61 #include "nl80211.h"
62
63 #ifdef CONFIG_CFG80211_REG_DEBUG
64 #define REG_DBG_PRINT(format, args...) \
65 printk(KERN_DEBUG pr_fmt(format), ##args)
66 #else
67 #define REG_DBG_PRINT(args...)
68 #endif
69
70 /*
71 * Grace period we give before making sure all current interfaces reside on
72 * channels allowed by the current regulatory domain.
73 */
74 #define REG_ENFORCE_GRACE_MS 60000
75
76 /**
77 * enum reg_request_treatment - regulatory request treatment
78 *
79 * @REG_REQ_OK: continue processing the regulatory request
80 * @REG_REQ_IGNORE: ignore the regulatory request
81 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
82 * be intersected with the current one.
83 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
84 * regulatory settings, and no further processing is required.
85 */
86 enum reg_request_treatment {
87 REG_REQ_OK,
88 REG_REQ_IGNORE,
89 REG_REQ_INTERSECT,
90 REG_REQ_ALREADY_SET,
91 };
92
93 static struct regulatory_request core_request_world = {
94 .initiator = NL80211_REGDOM_SET_BY_CORE,
95 .alpha2[0] = '0',
96 .alpha2[1] = '0',
97 .intersect = false,
98 .processed = true,
99 .country_ie_env = ENVIRON_ANY,
100 };
101
102 /*
103 * Receipt of information from last regulatory request,
104 * protected by RTNL (and can be accessed with RCU protection)
105 */
106 static struct regulatory_request __rcu *last_request =
107 (void __force __rcu *)&core_request_world;
108
109 /* To trigger userspace events */
110 static struct platform_device *reg_pdev;
111
112 /*
113 * Central wireless core regulatory domains, we only need two,
114 * the current one and a world regulatory domain in case we have no
115 * information to give us an alpha2.
116 * (protected by RTNL, can be read under RCU)
117 */
118 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
119
120 /*
121 * Number of devices that registered to the core
122 * that support cellular base station regulatory hints
123 * (protected by RTNL)
124 */
125 static int reg_num_devs_support_basehint;
126
127 /*
128 * State variable indicating if the platform on which the devices
129 * are attached is operating in an indoor environment. The state variable
130 * is relevant for all registered devices.
131 */
132 static bool reg_is_indoor;
133 static spinlock_t reg_indoor_lock;
134
135 /* Used to track the userspace process controlling the indoor setting */
136 static u32 reg_is_indoor_portid;
137
138 /* Max number of consecutive attempts to communicate with CRDA */
139 #define REG_MAX_CRDA_TIMEOUTS 10
140
141 static u32 reg_crda_timeouts;
142
143 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
144 {
145 return rtnl_dereference(cfg80211_regdomain);
146 }
147
148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149 {
150 return rtnl_dereference(wiphy->regd);
151 }
152
153 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
154 {
155 switch (dfs_region) {
156 case NL80211_DFS_UNSET:
157 return "unset";
158 case NL80211_DFS_FCC:
159 return "FCC";
160 case NL80211_DFS_ETSI:
161 return "ETSI";
162 case NL80211_DFS_JP:
163 return "JP";
164 }
165 return "Unknown";
166 }
167
168 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
169 {
170 const struct ieee80211_regdomain *regd = NULL;
171 const struct ieee80211_regdomain *wiphy_regd = NULL;
172
173 regd = get_cfg80211_regdom();
174 if (!wiphy)
175 goto out;
176
177 wiphy_regd = get_wiphy_regdom(wiphy);
178 if (!wiphy_regd)
179 goto out;
180
181 if (wiphy_regd->dfs_region == regd->dfs_region)
182 goto out;
183
184 REG_DBG_PRINT("%s: device specific dfs_region "
185 "(%s) disagrees with cfg80211's "
186 "central dfs_region (%s)\n",
187 dev_name(&wiphy->dev),
188 reg_dfs_region_str(wiphy_regd->dfs_region),
189 reg_dfs_region_str(regd->dfs_region));
190
191 out:
192 return regd->dfs_region;
193 }
194
195 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
196 {
197 if (!r)
198 return;
199 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
200 }
201
202 static struct regulatory_request *get_last_request(void)
203 {
204 return rcu_dereference_rtnl(last_request);
205 }
206
207 /* Used to queue up regulatory hints */
208 static LIST_HEAD(reg_requests_list);
209 static spinlock_t reg_requests_lock;
210
211 /* Used to queue up beacon hints for review */
212 static LIST_HEAD(reg_pending_beacons);
213 static spinlock_t reg_pending_beacons_lock;
214
215 /* Used to keep track of processed beacon hints */
216 static LIST_HEAD(reg_beacon_list);
217
218 struct reg_beacon {
219 struct list_head list;
220 struct ieee80211_channel chan;
221 };
222
223 static void reg_check_chans_work(struct work_struct *work);
224 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
225
226 static void reg_todo(struct work_struct *work);
227 static DECLARE_WORK(reg_work, reg_todo);
228
229 static void reg_timeout_work(struct work_struct *work);
230 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
231
232 /* We keep a static world regulatory domain in case of the absence of CRDA */
233 static const struct ieee80211_regdomain world_regdom = {
234 .n_reg_rules = 8,
235 .alpha2 = "00",
236 .reg_rules = {
237 /* IEEE 802.11b/g, channels 1..11 */
238 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
239 /* IEEE 802.11b/g, channels 12..13. */
240 REG_RULE(2467-10, 2472+10, 40, 6, 20,
241 NL80211_RRF_NO_IR),
242 /* IEEE 802.11 channel 14 - Only JP enables
243 * this and for 802.11b only */
244 REG_RULE(2484-10, 2484+10, 20, 6, 20,
245 NL80211_RRF_NO_IR |
246 NL80211_RRF_NO_OFDM),
247 /* IEEE 802.11a, channel 36..48 */
248 REG_RULE(5180-10, 5240+10, 160, 6, 20,
249 NL80211_RRF_NO_IR),
250
251 /* IEEE 802.11a, channel 52..64 - DFS required */
252 REG_RULE(5260-10, 5320+10, 160, 6, 20,
253 NL80211_RRF_NO_IR |
254 NL80211_RRF_DFS),
255
256 /* IEEE 802.11a, channel 100..144 - DFS required */
257 REG_RULE(5500-10, 5720+10, 160, 6, 20,
258 NL80211_RRF_NO_IR |
259 NL80211_RRF_DFS),
260
261 /* IEEE 802.11a, channel 149..165 */
262 REG_RULE(5745-10, 5825+10, 80, 6, 20,
263 NL80211_RRF_NO_IR),
264
265 /* IEEE 802.11ad (60gHz), channels 1..3 */
266 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
267 }
268 };
269
270 /* protected by RTNL */
271 static const struct ieee80211_regdomain *cfg80211_world_regdom =
272 &world_regdom;
273
274 static char *ieee80211_regdom = "00";
275 static char user_alpha2[2];
276
277 module_param(ieee80211_regdom, charp, 0444);
278 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
279
280 static void reg_free_request(struct regulatory_request *request)
281 {
282 if (request != get_last_request())
283 kfree(request);
284 }
285
286 static void reg_free_last_request(void)
287 {
288 struct regulatory_request *lr = get_last_request();
289
290 if (lr != &core_request_world && lr)
291 kfree_rcu(lr, rcu_head);
292 }
293
294 static void reg_update_last_request(struct regulatory_request *request)
295 {
296 struct regulatory_request *lr;
297
298 lr = get_last_request();
299 if (lr == request)
300 return;
301
302 reg_free_last_request();
303 rcu_assign_pointer(last_request, request);
304 }
305
306 static void reset_regdomains(bool full_reset,
307 const struct ieee80211_regdomain *new_regdom)
308 {
309 const struct ieee80211_regdomain *r;
310
311 ASSERT_RTNL();
312
313 r = get_cfg80211_regdom();
314
315 /* avoid freeing static information or freeing something twice */
316 if (r == cfg80211_world_regdom)
317 r = NULL;
318 if (cfg80211_world_regdom == &world_regdom)
319 cfg80211_world_regdom = NULL;
320 if (r == &world_regdom)
321 r = NULL;
322
323 rcu_free_regdom(r);
324 rcu_free_regdom(cfg80211_world_regdom);
325
326 cfg80211_world_regdom = &world_regdom;
327 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
328
329 if (!full_reset)
330 return;
331
332 reg_update_last_request(&core_request_world);
333 }
334
335 /*
336 * Dynamic world regulatory domain requested by the wireless
337 * core upon initialization
338 */
339 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
340 {
341 struct regulatory_request *lr;
342
343 lr = get_last_request();
344
345 WARN_ON(!lr);
346
347 reset_regdomains(false, rd);
348
349 cfg80211_world_regdom = rd;
350 }
351
352 bool is_world_regdom(const char *alpha2)
353 {
354 if (!alpha2)
355 return false;
356 return alpha2[0] == '0' && alpha2[1] == '0';
357 }
358
359 static bool is_alpha2_set(const char *alpha2)
360 {
361 if (!alpha2)
362 return false;
363 return alpha2[0] && alpha2[1];
364 }
365
366 static bool is_unknown_alpha2(const char *alpha2)
367 {
368 if (!alpha2)
369 return false;
370 /*
371 * Special case where regulatory domain was built by driver
372 * but a specific alpha2 cannot be determined
373 */
374 return alpha2[0] == '9' && alpha2[1] == '9';
375 }
376
377 static bool is_intersected_alpha2(const char *alpha2)
378 {
379 if (!alpha2)
380 return false;
381 /*
382 * Special case where regulatory domain is the
383 * result of an intersection between two regulatory domain
384 * structures
385 */
386 return alpha2[0] == '9' && alpha2[1] == '8';
387 }
388
389 static bool is_an_alpha2(const char *alpha2)
390 {
391 if (!alpha2)
392 return false;
393 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
394 }
395
396 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
397 {
398 if (!alpha2_x || !alpha2_y)
399 return false;
400 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
401 }
402
403 static bool regdom_changes(const char *alpha2)
404 {
405 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
406
407 if (!r)
408 return true;
409 return !alpha2_equal(r->alpha2, alpha2);
410 }
411
412 /*
413 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
414 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
415 * has ever been issued.
416 */
417 static bool is_user_regdom_saved(void)
418 {
419 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
420 return false;
421
422 /* This would indicate a mistake on the design */
423 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
424 "Unexpected user alpha2: %c%c\n",
425 user_alpha2[0], user_alpha2[1]))
426 return false;
427
428 return true;
429 }
430
431 static const struct ieee80211_regdomain *
432 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
433 {
434 struct ieee80211_regdomain *regd;
435 int size_of_regd;
436 unsigned int i;
437
438 size_of_regd =
439 sizeof(struct ieee80211_regdomain) +
440 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
441
442 regd = kzalloc(size_of_regd, GFP_KERNEL);
443 if (!regd)
444 return ERR_PTR(-ENOMEM);
445
446 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
447
448 for (i = 0; i < src_regd->n_reg_rules; i++)
449 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
450 sizeof(struct ieee80211_reg_rule));
451
452 return regd;
453 }
454
455 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
456 struct reg_regdb_search_request {
457 char alpha2[2];
458 struct list_head list;
459 };
460
461 static LIST_HEAD(reg_regdb_search_list);
462 static DEFINE_MUTEX(reg_regdb_search_mutex);
463
464 static void reg_regdb_search(struct work_struct *work)
465 {
466 struct reg_regdb_search_request *request;
467 const struct ieee80211_regdomain *curdom, *regdom = NULL;
468 int i;
469
470 rtnl_lock();
471
472 mutex_lock(&reg_regdb_search_mutex);
473 while (!list_empty(&reg_regdb_search_list)) {
474 request = list_first_entry(&reg_regdb_search_list,
475 struct reg_regdb_search_request,
476 list);
477 list_del(&request->list);
478
479 for (i = 0; i < reg_regdb_size; i++) {
480 curdom = reg_regdb[i];
481
482 if (alpha2_equal(request->alpha2, curdom->alpha2)) {
483 regdom = reg_copy_regd(curdom);
484 break;
485 }
486 }
487
488 kfree(request);
489 }
490 mutex_unlock(&reg_regdb_search_mutex);
491
492 if (!IS_ERR_OR_NULL(regdom))
493 set_regdom(regdom, REGD_SOURCE_INTERNAL_DB);
494
495 rtnl_unlock();
496 }
497
498 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
499
500 static void reg_regdb_query(const char *alpha2)
501 {
502 struct reg_regdb_search_request *request;
503
504 if (!alpha2)
505 return;
506
507 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
508 if (!request)
509 return;
510
511 memcpy(request->alpha2, alpha2, 2);
512
513 mutex_lock(&reg_regdb_search_mutex);
514 list_add_tail(&request->list, &reg_regdb_search_list);
515 mutex_unlock(&reg_regdb_search_mutex);
516
517 schedule_work(&reg_regdb_work);
518 }
519
520 /* Feel free to add any other sanity checks here */
521 static void reg_regdb_size_check(void)
522 {
523 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
524 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
525 }
526 #else
527 static inline void reg_regdb_size_check(void) {}
528 static inline void reg_regdb_query(const char *alpha2) {}
529 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
530
531 /*
532 * This lets us keep regulatory code which is updated on a regulatory
533 * basis in userspace.
534 */
535 static int call_crda(const char *alpha2)
536 {
537 char country[12];
538 char *env[] = { country, NULL };
539
540 snprintf(country, sizeof(country), "COUNTRY=%c%c",
541 alpha2[0], alpha2[1]);
542
543 /* query internal regulatory database (if it exists) */
544 reg_regdb_query(alpha2);
545
546 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
547 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
548 return -EINVAL;
549 }
550
551 if (!is_world_regdom((char *) alpha2))
552 pr_debug("Calling CRDA for country: %c%c\n",
553 alpha2[0], alpha2[1]);
554 else
555 pr_debug("Calling CRDA to update world regulatory domain\n");
556
557 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
558 }
559
560 static enum reg_request_treatment
561 reg_call_crda(struct regulatory_request *request)
562 {
563 if (call_crda(request->alpha2))
564 return REG_REQ_IGNORE;
565
566 queue_delayed_work(system_power_efficient_wq,
567 &reg_timeout, msecs_to_jiffies(3142));
568 return REG_REQ_OK;
569 }
570
571 bool reg_is_valid_request(const char *alpha2)
572 {
573 struct regulatory_request *lr = get_last_request();
574
575 if (!lr || lr->processed)
576 return false;
577
578 return alpha2_equal(lr->alpha2, alpha2);
579 }
580
581 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
582 {
583 struct regulatory_request *lr = get_last_request();
584
585 /*
586 * Follow the driver's regulatory domain, if present, unless a country
587 * IE has been processed or a user wants to help complaince further
588 */
589 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
590 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
591 wiphy->regd)
592 return get_wiphy_regdom(wiphy);
593
594 return get_cfg80211_regdom();
595 }
596
597 static unsigned int
598 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
599 const struct ieee80211_reg_rule *rule)
600 {
601 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
602 const struct ieee80211_freq_range *freq_range_tmp;
603 const struct ieee80211_reg_rule *tmp;
604 u32 start_freq, end_freq, idx, no;
605
606 for (idx = 0; idx < rd->n_reg_rules; idx++)
607 if (rule == &rd->reg_rules[idx])
608 break;
609
610 if (idx == rd->n_reg_rules)
611 return 0;
612
613 /* get start_freq */
614 no = idx;
615
616 while (no) {
617 tmp = &rd->reg_rules[--no];
618 freq_range_tmp = &tmp->freq_range;
619
620 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
621 break;
622
623 freq_range = freq_range_tmp;
624 }
625
626 start_freq = freq_range->start_freq_khz;
627
628 /* get end_freq */
629 freq_range = &rule->freq_range;
630 no = idx;
631
632 while (no < rd->n_reg_rules - 1) {
633 tmp = &rd->reg_rules[++no];
634 freq_range_tmp = &tmp->freq_range;
635
636 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
637 break;
638
639 freq_range = freq_range_tmp;
640 }
641
642 end_freq = freq_range->end_freq_khz;
643
644 return end_freq - start_freq;
645 }
646
647 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
648 const struct ieee80211_reg_rule *rule)
649 {
650 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
651
652 if (rule->flags & NL80211_RRF_NO_160MHZ)
653 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
654 if (rule->flags & NL80211_RRF_NO_80MHZ)
655 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
656
657 /*
658 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
659 * are not allowed.
660 */
661 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
662 rule->flags & NL80211_RRF_NO_HT40PLUS)
663 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
664
665 return bw;
666 }
667
668 /* Sanity check on a regulatory rule */
669 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
670 {
671 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
672 u32 freq_diff;
673
674 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
675 return false;
676
677 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
678 return false;
679
680 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
681
682 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
683 freq_range->max_bandwidth_khz > freq_diff)
684 return false;
685
686 return true;
687 }
688
689 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
690 {
691 const struct ieee80211_reg_rule *reg_rule = NULL;
692 unsigned int i;
693
694 if (!rd->n_reg_rules)
695 return false;
696
697 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
698 return false;
699
700 for (i = 0; i < rd->n_reg_rules; i++) {
701 reg_rule = &rd->reg_rules[i];
702 if (!is_valid_reg_rule(reg_rule))
703 return false;
704 }
705
706 return true;
707 }
708
709 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
710 u32 center_freq_khz, u32 bw_khz)
711 {
712 u32 start_freq_khz, end_freq_khz;
713
714 start_freq_khz = center_freq_khz - (bw_khz/2);
715 end_freq_khz = center_freq_khz + (bw_khz/2);
716
717 if (start_freq_khz >= freq_range->start_freq_khz &&
718 end_freq_khz <= freq_range->end_freq_khz)
719 return true;
720
721 return false;
722 }
723
724 /**
725 * freq_in_rule_band - tells us if a frequency is in a frequency band
726 * @freq_range: frequency rule we want to query
727 * @freq_khz: frequency we are inquiring about
728 *
729 * This lets us know if a specific frequency rule is or is not relevant to
730 * a specific frequency's band. Bands are device specific and artificial
731 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
732 * however it is safe for now to assume that a frequency rule should not be
733 * part of a frequency's band if the start freq or end freq are off by more
734 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
735 * 60 GHz band.
736 * This resolution can be lowered and should be considered as we add
737 * regulatory rule support for other "bands".
738 **/
739 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
740 u32 freq_khz)
741 {
742 #define ONE_GHZ_IN_KHZ 1000000
743 /*
744 * From 802.11ad: directional multi-gigabit (DMG):
745 * Pertaining to operation in a frequency band containing a channel
746 * with the Channel starting frequency above 45 GHz.
747 */
748 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
749 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
750 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
751 return true;
752 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
753 return true;
754 return false;
755 #undef ONE_GHZ_IN_KHZ
756 }
757
758 /*
759 * Later on we can perhaps use the more restrictive DFS
760 * region but we don't have information for that yet so
761 * for now simply disallow conflicts.
762 */
763 static enum nl80211_dfs_regions
764 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
765 const enum nl80211_dfs_regions dfs_region2)
766 {
767 if (dfs_region1 != dfs_region2)
768 return NL80211_DFS_UNSET;
769 return dfs_region1;
770 }
771
772 /*
773 * Helper for regdom_intersect(), this does the real
774 * mathematical intersection fun
775 */
776 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
777 const struct ieee80211_regdomain *rd2,
778 const struct ieee80211_reg_rule *rule1,
779 const struct ieee80211_reg_rule *rule2,
780 struct ieee80211_reg_rule *intersected_rule)
781 {
782 const struct ieee80211_freq_range *freq_range1, *freq_range2;
783 struct ieee80211_freq_range *freq_range;
784 const struct ieee80211_power_rule *power_rule1, *power_rule2;
785 struct ieee80211_power_rule *power_rule;
786 u32 freq_diff, max_bandwidth1, max_bandwidth2;
787
788 freq_range1 = &rule1->freq_range;
789 freq_range2 = &rule2->freq_range;
790 freq_range = &intersected_rule->freq_range;
791
792 power_rule1 = &rule1->power_rule;
793 power_rule2 = &rule2->power_rule;
794 power_rule = &intersected_rule->power_rule;
795
796 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
797 freq_range2->start_freq_khz);
798 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
799 freq_range2->end_freq_khz);
800
801 max_bandwidth1 = freq_range1->max_bandwidth_khz;
802 max_bandwidth2 = freq_range2->max_bandwidth_khz;
803
804 if (rule1->flags & NL80211_RRF_AUTO_BW)
805 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
806 if (rule2->flags & NL80211_RRF_AUTO_BW)
807 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
808
809 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
810
811 intersected_rule->flags = rule1->flags | rule2->flags;
812
813 /*
814 * In case NL80211_RRF_AUTO_BW requested for both rules
815 * set AUTO_BW in intersected rule also. Next we will
816 * calculate BW correctly in handle_channel function.
817 * In other case remove AUTO_BW flag while we calculate
818 * maximum bandwidth correctly and auto calculation is
819 * not required.
820 */
821 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
822 (rule2->flags & NL80211_RRF_AUTO_BW))
823 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
824 else
825 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
826
827 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
828 if (freq_range->max_bandwidth_khz > freq_diff)
829 freq_range->max_bandwidth_khz = freq_diff;
830
831 power_rule->max_eirp = min(power_rule1->max_eirp,
832 power_rule2->max_eirp);
833 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
834 power_rule2->max_antenna_gain);
835
836 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
837 rule2->dfs_cac_ms);
838
839 if (!is_valid_reg_rule(intersected_rule))
840 return -EINVAL;
841
842 return 0;
843 }
844
845 /* check whether old rule contains new rule */
846 static bool rule_contains(struct ieee80211_reg_rule *r1,
847 struct ieee80211_reg_rule *r2)
848 {
849 /* for simplicity, currently consider only same flags */
850 if (r1->flags != r2->flags)
851 return false;
852
853 /* verify r1 is more restrictive */
854 if ((r1->power_rule.max_antenna_gain >
855 r2->power_rule.max_antenna_gain) ||
856 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
857 return false;
858
859 /* make sure r2's range is contained within r1 */
860 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
861 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
862 return false;
863
864 /* and finally verify that r1.max_bw >= r2.max_bw */
865 if (r1->freq_range.max_bandwidth_khz <
866 r2->freq_range.max_bandwidth_khz)
867 return false;
868
869 return true;
870 }
871
872 /* add or extend current rules. do nothing if rule is already contained */
873 static void add_rule(struct ieee80211_reg_rule *rule,
874 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
875 {
876 struct ieee80211_reg_rule *tmp_rule;
877 int i;
878
879 for (i = 0; i < *n_rules; i++) {
880 tmp_rule = &reg_rules[i];
881 /* rule is already contained - do nothing */
882 if (rule_contains(tmp_rule, rule))
883 return;
884
885 /* extend rule if possible */
886 if (rule_contains(rule, tmp_rule)) {
887 memcpy(tmp_rule, rule, sizeof(*rule));
888 return;
889 }
890 }
891
892 memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
893 (*n_rules)++;
894 }
895
896 /**
897 * regdom_intersect - do the intersection between two regulatory domains
898 * @rd1: first regulatory domain
899 * @rd2: second regulatory domain
900 *
901 * Use this function to get the intersection between two regulatory domains.
902 * Once completed we will mark the alpha2 for the rd as intersected, "98",
903 * as no one single alpha2 can represent this regulatory domain.
904 *
905 * Returns a pointer to the regulatory domain structure which will hold the
906 * resulting intersection of rules between rd1 and rd2. We will
907 * kzalloc() this structure for you.
908 */
909 static struct ieee80211_regdomain *
910 regdom_intersect(const struct ieee80211_regdomain *rd1,
911 const struct ieee80211_regdomain *rd2)
912 {
913 int r, size_of_regd;
914 unsigned int x, y;
915 unsigned int num_rules = 0;
916 const struct ieee80211_reg_rule *rule1, *rule2;
917 struct ieee80211_reg_rule intersected_rule;
918 struct ieee80211_regdomain *rd;
919
920 if (!rd1 || !rd2)
921 return NULL;
922
923 /*
924 * First we get a count of the rules we'll need, then we actually
925 * build them. This is to so we can malloc() and free() a
926 * regdomain once. The reason we use reg_rules_intersect() here
927 * is it will return -EINVAL if the rule computed makes no sense.
928 * All rules that do check out OK are valid.
929 */
930
931 for (x = 0; x < rd1->n_reg_rules; x++) {
932 rule1 = &rd1->reg_rules[x];
933 for (y = 0; y < rd2->n_reg_rules; y++) {
934 rule2 = &rd2->reg_rules[y];
935 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
936 &intersected_rule))
937 num_rules++;
938 }
939 }
940
941 if (!num_rules)
942 return NULL;
943
944 size_of_regd = sizeof(struct ieee80211_regdomain) +
945 num_rules * sizeof(struct ieee80211_reg_rule);
946
947 rd = kzalloc(size_of_regd, GFP_KERNEL);
948 if (!rd)
949 return NULL;
950
951 for (x = 0; x < rd1->n_reg_rules; x++) {
952 rule1 = &rd1->reg_rules[x];
953 for (y = 0; y < rd2->n_reg_rules; y++) {
954 rule2 = &rd2->reg_rules[y];
955 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
956 &intersected_rule);
957 /*
958 * No need to memset here the intersected rule here as
959 * we're not using the stack anymore
960 */
961 if (r)
962 continue;
963
964 add_rule(&intersected_rule, rd->reg_rules,
965 &rd->n_reg_rules);
966 }
967 }
968
969 rd->alpha2[0] = '9';
970 rd->alpha2[1] = '8';
971 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
972 rd2->dfs_region);
973
974 return rd;
975 }
976
977 /*
978 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
979 * want to just have the channel structure use these
980 */
981 static u32 map_regdom_flags(u32 rd_flags)
982 {
983 u32 channel_flags = 0;
984 if (rd_flags & NL80211_RRF_NO_IR_ALL)
985 channel_flags |= IEEE80211_CHAN_NO_IR;
986 if (rd_flags & NL80211_RRF_DFS)
987 channel_flags |= IEEE80211_CHAN_RADAR;
988 if (rd_flags & NL80211_RRF_NO_OFDM)
989 channel_flags |= IEEE80211_CHAN_NO_OFDM;
990 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
991 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
992 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
993 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
994 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
995 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
996 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
997 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
998 if (rd_flags & NL80211_RRF_NO_80MHZ)
999 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1000 if (rd_flags & NL80211_RRF_NO_160MHZ)
1001 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1002 return channel_flags;
1003 }
1004
1005 static const struct ieee80211_reg_rule *
1006 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
1007 const struct ieee80211_regdomain *regd)
1008 {
1009 int i;
1010 bool band_rule_found = false;
1011 bool bw_fits = false;
1012
1013 if (!regd)
1014 return ERR_PTR(-EINVAL);
1015
1016 for (i = 0; i < regd->n_reg_rules; i++) {
1017 const struct ieee80211_reg_rule *rr;
1018 const struct ieee80211_freq_range *fr = NULL;
1019
1020 rr = &regd->reg_rules[i];
1021 fr = &rr->freq_range;
1022
1023 /*
1024 * We only need to know if one frequency rule was
1025 * was in center_freq's band, that's enough, so lets
1026 * not overwrite it once found
1027 */
1028 if (!band_rule_found)
1029 band_rule_found = freq_in_rule_band(fr, center_freq);
1030
1031 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
1032
1033 if (band_rule_found && bw_fits)
1034 return rr;
1035 }
1036
1037 if (!band_rule_found)
1038 return ERR_PTR(-ERANGE);
1039
1040 return ERR_PTR(-EINVAL);
1041 }
1042
1043 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1044 u32 center_freq)
1045 {
1046 const struct ieee80211_regdomain *regd;
1047
1048 regd = reg_get_regdomain(wiphy);
1049
1050 return freq_reg_info_regd(wiphy, center_freq, regd);
1051 }
1052 EXPORT_SYMBOL(freq_reg_info);
1053
1054 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1055 {
1056 switch (initiator) {
1057 case NL80211_REGDOM_SET_BY_CORE:
1058 return "core";
1059 case NL80211_REGDOM_SET_BY_USER:
1060 return "user";
1061 case NL80211_REGDOM_SET_BY_DRIVER:
1062 return "driver";
1063 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1064 return "country IE";
1065 default:
1066 WARN_ON(1);
1067 return "bug";
1068 }
1069 }
1070 EXPORT_SYMBOL(reg_initiator_name);
1071
1072 #ifdef CONFIG_CFG80211_REG_DEBUG
1073 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1074 struct ieee80211_channel *chan,
1075 const struct ieee80211_reg_rule *reg_rule)
1076 {
1077 const struct ieee80211_power_rule *power_rule;
1078 const struct ieee80211_freq_range *freq_range;
1079 char max_antenna_gain[32], bw[32];
1080
1081 power_rule = &reg_rule->power_rule;
1082 freq_range = &reg_rule->freq_range;
1083
1084 if (!power_rule->max_antenna_gain)
1085 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1086 else
1087 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
1088 power_rule->max_antenna_gain);
1089
1090 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1091 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1092 freq_range->max_bandwidth_khz,
1093 reg_get_max_bandwidth(regd, reg_rule));
1094 else
1095 snprintf(bw, sizeof(bw), "%d KHz",
1096 freq_range->max_bandwidth_khz);
1097
1098 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1099 chan->center_freq);
1100
1101 REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
1102 freq_range->start_freq_khz, freq_range->end_freq_khz,
1103 bw, max_antenna_gain,
1104 power_rule->max_eirp);
1105 }
1106 #else
1107 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1108 struct ieee80211_channel *chan,
1109 const struct ieee80211_reg_rule *reg_rule)
1110 {
1111 return;
1112 }
1113 #endif
1114
1115 /*
1116 * Note that right now we assume the desired channel bandwidth
1117 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1118 * per channel, the primary and the extension channel).
1119 */
1120 static void handle_channel(struct wiphy *wiphy,
1121 enum nl80211_reg_initiator initiator,
1122 struct ieee80211_channel *chan)
1123 {
1124 u32 flags, bw_flags = 0;
1125 const struct ieee80211_reg_rule *reg_rule = NULL;
1126 const struct ieee80211_power_rule *power_rule = NULL;
1127 const struct ieee80211_freq_range *freq_range = NULL;
1128 struct wiphy *request_wiphy = NULL;
1129 struct regulatory_request *lr = get_last_request();
1130 const struct ieee80211_regdomain *regd;
1131 u32 max_bandwidth_khz;
1132
1133 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1134
1135 flags = chan->orig_flags;
1136
1137 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1138 if (IS_ERR(reg_rule)) {
1139 /*
1140 * We will disable all channels that do not match our
1141 * received regulatory rule unless the hint is coming
1142 * from a Country IE and the Country IE had no information
1143 * about a band. The IEEE 802.11 spec allows for an AP
1144 * to send only a subset of the regulatory rules allowed,
1145 * so an AP in the US that only supports 2.4 GHz may only send
1146 * a country IE with information for the 2.4 GHz band
1147 * while 5 GHz is still supported.
1148 */
1149 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1150 PTR_ERR(reg_rule) == -ERANGE)
1151 return;
1152
1153 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1154 request_wiphy && request_wiphy == wiphy &&
1155 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1156 REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1157 chan->center_freq);
1158 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1159 chan->flags = chan->orig_flags;
1160 } else {
1161 REG_DBG_PRINT("Disabling freq %d MHz\n",
1162 chan->center_freq);
1163 chan->flags |= IEEE80211_CHAN_DISABLED;
1164 }
1165 return;
1166 }
1167
1168 regd = reg_get_regdomain(wiphy);
1169 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1170
1171 power_rule = &reg_rule->power_rule;
1172 freq_range = &reg_rule->freq_range;
1173
1174 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1175 /* Check if auto calculation requested */
1176 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1177 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1178
1179 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1180 bw_flags = IEEE80211_CHAN_NO_HT40;
1181 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1182 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1183 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1184 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1185
1186 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1187 request_wiphy && request_wiphy == wiphy &&
1188 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1189 /*
1190 * This guarantees the driver's requested regulatory domain
1191 * will always be used as a base for further regulatory
1192 * settings
1193 */
1194 chan->flags = chan->orig_flags =
1195 map_regdom_flags(reg_rule->flags) | bw_flags;
1196 chan->max_antenna_gain = chan->orig_mag =
1197 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1198 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1199 (int) MBM_TO_DBM(power_rule->max_eirp);
1200
1201 if (chan->flags & IEEE80211_CHAN_RADAR) {
1202 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1203 if (reg_rule->dfs_cac_ms)
1204 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1205 }
1206
1207 return;
1208 }
1209
1210 chan->dfs_state = NL80211_DFS_USABLE;
1211 chan->dfs_state_entered = jiffies;
1212
1213 chan->beacon_found = false;
1214 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1215 chan->max_antenna_gain =
1216 min_t(int, chan->orig_mag,
1217 MBI_TO_DBI(power_rule->max_antenna_gain));
1218 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1219
1220 if (chan->flags & IEEE80211_CHAN_RADAR) {
1221 if (reg_rule->dfs_cac_ms)
1222 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1223 else
1224 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1225 }
1226
1227 if (chan->orig_mpwr) {
1228 /*
1229 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1230 * will always follow the passed country IE power settings.
1231 */
1232 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1233 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1234 chan->max_power = chan->max_reg_power;
1235 else
1236 chan->max_power = min(chan->orig_mpwr,
1237 chan->max_reg_power);
1238 } else
1239 chan->max_power = chan->max_reg_power;
1240 }
1241
1242 static void handle_band(struct wiphy *wiphy,
1243 enum nl80211_reg_initiator initiator,
1244 struct ieee80211_supported_band *sband)
1245 {
1246 unsigned int i;
1247
1248 if (!sband)
1249 return;
1250
1251 for (i = 0; i < sband->n_channels; i++)
1252 handle_channel(wiphy, initiator, &sband->channels[i]);
1253 }
1254
1255 static bool reg_request_cell_base(struct regulatory_request *request)
1256 {
1257 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1258 return false;
1259 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1260 }
1261
1262 bool reg_last_request_cell_base(void)
1263 {
1264 return reg_request_cell_base(get_last_request());
1265 }
1266
1267 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1268 /* Core specific check */
1269 static enum reg_request_treatment
1270 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1271 {
1272 struct regulatory_request *lr = get_last_request();
1273
1274 if (!reg_num_devs_support_basehint)
1275 return REG_REQ_IGNORE;
1276
1277 if (reg_request_cell_base(lr) &&
1278 !regdom_changes(pending_request->alpha2))
1279 return REG_REQ_ALREADY_SET;
1280
1281 return REG_REQ_OK;
1282 }
1283
1284 /* Device specific check */
1285 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1286 {
1287 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1288 }
1289 #else
1290 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1291 {
1292 return REG_REQ_IGNORE;
1293 }
1294
1295 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1296 {
1297 return true;
1298 }
1299 #endif
1300
1301 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1302 {
1303 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1304 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1305 return true;
1306 return false;
1307 }
1308
1309 static bool ignore_reg_update(struct wiphy *wiphy,
1310 enum nl80211_reg_initiator initiator)
1311 {
1312 struct regulatory_request *lr = get_last_request();
1313
1314 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1315 return true;
1316
1317 if (!lr) {
1318 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1319 "since last_request is not set\n",
1320 reg_initiator_name(initiator));
1321 return true;
1322 }
1323
1324 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1325 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1326 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1327 "since the driver uses its own custom "
1328 "regulatory domain\n",
1329 reg_initiator_name(initiator));
1330 return true;
1331 }
1332
1333 /*
1334 * wiphy->regd will be set once the device has its own
1335 * desired regulatory domain set
1336 */
1337 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1338 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1339 !is_world_regdom(lr->alpha2)) {
1340 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1341 "since the driver requires its own regulatory "
1342 "domain to be set first\n",
1343 reg_initiator_name(initiator));
1344 return true;
1345 }
1346
1347 if (reg_request_cell_base(lr))
1348 return reg_dev_ignore_cell_hint(wiphy);
1349
1350 return false;
1351 }
1352
1353 static bool reg_is_world_roaming(struct wiphy *wiphy)
1354 {
1355 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1356 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1357 struct regulatory_request *lr = get_last_request();
1358
1359 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1360 return true;
1361
1362 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1363 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1364 return true;
1365
1366 return false;
1367 }
1368
1369 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1370 struct reg_beacon *reg_beacon)
1371 {
1372 struct ieee80211_supported_band *sband;
1373 struct ieee80211_channel *chan;
1374 bool channel_changed = false;
1375 struct ieee80211_channel chan_before;
1376
1377 sband = wiphy->bands[reg_beacon->chan.band];
1378 chan = &sband->channels[chan_idx];
1379
1380 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1381 return;
1382
1383 if (chan->beacon_found)
1384 return;
1385
1386 chan->beacon_found = true;
1387
1388 if (!reg_is_world_roaming(wiphy))
1389 return;
1390
1391 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1392 return;
1393
1394 chan_before.center_freq = chan->center_freq;
1395 chan_before.flags = chan->flags;
1396
1397 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1398 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1399 channel_changed = true;
1400 }
1401
1402 if (channel_changed)
1403 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1404 }
1405
1406 /*
1407 * Called when a scan on a wiphy finds a beacon on
1408 * new channel
1409 */
1410 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1411 struct reg_beacon *reg_beacon)
1412 {
1413 unsigned int i;
1414 struct ieee80211_supported_band *sband;
1415
1416 if (!wiphy->bands[reg_beacon->chan.band])
1417 return;
1418
1419 sband = wiphy->bands[reg_beacon->chan.band];
1420
1421 for (i = 0; i < sband->n_channels; i++)
1422 handle_reg_beacon(wiphy, i, reg_beacon);
1423 }
1424
1425 /*
1426 * Called upon reg changes or a new wiphy is added
1427 */
1428 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1429 {
1430 unsigned int i;
1431 struct ieee80211_supported_band *sband;
1432 struct reg_beacon *reg_beacon;
1433
1434 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1435 if (!wiphy->bands[reg_beacon->chan.band])
1436 continue;
1437 sband = wiphy->bands[reg_beacon->chan.band];
1438 for (i = 0; i < sband->n_channels; i++)
1439 handle_reg_beacon(wiphy, i, reg_beacon);
1440 }
1441 }
1442
1443 /* Reap the advantages of previously found beacons */
1444 static void reg_process_beacons(struct wiphy *wiphy)
1445 {
1446 /*
1447 * Means we are just firing up cfg80211, so no beacons would
1448 * have been processed yet.
1449 */
1450 if (!last_request)
1451 return;
1452 wiphy_update_beacon_reg(wiphy);
1453 }
1454
1455 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1456 {
1457 if (!chan)
1458 return false;
1459 if (chan->flags & IEEE80211_CHAN_DISABLED)
1460 return false;
1461 /* This would happen when regulatory rules disallow HT40 completely */
1462 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1463 return false;
1464 return true;
1465 }
1466
1467 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1468 struct ieee80211_channel *channel)
1469 {
1470 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1471 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1472 unsigned int i;
1473
1474 if (!is_ht40_allowed(channel)) {
1475 channel->flags |= IEEE80211_CHAN_NO_HT40;
1476 return;
1477 }
1478
1479 /*
1480 * We need to ensure the extension channels exist to
1481 * be able to use HT40- or HT40+, this finds them (or not)
1482 */
1483 for (i = 0; i < sband->n_channels; i++) {
1484 struct ieee80211_channel *c = &sband->channels[i];
1485
1486 if (c->center_freq == (channel->center_freq - 20))
1487 channel_before = c;
1488 if (c->center_freq == (channel->center_freq + 20))
1489 channel_after = c;
1490 }
1491
1492 /*
1493 * Please note that this assumes target bandwidth is 20 MHz,
1494 * if that ever changes we also need to change the below logic
1495 * to include that as well.
1496 */
1497 if (!is_ht40_allowed(channel_before))
1498 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1499 else
1500 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1501
1502 if (!is_ht40_allowed(channel_after))
1503 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1504 else
1505 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1506 }
1507
1508 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1509 struct ieee80211_supported_band *sband)
1510 {
1511 unsigned int i;
1512
1513 if (!sband)
1514 return;
1515
1516 for (i = 0; i < sband->n_channels; i++)
1517 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1518 }
1519
1520 static void reg_process_ht_flags(struct wiphy *wiphy)
1521 {
1522 enum ieee80211_band band;
1523
1524 if (!wiphy)
1525 return;
1526
1527 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1528 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1529 }
1530
1531 static void reg_call_notifier(struct wiphy *wiphy,
1532 struct regulatory_request *request)
1533 {
1534 if (wiphy->reg_notifier)
1535 wiphy->reg_notifier(wiphy, request);
1536 }
1537
1538 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1539 {
1540 struct cfg80211_chan_def chandef;
1541 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1542 enum nl80211_iftype iftype;
1543
1544 wdev_lock(wdev);
1545 iftype = wdev->iftype;
1546
1547 /* make sure the interface is active */
1548 if (!wdev->netdev || !netif_running(wdev->netdev))
1549 goto wdev_inactive_unlock;
1550
1551 switch (iftype) {
1552 case NL80211_IFTYPE_AP:
1553 case NL80211_IFTYPE_P2P_GO:
1554 if (!wdev->beacon_interval)
1555 goto wdev_inactive_unlock;
1556 chandef = wdev->chandef;
1557 break;
1558 case NL80211_IFTYPE_ADHOC:
1559 if (!wdev->ssid_len)
1560 goto wdev_inactive_unlock;
1561 chandef = wdev->chandef;
1562 break;
1563 case NL80211_IFTYPE_STATION:
1564 case NL80211_IFTYPE_P2P_CLIENT:
1565 if (!wdev->current_bss ||
1566 !wdev->current_bss->pub.channel)
1567 goto wdev_inactive_unlock;
1568
1569 if (!rdev->ops->get_channel ||
1570 rdev_get_channel(rdev, wdev, &chandef))
1571 cfg80211_chandef_create(&chandef,
1572 wdev->current_bss->pub.channel,
1573 NL80211_CHAN_NO_HT);
1574 break;
1575 case NL80211_IFTYPE_MONITOR:
1576 case NL80211_IFTYPE_AP_VLAN:
1577 case NL80211_IFTYPE_P2P_DEVICE:
1578 /* no enforcement required */
1579 break;
1580 default:
1581 /* others not implemented for now */
1582 WARN_ON(1);
1583 break;
1584 }
1585
1586 wdev_unlock(wdev);
1587
1588 switch (iftype) {
1589 case NL80211_IFTYPE_AP:
1590 case NL80211_IFTYPE_P2P_GO:
1591 case NL80211_IFTYPE_ADHOC:
1592 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
1593 case NL80211_IFTYPE_STATION:
1594 case NL80211_IFTYPE_P2P_CLIENT:
1595 return cfg80211_chandef_usable(wiphy, &chandef,
1596 IEEE80211_CHAN_DISABLED);
1597 default:
1598 break;
1599 }
1600
1601 return true;
1602
1603 wdev_inactive_unlock:
1604 wdev_unlock(wdev);
1605 return true;
1606 }
1607
1608 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1609 {
1610 struct wireless_dev *wdev;
1611 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1612
1613 ASSERT_RTNL();
1614
1615 list_for_each_entry(wdev, &rdev->wdev_list, list)
1616 if (!reg_wdev_chan_valid(wiphy, wdev))
1617 cfg80211_leave(rdev, wdev);
1618 }
1619
1620 static void reg_check_chans_work(struct work_struct *work)
1621 {
1622 struct cfg80211_registered_device *rdev;
1623
1624 REG_DBG_PRINT("Verifying active interfaces after reg change\n");
1625 rtnl_lock();
1626
1627 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1628 if (!(rdev->wiphy.regulatory_flags &
1629 REGULATORY_IGNORE_STALE_KICKOFF))
1630 reg_leave_invalid_chans(&rdev->wiphy);
1631
1632 rtnl_unlock();
1633 }
1634
1635 static void reg_check_channels(void)
1636 {
1637 /*
1638 * Give usermode a chance to do something nicer (move to another
1639 * channel, orderly disconnection), before forcing a disconnection.
1640 */
1641 mod_delayed_work(system_power_efficient_wq,
1642 &reg_check_chans,
1643 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1644 }
1645
1646 static void wiphy_update_regulatory(struct wiphy *wiphy,
1647 enum nl80211_reg_initiator initiator)
1648 {
1649 enum ieee80211_band band;
1650 struct regulatory_request *lr = get_last_request();
1651
1652 if (ignore_reg_update(wiphy, initiator)) {
1653 /*
1654 * Regulatory updates set by CORE are ignored for custom
1655 * regulatory cards. Let us notify the changes to the driver,
1656 * as some drivers used this to restore its orig_* reg domain.
1657 */
1658 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1659 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1660 reg_call_notifier(wiphy, lr);
1661 return;
1662 }
1663
1664 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1665
1666 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1667 handle_band(wiphy, initiator, wiphy->bands[band]);
1668
1669 reg_process_beacons(wiphy);
1670 reg_process_ht_flags(wiphy);
1671 reg_call_notifier(wiphy, lr);
1672 }
1673
1674 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1675 {
1676 struct cfg80211_registered_device *rdev;
1677 struct wiphy *wiphy;
1678
1679 ASSERT_RTNL();
1680
1681 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1682 wiphy = &rdev->wiphy;
1683 wiphy_update_regulatory(wiphy, initiator);
1684 }
1685
1686 reg_check_channels();
1687 }
1688
1689 static void handle_channel_custom(struct wiphy *wiphy,
1690 struct ieee80211_channel *chan,
1691 const struct ieee80211_regdomain *regd)
1692 {
1693 u32 bw_flags = 0;
1694 const struct ieee80211_reg_rule *reg_rule = NULL;
1695 const struct ieee80211_power_rule *power_rule = NULL;
1696 const struct ieee80211_freq_range *freq_range = NULL;
1697 u32 max_bandwidth_khz;
1698
1699 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1700 regd);
1701
1702 if (IS_ERR(reg_rule)) {
1703 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1704 chan->center_freq);
1705 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1706 chan->flags |= IEEE80211_CHAN_DISABLED;
1707 } else {
1708 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1709 chan->flags = chan->orig_flags;
1710 }
1711 return;
1712 }
1713
1714 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1715
1716 power_rule = &reg_rule->power_rule;
1717 freq_range = &reg_rule->freq_range;
1718
1719 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1720 /* Check if auto calculation requested */
1721 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1722 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1723
1724 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1725 bw_flags = IEEE80211_CHAN_NO_HT40;
1726 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1727 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1728 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1729 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1730
1731 chan->dfs_state_entered = jiffies;
1732 chan->dfs_state = NL80211_DFS_USABLE;
1733
1734 chan->beacon_found = false;
1735
1736 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1737 chan->flags = chan->orig_flags | bw_flags |
1738 map_regdom_flags(reg_rule->flags);
1739 else
1740 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1741
1742 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1743 chan->max_reg_power = chan->max_power =
1744 (int) MBM_TO_DBM(power_rule->max_eirp);
1745
1746 if (chan->flags & IEEE80211_CHAN_RADAR) {
1747 if (reg_rule->dfs_cac_ms)
1748 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1749 else
1750 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1751 }
1752
1753 chan->max_power = chan->max_reg_power;
1754 }
1755
1756 static void handle_band_custom(struct wiphy *wiphy,
1757 struct ieee80211_supported_band *sband,
1758 const struct ieee80211_regdomain *regd)
1759 {
1760 unsigned int i;
1761
1762 if (!sband)
1763 return;
1764
1765 for (i = 0; i < sband->n_channels; i++)
1766 handle_channel_custom(wiphy, &sband->channels[i], regd);
1767 }
1768
1769 /* Used by drivers prior to wiphy registration */
1770 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1771 const struct ieee80211_regdomain *regd)
1772 {
1773 enum ieee80211_band band;
1774 unsigned int bands_set = 0;
1775
1776 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1777 "wiphy should have REGULATORY_CUSTOM_REG\n");
1778 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1779
1780 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1781 if (!wiphy->bands[band])
1782 continue;
1783 handle_band_custom(wiphy, wiphy->bands[band], regd);
1784 bands_set++;
1785 }
1786
1787 /*
1788 * no point in calling this if it won't have any effect
1789 * on your device's supported bands.
1790 */
1791 WARN_ON(!bands_set);
1792 }
1793 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1794
1795 static void reg_set_request_processed(void)
1796 {
1797 bool need_more_processing = false;
1798 struct regulatory_request *lr = get_last_request();
1799
1800 lr->processed = true;
1801
1802 spin_lock(&reg_requests_lock);
1803 if (!list_empty(&reg_requests_list))
1804 need_more_processing = true;
1805 spin_unlock(&reg_requests_lock);
1806
1807 cancel_delayed_work(&reg_timeout);
1808
1809 if (need_more_processing)
1810 schedule_work(&reg_work);
1811 }
1812
1813 /**
1814 * reg_process_hint_core - process core regulatory requests
1815 * @pending_request: a pending core regulatory request
1816 *
1817 * The wireless subsystem can use this function to process
1818 * a regulatory request issued by the regulatory core.
1819 *
1820 * Returns one of the different reg request treatment values.
1821 */
1822 static enum reg_request_treatment
1823 reg_process_hint_core(struct regulatory_request *core_request)
1824 {
1825
1826 core_request->intersect = false;
1827 core_request->processed = false;
1828
1829 reg_update_last_request(core_request);
1830
1831 return reg_call_crda(core_request);
1832 }
1833
1834 static enum reg_request_treatment
1835 __reg_process_hint_user(struct regulatory_request *user_request)
1836 {
1837 struct regulatory_request *lr = get_last_request();
1838
1839 if (reg_request_cell_base(user_request))
1840 return reg_ignore_cell_hint(user_request);
1841
1842 if (reg_request_cell_base(lr))
1843 return REG_REQ_IGNORE;
1844
1845 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1846 return REG_REQ_INTERSECT;
1847 /*
1848 * If the user knows better the user should set the regdom
1849 * to their country before the IE is picked up
1850 */
1851 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1852 lr->intersect)
1853 return REG_REQ_IGNORE;
1854 /*
1855 * Process user requests only after previous user/driver/core
1856 * requests have been processed
1857 */
1858 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1859 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1860 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1861 regdom_changes(lr->alpha2))
1862 return REG_REQ_IGNORE;
1863
1864 if (!regdom_changes(user_request->alpha2))
1865 return REG_REQ_ALREADY_SET;
1866
1867 return REG_REQ_OK;
1868 }
1869
1870 /**
1871 * reg_process_hint_user - process user regulatory requests
1872 * @user_request: a pending user regulatory request
1873 *
1874 * The wireless subsystem can use this function to process
1875 * a regulatory request initiated by userspace.
1876 *
1877 * Returns one of the different reg request treatment values.
1878 */
1879 static enum reg_request_treatment
1880 reg_process_hint_user(struct regulatory_request *user_request)
1881 {
1882 enum reg_request_treatment treatment;
1883
1884 treatment = __reg_process_hint_user(user_request);
1885 if (treatment == REG_REQ_IGNORE ||
1886 treatment == REG_REQ_ALREADY_SET) {
1887 reg_free_request(user_request);
1888 return treatment;
1889 }
1890
1891 user_request->intersect = treatment == REG_REQ_INTERSECT;
1892 user_request->processed = false;
1893
1894 reg_update_last_request(user_request);
1895
1896 user_alpha2[0] = user_request->alpha2[0];
1897 user_alpha2[1] = user_request->alpha2[1];
1898
1899 return reg_call_crda(user_request);
1900 }
1901
1902 static enum reg_request_treatment
1903 __reg_process_hint_driver(struct regulatory_request *driver_request)
1904 {
1905 struct regulatory_request *lr = get_last_request();
1906
1907 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1908 if (regdom_changes(driver_request->alpha2))
1909 return REG_REQ_OK;
1910 return REG_REQ_ALREADY_SET;
1911 }
1912
1913 /*
1914 * This would happen if you unplug and plug your card
1915 * back in or if you add a new device for which the previously
1916 * loaded card also agrees on the regulatory domain.
1917 */
1918 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1919 !regdom_changes(driver_request->alpha2))
1920 return REG_REQ_ALREADY_SET;
1921
1922 return REG_REQ_INTERSECT;
1923 }
1924
1925 /**
1926 * reg_process_hint_driver - process driver regulatory requests
1927 * @driver_request: a pending driver regulatory request
1928 *
1929 * The wireless subsystem can use this function to process
1930 * a regulatory request issued by an 802.11 driver.
1931 *
1932 * Returns one of the different reg request treatment values.
1933 */
1934 static enum reg_request_treatment
1935 reg_process_hint_driver(struct wiphy *wiphy,
1936 struct regulatory_request *driver_request)
1937 {
1938 const struct ieee80211_regdomain *regd, *tmp;
1939 enum reg_request_treatment treatment;
1940
1941 treatment = __reg_process_hint_driver(driver_request);
1942
1943 switch (treatment) {
1944 case REG_REQ_OK:
1945 break;
1946 case REG_REQ_IGNORE:
1947 reg_free_request(driver_request);
1948 return treatment;
1949 case REG_REQ_INTERSECT:
1950 /* fall through */
1951 case REG_REQ_ALREADY_SET:
1952 regd = reg_copy_regd(get_cfg80211_regdom());
1953 if (IS_ERR(regd)) {
1954 reg_free_request(driver_request);
1955 return REG_REQ_IGNORE;
1956 }
1957
1958 tmp = get_wiphy_regdom(wiphy);
1959 rcu_assign_pointer(wiphy->regd, regd);
1960 rcu_free_regdom(tmp);
1961 }
1962
1963
1964 driver_request->intersect = treatment == REG_REQ_INTERSECT;
1965 driver_request->processed = false;
1966
1967 reg_update_last_request(driver_request);
1968
1969 /*
1970 * Since CRDA will not be called in this case as we already
1971 * have applied the requested regulatory domain before we just
1972 * inform userspace we have processed the request
1973 */
1974 if (treatment == REG_REQ_ALREADY_SET) {
1975 nl80211_send_reg_change_event(driver_request);
1976 reg_set_request_processed();
1977 return treatment;
1978 }
1979
1980 return reg_call_crda(driver_request);
1981 }
1982
1983 static enum reg_request_treatment
1984 __reg_process_hint_country_ie(struct wiphy *wiphy,
1985 struct regulatory_request *country_ie_request)
1986 {
1987 struct wiphy *last_wiphy = NULL;
1988 struct regulatory_request *lr = get_last_request();
1989
1990 if (reg_request_cell_base(lr)) {
1991 /* Trust a Cell base station over the AP's country IE */
1992 if (regdom_changes(country_ie_request->alpha2))
1993 return REG_REQ_IGNORE;
1994 return REG_REQ_ALREADY_SET;
1995 } else {
1996 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1997 return REG_REQ_IGNORE;
1998 }
1999
2000 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2001 return -EINVAL;
2002
2003 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2004 return REG_REQ_OK;
2005
2006 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2007
2008 if (last_wiphy != wiphy) {
2009 /*
2010 * Two cards with two APs claiming different
2011 * Country IE alpha2s. We could
2012 * intersect them, but that seems unlikely
2013 * to be correct. Reject second one for now.
2014 */
2015 if (regdom_changes(country_ie_request->alpha2))
2016 return REG_REQ_IGNORE;
2017 return REG_REQ_ALREADY_SET;
2018 }
2019
2020 if (regdom_changes(country_ie_request->alpha2))
2021 return REG_REQ_OK;
2022 return REG_REQ_ALREADY_SET;
2023 }
2024
2025 /**
2026 * reg_process_hint_country_ie - process regulatory requests from country IEs
2027 * @country_ie_request: a regulatory request from a country IE
2028 *
2029 * The wireless subsystem can use this function to process
2030 * a regulatory request issued by a country Information Element.
2031 *
2032 * Returns one of the different reg request treatment values.
2033 */
2034 static enum reg_request_treatment
2035 reg_process_hint_country_ie(struct wiphy *wiphy,
2036 struct regulatory_request *country_ie_request)
2037 {
2038 enum reg_request_treatment treatment;
2039
2040 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2041
2042 switch (treatment) {
2043 case REG_REQ_OK:
2044 break;
2045 case REG_REQ_IGNORE:
2046 /* fall through */
2047 case REG_REQ_ALREADY_SET:
2048 reg_free_request(country_ie_request);
2049 return treatment;
2050 case REG_REQ_INTERSECT:
2051 reg_free_request(country_ie_request);
2052 /*
2053 * This doesn't happen yet, not sure we
2054 * ever want to support it for this case.
2055 */
2056 WARN_ONCE(1, "Unexpected intersection for country IEs");
2057 return REG_REQ_IGNORE;
2058 }
2059
2060 country_ie_request->intersect = false;
2061 country_ie_request->processed = false;
2062
2063 reg_update_last_request(country_ie_request);
2064
2065 return reg_call_crda(country_ie_request);
2066 }
2067
2068 /* This processes *all* regulatory hints */
2069 static void reg_process_hint(struct regulatory_request *reg_request)
2070 {
2071 struct wiphy *wiphy = NULL;
2072 enum reg_request_treatment treatment;
2073
2074 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2075 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2076
2077 switch (reg_request->initiator) {
2078 case NL80211_REGDOM_SET_BY_CORE:
2079 reg_process_hint_core(reg_request);
2080 return;
2081 case NL80211_REGDOM_SET_BY_USER:
2082 treatment = reg_process_hint_user(reg_request);
2083 if (treatment == REG_REQ_IGNORE ||
2084 treatment == REG_REQ_ALREADY_SET)
2085 return;
2086 return;
2087 case NL80211_REGDOM_SET_BY_DRIVER:
2088 if (!wiphy)
2089 goto out_free;
2090 treatment = reg_process_hint_driver(wiphy, reg_request);
2091 break;
2092 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2093 if (!wiphy)
2094 goto out_free;
2095 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2096 break;
2097 default:
2098 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2099 goto out_free;
2100 }
2101
2102 /* This is required so that the orig_* parameters are saved */
2103 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2104 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2105 wiphy_update_regulatory(wiphy, reg_request->initiator);
2106 reg_check_channels();
2107 }
2108
2109 return;
2110
2111 out_free:
2112 reg_free_request(reg_request);
2113 }
2114
2115 static bool reg_only_self_managed_wiphys(void)
2116 {
2117 struct cfg80211_registered_device *rdev;
2118 struct wiphy *wiphy;
2119 bool self_managed_found = false;
2120
2121 ASSERT_RTNL();
2122
2123 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2124 wiphy = &rdev->wiphy;
2125 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2126 self_managed_found = true;
2127 else
2128 return false;
2129 }
2130
2131 /* make sure at least one self-managed wiphy exists */
2132 return self_managed_found;
2133 }
2134
2135 /*
2136 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2137 * Regulatory hints come on a first come first serve basis and we
2138 * must process each one atomically.
2139 */
2140 static void reg_process_pending_hints(void)
2141 {
2142 struct regulatory_request *reg_request, *lr;
2143
2144 lr = get_last_request();
2145
2146 /* When last_request->processed becomes true this will be rescheduled */
2147 if (lr && !lr->processed) {
2148 reg_process_hint(lr);
2149 return;
2150 }
2151
2152 spin_lock(&reg_requests_lock);
2153
2154 if (list_empty(&reg_requests_list)) {
2155 spin_unlock(&reg_requests_lock);
2156 return;
2157 }
2158
2159 reg_request = list_first_entry(&reg_requests_list,
2160 struct regulatory_request,
2161 list);
2162 list_del_init(&reg_request->list);
2163
2164 spin_unlock(&reg_requests_lock);
2165
2166 if (reg_only_self_managed_wiphys()) {
2167 reg_free_request(reg_request);
2168 return;
2169 }
2170
2171 reg_process_hint(reg_request);
2172
2173 lr = get_last_request();
2174
2175 spin_lock(&reg_requests_lock);
2176 if (!list_empty(&reg_requests_list) && lr && lr->processed)
2177 schedule_work(&reg_work);
2178 spin_unlock(&reg_requests_lock);
2179 }
2180
2181 /* Processes beacon hints -- this has nothing to do with country IEs */
2182 static void reg_process_pending_beacon_hints(void)
2183 {
2184 struct cfg80211_registered_device *rdev;
2185 struct reg_beacon *pending_beacon, *tmp;
2186
2187 /* This goes through the _pending_ beacon list */
2188 spin_lock_bh(&reg_pending_beacons_lock);
2189
2190 list_for_each_entry_safe(pending_beacon, tmp,
2191 &reg_pending_beacons, list) {
2192 list_del_init(&pending_beacon->list);
2193
2194 /* Applies the beacon hint to current wiphys */
2195 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2196 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2197
2198 /* Remembers the beacon hint for new wiphys or reg changes */
2199 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2200 }
2201
2202 spin_unlock_bh(&reg_pending_beacons_lock);
2203 }
2204
2205 static void reg_process_self_managed_hints(void)
2206 {
2207 struct cfg80211_registered_device *rdev;
2208 struct wiphy *wiphy;
2209 const struct ieee80211_regdomain *tmp;
2210 const struct ieee80211_regdomain *regd;
2211 enum ieee80211_band band;
2212 struct regulatory_request request = {};
2213
2214 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2215 wiphy = &rdev->wiphy;
2216
2217 spin_lock(&reg_requests_lock);
2218 regd = rdev->requested_regd;
2219 rdev->requested_regd = NULL;
2220 spin_unlock(&reg_requests_lock);
2221
2222 if (regd == NULL)
2223 continue;
2224
2225 tmp = get_wiphy_regdom(wiphy);
2226 rcu_assign_pointer(wiphy->regd, regd);
2227 rcu_free_regdom(tmp);
2228
2229 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
2230 handle_band_custom(wiphy, wiphy->bands[band], regd);
2231
2232 reg_process_ht_flags(wiphy);
2233
2234 request.wiphy_idx = get_wiphy_idx(wiphy);
2235 request.alpha2[0] = regd->alpha2[0];
2236 request.alpha2[1] = regd->alpha2[1];
2237 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2238
2239 nl80211_send_wiphy_reg_change_event(&request);
2240 }
2241
2242 reg_check_channels();
2243 }
2244
2245 static void reg_todo(struct work_struct *work)
2246 {
2247 rtnl_lock();
2248 reg_process_pending_hints();
2249 reg_process_pending_beacon_hints();
2250 reg_process_self_managed_hints();
2251 rtnl_unlock();
2252 }
2253
2254 static void queue_regulatory_request(struct regulatory_request *request)
2255 {
2256 request->alpha2[0] = toupper(request->alpha2[0]);
2257 request->alpha2[1] = toupper(request->alpha2[1]);
2258
2259 spin_lock(&reg_requests_lock);
2260 list_add_tail(&request->list, &reg_requests_list);
2261 spin_unlock(&reg_requests_lock);
2262
2263 schedule_work(&reg_work);
2264 }
2265
2266 /*
2267 * Core regulatory hint -- happens during cfg80211_init()
2268 * and when we restore regulatory settings.
2269 */
2270 static int regulatory_hint_core(const char *alpha2)
2271 {
2272 struct regulatory_request *request;
2273
2274 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2275 if (!request)
2276 return -ENOMEM;
2277
2278 request->alpha2[0] = alpha2[0];
2279 request->alpha2[1] = alpha2[1];
2280 request->initiator = NL80211_REGDOM_SET_BY_CORE;
2281
2282 queue_regulatory_request(request);
2283
2284 return 0;
2285 }
2286
2287 /* User hints */
2288 int regulatory_hint_user(const char *alpha2,
2289 enum nl80211_user_reg_hint_type user_reg_hint_type)
2290 {
2291 struct regulatory_request *request;
2292
2293 if (WARN_ON(!alpha2))
2294 return -EINVAL;
2295
2296 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2297 if (!request)
2298 return -ENOMEM;
2299
2300 request->wiphy_idx = WIPHY_IDX_INVALID;
2301 request->alpha2[0] = alpha2[0];
2302 request->alpha2[1] = alpha2[1];
2303 request->initiator = NL80211_REGDOM_SET_BY_USER;
2304 request->user_reg_hint_type = user_reg_hint_type;
2305
2306 /* Allow calling CRDA again */
2307 reg_crda_timeouts = 0;
2308
2309 queue_regulatory_request(request);
2310
2311 return 0;
2312 }
2313
2314 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2315 {
2316 spin_lock(&reg_indoor_lock);
2317
2318 /* It is possible that more than one user space process is trying to
2319 * configure the indoor setting. To handle such cases, clear the indoor
2320 * setting in case that some process does not think that the device
2321 * is operating in an indoor environment. In addition, if a user space
2322 * process indicates that it is controlling the indoor setting, save its
2323 * portid, i.e., make it the owner.
2324 */
2325 reg_is_indoor = is_indoor;
2326 if (reg_is_indoor) {
2327 if (!reg_is_indoor_portid)
2328 reg_is_indoor_portid = portid;
2329 } else {
2330 reg_is_indoor_portid = 0;
2331 }
2332
2333 spin_unlock(&reg_indoor_lock);
2334
2335 if (!is_indoor)
2336 reg_check_channels();
2337
2338 return 0;
2339 }
2340
2341 void regulatory_netlink_notify(u32 portid)
2342 {
2343 spin_lock(&reg_indoor_lock);
2344
2345 if (reg_is_indoor_portid != portid) {
2346 spin_unlock(&reg_indoor_lock);
2347 return;
2348 }
2349
2350 reg_is_indoor = false;
2351 reg_is_indoor_portid = 0;
2352
2353 spin_unlock(&reg_indoor_lock);
2354
2355 reg_check_channels();
2356 }
2357
2358 /* Driver hints */
2359 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2360 {
2361 struct regulatory_request *request;
2362
2363 if (WARN_ON(!alpha2 || !wiphy))
2364 return -EINVAL;
2365
2366 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2367
2368 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2369 if (!request)
2370 return -ENOMEM;
2371
2372 request->wiphy_idx = get_wiphy_idx(wiphy);
2373
2374 request->alpha2[0] = alpha2[0];
2375 request->alpha2[1] = alpha2[1];
2376 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2377
2378 /* Allow calling CRDA again */
2379 reg_crda_timeouts = 0;
2380
2381 queue_regulatory_request(request);
2382
2383 return 0;
2384 }
2385 EXPORT_SYMBOL(regulatory_hint);
2386
2387 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2388 const u8 *country_ie, u8 country_ie_len)
2389 {
2390 char alpha2[2];
2391 enum environment_cap env = ENVIRON_ANY;
2392 struct regulatory_request *request = NULL, *lr;
2393
2394 /* IE len must be evenly divisible by 2 */
2395 if (country_ie_len & 0x01)
2396 return;
2397
2398 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2399 return;
2400
2401 request = kzalloc(sizeof(*request), GFP_KERNEL);
2402 if (!request)
2403 return;
2404
2405 alpha2[0] = country_ie[0];
2406 alpha2[1] = country_ie[1];
2407
2408 if (country_ie[2] == 'I')
2409 env = ENVIRON_INDOOR;
2410 else if (country_ie[2] == 'O')
2411 env = ENVIRON_OUTDOOR;
2412
2413 rcu_read_lock();
2414 lr = get_last_request();
2415
2416 if (unlikely(!lr))
2417 goto out;
2418
2419 /*
2420 * We will run this only upon a successful connection on cfg80211.
2421 * We leave conflict resolution to the workqueue, where can hold
2422 * the RTNL.
2423 */
2424 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2425 lr->wiphy_idx != WIPHY_IDX_INVALID)
2426 goto out;
2427
2428 request->wiphy_idx = get_wiphy_idx(wiphy);
2429 request->alpha2[0] = alpha2[0];
2430 request->alpha2[1] = alpha2[1];
2431 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2432 request->country_ie_env = env;
2433
2434 /* Allow calling CRDA again */
2435 reg_crda_timeouts = 0;
2436
2437 queue_regulatory_request(request);
2438 request = NULL;
2439 out:
2440 kfree(request);
2441 rcu_read_unlock();
2442 }
2443
2444 static void restore_alpha2(char *alpha2, bool reset_user)
2445 {
2446 /* indicates there is no alpha2 to consider for restoration */
2447 alpha2[0] = '9';
2448 alpha2[1] = '7';
2449
2450 /* The user setting has precedence over the module parameter */
2451 if (is_user_regdom_saved()) {
2452 /* Unless we're asked to ignore it and reset it */
2453 if (reset_user) {
2454 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2455 user_alpha2[0] = '9';
2456 user_alpha2[1] = '7';
2457
2458 /*
2459 * If we're ignoring user settings, we still need to
2460 * check the module parameter to ensure we put things
2461 * back as they were for a full restore.
2462 */
2463 if (!is_world_regdom(ieee80211_regdom)) {
2464 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2465 ieee80211_regdom[0], ieee80211_regdom[1]);
2466 alpha2[0] = ieee80211_regdom[0];
2467 alpha2[1] = ieee80211_regdom[1];
2468 }
2469 } else {
2470 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2471 user_alpha2[0], user_alpha2[1]);
2472 alpha2[0] = user_alpha2[0];
2473 alpha2[1] = user_alpha2[1];
2474 }
2475 } else if (!is_world_regdom(ieee80211_regdom)) {
2476 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2477 ieee80211_regdom[0], ieee80211_regdom[1]);
2478 alpha2[0] = ieee80211_regdom[0];
2479 alpha2[1] = ieee80211_regdom[1];
2480 } else
2481 REG_DBG_PRINT("Restoring regulatory settings\n");
2482 }
2483
2484 static void restore_custom_reg_settings(struct wiphy *wiphy)
2485 {
2486 struct ieee80211_supported_band *sband;
2487 enum ieee80211_band band;
2488 struct ieee80211_channel *chan;
2489 int i;
2490
2491 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2492 sband = wiphy->bands[band];
2493 if (!sband)
2494 continue;
2495 for (i = 0; i < sband->n_channels; i++) {
2496 chan = &sband->channels[i];
2497 chan->flags = chan->orig_flags;
2498 chan->max_antenna_gain = chan->orig_mag;
2499 chan->max_power = chan->orig_mpwr;
2500 chan->beacon_found = false;
2501 }
2502 }
2503 }
2504
2505 /*
2506 * Restoring regulatory settings involves ingoring any
2507 * possibly stale country IE information and user regulatory
2508 * settings if so desired, this includes any beacon hints
2509 * learned as we could have traveled outside to another country
2510 * after disconnection. To restore regulatory settings we do
2511 * exactly what we did at bootup:
2512 *
2513 * - send a core regulatory hint
2514 * - send a user regulatory hint if applicable
2515 *
2516 * Device drivers that send a regulatory hint for a specific country
2517 * keep their own regulatory domain on wiphy->regd so that does does
2518 * not need to be remembered.
2519 */
2520 static void restore_regulatory_settings(bool reset_user)
2521 {
2522 char alpha2[2];
2523 char world_alpha2[2];
2524 struct reg_beacon *reg_beacon, *btmp;
2525 LIST_HEAD(tmp_reg_req_list);
2526 struct cfg80211_registered_device *rdev;
2527
2528 ASSERT_RTNL();
2529
2530 /*
2531 * Clear the indoor setting in case that it is not controlled by user
2532 * space, as otherwise there is no guarantee that the device is still
2533 * operating in an indoor environment.
2534 */
2535 spin_lock(&reg_indoor_lock);
2536 if (reg_is_indoor && !reg_is_indoor_portid) {
2537 reg_is_indoor = false;
2538 reg_check_channels();
2539 }
2540 spin_unlock(&reg_indoor_lock);
2541
2542 reset_regdomains(true, &world_regdom);
2543 restore_alpha2(alpha2, reset_user);
2544
2545 /*
2546 * If there's any pending requests we simply
2547 * stash them to a temporary pending queue and
2548 * add then after we've restored regulatory
2549 * settings.
2550 */
2551 spin_lock(&reg_requests_lock);
2552 list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
2553 spin_unlock(&reg_requests_lock);
2554
2555 /* Clear beacon hints */
2556 spin_lock_bh(&reg_pending_beacons_lock);
2557 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2558 list_del(&reg_beacon->list);
2559 kfree(reg_beacon);
2560 }
2561 spin_unlock_bh(&reg_pending_beacons_lock);
2562
2563 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2564 list_del(&reg_beacon->list);
2565 kfree(reg_beacon);
2566 }
2567
2568 /* First restore to the basic regulatory settings */
2569 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2570 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2571
2572 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2573 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2574 continue;
2575 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2576 restore_custom_reg_settings(&rdev->wiphy);
2577 }
2578
2579 regulatory_hint_core(world_alpha2);
2580
2581 /*
2582 * This restores the ieee80211_regdom module parameter
2583 * preference or the last user requested regulatory
2584 * settings, user regulatory settings takes precedence.
2585 */
2586 if (is_an_alpha2(alpha2))
2587 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2588
2589 spin_lock(&reg_requests_lock);
2590 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2591 spin_unlock(&reg_requests_lock);
2592
2593 REG_DBG_PRINT("Kicking the queue\n");
2594
2595 schedule_work(&reg_work);
2596 }
2597
2598 void regulatory_hint_disconnect(void)
2599 {
2600 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2601 restore_regulatory_settings(false);
2602 }
2603
2604 static bool freq_is_chan_12_13_14(u16 freq)
2605 {
2606 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2607 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2608 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2609 return true;
2610 return false;
2611 }
2612
2613 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2614 {
2615 struct reg_beacon *pending_beacon;
2616
2617 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2618 if (beacon_chan->center_freq ==
2619 pending_beacon->chan.center_freq)
2620 return true;
2621 return false;
2622 }
2623
2624 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2625 struct ieee80211_channel *beacon_chan,
2626 gfp_t gfp)
2627 {
2628 struct reg_beacon *reg_beacon;
2629 bool processing;
2630
2631 if (beacon_chan->beacon_found ||
2632 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2633 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2634 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2635 return 0;
2636
2637 spin_lock_bh(&reg_pending_beacons_lock);
2638 processing = pending_reg_beacon(beacon_chan);
2639 spin_unlock_bh(&reg_pending_beacons_lock);
2640
2641 if (processing)
2642 return 0;
2643
2644 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2645 if (!reg_beacon)
2646 return -ENOMEM;
2647
2648 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2649 beacon_chan->center_freq,
2650 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2651 wiphy_name(wiphy));
2652
2653 memcpy(&reg_beacon->chan, beacon_chan,
2654 sizeof(struct ieee80211_channel));
2655
2656 /*
2657 * Since we can be called from BH or and non-BH context
2658 * we must use spin_lock_bh()
2659 */
2660 spin_lock_bh(&reg_pending_beacons_lock);
2661 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2662 spin_unlock_bh(&reg_pending_beacons_lock);
2663
2664 schedule_work(&reg_work);
2665
2666 return 0;
2667 }
2668
2669 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2670 {
2671 unsigned int i;
2672 const struct ieee80211_reg_rule *reg_rule = NULL;
2673 const struct ieee80211_freq_range *freq_range = NULL;
2674 const struct ieee80211_power_rule *power_rule = NULL;
2675 char bw[32], cac_time[32];
2676
2677 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2678
2679 for (i = 0; i < rd->n_reg_rules; i++) {
2680 reg_rule = &rd->reg_rules[i];
2681 freq_range = &reg_rule->freq_range;
2682 power_rule = &reg_rule->power_rule;
2683
2684 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2685 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2686 freq_range->max_bandwidth_khz,
2687 reg_get_max_bandwidth(rd, reg_rule));
2688 else
2689 snprintf(bw, sizeof(bw), "%d KHz",
2690 freq_range->max_bandwidth_khz);
2691
2692 if (reg_rule->flags & NL80211_RRF_DFS)
2693 scnprintf(cac_time, sizeof(cac_time), "%u s",
2694 reg_rule->dfs_cac_ms/1000);
2695 else
2696 scnprintf(cac_time, sizeof(cac_time), "N/A");
2697
2698
2699 /*
2700 * There may not be documentation for max antenna gain
2701 * in certain regions
2702 */
2703 if (power_rule->max_antenna_gain)
2704 pr_info(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2705 freq_range->start_freq_khz,
2706 freq_range->end_freq_khz,
2707 bw,
2708 power_rule->max_antenna_gain,
2709 power_rule->max_eirp,
2710 cac_time);
2711 else
2712 pr_info(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2713 freq_range->start_freq_khz,
2714 freq_range->end_freq_khz,
2715 bw,
2716 power_rule->max_eirp,
2717 cac_time);
2718 }
2719 }
2720
2721 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2722 {
2723 switch (dfs_region) {
2724 case NL80211_DFS_UNSET:
2725 case NL80211_DFS_FCC:
2726 case NL80211_DFS_ETSI:
2727 case NL80211_DFS_JP:
2728 return true;
2729 default:
2730 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2731 dfs_region);
2732 return false;
2733 }
2734 }
2735
2736 static void print_regdomain(const struct ieee80211_regdomain *rd)
2737 {
2738 struct regulatory_request *lr = get_last_request();
2739
2740 if (is_intersected_alpha2(rd->alpha2)) {
2741 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2742 struct cfg80211_registered_device *rdev;
2743 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2744 if (rdev) {
2745 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2746 rdev->country_ie_alpha2[0],
2747 rdev->country_ie_alpha2[1]);
2748 } else
2749 pr_info("Current regulatory domain intersected:\n");
2750 } else
2751 pr_info("Current regulatory domain intersected:\n");
2752 } else if (is_world_regdom(rd->alpha2)) {
2753 pr_info("World regulatory domain updated:\n");
2754 } else {
2755 if (is_unknown_alpha2(rd->alpha2))
2756 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2757 else {
2758 if (reg_request_cell_base(lr))
2759 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2760 rd->alpha2[0], rd->alpha2[1]);
2761 else
2762 pr_info("Regulatory domain changed to country: %c%c\n",
2763 rd->alpha2[0], rd->alpha2[1]);
2764 }
2765 }
2766
2767 pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2768 print_rd_rules(rd);
2769 }
2770
2771 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2772 {
2773 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2774 print_rd_rules(rd);
2775 }
2776
2777 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2778 {
2779 if (!is_world_regdom(rd->alpha2))
2780 return -EINVAL;
2781 update_world_regdomain(rd);
2782 return 0;
2783 }
2784
2785 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2786 struct regulatory_request *user_request)
2787 {
2788 const struct ieee80211_regdomain *intersected_rd = NULL;
2789
2790 if (!regdom_changes(rd->alpha2))
2791 return -EALREADY;
2792
2793 if (!is_valid_rd(rd)) {
2794 pr_err("Invalid regulatory domain detected:\n");
2795 print_regdomain_info(rd);
2796 return -EINVAL;
2797 }
2798
2799 if (!user_request->intersect) {
2800 reset_regdomains(false, rd);
2801 return 0;
2802 }
2803
2804 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2805 if (!intersected_rd)
2806 return -EINVAL;
2807
2808 kfree(rd);
2809 rd = NULL;
2810 reset_regdomains(false, intersected_rd);
2811
2812 return 0;
2813 }
2814
2815 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2816 struct regulatory_request *driver_request)
2817 {
2818 const struct ieee80211_regdomain *regd;
2819 const struct ieee80211_regdomain *intersected_rd = NULL;
2820 const struct ieee80211_regdomain *tmp;
2821 struct wiphy *request_wiphy;
2822
2823 if (is_world_regdom(rd->alpha2))
2824 return -EINVAL;
2825
2826 if (!regdom_changes(rd->alpha2))
2827 return -EALREADY;
2828
2829 if (!is_valid_rd(rd)) {
2830 pr_err("Invalid regulatory domain detected:\n");
2831 print_regdomain_info(rd);
2832 return -EINVAL;
2833 }
2834
2835 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2836 if (!request_wiphy) {
2837 queue_delayed_work(system_power_efficient_wq,
2838 &reg_timeout, 0);
2839 return -ENODEV;
2840 }
2841
2842 if (!driver_request->intersect) {
2843 if (request_wiphy->regd)
2844 return -EALREADY;
2845
2846 regd = reg_copy_regd(rd);
2847 if (IS_ERR(regd))
2848 return PTR_ERR(regd);
2849
2850 rcu_assign_pointer(request_wiphy->regd, regd);
2851 reset_regdomains(false, rd);
2852 return 0;
2853 }
2854
2855 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2856 if (!intersected_rd)
2857 return -EINVAL;
2858
2859 /*
2860 * We can trash what CRDA provided now.
2861 * However if a driver requested this specific regulatory
2862 * domain we keep it for its private use
2863 */
2864 tmp = get_wiphy_regdom(request_wiphy);
2865 rcu_assign_pointer(request_wiphy->regd, rd);
2866 rcu_free_regdom(tmp);
2867
2868 rd = NULL;
2869
2870 reset_regdomains(false, intersected_rd);
2871
2872 return 0;
2873 }
2874
2875 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2876 struct regulatory_request *country_ie_request)
2877 {
2878 struct wiphy *request_wiphy;
2879
2880 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2881 !is_unknown_alpha2(rd->alpha2))
2882 return -EINVAL;
2883
2884 /*
2885 * Lets only bother proceeding on the same alpha2 if the current
2886 * rd is non static (it means CRDA was present and was used last)
2887 * and the pending request came in from a country IE
2888 */
2889
2890 if (!is_valid_rd(rd)) {
2891 pr_err("Invalid regulatory domain detected:\n");
2892 print_regdomain_info(rd);
2893 return -EINVAL;
2894 }
2895
2896 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2897 if (!request_wiphy) {
2898 queue_delayed_work(system_power_efficient_wq,
2899 &reg_timeout, 0);
2900 return -ENODEV;
2901 }
2902
2903 if (country_ie_request->intersect)
2904 return -EINVAL;
2905
2906 reset_regdomains(false, rd);
2907 return 0;
2908 }
2909
2910 /*
2911 * Use this call to set the current regulatory domain. Conflicts with
2912 * multiple drivers can be ironed out later. Caller must've already
2913 * kmalloc'd the rd structure.
2914 */
2915 int set_regdom(const struct ieee80211_regdomain *rd,
2916 enum ieee80211_regd_source regd_src)
2917 {
2918 struct regulatory_request *lr;
2919 bool user_reset = false;
2920 int r;
2921
2922 if (!reg_is_valid_request(rd->alpha2)) {
2923 kfree(rd);
2924 return -EINVAL;
2925 }
2926
2927 if (regd_src == REGD_SOURCE_CRDA)
2928 reg_crda_timeouts = 0;
2929
2930 lr = get_last_request();
2931
2932 /* Note that this doesn't update the wiphys, this is done below */
2933 switch (lr->initiator) {
2934 case NL80211_REGDOM_SET_BY_CORE:
2935 r = reg_set_rd_core(rd);
2936 break;
2937 case NL80211_REGDOM_SET_BY_USER:
2938 r = reg_set_rd_user(rd, lr);
2939 user_reset = true;
2940 break;
2941 case NL80211_REGDOM_SET_BY_DRIVER:
2942 r = reg_set_rd_driver(rd, lr);
2943 break;
2944 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2945 r = reg_set_rd_country_ie(rd, lr);
2946 break;
2947 default:
2948 WARN(1, "invalid initiator %d\n", lr->initiator);
2949 return -EINVAL;
2950 }
2951
2952 if (r) {
2953 switch (r) {
2954 case -EALREADY:
2955 reg_set_request_processed();
2956 break;
2957 default:
2958 /* Back to world regulatory in case of errors */
2959 restore_regulatory_settings(user_reset);
2960 }
2961
2962 kfree(rd);
2963 return r;
2964 }
2965
2966 /* This would make this whole thing pointless */
2967 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2968 return -EINVAL;
2969
2970 /* update all wiphys now with the new established regulatory domain */
2971 update_all_wiphy_regulatory(lr->initiator);
2972
2973 print_regdomain(get_cfg80211_regdom());
2974
2975 nl80211_send_reg_change_event(lr);
2976
2977 reg_set_request_processed();
2978
2979 return 0;
2980 }
2981
2982 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
2983 struct ieee80211_regdomain *rd)
2984 {
2985 const struct ieee80211_regdomain *regd;
2986 const struct ieee80211_regdomain *prev_regd;
2987 struct cfg80211_registered_device *rdev;
2988
2989 if (WARN_ON(!wiphy || !rd))
2990 return -EINVAL;
2991
2992 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
2993 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
2994 return -EPERM;
2995
2996 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
2997 print_regdomain_info(rd);
2998 return -EINVAL;
2999 }
3000
3001 regd = reg_copy_regd(rd);
3002 if (IS_ERR(regd))
3003 return PTR_ERR(regd);
3004
3005 rdev = wiphy_to_rdev(wiphy);
3006
3007 spin_lock(&reg_requests_lock);
3008 prev_regd = rdev->requested_regd;
3009 rdev->requested_regd = regd;
3010 spin_unlock(&reg_requests_lock);
3011
3012 kfree(prev_regd);
3013 return 0;
3014 }
3015
3016 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3017 struct ieee80211_regdomain *rd)
3018 {
3019 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3020
3021 if (ret)
3022 return ret;
3023
3024 schedule_work(&reg_work);
3025 return 0;
3026 }
3027 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3028
3029 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3030 struct ieee80211_regdomain *rd)
3031 {
3032 int ret;
3033
3034 ASSERT_RTNL();
3035
3036 ret = __regulatory_set_wiphy_regd(wiphy, rd);
3037 if (ret)
3038 return ret;
3039
3040 /* process the request immediately */
3041 reg_process_self_managed_hints();
3042 return 0;
3043 }
3044 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3045
3046 void wiphy_regulatory_register(struct wiphy *wiphy)
3047 {
3048 struct regulatory_request *lr;
3049
3050 /* self-managed devices ignore external hints */
3051 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3052 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3053 REGULATORY_COUNTRY_IE_IGNORE;
3054
3055 if (!reg_dev_ignore_cell_hint(wiphy))
3056 reg_num_devs_support_basehint++;
3057
3058 lr = get_last_request();
3059 wiphy_update_regulatory(wiphy, lr->initiator);
3060 }
3061
3062 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3063 {
3064 struct wiphy *request_wiphy = NULL;
3065 struct regulatory_request *lr;
3066
3067 lr = get_last_request();
3068
3069 if (!reg_dev_ignore_cell_hint(wiphy))
3070 reg_num_devs_support_basehint--;
3071
3072 rcu_free_regdom(get_wiphy_regdom(wiphy));
3073 RCU_INIT_POINTER(wiphy->regd, NULL);
3074
3075 if (lr)
3076 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3077
3078 if (!request_wiphy || request_wiphy != wiphy)
3079 return;
3080
3081 lr->wiphy_idx = WIPHY_IDX_INVALID;
3082 lr->country_ie_env = ENVIRON_ANY;
3083 }
3084
3085 static void reg_timeout_work(struct work_struct *work)
3086 {
3087 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
3088 rtnl_lock();
3089 reg_crda_timeouts++;
3090 restore_regulatory_settings(true);
3091 rtnl_unlock();
3092 }
3093
3094 /*
3095 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3096 * UNII band definitions
3097 */
3098 int cfg80211_get_unii(int freq)
3099 {
3100 /* UNII-1 */
3101 if (freq >= 5150 && freq <= 5250)
3102 return 0;
3103
3104 /* UNII-2A */
3105 if (freq > 5250 && freq <= 5350)
3106 return 1;
3107
3108 /* UNII-2B */
3109 if (freq > 5350 && freq <= 5470)
3110 return 2;
3111
3112 /* UNII-2C */
3113 if (freq > 5470 && freq <= 5725)
3114 return 3;
3115
3116 /* UNII-3 */
3117 if (freq > 5725 && freq <= 5825)
3118 return 4;
3119
3120 return -EINVAL;
3121 }
3122
3123 bool regulatory_indoor_allowed(void)
3124 {
3125 return reg_is_indoor;
3126 }
3127
3128 int __init regulatory_init(void)
3129 {
3130 int err = 0;
3131
3132 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3133 if (IS_ERR(reg_pdev))
3134 return PTR_ERR(reg_pdev);
3135
3136 spin_lock_init(&reg_requests_lock);
3137 spin_lock_init(&reg_pending_beacons_lock);
3138 spin_lock_init(&reg_indoor_lock);
3139
3140 reg_regdb_size_check();
3141
3142 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3143
3144 user_alpha2[0] = '9';
3145 user_alpha2[1] = '7';
3146
3147 /* We always try to get an update for the static regdomain */
3148 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3149 if (err) {
3150 if (err == -ENOMEM)
3151 return err;
3152 /*
3153 * N.B. kobject_uevent_env() can fail mainly for when we're out
3154 * memory which is handled and propagated appropriately above
3155 * but it can also fail during a netlink_broadcast() or during
3156 * early boot for call_usermodehelper(). For now treat these
3157 * errors as non-fatal.
3158 */
3159 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3160 }
3161
3162 /*
3163 * Finally, if the user set the module parameter treat it
3164 * as a user hint.
3165 */
3166 if (!is_world_regdom(ieee80211_regdom))
3167 regulatory_hint_user(ieee80211_regdom,
3168 NL80211_USER_REG_HINT_USER);
3169
3170 return 0;
3171 }
3172
3173 void regulatory_exit(void)
3174 {
3175 struct regulatory_request *reg_request, *tmp;
3176 struct reg_beacon *reg_beacon, *btmp;
3177
3178 cancel_work_sync(&reg_work);
3179 cancel_delayed_work_sync(&reg_timeout);
3180 cancel_delayed_work_sync(&reg_check_chans);
3181
3182 /* Lock to suppress warnings */
3183 rtnl_lock();
3184 reset_regdomains(true, NULL);
3185 rtnl_unlock();
3186
3187 dev_set_uevent_suppress(&reg_pdev->dev, true);
3188
3189 platform_device_unregister(reg_pdev);
3190
3191 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3192 list_del(&reg_beacon->list);
3193 kfree(reg_beacon);
3194 }
3195
3196 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3197 list_del(&reg_beacon->list);
3198 kfree(reg_beacon);
3199 }
3200
3201 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3202 list_del(&reg_request->list);
3203 kfree(reg_request);
3204 }
3205 }