]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/wireless/reg.c
cfg80211: processing core regulatory hints on its own
[mirror_ubuntu-bionic-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20
21 /**
22 * DOC: Wireless regulatory infrastructure
23 *
24 * The usual implementation is for a driver to read a device EEPROM to
25 * determine which regulatory domain it should be operating under, then
26 * looking up the allowable channels in a driver-local table and finally
27 * registering those channels in the wiphy structure.
28 *
29 * Another set of compliance enforcement is for drivers to use their
30 * own compliance limits which can be stored on the EEPROM. The host
31 * driver or firmware may ensure these are used.
32 *
33 * In addition to all this we provide an extra layer of regulatory
34 * conformance. For drivers which do not have any regulatory
35 * information CRDA provides the complete regulatory solution.
36 * For others it provides a community effort on further restrictions
37 * to enhance compliance.
38 *
39 * Note: When number of rules --> infinity we will not be able to
40 * index on alpha2 any more, instead we'll probably have to
41 * rely on some SHA1 checksum of the regdomain for example.
42 *
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
56 #include "core.h"
57 #include "reg.h"
58 #include "regdb.h"
59 #include "nl80211.h"
60
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...) \
63 printk(KERN_DEBUG pr_fmt(format), ##args)
64 #else
65 #define REG_DBG_PRINT(args...)
66 #endif
67
68 enum reg_request_treatment {
69 REG_REQ_OK,
70 REG_REQ_IGNORE,
71 REG_REQ_INTERSECT,
72 REG_REQ_ALREADY_SET,
73 };
74
75 static struct regulatory_request core_request_world = {
76 .initiator = NL80211_REGDOM_SET_BY_CORE,
77 .alpha2[0] = '0',
78 .alpha2[1] = '0',
79 .intersect = false,
80 .processed = true,
81 .country_ie_env = ENVIRON_ANY,
82 };
83
84 /*
85 * Receipt of information from last regulatory request,
86 * protected by RTNL (and can be accessed with RCU protection)
87 */
88 static struct regulatory_request __rcu *last_request =
89 (void __rcu *)&core_request_world;
90
91 /* To trigger userspace events */
92 static struct platform_device *reg_pdev;
93
94 static struct device_type reg_device_type = {
95 .uevent = reg_device_uevent,
96 };
97
98 /*
99 * Central wireless core regulatory domains, we only need two,
100 * the current one and a world regulatory domain in case we have no
101 * information to give us an alpha2.
102 * (protected by RTNL, can be read under RCU)
103 */
104 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
105
106 /*
107 * Number of devices that registered to the core
108 * that support cellular base station regulatory hints
109 * (protected by RTNL)
110 */
111 static int reg_num_devs_support_basehint;
112
113 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
114 {
115 return rtnl_dereference(cfg80211_regdomain);
116 }
117
118 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
119 {
120 return rtnl_dereference(wiphy->regd);
121 }
122
123 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
124 {
125 if (!r)
126 return;
127 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
128 }
129
130 static struct regulatory_request *get_last_request(void)
131 {
132 return rcu_dereference_rtnl(last_request);
133 }
134
135 /* Used to queue up regulatory hints */
136 static LIST_HEAD(reg_requests_list);
137 static spinlock_t reg_requests_lock;
138
139 /* Used to queue up beacon hints for review */
140 static LIST_HEAD(reg_pending_beacons);
141 static spinlock_t reg_pending_beacons_lock;
142
143 /* Used to keep track of processed beacon hints */
144 static LIST_HEAD(reg_beacon_list);
145
146 struct reg_beacon {
147 struct list_head list;
148 struct ieee80211_channel chan;
149 };
150
151 static void reg_todo(struct work_struct *work);
152 static DECLARE_WORK(reg_work, reg_todo);
153
154 static void reg_timeout_work(struct work_struct *work);
155 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
156
157 /* We keep a static world regulatory domain in case of the absence of CRDA */
158 static const struct ieee80211_regdomain world_regdom = {
159 .n_reg_rules = 6,
160 .alpha2 = "00",
161 .reg_rules = {
162 /* IEEE 802.11b/g, channels 1..11 */
163 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
164 /* IEEE 802.11b/g, channels 12..13. */
165 REG_RULE(2467-10, 2472+10, 40, 6, 20,
166 NL80211_RRF_NO_IR),
167 /* IEEE 802.11 channel 14 - Only JP enables
168 * this and for 802.11b only */
169 REG_RULE(2484-10, 2484+10, 20, 6, 20,
170 NL80211_RRF_NO_IR |
171 NL80211_RRF_NO_OFDM),
172 /* IEEE 802.11a, channel 36..48 */
173 REG_RULE(5180-10, 5240+10, 160, 6, 20,
174 NL80211_RRF_NO_IR),
175
176 /* IEEE 802.11a, channel 52..64 - DFS required */
177 REG_RULE(5260-10, 5320+10, 160, 6, 20,
178 NL80211_RRF_NO_IR |
179 NL80211_RRF_DFS),
180
181 /* IEEE 802.11a, channel 100..144 - DFS required */
182 REG_RULE(5500-10, 5720+10, 160, 6, 20,
183 NL80211_RRF_NO_IR |
184 NL80211_RRF_DFS),
185
186 /* IEEE 802.11a, channel 149..165 */
187 REG_RULE(5745-10, 5825+10, 80, 6, 20,
188 NL80211_RRF_NO_IR),
189
190 /* IEEE 802.11ad (60gHz), channels 1..3 */
191 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
192 }
193 };
194
195 /* protected by RTNL */
196 static const struct ieee80211_regdomain *cfg80211_world_regdom =
197 &world_regdom;
198
199 static char *ieee80211_regdom = "00";
200 static char user_alpha2[2];
201
202 module_param(ieee80211_regdom, charp, 0444);
203 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
204
205 static void reset_regdomains(bool full_reset,
206 const struct ieee80211_regdomain *new_regdom)
207 {
208 const struct ieee80211_regdomain *r;
209 struct regulatory_request *lr;
210
211 ASSERT_RTNL();
212
213 r = get_cfg80211_regdom();
214
215 /* avoid freeing static information or freeing something twice */
216 if (r == cfg80211_world_regdom)
217 r = NULL;
218 if (cfg80211_world_regdom == &world_regdom)
219 cfg80211_world_regdom = NULL;
220 if (r == &world_regdom)
221 r = NULL;
222
223 rcu_free_regdom(r);
224 rcu_free_regdom(cfg80211_world_regdom);
225
226 cfg80211_world_regdom = &world_regdom;
227 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
228
229 if (!full_reset)
230 return;
231
232 lr = get_last_request();
233 if (lr != &core_request_world && lr)
234 kfree_rcu(lr, rcu_head);
235 rcu_assign_pointer(last_request, &core_request_world);
236 }
237
238 /*
239 * Dynamic world regulatory domain requested by the wireless
240 * core upon initialization
241 */
242 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
243 {
244 struct regulatory_request *lr;
245
246 lr = get_last_request();
247
248 WARN_ON(!lr);
249
250 reset_regdomains(false, rd);
251
252 cfg80211_world_regdom = rd;
253 }
254
255 bool is_world_regdom(const char *alpha2)
256 {
257 if (!alpha2)
258 return false;
259 return alpha2[0] == '0' && alpha2[1] == '0';
260 }
261
262 static bool is_alpha2_set(const char *alpha2)
263 {
264 if (!alpha2)
265 return false;
266 return alpha2[0] && alpha2[1];
267 }
268
269 static bool is_unknown_alpha2(const char *alpha2)
270 {
271 if (!alpha2)
272 return false;
273 /*
274 * Special case where regulatory domain was built by driver
275 * but a specific alpha2 cannot be determined
276 */
277 return alpha2[0] == '9' && alpha2[1] == '9';
278 }
279
280 static bool is_intersected_alpha2(const char *alpha2)
281 {
282 if (!alpha2)
283 return false;
284 /*
285 * Special case where regulatory domain is the
286 * result of an intersection between two regulatory domain
287 * structures
288 */
289 return alpha2[0] == '9' && alpha2[1] == '8';
290 }
291
292 static bool is_an_alpha2(const char *alpha2)
293 {
294 if (!alpha2)
295 return false;
296 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
297 }
298
299 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
300 {
301 if (!alpha2_x || !alpha2_y)
302 return false;
303 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
304 }
305
306 static bool regdom_changes(const char *alpha2)
307 {
308 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
309
310 if (!r)
311 return true;
312 return !alpha2_equal(r->alpha2, alpha2);
313 }
314
315 /*
316 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
317 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
318 * has ever been issued.
319 */
320 static bool is_user_regdom_saved(void)
321 {
322 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
323 return false;
324
325 /* This would indicate a mistake on the design */
326 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
327 "Unexpected user alpha2: %c%c\n",
328 user_alpha2[0], user_alpha2[1]))
329 return false;
330
331 return true;
332 }
333
334 static const struct ieee80211_regdomain *
335 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
336 {
337 struct ieee80211_regdomain *regd;
338 int size_of_regd;
339 unsigned int i;
340
341 size_of_regd =
342 sizeof(struct ieee80211_regdomain) +
343 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
344
345 regd = kzalloc(size_of_regd, GFP_KERNEL);
346 if (!regd)
347 return ERR_PTR(-ENOMEM);
348
349 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
350
351 for (i = 0; i < src_regd->n_reg_rules; i++)
352 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
353 sizeof(struct ieee80211_reg_rule));
354
355 return regd;
356 }
357
358 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
359 struct reg_regdb_search_request {
360 char alpha2[2];
361 struct list_head list;
362 };
363
364 static LIST_HEAD(reg_regdb_search_list);
365 static DEFINE_MUTEX(reg_regdb_search_mutex);
366
367 static void reg_regdb_search(struct work_struct *work)
368 {
369 struct reg_regdb_search_request *request;
370 const struct ieee80211_regdomain *curdom, *regdom = NULL;
371 int i;
372
373 rtnl_lock();
374
375 mutex_lock(&reg_regdb_search_mutex);
376 while (!list_empty(&reg_regdb_search_list)) {
377 request = list_first_entry(&reg_regdb_search_list,
378 struct reg_regdb_search_request,
379 list);
380 list_del(&request->list);
381
382 for (i = 0; i < reg_regdb_size; i++) {
383 curdom = reg_regdb[i];
384
385 if (alpha2_equal(request->alpha2, curdom->alpha2)) {
386 regdom = reg_copy_regd(curdom);
387 break;
388 }
389 }
390
391 kfree(request);
392 }
393 mutex_unlock(&reg_regdb_search_mutex);
394
395 if (!IS_ERR_OR_NULL(regdom))
396 set_regdom(regdom);
397
398 rtnl_unlock();
399 }
400
401 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
402
403 static void reg_regdb_query(const char *alpha2)
404 {
405 struct reg_regdb_search_request *request;
406
407 if (!alpha2)
408 return;
409
410 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
411 if (!request)
412 return;
413
414 memcpy(request->alpha2, alpha2, 2);
415
416 mutex_lock(&reg_regdb_search_mutex);
417 list_add_tail(&request->list, &reg_regdb_search_list);
418 mutex_unlock(&reg_regdb_search_mutex);
419
420 schedule_work(&reg_regdb_work);
421 }
422
423 /* Feel free to add any other sanity checks here */
424 static void reg_regdb_size_check(void)
425 {
426 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
427 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
428 }
429 #else
430 static inline void reg_regdb_size_check(void) {}
431 static inline void reg_regdb_query(const char *alpha2) {}
432 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
433
434 /*
435 * This lets us keep regulatory code which is updated on a regulatory
436 * basis in userspace. Country information is filled in by
437 * reg_device_uevent
438 */
439 static int call_crda(const char *alpha2)
440 {
441 if (!is_world_regdom((char *) alpha2))
442 pr_info("Calling CRDA for country: %c%c\n",
443 alpha2[0], alpha2[1]);
444 else
445 pr_info("Calling CRDA to update world regulatory domain\n");
446
447 /* query internal regulatory database (if it exists) */
448 reg_regdb_query(alpha2);
449
450 return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
451 }
452
453 bool reg_is_valid_request(const char *alpha2)
454 {
455 struct regulatory_request *lr = get_last_request();
456
457 if (!lr || lr->processed)
458 return false;
459
460 return alpha2_equal(lr->alpha2, alpha2);
461 }
462
463 /* Sanity check on a regulatory rule */
464 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
465 {
466 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
467 u32 freq_diff;
468
469 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
470 return false;
471
472 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
473 return false;
474
475 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
476
477 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
478 freq_range->max_bandwidth_khz > freq_diff)
479 return false;
480
481 return true;
482 }
483
484 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
485 {
486 const struct ieee80211_reg_rule *reg_rule = NULL;
487 unsigned int i;
488
489 if (!rd->n_reg_rules)
490 return false;
491
492 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
493 return false;
494
495 for (i = 0; i < rd->n_reg_rules; i++) {
496 reg_rule = &rd->reg_rules[i];
497 if (!is_valid_reg_rule(reg_rule))
498 return false;
499 }
500
501 return true;
502 }
503
504 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
505 u32 center_freq_khz, u32 bw_khz)
506 {
507 u32 start_freq_khz, end_freq_khz;
508
509 start_freq_khz = center_freq_khz - (bw_khz/2);
510 end_freq_khz = center_freq_khz + (bw_khz/2);
511
512 if (start_freq_khz >= freq_range->start_freq_khz &&
513 end_freq_khz <= freq_range->end_freq_khz)
514 return true;
515
516 return false;
517 }
518
519 /**
520 * freq_in_rule_band - tells us if a frequency is in a frequency band
521 * @freq_range: frequency rule we want to query
522 * @freq_khz: frequency we are inquiring about
523 *
524 * This lets us know if a specific frequency rule is or is not relevant to
525 * a specific frequency's band. Bands are device specific and artificial
526 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
527 * however it is safe for now to assume that a frequency rule should not be
528 * part of a frequency's band if the start freq or end freq are off by more
529 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
530 * 60 GHz band.
531 * This resolution can be lowered and should be considered as we add
532 * regulatory rule support for other "bands".
533 **/
534 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
535 u32 freq_khz)
536 {
537 #define ONE_GHZ_IN_KHZ 1000000
538 /*
539 * From 802.11ad: directional multi-gigabit (DMG):
540 * Pertaining to operation in a frequency band containing a channel
541 * with the Channel starting frequency above 45 GHz.
542 */
543 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
544 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
545 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
546 return true;
547 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
548 return true;
549 return false;
550 #undef ONE_GHZ_IN_KHZ
551 }
552
553 /*
554 * Helper for regdom_intersect(), this does the real
555 * mathematical intersection fun
556 */
557 static int reg_rules_intersect(const struct ieee80211_reg_rule *rule1,
558 const struct ieee80211_reg_rule *rule2,
559 struct ieee80211_reg_rule *intersected_rule)
560 {
561 const struct ieee80211_freq_range *freq_range1, *freq_range2;
562 struct ieee80211_freq_range *freq_range;
563 const struct ieee80211_power_rule *power_rule1, *power_rule2;
564 struct ieee80211_power_rule *power_rule;
565 u32 freq_diff;
566
567 freq_range1 = &rule1->freq_range;
568 freq_range2 = &rule2->freq_range;
569 freq_range = &intersected_rule->freq_range;
570
571 power_rule1 = &rule1->power_rule;
572 power_rule2 = &rule2->power_rule;
573 power_rule = &intersected_rule->power_rule;
574
575 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
576 freq_range2->start_freq_khz);
577 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
578 freq_range2->end_freq_khz);
579 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
580 freq_range2->max_bandwidth_khz);
581
582 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
583 if (freq_range->max_bandwidth_khz > freq_diff)
584 freq_range->max_bandwidth_khz = freq_diff;
585
586 power_rule->max_eirp = min(power_rule1->max_eirp,
587 power_rule2->max_eirp);
588 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
589 power_rule2->max_antenna_gain);
590
591 intersected_rule->flags = rule1->flags | rule2->flags;
592
593 if (!is_valid_reg_rule(intersected_rule))
594 return -EINVAL;
595
596 return 0;
597 }
598
599 /**
600 * regdom_intersect - do the intersection between two regulatory domains
601 * @rd1: first regulatory domain
602 * @rd2: second regulatory domain
603 *
604 * Use this function to get the intersection between two regulatory domains.
605 * Once completed we will mark the alpha2 for the rd as intersected, "98",
606 * as no one single alpha2 can represent this regulatory domain.
607 *
608 * Returns a pointer to the regulatory domain structure which will hold the
609 * resulting intersection of rules between rd1 and rd2. We will
610 * kzalloc() this structure for you.
611 */
612 static struct ieee80211_regdomain *
613 regdom_intersect(const struct ieee80211_regdomain *rd1,
614 const struct ieee80211_regdomain *rd2)
615 {
616 int r, size_of_regd;
617 unsigned int x, y;
618 unsigned int num_rules = 0, rule_idx = 0;
619 const struct ieee80211_reg_rule *rule1, *rule2;
620 struct ieee80211_reg_rule *intersected_rule;
621 struct ieee80211_regdomain *rd;
622 /* This is just a dummy holder to help us count */
623 struct ieee80211_reg_rule dummy_rule;
624
625 if (!rd1 || !rd2)
626 return NULL;
627
628 /*
629 * First we get a count of the rules we'll need, then we actually
630 * build them. This is to so we can malloc() and free() a
631 * regdomain once. The reason we use reg_rules_intersect() here
632 * is it will return -EINVAL if the rule computed makes no sense.
633 * All rules that do check out OK are valid.
634 */
635
636 for (x = 0; x < rd1->n_reg_rules; x++) {
637 rule1 = &rd1->reg_rules[x];
638 for (y = 0; y < rd2->n_reg_rules; y++) {
639 rule2 = &rd2->reg_rules[y];
640 if (!reg_rules_intersect(rule1, rule2, &dummy_rule))
641 num_rules++;
642 }
643 }
644
645 if (!num_rules)
646 return NULL;
647
648 size_of_regd = sizeof(struct ieee80211_regdomain) +
649 num_rules * sizeof(struct ieee80211_reg_rule);
650
651 rd = kzalloc(size_of_regd, GFP_KERNEL);
652 if (!rd)
653 return NULL;
654
655 for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
656 rule1 = &rd1->reg_rules[x];
657 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
658 rule2 = &rd2->reg_rules[y];
659 /*
660 * This time around instead of using the stack lets
661 * write to the target rule directly saving ourselves
662 * a memcpy()
663 */
664 intersected_rule = &rd->reg_rules[rule_idx];
665 r = reg_rules_intersect(rule1, rule2, intersected_rule);
666 /*
667 * No need to memset here the intersected rule here as
668 * we're not using the stack anymore
669 */
670 if (r)
671 continue;
672 rule_idx++;
673 }
674 }
675
676 if (rule_idx != num_rules) {
677 kfree(rd);
678 return NULL;
679 }
680
681 rd->n_reg_rules = num_rules;
682 rd->alpha2[0] = '9';
683 rd->alpha2[1] = '8';
684
685 return rd;
686 }
687
688 /*
689 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
690 * want to just have the channel structure use these
691 */
692 static u32 map_regdom_flags(u32 rd_flags)
693 {
694 u32 channel_flags = 0;
695 if (rd_flags & NL80211_RRF_NO_IR_ALL)
696 channel_flags |= IEEE80211_CHAN_NO_IR;
697 if (rd_flags & NL80211_RRF_DFS)
698 channel_flags |= IEEE80211_CHAN_RADAR;
699 if (rd_flags & NL80211_RRF_NO_OFDM)
700 channel_flags |= IEEE80211_CHAN_NO_OFDM;
701 return channel_flags;
702 }
703
704 static const struct ieee80211_reg_rule *
705 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
706 const struct ieee80211_regdomain *regd)
707 {
708 int i;
709 bool band_rule_found = false;
710 bool bw_fits = false;
711
712 if (!regd)
713 return ERR_PTR(-EINVAL);
714
715 for (i = 0; i < regd->n_reg_rules; i++) {
716 const struct ieee80211_reg_rule *rr;
717 const struct ieee80211_freq_range *fr = NULL;
718
719 rr = &regd->reg_rules[i];
720 fr = &rr->freq_range;
721
722 /*
723 * We only need to know if one frequency rule was
724 * was in center_freq's band, that's enough, so lets
725 * not overwrite it once found
726 */
727 if (!band_rule_found)
728 band_rule_found = freq_in_rule_band(fr, center_freq);
729
730 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
731
732 if (band_rule_found && bw_fits)
733 return rr;
734 }
735
736 if (!band_rule_found)
737 return ERR_PTR(-ERANGE);
738
739 return ERR_PTR(-EINVAL);
740 }
741
742 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
743 u32 center_freq)
744 {
745 const struct ieee80211_regdomain *regd;
746 struct regulatory_request *lr = get_last_request();
747
748 /*
749 * Follow the driver's regulatory domain, if present, unless a country
750 * IE has been processed or a user wants to help complaince further
751 */
752 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
753 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
754 wiphy->regd)
755 regd = get_wiphy_regdom(wiphy);
756 else
757 regd = get_cfg80211_regdom();
758
759 return freq_reg_info_regd(wiphy, center_freq, regd);
760 }
761 EXPORT_SYMBOL(freq_reg_info);
762
763 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
764 {
765 switch (initiator) {
766 case NL80211_REGDOM_SET_BY_CORE:
767 return "core";
768 case NL80211_REGDOM_SET_BY_USER:
769 return "user";
770 case NL80211_REGDOM_SET_BY_DRIVER:
771 return "driver";
772 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
773 return "country IE";
774 default:
775 WARN_ON(1);
776 return "bug";
777 }
778 }
779 EXPORT_SYMBOL(reg_initiator_name);
780
781 #ifdef CONFIG_CFG80211_REG_DEBUG
782 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
783 const struct ieee80211_reg_rule *reg_rule)
784 {
785 const struct ieee80211_power_rule *power_rule;
786 const struct ieee80211_freq_range *freq_range;
787 char max_antenna_gain[32];
788
789 power_rule = &reg_rule->power_rule;
790 freq_range = &reg_rule->freq_range;
791
792 if (!power_rule->max_antenna_gain)
793 snprintf(max_antenna_gain, 32, "N/A");
794 else
795 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
796
797 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
798 chan->center_freq);
799
800 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
801 freq_range->start_freq_khz, freq_range->end_freq_khz,
802 freq_range->max_bandwidth_khz, max_antenna_gain,
803 power_rule->max_eirp);
804 }
805 #else
806 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
807 const struct ieee80211_reg_rule *reg_rule)
808 {
809 return;
810 }
811 #endif
812
813 /*
814 * Note that right now we assume the desired channel bandwidth
815 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
816 * per channel, the primary and the extension channel).
817 */
818 static void handle_channel(struct wiphy *wiphy,
819 enum nl80211_reg_initiator initiator,
820 struct ieee80211_channel *chan)
821 {
822 u32 flags, bw_flags = 0;
823 const struct ieee80211_reg_rule *reg_rule = NULL;
824 const struct ieee80211_power_rule *power_rule = NULL;
825 const struct ieee80211_freq_range *freq_range = NULL;
826 struct wiphy *request_wiphy = NULL;
827 struct regulatory_request *lr = get_last_request();
828
829 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
830
831 flags = chan->orig_flags;
832
833 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
834 if (IS_ERR(reg_rule)) {
835 /*
836 * We will disable all channels that do not match our
837 * received regulatory rule unless the hint is coming
838 * from a Country IE and the Country IE had no information
839 * about a band. The IEEE 802.11 spec allows for an AP
840 * to send only a subset of the regulatory rules allowed,
841 * so an AP in the US that only supports 2.4 GHz may only send
842 * a country IE with information for the 2.4 GHz band
843 * while 5 GHz is still supported.
844 */
845 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
846 PTR_ERR(reg_rule) == -ERANGE)
847 return;
848
849 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
850 request_wiphy && request_wiphy == wiphy &&
851 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
852 REG_DBG_PRINT("Disabling freq %d MHz for good\n",
853 chan->center_freq);
854 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
855 chan->flags = chan->orig_flags;
856 } else {
857 REG_DBG_PRINT("Disabling freq %d MHz\n",
858 chan->center_freq);
859 chan->flags |= IEEE80211_CHAN_DISABLED;
860 }
861 return;
862 }
863
864 chan_reg_rule_print_dbg(chan, reg_rule);
865
866 power_rule = &reg_rule->power_rule;
867 freq_range = &reg_rule->freq_range;
868
869 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
870 bw_flags = IEEE80211_CHAN_NO_HT40;
871 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80))
872 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
873 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160))
874 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
875
876 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
877 request_wiphy && request_wiphy == wiphy &&
878 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
879 /*
880 * This guarantees the driver's requested regulatory domain
881 * will always be used as a base for further regulatory
882 * settings
883 */
884 chan->flags = chan->orig_flags =
885 map_regdom_flags(reg_rule->flags) | bw_flags;
886 chan->max_antenna_gain = chan->orig_mag =
887 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
888 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
889 (int) MBM_TO_DBM(power_rule->max_eirp);
890 return;
891 }
892
893 chan->dfs_state = NL80211_DFS_USABLE;
894 chan->dfs_state_entered = jiffies;
895
896 chan->beacon_found = false;
897 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
898 chan->max_antenna_gain =
899 min_t(int, chan->orig_mag,
900 MBI_TO_DBI(power_rule->max_antenna_gain));
901 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
902 if (chan->orig_mpwr) {
903 /*
904 * Devices that have their own custom regulatory domain
905 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
906 * passed country IE power settings.
907 */
908 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
909 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
910 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
911 chan->max_power = chan->max_reg_power;
912 else
913 chan->max_power = min(chan->orig_mpwr,
914 chan->max_reg_power);
915 } else
916 chan->max_power = chan->max_reg_power;
917 }
918
919 static void handle_band(struct wiphy *wiphy,
920 enum nl80211_reg_initiator initiator,
921 struct ieee80211_supported_band *sband)
922 {
923 unsigned int i;
924
925 if (!sband)
926 return;
927
928 for (i = 0; i < sband->n_channels; i++)
929 handle_channel(wiphy, initiator, &sband->channels[i]);
930 }
931
932 static bool reg_request_cell_base(struct regulatory_request *request)
933 {
934 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
935 return false;
936 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
937 }
938
939 bool reg_last_request_cell_base(void)
940 {
941 return reg_request_cell_base(get_last_request());
942 }
943
944 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
945 /* Core specific check */
946 static enum reg_request_treatment
947 reg_ignore_cell_hint(struct regulatory_request *pending_request)
948 {
949 struct regulatory_request *lr = get_last_request();
950
951 if (!reg_num_devs_support_basehint)
952 return REG_REQ_IGNORE;
953
954 if (reg_request_cell_base(lr) &&
955 !regdom_changes(pending_request->alpha2))
956 return REG_REQ_ALREADY_SET;
957
958 return REG_REQ_OK;
959 }
960
961 /* Device specific check */
962 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
963 {
964 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
965 }
966 #else
967 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
968 {
969 return REG_REQ_IGNORE;
970 }
971
972 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
973 {
974 return true;
975 }
976 #endif
977
978 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
979 {
980 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY &&
981 !(wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY))
982 return true;
983 return false;
984 }
985
986 static bool ignore_reg_update(struct wiphy *wiphy,
987 enum nl80211_reg_initiator initiator)
988 {
989 struct regulatory_request *lr = get_last_request();
990
991 if (!lr) {
992 REG_DBG_PRINT("Ignoring regulatory request set by %s "
993 "since last_request is not set\n",
994 reg_initiator_name(initiator));
995 return true;
996 }
997
998 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
999 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
1000 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1001 "since the driver uses its own custom "
1002 "regulatory domain\n",
1003 reg_initiator_name(initiator));
1004 return true;
1005 }
1006
1007 /*
1008 * wiphy->regd will be set once the device has its own
1009 * desired regulatory domain set
1010 */
1011 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1012 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1013 !is_world_regdom(lr->alpha2)) {
1014 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1015 "since the driver requires its own regulatory "
1016 "domain to be set first\n",
1017 reg_initiator_name(initiator));
1018 return true;
1019 }
1020
1021 if (reg_request_cell_base(lr))
1022 return reg_dev_ignore_cell_hint(wiphy);
1023
1024 return false;
1025 }
1026
1027 static bool reg_is_world_roaming(struct wiphy *wiphy)
1028 {
1029 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1030 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1031 struct regulatory_request *lr = get_last_request();
1032
1033 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1034 return true;
1035
1036 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1037 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1038 return true;
1039
1040 return false;
1041 }
1042
1043 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1044 struct reg_beacon *reg_beacon)
1045 {
1046 struct ieee80211_supported_band *sband;
1047 struct ieee80211_channel *chan;
1048 bool channel_changed = false;
1049 struct ieee80211_channel chan_before;
1050
1051 sband = wiphy->bands[reg_beacon->chan.band];
1052 chan = &sband->channels[chan_idx];
1053
1054 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1055 return;
1056
1057 if (chan->beacon_found)
1058 return;
1059
1060 chan->beacon_found = true;
1061
1062 if (!reg_is_world_roaming(wiphy))
1063 return;
1064
1065 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1066 return;
1067
1068 chan_before.center_freq = chan->center_freq;
1069 chan_before.flags = chan->flags;
1070
1071 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1072 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1073 channel_changed = true;
1074 }
1075
1076 if (channel_changed)
1077 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1078 }
1079
1080 /*
1081 * Called when a scan on a wiphy finds a beacon on
1082 * new channel
1083 */
1084 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1085 struct reg_beacon *reg_beacon)
1086 {
1087 unsigned int i;
1088 struct ieee80211_supported_band *sband;
1089
1090 if (!wiphy->bands[reg_beacon->chan.band])
1091 return;
1092
1093 sband = wiphy->bands[reg_beacon->chan.band];
1094
1095 for (i = 0; i < sband->n_channels; i++)
1096 handle_reg_beacon(wiphy, i, reg_beacon);
1097 }
1098
1099 /*
1100 * Called upon reg changes or a new wiphy is added
1101 */
1102 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1103 {
1104 unsigned int i;
1105 struct ieee80211_supported_band *sband;
1106 struct reg_beacon *reg_beacon;
1107
1108 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1109 if (!wiphy->bands[reg_beacon->chan.band])
1110 continue;
1111 sband = wiphy->bands[reg_beacon->chan.band];
1112 for (i = 0; i < sband->n_channels; i++)
1113 handle_reg_beacon(wiphy, i, reg_beacon);
1114 }
1115 }
1116
1117 /* Reap the advantages of previously found beacons */
1118 static void reg_process_beacons(struct wiphy *wiphy)
1119 {
1120 /*
1121 * Means we are just firing up cfg80211, so no beacons would
1122 * have been processed yet.
1123 */
1124 if (!last_request)
1125 return;
1126 wiphy_update_beacon_reg(wiphy);
1127 }
1128
1129 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1130 {
1131 if (!chan)
1132 return false;
1133 if (chan->flags & IEEE80211_CHAN_DISABLED)
1134 return false;
1135 /* This would happen when regulatory rules disallow HT40 completely */
1136 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1137 return false;
1138 return true;
1139 }
1140
1141 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1142 struct ieee80211_channel *channel)
1143 {
1144 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1145 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1146 unsigned int i;
1147
1148 if (!is_ht40_allowed(channel)) {
1149 channel->flags |= IEEE80211_CHAN_NO_HT40;
1150 return;
1151 }
1152
1153 /*
1154 * We need to ensure the extension channels exist to
1155 * be able to use HT40- or HT40+, this finds them (or not)
1156 */
1157 for (i = 0; i < sband->n_channels; i++) {
1158 struct ieee80211_channel *c = &sband->channels[i];
1159
1160 if (c->center_freq == (channel->center_freq - 20))
1161 channel_before = c;
1162 if (c->center_freq == (channel->center_freq + 20))
1163 channel_after = c;
1164 }
1165
1166 /*
1167 * Please note that this assumes target bandwidth is 20 MHz,
1168 * if that ever changes we also need to change the below logic
1169 * to include that as well.
1170 */
1171 if (!is_ht40_allowed(channel_before))
1172 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1173 else
1174 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1175
1176 if (!is_ht40_allowed(channel_after))
1177 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1178 else
1179 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1180 }
1181
1182 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1183 struct ieee80211_supported_band *sband)
1184 {
1185 unsigned int i;
1186
1187 if (!sband)
1188 return;
1189
1190 for (i = 0; i < sband->n_channels; i++)
1191 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1192 }
1193
1194 static void reg_process_ht_flags(struct wiphy *wiphy)
1195 {
1196 enum ieee80211_band band;
1197
1198 if (!wiphy)
1199 return;
1200
1201 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1202 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1203 }
1204
1205 static void wiphy_update_regulatory(struct wiphy *wiphy,
1206 enum nl80211_reg_initiator initiator)
1207 {
1208 enum ieee80211_band band;
1209 struct regulatory_request *lr = get_last_request();
1210
1211 if (ignore_reg_update(wiphy, initiator))
1212 return;
1213
1214 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1215
1216 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1217 handle_band(wiphy, initiator, wiphy->bands[band]);
1218
1219 reg_process_beacons(wiphy);
1220 reg_process_ht_flags(wiphy);
1221
1222 if (wiphy->reg_notifier)
1223 wiphy->reg_notifier(wiphy, lr);
1224 }
1225
1226 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1227 {
1228 struct cfg80211_registered_device *rdev;
1229 struct wiphy *wiphy;
1230
1231 ASSERT_RTNL();
1232
1233 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1234 wiphy = &rdev->wiphy;
1235 wiphy_update_regulatory(wiphy, initiator);
1236 /*
1237 * Regulatory updates set by CORE are ignored for custom
1238 * regulatory cards. Let us notify the changes to the driver,
1239 * as some drivers used this to restore its orig_* reg domain.
1240 */
1241 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1242 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1243 wiphy->reg_notifier)
1244 wiphy->reg_notifier(wiphy, get_last_request());
1245 }
1246 }
1247
1248 static void handle_channel_custom(struct wiphy *wiphy,
1249 struct ieee80211_channel *chan,
1250 const struct ieee80211_regdomain *regd)
1251 {
1252 u32 bw_flags = 0;
1253 const struct ieee80211_reg_rule *reg_rule = NULL;
1254 const struct ieee80211_power_rule *power_rule = NULL;
1255 const struct ieee80211_freq_range *freq_range = NULL;
1256
1257 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1258 regd);
1259
1260 if (IS_ERR(reg_rule)) {
1261 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1262 chan->center_freq);
1263 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1264 chan->flags = chan->orig_flags;
1265 return;
1266 }
1267
1268 chan_reg_rule_print_dbg(chan, reg_rule);
1269
1270 power_rule = &reg_rule->power_rule;
1271 freq_range = &reg_rule->freq_range;
1272
1273 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1274 bw_flags = IEEE80211_CHAN_NO_HT40;
1275 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80))
1276 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1277 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160))
1278 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1279
1280 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1281 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1282 chan->max_reg_power = chan->max_power =
1283 (int) MBM_TO_DBM(power_rule->max_eirp);
1284 }
1285
1286 static void handle_band_custom(struct wiphy *wiphy,
1287 struct ieee80211_supported_band *sband,
1288 const struct ieee80211_regdomain *regd)
1289 {
1290 unsigned int i;
1291
1292 if (!sband)
1293 return;
1294
1295 for (i = 0; i < sband->n_channels; i++)
1296 handle_channel_custom(wiphy, &sband->channels[i], regd);
1297 }
1298
1299 /* Used by drivers prior to wiphy registration */
1300 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1301 const struct ieee80211_regdomain *regd)
1302 {
1303 enum ieee80211_band band;
1304 unsigned int bands_set = 0;
1305
1306 WARN(!(wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY),
1307 "wiphy should have WIPHY_FLAG_CUSTOM_REGULATORY\n");
1308 wiphy->flags |= WIPHY_FLAG_CUSTOM_REGULATORY;
1309
1310 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1311 if (!wiphy->bands[band])
1312 continue;
1313 handle_band_custom(wiphy, wiphy->bands[band], regd);
1314 bands_set++;
1315 }
1316
1317 /*
1318 * no point in calling this if it won't have any effect
1319 * on your device's supported bands.
1320 */
1321 WARN_ON(!bands_set);
1322 }
1323 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1324
1325 /* This has the logic which determines when a new request
1326 * should be ignored. */
1327 static enum reg_request_treatment
1328 get_reg_request_treatment(struct wiphy *wiphy,
1329 struct regulatory_request *pending_request)
1330 {
1331 struct wiphy *last_wiphy = NULL;
1332 struct regulatory_request *lr = get_last_request();
1333
1334 /* All initial requests are respected */
1335 if (!lr)
1336 return REG_REQ_OK;
1337
1338 switch (pending_request->initiator) {
1339 case NL80211_REGDOM_SET_BY_CORE:
1340 return REG_REQ_IGNORE;
1341 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1342 if (reg_request_cell_base(lr)) {
1343 /* Trust a Cell base station over the AP's country IE */
1344 if (regdom_changes(pending_request->alpha2))
1345 return REG_REQ_IGNORE;
1346 return REG_REQ_ALREADY_SET;
1347 }
1348
1349 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1350
1351 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1352 return -EINVAL;
1353 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1354 if (last_wiphy != wiphy) {
1355 /*
1356 * Two cards with two APs claiming different
1357 * Country IE alpha2s. We could
1358 * intersect them, but that seems unlikely
1359 * to be correct. Reject second one for now.
1360 */
1361 if (regdom_changes(pending_request->alpha2))
1362 return REG_REQ_IGNORE;
1363 return REG_REQ_ALREADY_SET;
1364 }
1365 /*
1366 * Two consecutive Country IE hints on the same wiphy.
1367 * This should be picked up early by the driver/stack
1368 */
1369 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1370 return REG_REQ_OK;
1371 return REG_REQ_ALREADY_SET;
1372 }
1373 return REG_REQ_OK;
1374 case NL80211_REGDOM_SET_BY_DRIVER:
1375 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1376 if (regdom_changes(pending_request->alpha2))
1377 return REG_REQ_OK;
1378 return REG_REQ_ALREADY_SET;
1379 }
1380
1381 /*
1382 * This would happen if you unplug and plug your card
1383 * back in or if you add a new device for which the previously
1384 * loaded card also agrees on the regulatory domain.
1385 */
1386 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1387 !regdom_changes(pending_request->alpha2))
1388 return REG_REQ_ALREADY_SET;
1389
1390 return REG_REQ_INTERSECT;
1391 case NL80211_REGDOM_SET_BY_USER:
1392 if (reg_request_cell_base(pending_request))
1393 return reg_ignore_cell_hint(pending_request);
1394
1395 if (reg_request_cell_base(lr))
1396 return REG_REQ_IGNORE;
1397
1398 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1399 return REG_REQ_INTERSECT;
1400 /*
1401 * If the user knows better the user should set the regdom
1402 * to their country before the IE is picked up
1403 */
1404 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1405 lr->intersect)
1406 return REG_REQ_IGNORE;
1407 /*
1408 * Process user requests only after previous user/driver/core
1409 * requests have been processed
1410 */
1411 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1412 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1413 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1414 regdom_changes(lr->alpha2))
1415 return REG_REQ_IGNORE;
1416
1417 if (!regdom_changes(pending_request->alpha2))
1418 return REG_REQ_ALREADY_SET;
1419
1420 return REG_REQ_OK;
1421 }
1422
1423 return REG_REQ_IGNORE;
1424 }
1425
1426 static void reg_set_request_processed(void)
1427 {
1428 bool need_more_processing = false;
1429 struct regulatory_request *lr = get_last_request();
1430
1431 lr->processed = true;
1432
1433 spin_lock(&reg_requests_lock);
1434 if (!list_empty(&reg_requests_list))
1435 need_more_processing = true;
1436 spin_unlock(&reg_requests_lock);
1437
1438 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1439 cancel_delayed_work(&reg_timeout);
1440
1441 if (need_more_processing)
1442 schedule_work(&reg_work);
1443 }
1444
1445 /**
1446 * reg_process_hint_core - process core regulatory requests
1447 * @pending_request: a pending core regulatory request
1448 *
1449 * The wireless subsystem can use this function to process
1450 * a regulatory request issued by the regulatory core.
1451 *
1452 * Returns one of the different reg request treatment values.
1453 */
1454 static enum reg_request_treatment
1455 reg_process_hint_core(struct regulatory_request *core_request)
1456 {
1457 struct regulatory_request *lr;
1458
1459 lr = get_last_request();
1460 if (lr != &core_request_world && lr)
1461 kfree_rcu(lr, rcu_head);
1462
1463 core_request->intersect = false;
1464 core_request->processed = false;
1465 rcu_assign_pointer(last_request, core_request);
1466
1467 if (call_crda(core_request->alpha2))
1468 return REG_REQ_IGNORE;
1469 return REG_REQ_OK;
1470 }
1471
1472 /**
1473 * __regulatory_hint - hint to the wireless core a regulatory domain
1474 * @wiphy: if the hint comes from country information from an AP, this
1475 * is required to be set to the wiphy that received the information
1476 * @pending_request: the regulatory request currently being processed
1477 *
1478 * The Wireless subsystem can use this function to hint to the wireless core
1479 * what it believes should be the current regulatory domain.
1480 *
1481 * Returns one of the different reg request treatment values.
1482 */
1483 static enum reg_request_treatment
1484 __regulatory_hint(struct wiphy *wiphy,
1485 struct regulatory_request *pending_request)
1486 {
1487 const struct ieee80211_regdomain *regd;
1488 bool intersect = false;
1489 enum reg_request_treatment treatment;
1490 struct regulatory_request *lr;
1491
1492 treatment = get_reg_request_treatment(wiphy, pending_request);
1493
1494 switch (treatment) {
1495 case REG_REQ_INTERSECT:
1496 if (pending_request->initiator ==
1497 NL80211_REGDOM_SET_BY_DRIVER) {
1498 regd = reg_copy_regd(get_cfg80211_regdom());
1499 if (IS_ERR(regd)) {
1500 kfree(pending_request);
1501 return PTR_ERR(regd);
1502 }
1503 rcu_assign_pointer(wiphy->regd, regd);
1504 }
1505 intersect = true;
1506 break;
1507 case REG_REQ_OK:
1508 break;
1509 default:
1510 /*
1511 * If the regulatory domain being requested by the
1512 * driver has already been set just copy it to the
1513 * wiphy
1514 */
1515 if (treatment == REG_REQ_ALREADY_SET &&
1516 pending_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) {
1517 regd = reg_copy_regd(get_cfg80211_regdom());
1518 if (IS_ERR(regd)) {
1519 kfree(pending_request);
1520 return REG_REQ_IGNORE;
1521 }
1522 treatment = REG_REQ_ALREADY_SET;
1523 rcu_assign_pointer(wiphy->regd, regd);
1524 goto new_request;
1525 }
1526 kfree(pending_request);
1527 return treatment;
1528 }
1529
1530 new_request:
1531 lr = get_last_request();
1532 if (lr != &core_request_world && lr)
1533 kfree_rcu(lr, rcu_head);
1534
1535 pending_request->intersect = intersect;
1536 pending_request->processed = false;
1537 rcu_assign_pointer(last_request, pending_request);
1538 lr = pending_request;
1539
1540 pending_request = NULL;
1541
1542 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) {
1543 user_alpha2[0] = lr->alpha2[0];
1544 user_alpha2[1] = lr->alpha2[1];
1545 }
1546
1547 /* When r == REG_REQ_INTERSECT we do need to call CRDA */
1548 if (treatment != REG_REQ_OK && treatment != REG_REQ_INTERSECT) {
1549 /*
1550 * Since CRDA will not be called in this case as we already
1551 * have applied the requested regulatory domain before we just
1552 * inform userspace we have processed the request
1553 */
1554 if (treatment == REG_REQ_ALREADY_SET) {
1555 nl80211_send_reg_change_event(lr);
1556 reg_set_request_processed();
1557 }
1558 return treatment;
1559 }
1560
1561 if (call_crda(lr->alpha2))
1562 return REG_REQ_IGNORE;
1563 return REG_REQ_OK;
1564 }
1565
1566 /* This processes *all* regulatory hints */
1567 static void reg_process_hint(struct regulatory_request *reg_request)
1568 {
1569 struct wiphy *wiphy = NULL;
1570 enum reg_request_treatment treatment;
1571
1572 if (WARN_ON(!reg_request->alpha2))
1573 return;
1574
1575 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1576 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1577
1578 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && !wiphy) {
1579 kfree(reg_request);
1580 return;
1581 }
1582
1583 switch (reg_request->initiator) {
1584 case NL80211_REGDOM_SET_BY_CORE:
1585 reg_process_hint_core(reg_request);
1586 return;
1587 case NL80211_REGDOM_SET_BY_USER:
1588 case NL80211_REGDOM_SET_BY_DRIVER:
1589 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1590 treatment = __regulatory_hint(wiphy, reg_request);
1591 break;
1592 default:
1593 WARN(1, "invalid initiator %d\n", reg_request->initiator);
1594 return;
1595 }
1596
1597 switch (treatment) {
1598 case REG_REQ_ALREADY_SET:
1599 /* This is required so that the orig_* parameters are saved */
1600 if (wiphy && wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1601 wiphy_update_regulatory(wiphy, reg_request->initiator);
1602 break;
1603 default:
1604 if (reg_request->initiator == NL80211_REGDOM_SET_BY_USER)
1605 schedule_delayed_work(&reg_timeout,
1606 msecs_to_jiffies(3142));
1607 break;
1608 }
1609 }
1610
1611 /*
1612 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1613 * Regulatory hints come on a first come first serve basis and we
1614 * must process each one atomically.
1615 */
1616 static void reg_process_pending_hints(void)
1617 {
1618 struct regulatory_request *reg_request, *lr;
1619
1620 lr = get_last_request();
1621
1622 /* When last_request->processed becomes true this will be rescheduled */
1623 if (lr && !lr->processed) {
1624 REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n");
1625 return;
1626 }
1627
1628 spin_lock(&reg_requests_lock);
1629
1630 if (list_empty(&reg_requests_list)) {
1631 spin_unlock(&reg_requests_lock);
1632 return;
1633 }
1634
1635 reg_request = list_first_entry(&reg_requests_list,
1636 struct regulatory_request,
1637 list);
1638 list_del_init(&reg_request->list);
1639
1640 spin_unlock(&reg_requests_lock);
1641
1642 reg_process_hint(reg_request);
1643 }
1644
1645 /* Processes beacon hints -- this has nothing to do with country IEs */
1646 static void reg_process_pending_beacon_hints(void)
1647 {
1648 struct cfg80211_registered_device *rdev;
1649 struct reg_beacon *pending_beacon, *tmp;
1650
1651 /* This goes through the _pending_ beacon list */
1652 spin_lock_bh(&reg_pending_beacons_lock);
1653
1654 list_for_each_entry_safe(pending_beacon, tmp,
1655 &reg_pending_beacons, list) {
1656 list_del_init(&pending_beacon->list);
1657
1658 /* Applies the beacon hint to current wiphys */
1659 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1660 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1661
1662 /* Remembers the beacon hint for new wiphys or reg changes */
1663 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1664 }
1665
1666 spin_unlock_bh(&reg_pending_beacons_lock);
1667 }
1668
1669 static void reg_todo(struct work_struct *work)
1670 {
1671 rtnl_lock();
1672 reg_process_pending_hints();
1673 reg_process_pending_beacon_hints();
1674 rtnl_unlock();
1675 }
1676
1677 static void queue_regulatory_request(struct regulatory_request *request)
1678 {
1679 request->alpha2[0] = toupper(request->alpha2[0]);
1680 request->alpha2[1] = toupper(request->alpha2[1]);
1681
1682 spin_lock(&reg_requests_lock);
1683 list_add_tail(&request->list, &reg_requests_list);
1684 spin_unlock(&reg_requests_lock);
1685
1686 schedule_work(&reg_work);
1687 }
1688
1689 /*
1690 * Core regulatory hint -- happens during cfg80211_init()
1691 * and when we restore regulatory settings.
1692 */
1693 static int regulatory_hint_core(const char *alpha2)
1694 {
1695 struct regulatory_request *request;
1696
1697 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1698 if (!request)
1699 return -ENOMEM;
1700
1701 request->alpha2[0] = alpha2[0];
1702 request->alpha2[1] = alpha2[1];
1703 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1704
1705 queue_regulatory_request(request);
1706
1707 return 0;
1708 }
1709
1710 /* User hints */
1711 int regulatory_hint_user(const char *alpha2,
1712 enum nl80211_user_reg_hint_type user_reg_hint_type)
1713 {
1714 struct regulatory_request *request;
1715
1716 if (WARN_ON(!alpha2))
1717 return -EINVAL;
1718
1719 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1720 if (!request)
1721 return -ENOMEM;
1722
1723 request->wiphy_idx = WIPHY_IDX_INVALID;
1724 request->alpha2[0] = alpha2[0];
1725 request->alpha2[1] = alpha2[1];
1726 request->initiator = NL80211_REGDOM_SET_BY_USER;
1727 request->user_reg_hint_type = user_reg_hint_type;
1728
1729 queue_regulatory_request(request);
1730
1731 return 0;
1732 }
1733
1734 /* Driver hints */
1735 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1736 {
1737 struct regulatory_request *request;
1738
1739 if (WARN_ON(!alpha2 || !wiphy))
1740 return -EINVAL;
1741
1742 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1743 if (!request)
1744 return -ENOMEM;
1745
1746 request->wiphy_idx = get_wiphy_idx(wiphy);
1747
1748 request->alpha2[0] = alpha2[0];
1749 request->alpha2[1] = alpha2[1];
1750 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1751
1752 queue_regulatory_request(request);
1753
1754 return 0;
1755 }
1756 EXPORT_SYMBOL(regulatory_hint);
1757
1758 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
1759 const u8 *country_ie, u8 country_ie_len)
1760 {
1761 char alpha2[2];
1762 enum environment_cap env = ENVIRON_ANY;
1763 struct regulatory_request *request = NULL, *lr;
1764
1765 /* IE len must be evenly divisible by 2 */
1766 if (country_ie_len & 0x01)
1767 return;
1768
1769 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1770 return;
1771
1772 request = kzalloc(sizeof(*request), GFP_KERNEL);
1773 if (!request)
1774 return;
1775
1776 alpha2[0] = country_ie[0];
1777 alpha2[1] = country_ie[1];
1778
1779 if (country_ie[2] == 'I')
1780 env = ENVIRON_INDOOR;
1781 else if (country_ie[2] == 'O')
1782 env = ENVIRON_OUTDOOR;
1783
1784 rcu_read_lock();
1785 lr = get_last_request();
1786
1787 if (unlikely(!lr))
1788 goto out;
1789
1790 /*
1791 * We will run this only upon a successful connection on cfg80211.
1792 * We leave conflict resolution to the workqueue, where can hold
1793 * the RTNL.
1794 */
1795 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1796 lr->wiphy_idx != WIPHY_IDX_INVALID)
1797 goto out;
1798
1799 request->wiphy_idx = get_wiphy_idx(wiphy);
1800 request->alpha2[0] = alpha2[0];
1801 request->alpha2[1] = alpha2[1];
1802 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1803 request->country_ie_env = env;
1804
1805 queue_regulatory_request(request);
1806 request = NULL;
1807 out:
1808 kfree(request);
1809 rcu_read_unlock();
1810 }
1811
1812 static void restore_alpha2(char *alpha2, bool reset_user)
1813 {
1814 /* indicates there is no alpha2 to consider for restoration */
1815 alpha2[0] = '9';
1816 alpha2[1] = '7';
1817
1818 /* The user setting has precedence over the module parameter */
1819 if (is_user_regdom_saved()) {
1820 /* Unless we're asked to ignore it and reset it */
1821 if (reset_user) {
1822 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
1823 user_alpha2[0] = '9';
1824 user_alpha2[1] = '7';
1825
1826 /*
1827 * If we're ignoring user settings, we still need to
1828 * check the module parameter to ensure we put things
1829 * back as they were for a full restore.
1830 */
1831 if (!is_world_regdom(ieee80211_regdom)) {
1832 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1833 ieee80211_regdom[0], ieee80211_regdom[1]);
1834 alpha2[0] = ieee80211_regdom[0];
1835 alpha2[1] = ieee80211_regdom[1];
1836 }
1837 } else {
1838 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
1839 user_alpha2[0], user_alpha2[1]);
1840 alpha2[0] = user_alpha2[0];
1841 alpha2[1] = user_alpha2[1];
1842 }
1843 } else if (!is_world_regdom(ieee80211_regdom)) {
1844 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1845 ieee80211_regdom[0], ieee80211_regdom[1]);
1846 alpha2[0] = ieee80211_regdom[0];
1847 alpha2[1] = ieee80211_regdom[1];
1848 } else
1849 REG_DBG_PRINT("Restoring regulatory settings\n");
1850 }
1851
1852 static void restore_custom_reg_settings(struct wiphy *wiphy)
1853 {
1854 struct ieee80211_supported_band *sband;
1855 enum ieee80211_band band;
1856 struct ieee80211_channel *chan;
1857 int i;
1858
1859 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1860 sband = wiphy->bands[band];
1861 if (!sband)
1862 continue;
1863 for (i = 0; i < sband->n_channels; i++) {
1864 chan = &sband->channels[i];
1865 chan->flags = chan->orig_flags;
1866 chan->max_antenna_gain = chan->orig_mag;
1867 chan->max_power = chan->orig_mpwr;
1868 chan->beacon_found = false;
1869 }
1870 }
1871 }
1872
1873 /*
1874 * Restoring regulatory settings involves ingoring any
1875 * possibly stale country IE information and user regulatory
1876 * settings if so desired, this includes any beacon hints
1877 * learned as we could have traveled outside to another country
1878 * after disconnection. To restore regulatory settings we do
1879 * exactly what we did at bootup:
1880 *
1881 * - send a core regulatory hint
1882 * - send a user regulatory hint if applicable
1883 *
1884 * Device drivers that send a regulatory hint for a specific country
1885 * keep their own regulatory domain on wiphy->regd so that does does
1886 * not need to be remembered.
1887 */
1888 static void restore_regulatory_settings(bool reset_user)
1889 {
1890 char alpha2[2];
1891 char world_alpha2[2];
1892 struct reg_beacon *reg_beacon, *btmp;
1893 struct regulatory_request *reg_request, *tmp;
1894 LIST_HEAD(tmp_reg_req_list);
1895 struct cfg80211_registered_device *rdev;
1896
1897 ASSERT_RTNL();
1898
1899 reset_regdomains(true, &world_regdom);
1900 restore_alpha2(alpha2, reset_user);
1901
1902 /*
1903 * If there's any pending requests we simply
1904 * stash them to a temporary pending queue and
1905 * add then after we've restored regulatory
1906 * settings.
1907 */
1908 spin_lock(&reg_requests_lock);
1909 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
1910 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
1911 continue;
1912 list_move_tail(&reg_request->list, &tmp_reg_req_list);
1913 }
1914 spin_unlock(&reg_requests_lock);
1915
1916 /* Clear beacon hints */
1917 spin_lock_bh(&reg_pending_beacons_lock);
1918 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
1919 list_del(&reg_beacon->list);
1920 kfree(reg_beacon);
1921 }
1922 spin_unlock_bh(&reg_pending_beacons_lock);
1923
1924 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
1925 list_del(&reg_beacon->list);
1926 kfree(reg_beacon);
1927 }
1928
1929 /* First restore to the basic regulatory settings */
1930 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
1931 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
1932
1933 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1934 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1935 restore_custom_reg_settings(&rdev->wiphy);
1936 }
1937
1938 regulatory_hint_core(world_alpha2);
1939
1940 /*
1941 * This restores the ieee80211_regdom module parameter
1942 * preference or the last user requested regulatory
1943 * settings, user regulatory settings takes precedence.
1944 */
1945 if (is_an_alpha2(alpha2))
1946 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
1947
1948 spin_lock(&reg_requests_lock);
1949 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
1950 spin_unlock(&reg_requests_lock);
1951
1952 REG_DBG_PRINT("Kicking the queue\n");
1953
1954 schedule_work(&reg_work);
1955 }
1956
1957 void regulatory_hint_disconnect(void)
1958 {
1959 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
1960 restore_regulatory_settings(false);
1961 }
1962
1963 static bool freq_is_chan_12_13_14(u16 freq)
1964 {
1965 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1966 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1967 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1968 return true;
1969 return false;
1970 }
1971
1972 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
1973 {
1974 struct reg_beacon *pending_beacon;
1975
1976 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
1977 if (beacon_chan->center_freq ==
1978 pending_beacon->chan.center_freq)
1979 return true;
1980 return false;
1981 }
1982
1983 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1984 struct ieee80211_channel *beacon_chan,
1985 gfp_t gfp)
1986 {
1987 struct reg_beacon *reg_beacon;
1988 bool processing;
1989
1990 if (beacon_chan->beacon_found ||
1991 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
1992 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1993 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
1994 return 0;
1995
1996 spin_lock_bh(&reg_pending_beacons_lock);
1997 processing = pending_reg_beacon(beacon_chan);
1998 spin_unlock_bh(&reg_pending_beacons_lock);
1999
2000 if (processing)
2001 return 0;
2002
2003 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2004 if (!reg_beacon)
2005 return -ENOMEM;
2006
2007 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2008 beacon_chan->center_freq,
2009 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2010 wiphy_name(wiphy));
2011
2012 memcpy(&reg_beacon->chan, beacon_chan,
2013 sizeof(struct ieee80211_channel));
2014
2015 /*
2016 * Since we can be called from BH or and non-BH context
2017 * we must use spin_lock_bh()
2018 */
2019 spin_lock_bh(&reg_pending_beacons_lock);
2020 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2021 spin_unlock_bh(&reg_pending_beacons_lock);
2022
2023 schedule_work(&reg_work);
2024
2025 return 0;
2026 }
2027
2028 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2029 {
2030 unsigned int i;
2031 const struct ieee80211_reg_rule *reg_rule = NULL;
2032 const struct ieee80211_freq_range *freq_range = NULL;
2033 const struct ieee80211_power_rule *power_rule = NULL;
2034
2035 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2036
2037 for (i = 0; i < rd->n_reg_rules; i++) {
2038 reg_rule = &rd->reg_rules[i];
2039 freq_range = &reg_rule->freq_range;
2040 power_rule = &reg_rule->power_rule;
2041
2042 /*
2043 * There may not be documentation for max antenna gain
2044 * in certain regions
2045 */
2046 if (power_rule->max_antenna_gain)
2047 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2048 freq_range->start_freq_khz,
2049 freq_range->end_freq_khz,
2050 freq_range->max_bandwidth_khz,
2051 power_rule->max_antenna_gain,
2052 power_rule->max_eirp);
2053 else
2054 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2055 freq_range->start_freq_khz,
2056 freq_range->end_freq_khz,
2057 freq_range->max_bandwidth_khz,
2058 power_rule->max_eirp);
2059 }
2060 }
2061
2062 bool reg_supported_dfs_region(u8 dfs_region)
2063 {
2064 switch (dfs_region) {
2065 case NL80211_DFS_UNSET:
2066 case NL80211_DFS_FCC:
2067 case NL80211_DFS_ETSI:
2068 case NL80211_DFS_JP:
2069 return true;
2070 default:
2071 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2072 dfs_region);
2073 return false;
2074 }
2075 }
2076
2077 static void print_dfs_region(u8 dfs_region)
2078 {
2079 if (!dfs_region)
2080 return;
2081
2082 switch (dfs_region) {
2083 case NL80211_DFS_FCC:
2084 pr_info(" DFS Master region FCC");
2085 break;
2086 case NL80211_DFS_ETSI:
2087 pr_info(" DFS Master region ETSI");
2088 break;
2089 case NL80211_DFS_JP:
2090 pr_info(" DFS Master region JP");
2091 break;
2092 default:
2093 pr_info(" DFS Master region Unknown");
2094 break;
2095 }
2096 }
2097
2098 static void print_regdomain(const struct ieee80211_regdomain *rd)
2099 {
2100 struct regulatory_request *lr = get_last_request();
2101
2102 if (is_intersected_alpha2(rd->alpha2)) {
2103 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2104 struct cfg80211_registered_device *rdev;
2105 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2106 if (rdev) {
2107 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2108 rdev->country_ie_alpha2[0],
2109 rdev->country_ie_alpha2[1]);
2110 } else
2111 pr_info("Current regulatory domain intersected:\n");
2112 } else
2113 pr_info("Current regulatory domain intersected:\n");
2114 } else if (is_world_regdom(rd->alpha2)) {
2115 pr_info("World regulatory domain updated:\n");
2116 } else {
2117 if (is_unknown_alpha2(rd->alpha2))
2118 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2119 else {
2120 if (reg_request_cell_base(lr))
2121 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2122 rd->alpha2[0], rd->alpha2[1]);
2123 else
2124 pr_info("Regulatory domain changed to country: %c%c\n",
2125 rd->alpha2[0], rd->alpha2[1]);
2126 }
2127 }
2128
2129 print_dfs_region(rd->dfs_region);
2130 print_rd_rules(rd);
2131 }
2132
2133 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2134 {
2135 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2136 print_rd_rules(rd);
2137 }
2138
2139 /* Takes ownership of rd only if it doesn't fail */
2140 static int __set_regdom(const struct ieee80211_regdomain *rd)
2141 {
2142 const struct ieee80211_regdomain *regd;
2143 const struct ieee80211_regdomain *intersected_rd = NULL;
2144 struct wiphy *request_wiphy;
2145 struct regulatory_request *lr = get_last_request();
2146
2147 /* Some basic sanity checks first */
2148
2149 if (!reg_is_valid_request(rd->alpha2))
2150 return -EINVAL;
2151
2152 if (is_world_regdom(rd->alpha2)) {
2153 update_world_regdomain(rd);
2154 return 0;
2155 }
2156
2157 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2158 !is_unknown_alpha2(rd->alpha2))
2159 return -EINVAL;
2160
2161 /*
2162 * Lets only bother proceeding on the same alpha2 if the current
2163 * rd is non static (it means CRDA was present and was used last)
2164 * and the pending request came in from a country IE
2165 */
2166 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2167 /*
2168 * If someone else asked us to change the rd lets only bother
2169 * checking if the alpha2 changes if CRDA was already called
2170 */
2171 if (!regdom_changes(rd->alpha2))
2172 return -EALREADY;
2173 }
2174
2175 /*
2176 * Now lets set the regulatory domain, update all driver channels
2177 * and finally inform them of what we have done, in case they want
2178 * to review or adjust their own settings based on their own
2179 * internal EEPROM data
2180 */
2181
2182 if (!is_valid_rd(rd)) {
2183 pr_err("Invalid regulatory domain detected:\n");
2184 print_regdomain_info(rd);
2185 return -EINVAL;
2186 }
2187
2188 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2189 if (!request_wiphy &&
2190 (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2191 lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2192 schedule_delayed_work(&reg_timeout, 0);
2193 return -ENODEV;
2194 }
2195
2196 if (!lr->intersect) {
2197 if (lr->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2198 reset_regdomains(false, rd);
2199 return 0;
2200 }
2201
2202 /*
2203 * For a driver hint, lets copy the regulatory domain the
2204 * driver wanted to the wiphy to deal with conflicts
2205 */
2206
2207 /*
2208 * Userspace could have sent two replies with only
2209 * one kernel request.
2210 */
2211 if (request_wiphy->regd)
2212 return -EALREADY;
2213
2214 regd = reg_copy_regd(rd);
2215 if (IS_ERR(regd))
2216 return PTR_ERR(regd);
2217
2218 rcu_assign_pointer(request_wiphy->regd, regd);
2219 reset_regdomains(false, rd);
2220 return 0;
2221 }
2222
2223 /* Intersection requires a bit more work */
2224
2225 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2226 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2227 if (!intersected_rd)
2228 return -EINVAL;
2229
2230 /*
2231 * We can trash what CRDA provided now.
2232 * However if a driver requested this specific regulatory
2233 * domain we keep it for its private use
2234 */
2235 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER) {
2236 const struct ieee80211_regdomain *tmp;
2237
2238 tmp = get_wiphy_regdom(request_wiphy);
2239 rcu_assign_pointer(request_wiphy->regd, rd);
2240 rcu_free_regdom(tmp);
2241 } else {
2242 kfree(rd);
2243 }
2244
2245 rd = NULL;
2246
2247 reset_regdomains(false, intersected_rd);
2248
2249 return 0;
2250 }
2251
2252 return -EINVAL;
2253 }
2254
2255
2256 /*
2257 * Use this call to set the current regulatory domain. Conflicts with
2258 * multiple drivers can be ironed out later. Caller must've already
2259 * kmalloc'd the rd structure.
2260 */
2261 int set_regdom(const struct ieee80211_regdomain *rd)
2262 {
2263 struct regulatory_request *lr;
2264 int r;
2265
2266 lr = get_last_request();
2267
2268 /* Note that this doesn't update the wiphys, this is done below */
2269 r = __set_regdom(rd);
2270 if (r) {
2271 if (r == -EALREADY)
2272 reg_set_request_processed();
2273
2274 kfree(rd);
2275 return r;
2276 }
2277
2278 /* This would make this whole thing pointless */
2279 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2280 return -EINVAL;
2281
2282 /* update all wiphys now with the new established regulatory domain */
2283 update_all_wiphy_regulatory(lr->initiator);
2284
2285 print_regdomain(get_cfg80211_regdom());
2286
2287 nl80211_send_reg_change_event(lr);
2288
2289 reg_set_request_processed();
2290
2291 return 0;
2292 }
2293
2294 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2295 {
2296 struct regulatory_request *lr;
2297 u8 alpha2[2];
2298 bool add = false;
2299
2300 rcu_read_lock();
2301 lr = get_last_request();
2302 if (lr && !lr->processed) {
2303 memcpy(alpha2, lr->alpha2, 2);
2304 add = true;
2305 }
2306 rcu_read_unlock();
2307
2308 if (add)
2309 return add_uevent_var(env, "COUNTRY=%c%c",
2310 alpha2[0], alpha2[1]);
2311 return 0;
2312 }
2313
2314 void wiphy_regulatory_register(struct wiphy *wiphy)
2315 {
2316 struct regulatory_request *lr;
2317
2318 if (!reg_dev_ignore_cell_hint(wiphy))
2319 reg_num_devs_support_basehint++;
2320
2321 lr = get_last_request();
2322 wiphy_update_regulatory(wiphy, lr->initiator);
2323 }
2324
2325 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2326 {
2327 struct wiphy *request_wiphy = NULL;
2328 struct regulatory_request *lr;
2329
2330 lr = get_last_request();
2331
2332 if (!reg_dev_ignore_cell_hint(wiphy))
2333 reg_num_devs_support_basehint--;
2334
2335 rcu_free_regdom(get_wiphy_regdom(wiphy));
2336 rcu_assign_pointer(wiphy->regd, NULL);
2337
2338 if (lr)
2339 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2340
2341 if (!request_wiphy || request_wiphy != wiphy)
2342 return;
2343
2344 lr->wiphy_idx = WIPHY_IDX_INVALID;
2345 lr->country_ie_env = ENVIRON_ANY;
2346 }
2347
2348 static void reg_timeout_work(struct work_struct *work)
2349 {
2350 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2351 rtnl_lock();
2352 restore_regulatory_settings(true);
2353 rtnl_unlock();
2354 }
2355
2356 int __init regulatory_init(void)
2357 {
2358 int err = 0;
2359
2360 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2361 if (IS_ERR(reg_pdev))
2362 return PTR_ERR(reg_pdev);
2363
2364 reg_pdev->dev.type = &reg_device_type;
2365
2366 spin_lock_init(&reg_requests_lock);
2367 spin_lock_init(&reg_pending_beacons_lock);
2368
2369 reg_regdb_size_check();
2370
2371 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2372
2373 user_alpha2[0] = '9';
2374 user_alpha2[1] = '7';
2375
2376 /* We always try to get an update for the static regdomain */
2377 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2378 if (err) {
2379 if (err == -ENOMEM)
2380 return err;
2381 /*
2382 * N.B. kobject_uevent_env() can fail mainly for when we're out
2383 * memory which is handled and propagated appropriately above
2384 * but it can also fail during a netlink_broadcast() or during
2385 * early boot for call_usermodehelper(). For now treat these
2386 * errors as non-fatal.
2387 */
2388 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2389 }
2390
2391 /*
2392 * Finally, if the user set the module parameter treat it
2393 * as a user hint.
2394 */
2395 if (!is_world_regdom(ieee80211_regdom))
2396 regulatory_hint_user(ieee80211_regdom,
2397 NL80211_USER_REG_HINT_USER);
2398
2399 return 0;
2400 }
2401
2402 void regulatory_exit(void)
2403 {
2404 struct regulatory_request *reg_request, *tmp;
2405 struct reg_beacon *reg_beacon, *btmp;
2406
2407 cancel_work_sync(&reg_work);
2408 cancel_delayed_work_sync(&reg_timeout);
2409
2410 /* Lock to suppress warnings */
2411 rtnl_lock();
2412 reset_regdomains(true, NULL);
2413 rtnl_unlock();
2414
2415 dev_set_uevent_suppress(&reg_pdev->dev, true);
2416
2417 platform_device_unregister(reg_pdev);
2418
2419 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2420 list_del(&reg_beacon->list);
2421 kfree(reg_beacon);
2422 }
2423
2424 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2425 list_del(&reg_beacon->list);
2426 kfree(reg_beacon);
2427 }
2428
2429 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2430 list_del(&reg_request->list);
2431 kfree(reg_request);
2432 }
2433 }