]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/wireless/reg.c
cfg80211: ignore invalid BSSIDs when looking for BSSes
[mirror_ubuntu-bionic-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20
21 /**
22 * DOC: Wireless regulatory infrastructure
23 *
24 * The usual implementation is for a driver to read a device EEPROM to
25 * determine which regulatory domain it should be operating under, then
26 * looking up the allowable channels in a driver-local table and finally
27 * registering those channels in the wiphy structure.
28 *
29 * Another set of compliance enforcement is for drivers to use their
30 * own compliance limits which can be stored on the EEPROM. The host
31 * driver or firmware may ensure these are used.
32 *
33 * In addition to all this we provide an extra layer of regulatory
34 * conformance. For drivers which do not have any regulatory
35 * information CRDA provides the complete regulatory solution.
36 * For others it provides a community effort on further restrictions
37 * to enhance compliance.
38 *
39 * Note: When number of rules --> infinity we will not be able to
40 * index on alpha2 any more, instead we'll probably have to
41 * rely on some SHA1 checksum of the regdomain for example.
42 *
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
56 #include "core.h"
57 #include "reg.h"
58 #include "regdb.h"
59 #include "nl80211.h"
60
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...) \
63 printk(KERN_DEBUG pr_fmt(format), ##args)
64 #else
65 #define REG_DBG_PRINT(args...)
66 #endif
67
68 /**
69 * enum reg_request_treatment - regulatory request treatment
70 *
71 * @REG_REQ_OK: continue processing the regulatory request
72 * @REG_REQ_IGNORE: ignore the regulatory request
73 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
74 * be intersected with the current one.
75 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
76 * regulatory settings, and no further processing is required.
77 * @REG_REQ_USER_HINT_HANDLED: a non alpha2 user hint was handled and no
78 * further processing is required, i.e., not need to update last_request
79 * etc. This should be used for user hints that do not provide an alpha2
80 * but some other type of regulatory hint, i.e., indoor operation.
81 */
82 enum reg_request_treatment {
83 REG_REQ_OK,
84 REG_REQ_IGNORE,
85 REG_REQ_INTERSECT,
86 REG_REQ_ALREADY_SET,
87 REG_REQ_USER_HINT_HANDLED,
88 };
89
90 static struct regulatory_request core_request_world = {
91 .initiator = NL80211_REGDOM_SET_BY_CORE,
92 .alpha2[0] = '0',
93 .alpha2[1] = '0',
94 .intersect = false,
95 .processed = true,
96 .country_ie_env = ENVIRON_ANY,
97 };
98
99 /*
100 * Receipt of information from last regulatory request,
101 * protected by RTNL (and can be accessed with RCU protection)
102 */
103 static struct regulatory_request __rcu *last_request =
104 (void __rcu *)&core_request_world;
105
106 /* To trigger userspace events */
107 static struct platform_device *reg_pdev;
108
109 /*
110 * Central wireless core regulatory domains, we only need two,
111 * the current one and a world regulatory domain in case we have no
112 * information to give us an alpha2.
113 * (protected by RTNL, can be read under RCU)
114 */
115 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
116
117 /*
118 * Number of devices that registered to the core
119 * that support cellular base station regulatory hints
120 * (protected by RTNL)
121 */
122 static int reg_num_devs_support_basehint;
123
124 /*
125 * State variable indicating if the platform on which the devices
126 * are attached is operating in an indoor environment. The state variable
127 * is relevant for all registered devices.
128 * (protected by RTNL)
129 */
130 static bool reg_is_indoor;
131
132 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
133 {
134 return rtnl_dereference(cfg80211_regdomain);
135 }
136
137 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
138 {
139 return rtnl_dereference(wiphy->regd);
140 }
141
142 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
143 {
144 switch (dfs_region) {
145 case NL80211_DFS_UNSET:
146 return "unset";
147 case NL80211_DFS_FCC:
148 return "FCC";
149 case NL80211_DFS_ETSI:
150 return "ETSI";
151 case NL80211_DFS_JP:
152 return "JP";
153 }
154 return "Unknown";
155 }
156
157 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
158 {
159 const struct ieee80211_regdomain *regd = NULL;
160 const struct ieee80211_regdomain *wiphy_regd = NULL;
161
162 regd = get_cfg80211_regdom();
163 if (!wiphy)
164 goto out;
165
166 wiphy_regd = get_wiphy_regdom(wiphy);
167 if (!wiphy_regd)
168 goto out;
169
170 if (wiphy_regd->dfs_region == regd->dfs_region)
171 goto out;
172
173 REG_DBG_PRINT("%s: device specific dfs_region "
174 "(%s) disagrees with cfg80211's "
175 "central dfs_region (%s)\n",
176 dev_name(&wiphy->dev),
177 reg_dfs_region_str(wiphy_regd->dfs_region),
178 reg_dfs_region_str(regd->dfs_region));
179
180 out:
181 return regd->dfs_region;
182 }
183
184 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
185 {
186 if (!r)
187 return;
188 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
189 }
190
191 static struct regulatory_request *get_last_request(void)
192 {
193 return rcu_dereference_rtnl(last_request);
194 }
195
196 /* Used to queue up regulatory hints */
197 static LIST_HEAD(reg_requests_list);
198 static spinlock_t reg_requests_lock;
199
200 /* Used to queue up beacon hints for review */
201 static LIST_HEAD(reg_pending_beacons);
202 static spinlock_t reg_pending_beacons_lock;
203
204 /* Used to keep track of processed beacon hints */
205 static LIST_HEAD(reg_beacon_list);
206
207 struct reg_beacon {
208 struct list_head list;
209 struct ieee80211_channel chan;
210 };
211
212 static void reg_todo(struct work_struct *work);
213 static DECLARE_WORK(reg_work, reg_todo);
214
215 static void reg_timeout_work(struct work_struct *work);
216 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
217
218 /* We keep a static world regulatory domain in case of the absence of CRDA */
219 static const struct ieee80211_regdomain world_regdom = {
220 .n_reg_rules = 6,
221 .alpha2 = "00",
222 .reg_rules = {
223 /* IEEE 802.11b/g, channels 1..11 */
224 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
225 /* IEEE 802.11b/g, channels 12..13. */
226 REG_RULE(2467-10, 2472+10, 40, 6, 20,
227 NL80211_RRF_NO_IR),
228 /* IEEE 802.11 channel 14 - Only JP enables
229 * this and for 802.11b only */
230 REG_RULE(2484-10, 2484+10, 20, 6, 20,
231 NL80211_RRF_NO_IR |
232 NL80211_RRF_NO_OFDM),
233 /* IEEE 802.11a, channel 36..48 */
234 REG_RULE(5180-10, 5240+10, 160, 6, 20,
235 NL80211_RRF_NO_IR),
236
237 /* IEEE 802.11a, channel 52..64 - DFS required */
238 REG_RULE(5260-10, 5320+10, 160, 6, 20,
239 NL80211_RRF_NO_IR |
240 NL80211_RRF_DFS),
241
242 /* IEEE 802.11a, channel 100..144 - DFS required */
243 REG_RULE(5500-10, 5720+10, 160, 6, 20,
244 NL80211_RRF_NO_IR |
245 NL80211_RRF_DFS),
246
247 /* IEEE 802.11a, channel 149..165 */
248 REG_RULE(5745-10, 5825+10, 80, 6, 20,
249 NL80211_RRF_NO_IR),
250
251 /* IEEE 802.11ad (60gHz), channels 1..3 */
252 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
253 }
254 };
255
256 /* protected by RTNL */
257 static const struct ieee80211_regdomain *cfg80211_world_regdom =
258 &world_regdom;
259
260 static char *ieee80211_regdom = "00";
261 static char user_alpha2[2];
262
263 module_param(ieee80211_regdom, charp, 0444);
264 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
265
266 static void reg_free_request(struct regulatory_request *lr)
267 {
268 if (lr != &core_request_world && lr)
269 kfree_rcu(lr, rcu_head);
270 }
271
272 static void reg_update_last_request(struct regulatory_request *request)
273 {
274 struct regulatory_request *lr;
275
276 lr = get_last_request();
277 if (lr == request)
278 return;
279
280 reg_free_request(lr);
281 rcu_assign_pointer(last_request, request);
282 }
283
284 static void reset_regdomains(bool full_reset,
285 const struct ieee80211_regdomain *new_regdom)
286 {
287 const struct ieee80211_regdomain *r;
288
289 ASSERT_RTNL();
290
291 r = get_cfg80211_regdom();
292
293 /* avoid freeing static information or freeing something twice */
294 if (r == cfg80211_world_regdom)
295 r = NULL;
296 if (cfg80211_world_regdom == &world_regdom)
297 cfg80211_world_regdom = NULL;
298 if (r == &world_regdom)
299 r = NULL;
300
301 rcu_free_regdom(r);
302 rcu_free_regdom(cfg80211_world_regdom);
303
304 cfg80211_world_regdom = &world_regdom;
305 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
306
307 if (!full_reset)
308 return;
309
310 reg_update_last_request(&core_request_world);
311 }
312
313 /*
314 * Dynamic world regulatory domain requested by the wireless
315 * core upon initialization
316 */
317 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
318 {
319 struct regulatory_request *lr;
320
321 lr = get_last_request();
322
323 WARN_ON(!lr);
324
325 reset_regdomains(false, rd);
326
327 cfg80211_world_regdom = rd;
328 }
329
330 bool is_world_regdom(const char *alpha2)
331 {
332 if (!alpha2)
333 return false;
334 return alpha2[0] == '0' && alpha2[1] == '0';
335 }
336
337 static bool is_alpha2_set(const char *alpha2)
338 {
339 if (!alpha2)
340 return false;
341 return alpha2[0] && alpha2[1];
342 }
343
344 static bool is_unknown_alpha2(const char *alpha2)
345 {
346 if (!alpha2)
347 return false;
348 /*
349 * Special case where regulatory domain was built by driver
350 * but a specific alpha2 cannot be determined
351 */
352 return alpha2[0] == '9' && alpha2[1] == '9';
353 }
354
355 static bool is_intersected_alpha2(const char *alpha2)
356 {
357 if (!alpha2)
358 return false;
359 /*
360 * Special case where regulatory domain is the
361 * result of an intersection between two regulatory domain
362 * structures
363 */
364 return alpha2[0] == '9' && alpha2[1] == '8';
365 }
366
367 static bool is_an_alpha2(const char *alpha2)
368 {
369 if (!alpha2)
370 return false;
371 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
372 }
373
374 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
375 {
376 if (!alpha2_x || !alpha2_y)
377 return false;
378 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
379 }
380
381 static bool regdom_changes(const char *alpha2)
382 {
383 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
384
385 if (!r)
386 return true;
387 return !alpha2_equal(r->alpha2, alpha2);
388 }
389
390 /*
391 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
392 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
393 * has ever been issued.
394 */
395 static bool is_user_regdom_saved(void)
396 {
397 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
398 return false;
399
400 /* This would indicate a mistake on the design */
401 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
402 "Unexpected user alpha2: %c%c\n",
403 user_alpha2[0], user_alpha2[1]))
404 return false;
405
406 return true;
407 }
408
409 static const struct ieee80211_regdomain *
410 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
411 {
412 struct ieee80211_regdomain *regd;
413 int size_of_regd;
414 unsigned int i;
415
416 size_of_regd =
417 sizeof(struct ieee80211_regdomain) +
418 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
419
420 regd = kzalloc(size_of_regd, GFP_KERNEL);
421 if (!regd)
422 return ERR_PTR(-ENOMEM);
423
424 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
425
426 for (i = 0; i < src_regd->n_reg_rules; i++)
427 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
428 sizeof(struct ieee80211_reg_rule));
429
430 return regd;
431 }
432
433 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
434 struct reg_regdb_search_request {
435 char alpha2[2];
436 struct list_head list;
437 };
438
439 static LIST_HEAD(reg_regdb_search_list);
440 static DEFINE_MUTEX(reg_regdb_search_mutex);
441
442 static void reg_regdb_search(struct work_struct *work)
443 {
444 struct reg_regdb_search_request *request;
445 const struct ieee80211_regdomain *curdom, *regdom = NULL;
446 int i;
447
448 rtnl_lock();
449
450 mutex_lock(&reg_regdb_search_mutex);
451 while (!list_empty(&reg_regdb_search_list)) {
452 request = list_first_entry(&reg_regdb_search_list,
453 struct reg_regdb_search_request,
454 list);
455 list_del(&request->list);
456
457 for (i = 0; i < reg_regdb_size; i++) {
458 curdom = reg_regdb[i];
459
460 if (alpha2_equal(request->alpha2, curdom->alpha2)) {
461 regdom = reg_copy_regd(curdom);
462 break;
463 }
464 }
465
466 kfree(request);
467 }
468 mutex_unlock(&reg_regdb_search_mutex);
469
470 if (!IS_ERR_OR_NULL(regdom))
471 set_regdom(regdom);
472
473 rtnl_unlock();
474 }
475
476 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
477
478 static void reg_regdb_query(const char *alpha2)
479 {
480 struct reg_regdb_search_request *request;
481
482 if (!alpha2)
483 return;
484
485 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
486 if (!request)
487 return;
488
489 memcpy(request->alpha2, alpha2, 2);
490
491 mutex_lock(&reg_regdb_search_mutex);
492 list_add_tail(&request->list, &reg_regdb_search_list);
493 mutex_unlock(&reg_regdb_search_mutex);
494
495 schedule_work(&reg_regdb_work);
496 }
497
498 /* Feel free to add any other sanity checks here */
499 static void reg_regdb_size_check(void)
500 {
501 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
502 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
503 }
504 #else
505 static inline void reg_regdb_size_check(void) {}
506 static inline void reg_regdb_query(const char *alpha2) {}
507 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
508
509 /*
510 * This lets us keep regulatory code which is updated on a regulatory
511 * basis in userspace.
512 */
513 static int call_crda(const char *alpha2)
514 {
515 char country[12];
516 char *env[] = { country, NULL };
517
518 snprintf(country, sizeof(country), "COUNTRY=%c%c",
519 alpha2[0], alpha2[1]);
520
521 if (!is_world_regdom((char *) alpha2))
522 pr_info("Calling CRDA for country: %c%c\n",
523 alpha2[0], alpha2[1]);
524 else
525 pr_info("Calling CRDA to update world regulatory domain\n");
526
527 /* query internal regulatory database (if it exists) */
528 reg_regdb_query(alpha2);
529
530 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
531 }
532
533 static enum reg_request_treatment
534 reg_call_crda(struct regulatory_request *request)
535 {
536 if (call_crda(request->alpha2))
537 return REG_REQ_IGNORE;
538 return REG_REQ_OK;
539 }
540
541 bool reg_is_valid_request(const char *alpha2)
542 {
543 struct regulatory_request *lr = get_last_request();
544
545 if (!lr || lr->processed)
546 return false;
547
548 return alpha2_equal(lr->alpha2, alpha2);
549 }
550
551 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
552 {
553 struct regulatory_request *lr = get_last_request();
554
555 /*
556 * Follow the driver's regulatory domain, if present, unless a country
557 * IE has been processed or a user wants to help complaince further
558 */
559 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
560 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
561 wiphy->regd)
562 return get_wiphy_regdom(wiphy);
563
564 return get_cfg80211_regdom();
565 }
566
567 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
568 const struct ieee80211_reg_rule *rule)
569 {
570 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
571 const struct ieee80211_freq_range *freq_range_tmp;
572 const struct ieee80211_reg_rule *tmp;
573 u32 start_freq, end_freq, idx, no;
574
575 for (idx = 0; idx < rd->n_reg_rules; idx++)
576 if (rule == &rd->reg_rules[idx])
577 break;
578
579 if (idx == rd->n_reg_rules)
580 return 0;
581
582 /* get start_freq */
583 no = idx;
584
585 while (no) {
586 tmp = &rd->reg_rules[--no];
587 freq_range_tmp = &tmp->freq_range;
588
589 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
590 break;
591
592 freq_range = freq_range_tmp;
593 }
594
595 start_freq = freq_range->start_freq_khz;
596
597 /* get end_freq */
598 freq_range = &rule->freq_range;
599 no = idx;
600
601 while (no < rd->n_reg_rules - 1) {
602 tmp = &rd->reg_rules[++no];
603 freq_range_tmp = &tmp->freq_range;
604
605 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
606 break;
607
608 freq_range = freq_range_tmp;
609 }
610
611 end_freq = freq_range->end_freq_khz;
612
613 return end_freq - start_freq;
614 }
615
616 /* Sanity check on a regulatory rule */
617 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
618 {
619 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
620 u32 freq_diff;
621
622 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
623 return false;
624
625 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
626 return false;
627
628 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
629
630 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
631 freq_range->max_bandwidth_khz > freq_diff)
632 return false;
633
634 return true;
635 }
636
637 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
638 {
639 const struct ieee80211_reg_rule *reg_rule = NULL;
640 unsigned int i;
641
642 if (!rd->n_reg_rules)
643 return false;
644
645 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
646 return false;
647
648 for (i = 0; i < rd->n_reg_rules; i++) {
649 reg_rule = &rd->reg_rules[i];
650 if (!is_valid_reg_rule(reg_rule))
651 return false;
652 }
653
654 return true;
655 }
656
657 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
658 u32 center_freq_khz, u32 bw_khz)
659 {
660 u32 start_freq_khz, end_freq_khz;
661
662 start_freq_khz = center_freq_khz - (bw_khz/2);
663 end_freq_khz = center_freq_khz + (bw_khz/2);
664
665 if (start_freq_khz >= freq_range->start_freq_khz &&
666 end_freq_khz <= freq_range->end_freq_khz)
667 return true;
668
669 return false;
670 }
671
672 /**
673 * freq_in_rule_band - tells us if a frequency is in a frequency band
674 * @freq_range: frequency rule we want to query
675 * @freq_khz: frequency we are inquiring about
676 *
677 * This lets us know if a specific frequency rule is or is not relevant to
678 * a specific frequency's band. Bands are device specific and artificial
679 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
680 * however it is safe for now to assume that a frequency rule should not be
681 * part of a frequency's band if the start freq or end freq are off by more
682 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
683 * 60 GHz band.
684 * This resolution can be lowered and should be considered as we add
685 * regulatory rule support for other "bands".
686 **/
687 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
688 u32 freq_khz)
689 {
690 #define ONE_GHZ_IN_KHZ 1000000
691 /*
692 * From 802.11ad: directional multi-gigabit (DMG):
693 * Pertaining to operation in a frequency band containing a channel
694 * with the Channel starting frequency above 45 GHz.
695 */
696 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
697 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
698 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
699 return true;
700 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
701 return true;
702 return false;
703 #undef ONE_GHZ_IN_KHZ
704 }
705
706 /*
707 * Later on we can perhaps use the more restrictive DFS
708 * region but we don't have information for that yet so
709 * for now simply disallow conflicts.
710 */
711 static enum nl80211_dfs_regions
712 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
713 const enum nl80211_dfs_regions dfs_region2)
714 {
715 if (dfs_region1 != dfs_region2)
716 return NL80211_DFS_UNSET;
717 return dfs_region1;
718 }
719
720 /*
721 * Helper for regdom_intersect(), this does the real
722 * mathematical intersection fun
723 */
724 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
725 const struct ieee80211_regdomain *rd2,
726 const struct ieee80211_reg_rule *rule1,
727 const struct ieee80211_reg_rule *rule2,
728 struct ieee80211_reg_rule *intersected_rule)
729 {
730 const struct ieee80211_freq_range *freq_range1, *freq_range2;
731 struct ieee80211_freq_range *freq_range;
732 const struct ieee80211_power_rule *power_rule1, *power_rule2;
733 struct ieee80211_power_rule *power_rule;
734 u32 freq_diff, max_bandwidth1, max_bandwidth2;
735
736 freq_range1 = &rule1->freq_range;
737 freq_range2 = &rule2->freq_range;
738 freq_range = &intersected_rule->freq_range;
739
740 power_rule1 = &rule1->power_rule;
741 power_rule2 = &rule2->power_rule;
742 power_rule = &intersected_rule->power_rule;
743
744 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
745 freq_range2->start_freq_khz);
746 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
747 freq_range2->end_freq_khz);
748
749 max_bandwidth1 = freq_range1->max_bandwidth_khz;
750 max_bandwidth2 = freq_range2->max_bandwidth_khz;
751
752 if (rule1->flags & NL80211_RRF_AUTO_BW)
753 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
754 if (rule2->flags & NL80211_RRF_AUTO_BW)
755 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
756
757 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
758
759 intersected_rule->flags = rule1->flags | rule2->flags;
760
761 /*
762 * In case NL80211_RRF_AUTO_BW requested for both rules
763 * set AUTO_BW in intersected rule also. Next we will
764 * calculate BW correctly in handle_channel function.
765 * In other case remove AUTO_BW flag while we calculate
766 * maximum bandwidth correctly and auto calculation is
767 * not required.
768 */
769 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
770 (rule2->flags & NL80211_RRF_AUTO_BW))
771 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
772 else
773 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
774
775 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
776 if (freq_range->max_bandwidth_khz > freq_diff)
777 freq_range->max_bandwidth_khz = freq_diff;
778
779 power_rule->max_eirp = min(power_rule1->max_eirp,
780 power_rule2->max_eirp);
781 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
782 power_rule2->max_antenna_gain);
783
784 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
785 rule2->dfs_cac_ms);
786
787 if (!is_valid_reg_rule(intersected_rule))
788 return -EINVAL;
789
790 return 0;
791 }
792
793 /**
794 * regdom_intersect - do the intersection between two regulatory domains
795 * @rd1: first regulatory domain
796 * @rd2: second regulatory domain
797 *
798 * Use this function to get the intersection between two regulatory domains.
799 * Once completed we will mark the alpha2 for the rd as intersected, "98",
800 * as no one single alpha2 can represent this regulatory domain.
801 *
802 * Returns a pointer to the regulatory domain structure which will hold the
803 * resulting intersection of rules between rd1 and rd2. We will
804 * kzalloc() this structure for you.
805 */
806 static struct ieee80211_regdomain *
807 regdom_intersect(const struct ieee80211_regdomain *rd1,
808 const struct ieee80211_regdomain *rd2)
809 {
810 int r, size_of_regd;
811 unsigned int x, y;
812 unsigned int num_rules = 0, rule_idx = 0;
813 const struct ieee80211_reg_rule *rule1, *rule2;
814 struct ieee80211_reg_rule *intersected_rule;
815 struct ieee80211_regdomain *rd;
816 /* This is just a dummy holder to help us count */
817 struct ieee80211_reg_rule dummy_rule;
818
819 if (!rd1 || !rd2)
820 return NULL;
821
822 /*
823 * First we get a count of the rules we'll need, then we actually
824 * build them. This is to so we can malloc() and free() a
825 * regdomain once. The reason we use reg_rules_intersect() here
826 * is it will return -EINVAL if the rule computed makes no sense.
827 * All rules that do check out OK are valid.
828 */
829
830 for (x = 0; x < rd1->n_reg_rules; x++) {
831 rule1 = &rd1->reg_rules[x];
832 for (y = 0; y < rd2->n_reg_rules; y++) {
833 rule2 = &rd2->reg_rules[y];
834 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
835 &dummy_rule))
836 num_rules++;
837 }
838 }
839
840 if (!num_rules)
841 return NULL;
842
843 size_of_regd = sizeof(struct ieee80211_regdomain) +
844 num_rules * sizeof(struct ieee80211_reg_rule);
845
846 rd = kzalloc(size_of_regd, GFP_KERNEL);
847 if (!rd)
848 return NULL;
849
850 for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
851 rule1 = &rd1->reg_rules[x];
852 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
853 rule2 = &rd2->reg_rules[y];
854 /*
855 * This time around instead of using the stack lets
856 * write to the target rule directly saving ourselves
857 * a memcpy()
858 */
859 intersected_rule = &rd->reg_rules[rule_idx];
860 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
861 intersected_rule);
862 /*
863 * No need to memset here the intersected rule here as
864 * we're not using the stack anymore
865 */
866 if (r)
867 continue;
868 rule_idx++;
869 }
870 }
871
872 if (rule_idx != num_rules) {
873 kfree(rd);
874 return NULL;
875 }
876
877 rd->n_reg_rules = num_rules;
878 rd->alpha2[0] = '9';
879 rd->alpha2[1] = '8';
880 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
881 rd2->dfs_region);
882
883 return rd;
884 }
885
886 /*
887 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
888 * want to just have the channel structure use these
889 */
890 static u32 map_regdom_flags(u32 rd_flags)
891 {
892 u32 channel_flags = 0;
893 if (rd_flags & NL80211_RRF_NO_IR_ALL)
894 channel_flags |= IEEE80211_CHAN_NO_IR;
895 if (rd_flags & NL80211_RRF_DFS)
896 channel_flags |= IEEE80211_CHAN_RADAR;
897 if (rd_flags & NL80211_RRF_NO_OFDM)
898 channel_flags |= IEEE80211_CHAN_NO_OFDM;
899 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
900 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
901 return channel_flags;
902 }
903
904 static const struct ieee80211_reg_rule *
905 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
906 const struct ieee80211_regdomain *regd)
907 {
908 int i;
909 bool band_rule_found = false;
910 bool bw_fits = false;
911
912 if (!regd)
913 return ERR_PTR(-EINVAL);
914
915 for (i = 0; i < regd->n_reg_rules; i++) {
916 const struct ieee80211_reg_rule *rr;
917 const struct ieee80211_freq_range *fr = NULL;
918
919 rr = &regd->reg_rules[i];
920 fr = &rr->freq_range;
921
922 /*
923 * We only need to know if one frequency rule was
924 * was in center_freq's band, that's enough, so lets
925 * not overwrite it once found
926 */
927 if (!band_rule_found)
928 band_rule_found = freq_in_rule_band(fr, center_freq);
929
930 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
931
932 if (band_rule_found && bw_fits)
933 return rr;
934 }
935
936 if (!band_rule_found)
937 return ERR_PTR(-ERANGE);
938
939 return ERR_PTR(-EINVAL);
940 }
941
942 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
943 u32 center_freq)
944 {
945 const struct ieee80211_regdomain *regd;
946
947 regd = reg_get_regdomain(wiphy);
948
949 return freq_reg_info_regd(wiphy, center_freq, regd);
950 }
951 EXPORT_SYMBOL(freq_reg_info);
952
953 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
954 {
955 switch (initiator) {
956 case NL80211_REGDOM_SET_BY_CORE:
957 return "core";
958 case NL80211_REGDOM_SET_BY_USER:
959 return "user";
960 case NL80211_REGDOM_SET_BY_DRIVER:
961 return "driver";
962 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
963 return "country IE";
964 default:
965 WARN_ON(1);
966 return "bug";
967 }
968 }
969 EXPORT_SYMBOL(reg_initiator_name);
970
971 #ifdef CONFIG_CFG80211_REG_DEBUG
972 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
973 struct ieee80211_channel *chan,
974 const struct ieee80211_reg_rule *reg_rule)
975 {
976 const struct ieee80211_power_rule *power_rule;
977 const struct ieee80211_freq_range *freq_range;
978 char max_antenna_gain[32], bw[32];
979
980 power_rule = &reg_rule->power_rule;
981 freq_range = &reg_rule->freq_range;
982
983 if (!power_rule->max_antenna_gain)
984 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
985 else
986 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
987 power_rule->max_antenna_gain);
988
989 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
990 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
991 freq_range->max_bandwidth_khz,
992 reg_get_max_bandwidth(regd, reg_rule));
993 else
994 snprintf(bw, sizeof(bw), "%d KHz",
995 freq_range->max_bandwidth_khz);
996
997 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
998 chan->center_freq);
999
1000 REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
1001 freq_range->start_freq_khz, freq_range->end_freq_khz,
1002 bw, max_antenna_gain,
1003 power_rule->max_eirp);
1004 }
1005 #else
1006 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1007 struct ieee80211_channel *chan,
1008 const struct ieee80211_reg_rule *reg_rule)
1009 {
1010 return;
1011 }
1012 #endif
1013
1014 /*
1015 * Note that right now we assume the desired channel bandwidth
1016 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1017 * per channel, the primary and the extension channel).
1018 */
1019 static void handle_channel(struct wiphy *wiphy,
1020 enum nl80211_reg_initiator initiator,
1021 struct ieee80211_channel *chan)
1022 {
1023 u32 flags, bw_flags = 0;
1024 const struct ieee80211_reg_rule *reg_rule = NULL;
1025 const struct ieee80211_power_rule *power_rule = NULL;
1026 const struct ieee80211_freq_range *freq_range = NULL;
1027 struct wiphy *request_wiphy = NULL;
1028 struct regulatory_request *lr = get_last_request();
1029 const struct ieee80211_regdomain *regd;
1030 u32 max_bandwidth_khz;
1031
1032 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1033
1034 flags = chan->orig_flags;
1035
1036 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1037 if (IS_ERR(reg_rule)) {
1038 /*
1039 * We will disable all channels that do not match our
1040 * received regulatory rule unless the hint is coming
1041 * from a Country IE and the Country IE had no information
1042 * about a band. The IEEE 802.11 spec allows for an AP
1043 * to send only a subset of the regulatory rules allowed,
1044 * so an AP in the US that only supports 2.4 GHz may only send
1045 * a country IE with information for the 2.4 GHz band
1046 * while 5 GHz is still supported.
1047 */
1048 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1049 PTR_ERR(reg_rule) == -ERANGE)
1050 return;
1051
1052 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1053 request_wiphy && request_wiphy == wiphy &&
1054 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1055 REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1056 chan->center_freq);
1057 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1058 chan->flags = chan->orig_flags;
1059 } else {
1060 REG_DBG_PRINT("Disabling freq %d MHz\n",
1061 chan->center_freq);
1062 chan->flags |= IEEE80211_CHAN_DISABLED;
1063 }
1064 return;
1065 }
1066
1067 regd = reg_get_regdomain(wiphy);
1068 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1069
1070 power_rule = &reg_rule->power_rule;
1071 freq_range = &reg_rule->freq_range;
1072
1073 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1074 /* Check if auto calculation requested */
1075 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1076 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1077
1078 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1079 bw_flags = IEEE80211_CHAN_NO_HT40;
1080 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1081 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1082 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1083 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1084
1085 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1086 request_wiphy && request_wiphy == wiphy &&
1087 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1088 /*
1089 * This guarantees the driver's requested regulatory domain
1090 * will always be used as a base for further regulatory
1091 * settings
1092 */
1093 chan->flags = chan->orig_flags =
1094 map_regdom_flags(reg_rule->flags) | bw_flags;
1095 chan->max_antenna_gain = chan->orig_mag =
1096 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1097 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1098 (int) MBM_TO_DBM(power_rule->max_eirp);
1099 return;
1100 }
1101
1102 chan->dfs_state = NL80211_DFS_USABLE;
1103 chan->dfs_state_entered = jiffies;
1104
1105 chan->beacon_found = false;
1106 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1107 chan->max_antenna_gain =
1108 min_t(int, chan->orig_mag,
1109 MBI_TO_DBI(power_rule->max_antenna_gain));
1110 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1111
1112 if (chan->flags & IEEE80211_CHAN_RADAR) {
1113 if (reg_rule->dfs_cac_ms)
1114 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1115 else
1116 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1117 }
1118
1119 if (chan->orig_mpwr) {
1120 /*
1121 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1122 * will always follow the passed country IE power settings.
1123 */
1124 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1125 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1126 chan->max_power = chan->max_reg_power;
1127 else
1128 chan->max_power = min(chan->orig_mpwr,
1129 chan->max_reg_power);
1130 } else
1131 chan->max_power = chan->max_reg_power;
1132 }
1133
1134 static void handle_band(struct wiphy *wiphy,
1135 enum nl80211_reg_initiator initiator,
1136 struct ieee80211_supported_band *sband)
1137 {
1138 unsigned int i;
1139
1140 if (!sband)
1141 return;
1142
1143 for (i = 0; i < sband->n_channels; i++)
1144 handle_channel(wiphy, initiator, &sband->channels[i]);
1145 }
1146
1147 static bool reg_request_cell_base(struct regulatory_request *request)
1148 {
1149 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1150 return false;
1151 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1152 }
1153
1154 static bool reg_request_indoor(struct regulatory_request *request)
1155 {
1156 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1157 return false;
1158 return request->user_reg_hint_type == NL80211_USER_REG_HINT_INDOOR;
1159 }
1160
1161 bool reg_last_request_cell_base(void)
1162 {
1163 return reg_request_cell_base(get_last_request());
1164 }
1165
1166 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1167 /* Core specific check */
1168 static enum reg_request_treatment
1169 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1170 {
1171 struct regulatory_request *lr = get_last_request();
1172
1173 if (!reg_num_devs_support_basehint)
1174 return REG_REQ_IGNORE;
1175
1176 if (reg_request_cell_base(lr) &&
1177 !regdom_changes(pending_request->alpha2))
1178 return REG_REQ_ALREADY_SET;
1179
1180 return REG_REQ_OK;
1181 }
1182
1183 /* Device specific check */
1184 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1185 {
1186 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1187 }
1188 #else
1189 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1190 {
1191 return REG_REQ_IGNORE;
1192 }
1193
1194 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1195 {
1196 return true;
1197 }
1198 #endif
1199
1200 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1201 {
1202 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1203 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1204 return true;
1205 return false;
1206 }
1207
1208 static bool ignore_reg_update(struct wiphy *wiphy,
1209 enum nl80211_reg_initiator initiator)
1210 {
1211 struct regulatory_request *lr = get_last_request();
1212
1213 if (!lr) {
1214 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1215 "since last_request is not set\n",
1216 reg_initiator_name(initiator));
1217 return true;
1218 }
1219
1220 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1221 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1222 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1223 "since the driver uses its own custom "
1224 "regulatory domain\n",
1225 reg_initiator_name(initiator));
1226 return true;
1227 }
1228
1229 /*
1230 * wiphy->regd will be set once the device has its own
1231 * desired regulatory domain set
1232 */
1233 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1234 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1235 !is_world_regdom(lr->alpha2)) {
1236 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1237 "since the driver requires its own regulatory "
1238 "domain to be set first\n",
1239 reg_initiator_name(initiator));
1240 return true;
1241 }
1242
1243 if (reg_request_cell_base(lr))
1244 return reg_dev_ignore_cell_hint(wiphy);
1245
1246 return false;
1247 }
1248
1249 static bool reg_is_world_roaming(struct wiphy *wiphy)
1250 {
1251 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1252 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1253 struct regulatory_request *lr = get_last_request();
1254
1255 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1256 return true;
1257
1258 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1259 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1260 return true;
1261
1262 return false;
1263 }
1264
1265 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1266 struct reg_beacon *reg_beacon)
1267 {
1268 struct ieee80211_supported_band *sband;
1269 struct ieee80211_channel *chan;
1270 bool channel_changed = false;
1271 struct ieee80211_channel chan_before;
1272
1273 sband = wiphy->bands[reg_beacon->chan.band];
1274 chan = &sband->channels[chan_idx];
1275
1276 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1277 return;
1278
1279 if (chan->beacon_found)
1280 return;
1281
1282 chan->beacon_found = true;
1283
1284 if (!reg_is_world_roaming(wiphy))
1285 return;
1286
1287 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1288 return;
1289
1290 chan_before.center_freq = chan->center_freq;
1291 chan_before.flags = chan->flags;
1292
1293 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1294 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1295 channel_changed = true;
1296 }
1297
1298 if (channel_changed)
1299 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1300 }
1301
1302 /*
1303 * Called when a scan on a wiphy finds a beacon on
1304 * new channel
1305 */
1306 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1307 struct reg_beacon *reg_beacon)
1308 {
1309 unsigned int i;
1310 struct ieee80211_supported_band *sband;
1311
1312 if (!wiphy->bands[reg_beacon->chan.band])
1313 return;
1314
1315 sband = wiphy->bands[reg_beacon->chan.band];
1316
1317 for (i = 0; i < sband->n_channels; i++)
1318 handle_reg_beacon(wiphy, i, reg_beacon);
1319 }
1320
1321 /*
1322 * Called upon reg changes or a new wiphy is added
1323 */
1324 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1325 {
1326 unsigned int i;
1327 struct ieee80211_supported_band *sband;
1328 struct reg_beacon *reg_beacon;
1329
1330 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1331 if (!wiphy->bands[reg_beacon->chan.band])
1332 continue;
1333 sband = wiphy->bands[reg_beacon->chan.band];
1334 for (i = 0; i < sband->n_channels; i++)
1335 handle_reg_beacon(wiphy, i, reg_beacon);
1336 }
1337 }
1338
1339 /* Reap the advantages of previously found beacons */
1340 static void reg_process_beacons(struct wiphy *wiphy)
1341 {
1342 /*
1343 * Means we are just firing up cfg80211, so no beacons would
1344 * have been processed yet.
1345 */
1346 if (!last_request)
1347 return;
1348 wiphy_update_beacon_reg(wiphy);
1349 }
1350
1351 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1352 {
1353 if (!chan)
1354 return false;
1355 if (chan->flags & IEEE80211_CHAN_DISABLED)
1356 return false;
1357 /* This would happen when regulatory rules disallow HT40 completely */
1358 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1359 return false;
1360 return true;
1361 }
1362
1363 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1364 struct ieee80211_channel *channel)
1365 {
1366 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1367 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1368 unsigned int i;
1369
1370 if (!is_ht40_allowed(channel)) {
1371 channel->flags |= IEEE80211_CHAN_NO_HT40;
1372 return;
1373 }
1374
1375 /*
1376 * We need to ensure the extension channels exist to
1377 * be able to use HT40- or HT40+, this finds them (or not)
1378 */
1379 for (i = 0; i < sband->n_channels; i++) {
1380 struct ieee80211_channel *c = &sband->channels[i];
1381
1382 if (c->center_freq == (channel->center_freq - 20))
1383 channel_before = c;
1384 if (c->center_freq == (channel->center_freq + 20))
1385 channel_after = c;
1386 }
1387
1388 /*
1389 * Please note that this assumes target bandwidth is 20 MHz,
1390 * if that ever changes we also need to change the below logic
1391 * to include that as well.
1392 */
1393 if (!is_ht40_allowed(channel_before))
1394 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1395 else
1396 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1397
1398 if (!is_ht40_allowed(channel_after))
1399 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1400 else
1401 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1402 }
1403
1404 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1405 struct ieee80211_supported_band *sband)
1406 {
1407 unsigned int i;
1408
1409 if (!sband)
1410 return;
1411
1412 for (i = 0; i < sband->n_channels; i++)
1413 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1414 }
1415
1416 static void reg_process_ht_flags(struct wiphy *wiphy)
1417 {
1418 enum ieee80211_band band;
1419
1420 if (!wiphy)
1421 return;
1422
1423 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1424 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1425 }
1426
1427 static void reg_call_notifier(struct wiphy *wiphy,
1428 struct regulatory_request *request)
1429 {
1430 if (wiphy->reg_notifier)
1431 wiphy->reg_notifier(wiphy, request);
1432 }
1433
1434 static void wiphy_update_regulatory(struct wiphy *wiphy,
1435 enum nl80211_reg_initiator initiator)
1436 {
1437 enum ieee80211_band band;
1438 struct regulatory_request *lr = get_last_request();
1439
1440 if (ignore_reg_update(wiphy, initiator)) {
1441 /*
1442 * Regulatory updates set by CORE are ignored for custom
1443 * regulatory cards. Let us notify the changes to the driver,
1444 * as some drivers used this to restore its orig_* reg domain.
1445 */
1446 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1447 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1448 reg_call_notifier(wiphy, lr);
1449 return;
1450 }
1451
1452 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1453
1454 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1455 handle_band(wiphy, initiator, wiphy->bands[band]);
1456
1457 reg_process_beacons(wiphy);
1458 reg_process_ht_flags(wiphy);
1459 reg_call_notifier(wiphy, lr);
1460 }
1461
1462 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1463 {
1464 struct cfg80211_registered_device *rdev;
1465 struct wiphy *wiphy;
1466
1467 ASSERT_RTNL();
1468
1469 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1470 wiphy = &rdev->wiphy;
1471 wiphy_update_regulatory(wiphy, initiator);
1472 }
1473 }
1474
1475 static void handle_channel_custom(struct wiphy *wiphy,
1476 struct ieee80211_channel *chan,
1477 const struct ieee80211_regdomain *regd)
1478 {
1479 u32 bw_flags = 0;
1480 const struct ieee80211_reg_rule *reg_rule = NULL;
1481 const struct ieee80211_power_rule *power_rule = NULL;
1482 const struct ieee80211_freq_range *freq_range = NULL;
1483 u32 max_bandwidth_khz;
1484
1485 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1486 regd);
1487
1488 if (IS_ERR(reg_rule)) {
1489 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1490 chan->center_freq);
1491 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1492 chan->flags = chan->orig_flags;
1493 return;
1494 }
1495
1496 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1497
1498 power_rule = &reg_rule->power_rule;
1499 freq_range = &reg_rule->freq_range;
1500
1501 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1502 /* Check if auto calculation requested */
1503 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1504 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1505
1506 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1507 bw_flags = IEEE80211_CHAN_NO_HT40;
1508 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1509 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1510 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1511 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1512
1513 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1514 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1515 chan->max_reg_power = chan->max_power =
1516 (int) MBM_TO_DBM(power_rule->max_eirp);
1517 }
1518
1519 static void handle_band_custom(struct wiphy *wiphy,
1520 struct ieee80211_supported_band *sband,
1521 const struct ieee80211_regdomain *regd)
1522 {
1523 unsigned int i;
1524
1525 if (!sband)
1526 return;
1527
1528 for (i = 0; i < sband->n_channels; i++)
1529 handle_channel_custom(wiphy, &sband->channels[i], regd);
1530 }
1531
1532 /* Used by drivers prior to wiphy registration */
1533 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1534 const struct ieee80211_regdomain *regd)
1535 {
1536 enum ieee80211_band band;
1537 unsigned int bands_set = 0;
1538
1539 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1540 "wiphy should have REGULATORY_CUSTOM_REG\n");
1541 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1542
1543 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1544 if (!wiphy->bands[band])
1545 continue;
1546 handle_band_custom(wiphy, wiphy->bands[band], regd);
1547 bands_set++;
1548 }
1549
1550 /*
1551 * no point in calling this if it won't have any effect
1552 * on your device's supported bands.
1553 */
1554 WARN_ON(!bands_set);
1555 }
1556 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1557
1558 static void reg_set_request_processed(void)
1559 {
1560 bool need_more_processing = false;
1561 struct regulatory_request *lr = get_last_request();
1562
1563 lr->processed = true;
1564
1565 spin_lock(&reg_requests_lock);
1566 if (!list_empty(&reg_requests_list))
1567 need_more_processing = true;
1568 spin_unlock(&reg_requests_lock);
1569
1570 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1571 cancel_delayed_work(&reg_timeout);
1572
1573 if (need_more_processing)
1574 schedule_work(&reg_work);
1575 }
1576
1577 /**
1578 * reg_process_hint_core - process core regulatory requests
1579 * @pending_request: a pending core regulatory request
1580 *
1581 * The wireless subsystem can use this function to process
1582 * a regulatory request issued by the regulatory core.
1583 *
1584 * Returns one of the different reg request treatment values.
1585 */
1586 static enum reg_request_treatment
1587 reg_process_hint_core(struct regulatory_request *core_request)
1588 {
1589
1590 core_request->intersect = false;
1591 core_request->processed = false;
1592
1593 reg_update_last_request(core_request);
1594
1595 return reg_call_crda(core_request);
1596 }
1597
1598 static enum reg_request_treatment
1599 __reg_process_hint_user(struct regulatory_request *user_request)
1600 {
1601 struct regulatory_request *lr = get_last_request();
1602
1603 if (reg_request_indoor(user_request)) {
1604 reg_is_indoor = true;
1605 return REG_REQ_USER_HINT_HANDLED;
1606 }
1607
1608 if (reg_request_cell_base(user_request))
1609 return reg_ignore_cell_hint(user_request);
1610
1611 if (reg_request_cell_base(lr))
1612 return REG_REQ_IGNORE;
1613
1614 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1615 return REG_REQ_INTERSECT;
1616 /*
1617 * If the user knows better the user should set the regdom
1618 * to their country before the IE is picked up
1619 */
1620 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1621 lr->intersect)
1622 return REG_REQ_IGNORE;
1623 /*
1624 * Process user requests only after previous user/driver/core
1625 * requests have been processed
1626 */
1627 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1628 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1629 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1630 regdom_changes(lr->alpha2))
1631 return REG_REQ_IGNORE;
1632
1633 if (!regdom_changes(user_request->alpha2))
1634 return REG_REQ_ALREADY_SET;
1635
1636 return REG_REQ_OK;
1637 }
1638
1639 /**
1640 * reg_process_hint_user - process user regulatory requests
1641 * @user_request: a pending user regulatory request
1642 *
1643 * The wireless subsystem can use this function to process
1644 * a regulatory request initiated by userspace.
1645 *
1646 * Returns one of the different reg request treatment values.
1647 */
1648 static enum reg_request_treatment
1649 reg_process_hint_user(struct regulatory_request *user_request)
1650 {
1651 enum reg_request_treatment treatment;
1652
1653 treatment = __reg_process_hint_user(user_request);
1654 if (treatment == REG_REQ_IGNORE ||
1655 treatment == REG_REQ_ALREADY_SET ||
1656 treatment == REG_REQ_USER_HINT_HANDLED) {
1657 kfree(user_request);
1658 return treatment;
1659 }
1660
1661 user_request->intersect = treatment == REG_REQ_INTERSECT;
1662 user_request->processed = false;
1663
1664 reg_update_last_request(user_request);
1665
1666 user_alpha2[0] = user_request->alpha2[0];
1667 user_alpha2[1] = user_request->alpha2[1];
1668
1669 return reg_call_crda(user_request);
1670 }
1671
1672 static enum reg_request_treatment
1673 __reg_process_hint_driver(struct regulatory_request *driver_request)
1674 {
1675 struct regulatory_request *lr = get_last_request();
1676
1677 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1678 if (regdom_changes(driver_request->alpha2))
1679 return REG_REQ_OK;
1680 return REG_REQ_ALREADY_SET;
1681 }
1682
1683 /*
1684 * This would happen if you unplug and plug your card
1685 * back in or if you add a new device for which the previously
1686 * loaded card also agrees on the regulatory domain.
1687 */
1688 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1689 !regdom_changes(driver_request->alpha2))
1690 return REG_REQ_ALREADY_SET;
1691
1692 return REG_REQ_INTERSECT;
1693 }
1694
1695 /**
1696 * reg_process_hint_driver - process driver regulatory requests
1697 * @driver_request: a pending driver regulatory request
1698 *
1699 * The wireless subsystem can use this function to process
1700 * a regulatory request issued by an 802.11 driver.
1701 *
1702 * Returns one of the different reg request treatment values.
1703 */
1704 static enum reg_request_treatment
1705 reg_process_hint_driver(struct wiphy *wiphy,
1706 struct regulatory_request *driver_request)
1707 {
1708 const struct ieee80211_regdomain *regd;
1709 enum reg_request_treatment treatment;
1710
1711 treatment = __reg_process_hint_driver(driver_request);
1712
1713 switch (treatment) {
1714 case REG_REQ_OK:
1715 break;
1716 case REG_REQ_IGNORE:
1717 case REG_REQ_USER_HINT_HANDLED:
1718 kfree(driver_request);
1719 return treatment;
1720 case REG_REQ_INTERSECT:
1721 /* fall through */
1722 case REG_REQ_ALREADY_SET:
1723 regd = reg_copy_regd(get_cfg80211_regdom());
1724 if (IS_ERR(regd)) {
1725 kfree(driver_request);
1726 return REG_REQ_IGNORE;
1727 }
1728 rcu_assign_pointer(wiphy->regd, regd);
1729 }
1730
1731
1732 driver_request->intersect = treatment == REG_REQ_INTERSECT;
1733 driver_request->processed = false;
1734
1735 reg_update_last_request(driver_request);
1736
1737 /*
1738 * Since CRDA will not be called in this case as we already
1739 * have applied the requested regulatory domain before we just
1740 * inform userspace we have processed the request
1741 */
1742 if (treatment == REG_REQ_ALREADY_SET) {
1743 nl80211_send_reg_change_event(driver_request);
1744 reg_set_request_processed();
1745 return treatment;
1746 }
1747
1748 return reg_call_crda(driver_request);
1749 }
1750
1751 static enum reg_request_treatment
1752 __reg_process_hint_country_ie(struct wiphy *wiphy,
1753 struct regulatory_request *country_ie_request)
1754 {
1755 struct wiphy *last_wiphy = NULL;
1756 struct regulatory_request *lr = get_last_request();
1757
1758 if (reg_request_cell_base(lr)) {
1759 /* Trust a Cell base station over the AP's country IE */
1760 if (regdom_changes(country_ie_request->alpha2))
1761 return REG_REQ_IGNORE;
1762 return REG_REQ_ALREADY_SET;
1763 } else {
1764 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1765 return REG_REQ_IGNORE;
1766 }
1767
1768 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
1769 return -EINVAL;
1770
1771 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
1772 return REG_REQ_OK;
1773
1774 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1775
1776 if (last_wiphy != wiphy) {
1777 /*
1778 * Two cards with two APs claiming different
1779 * Country IE alpha2s. We could
1780 * intersect them, but that seems unlikely
1781 * to be correct. Reject second one for now.
1782 */
1783 if (regdom_changes(country_ie_request->alpha2))
1784 return REG_REQ_IGNORE;
1785 return REG_REQ_ALREADY_SET;
1786 }
1787 /*
1788 * Two consecutive Country IE hints on the same wiphy.
1789 * This should be picked up early by the driver/stack
1790 */
1791 if (WARN_ON(regdom_changes(country_ie_request->alpha2)))
1792 return REG_REQ_OK;
1793 return REG_REQ_ALREADY_SET;
1794 }
1795
1796 /**
1797 * reg_process_hint_country_ie - process regulatory requests from country IEs
1798 * @country_ie_request: a regulatory request from a country IE
1799 *
1800 * The wireless subsystem can use this function to process
1801 * a regulatory request issued by a country Information Element.
1802 *
1803 * Returns one of the different reg request treatment values.
1804 */
1805 static enum reg_request_treatment
1806 reg_process_hint_country_ie(struct wiphy *wiphy,
1807 struct regulatory_request *country_ie_request)
1808 {
1809 enum reg_request_treatment treatment;
1810
1811 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
1812
1813 switch (treatment) {
1814 case REG_REQ_OK:
1815 break;
1816 case REG_REQ_IGNORE:
1817 case REG_REQ_USER_HINT_HANDLED:
1818 /* fall through */
1819 case REG_REQ_ALREADY_SET:
1820 kfree(country_ie_request);
1821 return treatment;
1822 case REG_REQ_INTERSECT:
1823 kfree(country_ie_request);
1824 /*
1825 * This doesn't happen yet, not sure we
1826 * ever want to support it for this case.
1827 */
1828 WARN_ONCE(1, "Unexpected intersection for country IEs");
1829 return REG_REQ_IGNORE;
1830 }
1831
1832 country_ie_request->intersect = false;
1833 country_ie_request->processed = false;
1834
1835 reg_update_last_request(country_ie_request);
1836
1837 return reg_call_crda(country_ie_request);
1838 }
1839
1840 /* This processes *all* regulatory hints */
1841 static void reg_process_hint(struct regulatory_request *reg_request)
1842 {
1843 struct wiphy *wiphy = NULL;
1844 enum reg_request_treatment treatment;
1845
1846 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1847 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1848
1849 switch (reg_request->initiator) {
1850 case NL80211_REGDOM_SET_BY_CORE:
1851 reg_process_hint_core(reg_request);
1852 return;
1853 case NL80211_REGDOM_SET_BY_USER:
1854 treatment = reg_process_hint_user(reg_request);
1855 if (treatment == REG_REQ_IGNORE ||
1856 treatment == REG_REQ_ALREADY_SET)
1857 return;
1858 queue_delayed_work(system_power_efficient_wq,
1859 &reg_timeout, msecs_to_jiffies(3142));
1860 return;
1861 case NL80211_REGDOM_SET_BY_DRIVER:
1862 if (!wiphy)
1863 goto out_free;
1864 treatment = reg_process_hint_driver(wiphy, reg_request);
1865 break;
1866 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1867 if (!wiphy)
1868 goto out_free;
1869 treatment = reg_process_hint_country_ie(wiphy, reg_request);
1870 break;
1871 default:
1872 WARN(1, "invalid initiator %d\n", reg_request->initiator);
1873 goto out_free;
1874 }
1875
1876 /* This is required so that the orig_* parameters are saved */
1877 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
1878 wiphy->regulatory_flags & REGULATORY_STRICT_REG)
1879 wiphy_update_regulatory(wiphy, reg_request->initiator);
1880
1881 return;
1882
1883 out_free:
1884 kfree(reg_request);
1885 }
1886
1887 /*
1888 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1889 * Regulatory hints come on a first come first serve basis and we
1890 * must process each one atomically.
1891 */
1892 static void reg_process_pending_hints(void)
1893 {
1894 struct regulatory_request *reg_request, *lr;
1895
1896 lr = get_last_request();
1897
1898 /* When last_request->processed becomes true this will be rescheduled */
1899 if (lr && !lr->processed) {
1900 REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n");
1901 return;
1902 }
1903
1904 spin_lock(&reg_requests_lock);
1905
1906 if (list_empty(&reg_requests_list)) {
1907 spin_unlock(&reg_requests_lock);
1908 return;
1909 }
1910
1911 reg_request = list_first_entry(&reg_requests_list,
1912 struct regulatory_request,
1913 list);
1914 list_del_init(&reg_request->list);
1915
1916 spin_unlock(&reg_requests_lock);
1917
1918 reg_process_hint(reg_request);
1919 }
1920
1921 /* Processes beacon hints -- this has nothing to do with country IEs */
1922 static void reg_process_pending_beacon_hints(void)
1923 {
1924 struct cfg80211_registered_device *rdev;
1925 struct reg_beacon *pending_beacon, *tmp;
1926
1927 /* This goes through the _pending_ beacon list */
1928 spin_lock_bh(&reg_pending_beacons_lock);
1929
1930 list_for_each_entry_safe(pending_beacon, tmp,
1931 &reg_pending_beacons, list) {
1932 list_del_init(&pending_beacon->list);
1933
1934 /* Applies the beacon hint to current wiphys */
1935 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1936 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1937
1938 /* Remembers the beacon hint for new wiphys or reg changes */
1939 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1940 }
1941
1942 spin_unlock_bh(&reg_pending_beacons_lock);
1943 }
1944
1945 static void reg_todo(struct work_struct *work)
1946 {
1947 rtnl_lock();
1948 reg_process_pending_hints();
1949 reg_process_pending_beacon_hints();
1950 rtnl_unlock();
1951 }
1952
1953 static void queue_regulatory_request(struct regulatory_request *request)
1954 {
1955 request->alpha2[0] = toupper(request->alpha2[0]);
1956 request->alpha2[1] = toupper(request->alpha2[1]);
1957
1958 spin_lock(&reg_requests_lock);
1959 list_add_tail(&request->list, &reg_requests_list);
1960 spin_unlock(&reg_requests_lock);
1961
1962 schedule_work(&reg_work);
1963 }
1964
1965 /*
1966 * Core regulatory hint -- happens during cfg80211_init()
1967 * and when we restore regulatory settings.
1968 */
1969 static int regulatory_hint_core(const char *alpha2)
1970 {
1971 struct regulatory_request *request;
1972
1973 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1974 if (!request)
1975 return -ENOMEM;
1976
1977 request->alpha2[0] = alpha2[0];
1978 request->alpha2[1] = alpha2[1];
1979 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1980
1981 queue_regulatory_request(request);
1982
1983 return 0;
1984 }
1985
1986 /* User hints */
1987 int regulatory_hint_user(const char *alpha2,
1988 enum nl80211_user_reg_hint_type user_reg_hint_type)
1989 {
1990 struct regulatory_request *request;
1991
1992 if (WARN_ON(!alpha2))
1993 return -EINVAL;
1994
1995 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1996 if (!request)
1997 return -ENOMEM;
1998
1999 request->wiphy_idx = WIPHY_IDX_INVALID;
2000 request->alpha2[0] = alpha2[0];
2001 request->alpha2[1] = alpha2[1];
2002 request->initiator = NL80211_REGDOM_SET_BY_USER;
2003 request->user_reg_hint_type = user_reg_hint_type;
2004
2005 queue_regulatory_request(request);
2006
2007 return 0;
2008 }
2009
2010 int regulatory_hint_indoor_user(void)
2011 {
2012 struct regulatory_request *request;
2013
2014 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2015 if (!request)
2016 return -ENOMEM;
2017
2018 request->wiphy_idx = WIPHY_IDX_INVALID;
2019 request->initiator = NL80211_REGDOM_SET_BY_USER;
2020 request->user_reg_hint_type = NL80211_USER_REG_HINT_INDOOR;
2021 queue_regulatory_request(request);
2022
2023 return 0;
2024 }
2025
2026 /* Driver hints */
2027 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2028 {
2029 struct regulatory_request *request;
2030
2031 if (WARN_ON(!alpha2 || !wiphy))
2032 return -EINVAL;
2033
2034 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2035
2036 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2037 if (!request)
2038 return -ENOMEM;
2039
2040 request->wiphy_idx = get_wiphy_idx(wiphy);
2041
2042 request->alpha2[0] = alpha2[0];
2043 request->alpha2[1] = alpha2[1];
2044 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2045
2046 queue_regulatory_request(request);
2047
2048 return 0;
2049 }
2050 EXPORT_SYMBOL(regulatory_hint);
2051
2052 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2053 const u8 *country_ie, u8 country_ie_len)
2054 {
2055 char alpha2[2];
2056 enum environment_cap env = ENVIRON_ANY;
2057 struct regulatory_request *request = NULL, *lr;
2058
2059 /* IE len must be evenly divisible by 2 */
2060 if (country_ie_len & 0x01)
2061 return;
2062
2063 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2064 return;
2065
2066 request = kzalloc(sizeof(*request), GFP_KERNEL);
2067 if (!request)
2068 return;
2069
2070 alpha2[0] = country_ie[0];
2071 alpha2[1] = country_ie[1];
2072
2073 if (country_ie[2] == 'I')
2074 env = ENVIRON_INDOOR;
2075 else if (country_ie[2] == 'O')
2076 env = ENVIRON_OUTDOOR;
2077
2078 rcu_read_lock();
2079 lr = get_last_request();
2080
2081 if (unlikely(!lr))
2082 goto out;
2083
2084 /*
2085 * We will run this only upon a successful connection on cfg80211.
2086 * We leave conflict resolution to the workqueue, where can hold
2087 * the RTNL.
2088 */
2089 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2090 lr->wiphy_idx != WIPHY_IDX_INVALID)
2091 goto out;
2092
2093 request->wiphy_idx = get_wiphy_idx(wiphy);
2094 request->alpha2[0] = alpha2[0];
2095 request->alpha2[1] = alpha2[1];
2096 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2097 request->country_ie_env = env;
2098
2099 queue_regulatory_request(request);
2100 request = NULL;
2101 out:
2102 kfree(request);
2103 rcu_read_unlock();
2104 }
2105
2106 static void restore_alpha2(char *alpha2, bool reset_user)
2107 {
2108 /* indicates there is no alpha2 to consider for restoration */
2109 alpha2[0] = '9';
2110 alpha2[1] = '7';
2111
2112 /* The user setting has precedence over the module parameter */
2113 if (is_user_regdom_saved()) {
2114 /* Unless we're asked to ignore it and reset it */
2115 if (reset_user) {
2116 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2117 user_alpha2[0] = '9';
2118 user_alpha2[1] = '7';
2119
2120 /*
2121 * If we're ignoring user settings, we still need to
2122 * check the module parameter to ensure we put things
2123 * back as they were for a full restore.
2124 */
2125 if (!is_world_regdom(ieee80211_regdom)) {
2126 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2127 ieee80211_regdom[0], ieee80211_regdom[1]);
2128 alpha2[0] = ieee80211_regdom[0];
2129 alpha2[1] = ieee80211_regdom[1];
2130 }
2131 } else {
2132 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2133 user_alpha2[0], user_alpha2[1]);
2134 alpha2[0] = user_alpha2[0];
2135 alpha2[1] = user_alpha2[1];
2136 }
2137 } else if (!is_world_regdom(ieee80211_regdom)) {
2138 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2139 ieee80211_regdom[0], ieee80211_regdom[1]);
2140 alpha2[0] = ieee80211_regdom[0];
2141 alpha2[1] = ieee80211_regdom[1];
2142 } else
2143 REG_DBG_PRINT("Restoring regulatory settings\n");
2144 }
2145
2146 static void restore_custom_reg_settings(struct wiphy *wiphy)
2147 {
2148 struct ieee80211_supported_band *sband;
2149 enum ieee80211_band band;
2150 struct ieee80211_channel *chan;
2151 int i;
2152
2153 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2154 sband = wiphy->bands[band];
2155 if (!sband)
2156 continue;
2157 for (i = 0; i < sband->n_channels; i++) {
2158 chan = &sband->channels[i];
2159 chan->flags = chan->orig_flags;
2160 chan->max_antenna_gain = chan->orig_mag;
2161 chan->max_power = chan->orig_mpwr;
2162 chan->beacon_found = false;
2163 }
2164 }
2165 }
2166
2167 /*
2168 * Restoring regulatory settings involves ingoring any
2169 * possibly stale country IE information and user regulatory
2170 * settings if so desired, this includes any beacon hints
2171 * learned as we could have traveled outside to another country
2172 * after disconnection. To restore regulatory settings we do
2173 * exactly what we did at bootup:
2174 *
2175 * - send a core regulatory hint
2176 * - send a user regulatory hint if applicable
2177 *
2178 * Device drivers that send a regulatory hint for a specific country
2179 * keep their own regulatory domain on wiphy->regd so that does does
2180 * not need to be remembered.
2181 */
2182 static void restore_regulatory_settings(bool reset_user)
2183 {
2184 char alpha2[2];
2185 char world_alpha2[2];
2186 struct reg_beacon *reg_beacon, *btmp;
2187 struct regulatory_request *reg_request, *tmp;
2188 LIST_HEAD(tmp_reg_req_list);
2189 struct cfg80211_registered_device *rdev;
2190
2191 ASSERT_RTNL();
2192
2193 reg_is_indoor = false;
2194
2195 reset_regdomains(true, &world_regdom);
2196 restore_alpha2(alpha2, reset_user);
2197
2198 /*
2199 * If there's any pending requests we simply
2200 * stash them to a temporary pending queue and
2201 * add then after we've restored regulatory
2202 * settings.
2203 */
2204 spin_lock(&reg_requests_lock);
2205 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2206 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
2207 continue;
2208 list_move_tail(&reg_request->list, &tmp_reg_req_list);
2209 }
2210 spin_unlock(&reg_requests_lock);
2211
2212 /* Clear beacon hints */
2213 spin_lock_bh(&reg_pending_beacons_lock);
2214 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2215 list_del(&reg_beacon->list);
2216 kfree(reg_beacon);
2217 }
2218 spin_unlock_bh(&reg_pending_beacons_lock);
2219
2220 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2221 list_del(&reg_beacon->list);
2222 kfree(reg_beacon);
2223 }
2224
2225 /* First restore to the basic regulatory settings */
2226 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2227 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2228
2229 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2230 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2231 restore_custom_reg_settings(&rdev->wiphy);
2232 }
2233
2234 regulatory_hint_core(world_alpha2);
2235
2236 /*
2237 * This restores the ieee80211_regdom module parameter
2238 * preference or the last user requested regulatory
2239 * settings, user regulatory settings takes precedence.
2240 */
2241 if (is_an_alpha2(alpha2))
2242 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2243
2244 spin_lock(&reg_requests_lock);
2245 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2246 spin_unlock(&reg_requests_lock);
2247
2248 REG_DBG_PRINT("Kicking the queue\n");
2249
2250 schedule_work(&reg_work);
2251 }
2252
2253 void regulatory_hint_disconnect(void)
2254 {
2255 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2256 restore_regulatory_settings(false);
2257 }
2258
2259 static bool freq_is_chan_12_13_14(u16 freq)
2260 {
2261 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2262 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2263 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2264 return true;
2265 return false;
2266 }
2267
2268 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2269 {
2270 struct reg_beacon *pending_beacon;
2271
2272 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2273 if (beacon_chan->center_freq ==
2274 pending_beacon->chan.center_freq)
2275 return true;
2276 return false;
2277 }
2278
2279 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2280 struct ieee80211_channel *beacon_chan,
2281 gfp_t gfp)
2282 {
2283 struct reg_beacon *reg_beacon;
2284 bool processing;
2285
2286 if (beacon_chan->beacon_found ||
2287 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2288 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2289 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2290 return 0;
2291
2292 spin_lock_bh(&reg_pending_beacons_lock);
2293 processing = pending_reg_beacon(beacon_chan);
2294 spin_unlock_bh(&reg_pending_beacons_lock);
2295
2296 if (processing)
2297 return 0;
2298
2299 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2300 if (!reg_beacon)
2301 return -ENOMEM;
2302
2303 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2304 beacon_chan->center_freq,
2305 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2306 wiphy_name(wiphy));
2307
2308 memcpy(&reg_beacon->chan, beacon_chan,
2309 sizeof(struct ieee80211_channel));
2310
2311 /*
2312 * Since we can be called from BH or and non-BH context
2313 * we must use spin_lock_bh()
2314 */
2315 spin_lock_bh(&reg_pending_beacons_lock);
2316 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2317 spin_unlock_bh(&reg_pending_beacons_lock);
2318
2319 schedule_work(&reg_work);
2320
2321 return 0;
2322 }
2323
2324 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2325 {
2326 unsigned int i;
2327 const struct ieee80211_reg_rule *reg_rule = NULL;
2328 const struct ieee80211_freq_range *freq_range = NULL;
2329 const struct ieee80211_power_rule *power_rule = NULL;
2330 char bw[32], cac_time[32];
2331
2332 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2333
2334 for (i = 0; i < rd->n_reg_rules; i++) {
2335 reg_rule = &rd->reg_rules[i];
2336 freq_range = &reg_rule->freq_range;
2337 power_rule = &reg_rule->power_rule;
2338
2339 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2340 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2341 freq_range->max_bandwidth_khz,
2342 reg_get_max_bandwidth(rd, reg_rule));
2343 else
2344 snprintf(bw, sizeof(bw), "%d KHz",
2345 freq_range->max_bandwidth_khz);
2346
2347 if (reg_rule->flags & NL80211_RRF_DFS)
2348 scnprintf(cac_time, sizeof(cac_time), "%u s",
2349 reg_rule->dfs_cac_ms/1000);
2350 else
2351 scnprintf(cac_time, sizeof(cac_time), "N/A");
2352
2353
2354 /*
2355 * There may not be documentation for max antenna gain
2356 * in certain regions
2357 */
2358 if (power_rule->max_antenna_gain)
2359 pr_info(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2360 freq_range->start_freq_khz,
2361 freq_range->end_freq_khz,
2362 bw,
2363 power_rule->max_antenna_gain,
2364 power_rule->max_eirp,
2365 cac_time);
2366 else
2367 pr_info(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2368 freq_range->start_freq_khz,
2369 freq_range->end_freq_khz,
2370 bw,
2371 power_rule->max_eirp,
2372 cac_time);
2373 }
2374 }
2375
2376 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2377 {
2378 switch (dfs_region) {
2379 case NL80211_DFS_UNSET:
2380 case NL80211_DFS_FCC:
2381 case NL80211_DFS_ETSI:
2382 case NL80211_DFS_JP:
2383 return true;
2384 default:
2385 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2386 dfs_region);
2387 return false;
2388 }
2389 }
2390
2391 static void print_regdomain(const struct ieee80211_regdomain *rd)
2392 {
2393 struct regulatory_request *lr = get_last_request();
2394
2395 if (is_intersected_alpha2(rd->alpha2)) {
2396 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2397 struct cfg80211_registered_device *rdev;
2398 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2399 if (rdev) {
2400 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2401 rdev->country_ie_alpha2[0],
2402 rdev->country_ie_alpha2[1]);
2403 } else
2404 pr_info("Current regulatory domain intersected:\n");
2405 } else
2406 pr_info("Current regulatory domain intersected:\n");
2407 } else if (is_world_regdom(rd->alpha2)) {
2408 pr_info("World regulatory domain updated:\n");
2409 } else {
2410 if (is_unknown_alpha2(rd->alpha2))
2411 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2412 else {
2413 if (reg_request_cell_base(lr))
2414 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2415 rd->alpha2[0], rd->alpha2[1]);
2416 else
2417 pr_info("Regulatory domain changed to country: %c%c\n",
2418 rd->alpha2[0], rd->alpha2[1]);
2419 }
2420 }
2421
2422 pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2423 print_rd_rules(rd);
2424 }
2425
2426 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2427 {
2428 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2429 print_rd_rules(rd);
2430 }
2431
2432 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2433 {
2434 if (!is_world_regdom(rd->alpha2))
2435 return -EINVAL;
2436 update_world_regdomain(rd);
2437 return 0;
2438 }
2439
2440 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2441 struct regulatory_request *user_request)
2442 {
2443 const struct ieee80211_regdomain *intersected_rd = NULL;
2444
2445 if (!regdom_changes(rd->alpha2))
2446 return -EALREADY;
2447
2448 if (!is_valid_rd(rd)) {
2449 pr_err("Invalid regulatory domain detected:\n");
2450 print_regdomain_info(rd);
2451 return -EINVAL;
2452 }
2453
2454 if (!user_request->intersect) {
2455 reset_regdomains(false, rd);
2456 return 0;
2457 }
2458
2459 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2460 if (!intersected_rd)
2461 return -EINVAL;
2462
2463 kfree(rd);
2464 rd = NULL;
2465 reset_regdomains(false, intersected_rd);
2466
2467 return 0;
2468 }
2469
2470 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2471 struct regulatory_request *driver_request)
2472 {
2473 const struct ieee80211_regdomain *regd;
2474 const struct ieee80211_regdomain *intersected_rd = NULL;
2475 const struct ieee80211_regdomain *tmp;
2476 struct wiphy *request_wiphy;
2477
2478 if (is_world_regdom(rd->alpha2))
2479 return -EINVAL;
2480
2481 if (!regdom_changes(rd->alpha2))
2482 return -EALREADY;
2483
2484 if (!is_valid_rd(rd)) {
2485 pr_err("Invalid regulatory domain detected:\n");
2486 print_regdomain_info(rd);
2487 return -EINVAL;
2488 }
2489
2490 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2491 if (!request_wiphy) {
2492 queue_delayed_work(system_power_efficient_wq,
2493 &reg_timeout, 0);
2494 return -ENODEV;
2495 }
2496
2497 if (!driver_request->intersect) {
2498 if (request_wiphy->regd)
2499 return -EALREADY;
2500
2501 regd = reg_copy_regd(rd);
2502 if (IS_ERR(regd))
2503 return PTR_ERR(regd);
2504
2505 rcu_assign_pointer(request_wiphy->regd, regd);
2506 reset_regdomains(false, rd);
2507 return 0;
2508 }
2509
2510 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2511 if (!intersected_rd)
2512 return -EINVAL;
2513
2514 /*
2515 * We can trash what CRDA provided now.
2516 * However if a driver requested this specific regulatory
2517 * domain we keep it for its private use
2518 */
2519 tmp = get_wiphy_regdom(request_wiphy);
2520 rcu_assign_pointer(request_wiphy->regd, rd);
2521 rcu_free_regdom(tmp);
2522
2523 rd = NULL;
2524
2525 reset_regdomains(false, intersected_rd);
2526
2527 return 0;
2528 }
2529
2530 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2531 struct regulatory_request *country_ie_request)
2532 {
2533 struct wiphy *request_wiphy;
2534
2535 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2536 !is_unknown_alpha2(rd->alpha2))
2537 return -EINVAL;
2538
2539 /*
2540 * Lets only bother proceeding on the same alpha2 if the current
2541 * rd is non static (it means CRDA was present and was used last)
2542 * and the pending request came in from a country IE
2543 */
2544
2545 if (!is_valid_rd(rd)) {
2546 pr_err("Invalid regulatory domain detected:\n");
2547 print_regdomain_info(rd);
2548 return -EINVAL;
2549 }
2550
2551 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2552 if (!request_wiphy) {
2553 queue_delayed_work(system_power_efficient_wq,
2554 &reg_timeout, 0);
2555 return -ENODEV;
2556 }
2557
2558 if (country_ie_request->intersect)
2559 return -EINVAL;
2560
2561 reset_regdomains(false, rd);
2562 return 0;
2563 }
2564
2565 /*
2566 * Use this call to set the current regulatory domain. Conflicts with
2567 * multiple drivers can be ironed out later. Caller must've already
2568 * kmalloc'd the rd structure.
2569 */
2570 int set_regdom(const struct ieee80211_regdomain *rd)
2571 {
2572 struct regulatory_request *lr;
2573 bool user_reset = false;
2574 int r;
2575
2576 if (!reg_is_valid_request(rd->alpha2)) {
2577 kfree(rd);
2578 return -EINVAL;
2579 }
2580
2581 lr = get_last_request();
2582
2583 /* Note that this doesn't update the wiphys, this is done below */
2584 switch (lr->initiator) {
2585 case NL80211_REGDOM_SET_BY_CORE:
2586 r = reg_set_rd_core(rd);
2587 break;
2588 case NL80211_REGDOM_SET_BY_USER:
2589 r = reg_set_rd_user(rd, lr);
2590 user_reset = true;
2591 break;
2592 case NL80211_REGDOM_SET_BY_DRIVER:
2593 r = reg_set_rd_driver(rd, lr);
2594 break;
2595 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2596 r = reg_set_rd_country_ie(rd, lr);
2597 break;
2598 default:
2599 WARN(1, "invalid initiator %d\n", lr->initiator);
2600 return -EINVAL;
2601 }
2602
2603 if (r) {
2604 switch (r) {
2605 case -EALREADY:
2606 reg_set_request_processed();
2607 break;
2608 default:
2609 /* Back to world regulatory in case of errors */
2610 restore_regulatory_settings(user_reset);
2611 }
2612
2613 kfree(rd);
2614 return r;
2615 }
2616
2617 /* This would make this whole thing pointless */
2618 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2619 return -EINVAL;
2620
2621 /* update all wiphys now with the new established regulatory domain */
2622 update_all_wiphy_regulatory(lr->initiator);
2623
2624 print_regdomain(get_cfg80211_regdom());
2625
2626 nl80211_send_reg_change_event(lr);
2627
2628 reg_set_request_processed();
2629
2630 return 0;
2631 }
2632
2633 void wiphy_regulatory_register(struct wiphy *wiphy)
2634 {
2635 struct regulatory_request *lr;
2636
2637 if (!reg_dev_ignore_cell_hint(wiphy))
2638 reg_num_devs_support_basehint++;
2639
2640 lr = get_last_request();
2641 wiphy_update_regulatory(wiphy, lr->initiator);
2642 }
2643
2644 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2645 {
2646 struct wiphy *request_wiphy = NULL;
2647 struct regulatory_request *lr;
2648
2649 lr = get_last_request();
2650
2651 if (!reg_dev_ignore_cell_hint(wiphy))
2652 reg_num_devs_support_basehint--;
2653
2654 rcu_free_regdom(get_wiphy_regdom(wiphy));
2655 RCU_INIT_POINTER(wiphy->regd, NULL);
2656
2657 if (lr)
2658 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2659
2660 if (!request_wiphy || request_wiphy != wiphy)
2661 return;
2662
2663 lr->wiphy_idx = WIPHY_IDX_INVALID;
2664 lr->country_ie_env = ENVIRON_ANY;
2665 }
2666
2667 static void reg_timeout_work(struct work_struct *work)
2668 {
2669 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2670 rtnl_lock();
2671 restore_regulatory_settings(true);
2672 rtnl_unlock();
2673 }
2674
2675 /*
2676 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
2677 * UNII band definitions
2678 */
2679 int cfg80211_get_unii(int freq)
2680 {
2681 /* UNII-1 */
2682 if (freq >= 5150 && freq <= 5250)
2683 return 0;
2684
2685 /* UNII-2A */
2686 if (freq > 5250 && freq <= 5350)
2687 return 1;
2688
2689 /* UNII-2B */
2690 if (freq > 5350 && freq <= 5470)
2691 return 2;
2692
2693 /* UNII-2C */
2694 if (freq > 5470 && freq <= 5725)
2695 return 3;
2696
2697 /* UNII-3 */
2698 if (freq > 5725 && freq <= 5825)
2699 return 4;
2700
2701 return -EINVAL;
2702 }
2703
2704 bool regulatory_indoor_allowed(void)
2705 {
2706 return reg_is_indoor;
2707 }
2708
2709 int __init regulatory_init(void)
2710 {
2711 int err = 0;
2712
2713 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2714 if (IS_ERR(reg_pdev))
2715 return PTR_ERR(reg_pdev);
2716
2717 spin_lock_init(&reg_requests_lock);
2718 spin_lock_init(&reg_pending_beacons_lock);
2719
2720 reg_regdb_size_check();
2721
2722 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2723
2724 user_alpha2[0] = '9';
2725 user_alpha2[1] = '7';
2726
2727 /* We always try to get an update for the static regdomain */
2728 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2729 if (err) {
2730 if (err == -ENOMEM)
2731 return err;
2732 /*
2733 * N.B. kobject_uevent_env() can fail mainly for when we're out
2734 * memory which is handled and propagated appropriately above
2735 * but it can also fail during a netlink_broadcast() or during
2736 * early boot for call_usermodehelper(). For now treat these
2737 * errors as non-fatal.
2738 */
2739 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2740 }
2741
2742 /*
2743 * Finally, if the user set the module parameter treat it
2744 * as a user hint.
2745 */
2746 if (!is_world_regdom(ieee80211_regdom))
2747 regulatory_hint_user(ieee80211_regdom,
2748 NL80211_USER_REG_HINT_USER);
2749
2750 return 0;
2751 }
2752
2753 void regulatory_exit(void)
2754 {
2755 struct regulatory_request *reg_request, *tmp;
2756 struct reg_beacon *reg_beacon, *btmp;
2757
2758 cancel_work_sync(&reg_work);
2759 cancel_delayed_work_sync(&reg_timeout);
2760
2761 /* Lock to suppress warnings */
2762 rtnl_lock();
2763 reset_regdomains(true, NULL);
2764 rtnl_unlock();
2765
2766 dev_set_uevent_suppress(&reg_pdev->dev, true);
2767
2768 platform_device_unregister(reg_pdev);
2769
2770 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2771 list_del(&reg_beacon->list);
2772 kfree(reg_beacon);
2773 }
2774
2775 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2776 list_del(&reg_beacon->list);
2777 kfree(reg_beacon);
2778 }
2779
2780 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2781 list_del(&reg_request->list);
2782 kfree(reg_request);
2783 }
2784 }