]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/wireless/reg.c
Merge tag 'armsoc-arm64' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[mirror_ubuntu-bionic-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 *
8 * Permission to use, copy, modify, and/or distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21
22 /**
23 * DOC: Wireless regulatory infrastructure
24 *
25 * The usual implementation is for a driver to read a device EEPROM to
26 * determine which regulatory domain it should be operating under, then
27 * looking up the allowable channels in a driver-local table and finally
28 * registering those channels in the wiphy structure.
29 *
30 * Another set of compliance enforcement is for drivers to use their
31 * own compliance limits which can be stored on the EEPROM. The host
32 * driver or firmware may ensure these are used.
33 *
34 * In addition to all this we provide an extra layer of regulatory
35 * conformance. For drivers which do not have any regulatory
36 * information CRDA provides the complete regulatory solution.
37 * For others it provides a community effort on further restrictions
38 * to enhance compliance.
39 *
40 * Note: When number of rules --> infinity we will not be able to
41 * index on alpha2 any more, instead we'll probably have to
42 * rely on some SHA1 checksum of the regdomain for example.
43 *
44 */
45
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "rdev-ops.h"
60 #include "regdb.h"
61 #include "nl80211.h"
62
63 /*
64 * Grace period we give before making sure all current interfaces reside on
65 * channels allowed by the current regulatory domain.
66 */
67 #define REG_ENFORCE_GRACE_MS 60000
68
69 /**
70 * enum reg_request_treatment - regulatory request treatment
71 *
72 * @REG_REQ_OK: continue processing the regulatory request
73 * @REG_REQ_IGNORE: ignore the regulatory request
74 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
75 * be intersected with the current one.
76 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
77 * regulatory settings, and no further processing is required.
78 */
79 enum reg_request_treatment {
80 REG_REQ_OK,
81 REG_REQ_IGNORE,
82 REG_REQ_INTERSECT,
83 REG_REQ_ALREADY_SET,
84 };
85
86 static struct regulatory_request core_request_world = {
87 .initiator = NL80211_REGDOM_SET_BY_CORE,
88 .alpha2[0] = '0',
89 .alpha2[1] = '0',
90 .intersect = false,
91 .processed = true,
92 .country_ie_env = ENVIRON_ANY,
93 };
94
95 /*
96 * Receipt of information from last regulatory request,
97 * protected by RTNL (and can be accessed with RCU protection)
98 */
99 static struct regulatory_request __rcu *last_request =
100 (void __force __rcu *)&core_request_world;
101
102 /* To trigger userspace events */
103 static struct platform_device *reg_pdev;
104
105 /*
106 * Central wireless core regulatory domains, we only need two,
107 * the current one and a world regulatory domain in case we have no
108 * information to give us an alpha2.
109 * (protected by RTNL, can be read under RCU)
110 */
111 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
112
113 /*
114 * Number of devices that registered to the core
115 * that support cellular base station regulatory hints
116 * (protected by RTNL)
117 */
118 static int reg_num_devs_support_basehint;
119
120 /*
121 * State variable indicating if the platform on which the devices
122 * are attached is operating in an indoor environment. The state variable
123 * is relevant for all registered devices.
124 */
125 static bool reg_is_indoor;
126 static spinlock_t reg_indoor_lock;
127
128 /* Used to track the userspace process controlling the indoor setting */
129 static u32 reg_is_indoor_portid;
130
131 static void restore_regulatory_settings(bool reset_user);
132
133 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
134 {
135 return rtnl_dereference(cfg80211_regdomain);
136 }
137
138 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
139 {
140 return rtnl_dereference(wiphy->regd);
141 }
142
143 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
144 {
145 switch (dfs_region) {
146 case NL80211_DFS_UNSET:
147 return "unset";
148 case NL80211_DFS_FCC:
149 return "FCC";
150 case NL80211_DFS_ETSI:
151 return "ETSI";
152 case NL80211_DFS_JP:
153 return "JP";
154 }
155 return "Unknown";
156 }
157
158 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
159 {
160 const struct ieee80211_regdomain *regd = NULL;
161 const struct ieee80211_regdomain *wiphy_regd = NULL;
162
163 regd = get_cfg80211_regdom();
164 if (!wiphy)
165 goto out;
166
167 wiphy_regd = get_wiphy_regdom(wiphy);
168 if (!wiphy_regd)
169 goto out;
170
171 if (wiphy_regd->dfs_region == regd->dfs_region)
172 goto out;
173
174 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
175 dev_name(&wiphy->dev),
176 reg_dfs_region_str(wiphy_regd->dfs_region),
177 reg_dfs_region_str(regd->dfs_region));
178
179 out:
180 return regd->dfs_region;
181 }
182
183 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
184 {
185 if (!r)
186 return;
187 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
188 }
189
190 static struct regulatory_request *get_last_request(void)
191 {
192 return rcu_dereference_rtnl(last_request);
193 }
194
195 /* Used to queue up regulatory hints */
196 static LIST_HEAD(reg_requests_list);
197 static spinlock_t reg_requests_lock;
198
199 /* Used to queue up beacon hints for review */
200 static LIST_HEAD(reg_pending_beacons);
201 static spinlock_t reg_pending_beacons_lock;
202
203 /* Used to keep track of processed beacon hints */
204 static LIST_HEAD(reg_beacon_list);
205
206 struct reg_beacon {
207 struct list_head list;
208 struct ieee80211_channel chan;
209 };
210
211 static void reg_check_chans_work(struct work_struct *work);
212 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
213
214 static void reg_todo(struct work_struct *work);
215 static DECLARE_WORK(reg_work, reg_todo);
216
217 /* We keep a static world regulatory domain in case of the absence of CRDA */
218 static const struct ieee80211_regdomain world_regdom = {
219 .n_reg_rules = 8,
220 .alpha2 = "00",
221 .reg_rules = {
222 /* IEEE 802.11b/g, channels 1..11 */
223 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
224 /* IEEE 802.11b/g, channels 12..13. */
225 REG_RULE(2467-10, 2472+10, 20, 6, 20,
226 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
227 /* IEEE 802.11 channel 14 - Only JP enables
228 * this and for 802.11b only */
229 REG_RULE(2484-10, 2484+10, 20, 6, 20,
230 NL80211_RRF_NO_IR |
231 NL80211_RRF_NO_OFDM),
232 /* IEEE 802.11a, channel 36..48 */
233 REG_RULE(5180-10, 5240+10, 80, 6, 20,
234 NL80211_RRF_NO_IR |
235 NL80211_RRF_AUTO_BW),
236
237 /* IEEE 802.11a, channel 52..64 - DFS required */
238 REG_RULE(5260-10, 5320+10, 80, 6, 20,
239 NL80211_RRF_NO_IR |
240 NL80211_RRF_AUTO_BW |
241 NL80211_RRF_DFS),
242
243 /* IEEE 802.11a, channel 100..144 - DFS required */
244 REG_RULE(5500-10, 5720+10, 160, 6, 20,
245 NL80211_RRF_NO_IR |
246 NL80211_RRF_DFS),
247
248 /* IEEE 802.11a, channel 149..165 */
249 REG_RULE(5745-10, 5825+10, 80, 6, 20,
250 NL80211_RRF_NO_IR),
251
252 /* IEEE 802.11ad (60GHz), channels 1..3 */
253 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
254 }
255 };
256
257 /* protected by RTNL */
258 static const struct ieee80211_regdomain *cfg80211_world_regdom =
259 &world_regdom;
260
261 static char *ieee80211_regdom = "00";
262 static char user_alpha2[2];
263
264 module_param(ieee80211_regdom, charp, 0444);
265 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
266
267 static void reg_free_request(struct regulatory_request *request)
268 {
269 if (request == &core_request_world)
270 return;
271
272 if (request != get_last_request())
273 kfree(request);
274 }
275
276 static void reg_free_last_request(void)
277 {
278 struct regulatory_request *lr = get_last_request();
279
280 if (lr != &core_request_world && lr)
281 kfree_rcu(lr, rcu_head);
282 }
283
284 static void reg_update_last_request(struct regulatory_request *request)
285 {
286 struct regulatory_request *lr;
287
288 lr = get_last_request();
289 if (lr == request)
290 return;
291
292 reg_free_last_request();
293 rcu_assign_pointer(last_request, request);
294 }
295
296 static void reset_regdomains(bool full_reset,
297 const struct ieee80211_regdomain *new_regdom)
298 {
299 const struct ieee80211_regdomain *r;
300
301 ASSERT_RTNL();
302
303 r = get_cfg80211_regdom();
304
305 /* avoid freeing static information or freeing something twice */
306 if (r == cfg80211_world_regdom)
307 r = NULL;
308 if (cfg80211_world_regdom == &world_regdom)
309 cfg80211_world_regdom = NULL;
310 if (r == &world_regdom)
311 r = NULL;
312
313 rcu_free_regdom(r);
314 rcu_free_regdom(cfg80211_world_regdom);
315
316 cfg80211_world_regdom = &world_regdom;
317 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
318
319 if (!full_reset)
320 return;
321
322 reg_update_last_request(&core_request_world);
323 }
324
325 /*
326 * Dynamic world regulatory domain requested by the wireless
327 * core upon initialization
328 */
329 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
330 {
331 struct regulatory_request *lr;
332
333 lr = get_last_request();
334
335 WARN_ON(!lr);
336
337 reset_regdomains(false, rd);
338
339 cfg80211_world_regdom = rd;
340 }
341
342 bool is_world_regdom(const char *alpha2)
343 {
344 if (!alpha2)
345 return false;
346 return alpha2[0] == '0' && alpha2[1] == '0';
347 }
348
349 static bool is_alpha2_set(const char *alpha2)
350 {
351 if (!alpha2)
352 return false;
353 return alpha2[0] && alpha2[1];
354 }
355
356 static bool is_unknown_alpha2(const char *alpha2)
357 {
358 if (!alpha2)
359 return false;
360 /*
361 * Special case where regulatory domain was built by driver
362 * but a specific alpha2 cannot be determined
363 */
364 return alpha2[0] == '9' && alpha2[1] == '9';
365 }
366
367 static bool is_intersected_alpha2(const char *alpha2)
368 {
369 if (!alpha2)
370 return false;
371 /*
372 * Special case where regulatory domain is the
373 * result of an intersection between two regulatory domain
374 * structures
375 */
376 return alpha2[0] == '9' && alpha2[1] == '8';
377 }
378
379 static bool is_an_alpha2(const char *alpha2)
380 {
381 if (!alpha2)
382 return false;
383 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
384 }
385
386 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
387 {
388 if (!alpha2_x || !alpha2_y)
389 return false;
390 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
391 }
392
393 static bool regdom_changes(const char *alpha2)
394 {
395 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
396
397 if (!r)
398 return true;
399 return !alpha2_equal(r->alpha2, alpha2);
400 }
401
402 /*
403 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
404 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
405 * has ever been issued.
406 */
407 static bool is_user_regdom_saved(void)
408 {
409 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
410 return false;
411
412 /* This would indicate a mistake on the design */
413 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
414 "Unexpected user alpha2: %c%c\n",
415 user_alpha2[0], user_alpha2[1]))
416 return false;
417
418 return true;
419 }
420
421 static const struct ieee80211_regdomain *
422 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
423 {
424 struct ieee80211_regdomain *regd;
425 int size_of_regd;
426 unsigned int i;
427
428 size_of_regd =
429 sizeof(struct ieee80211_regdomain) +
430 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
431
432 regd = kzalloc(size_of_regd, GFP_KERNEL);
433 if (!regd)
434 return ERR_PTR(-ENOMEM);
435
436 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
437
438 for (i = 0; i < src_regd->n_reg_rules; i++)
439 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
440 sizeof(struct ieee80211_reg_rule));
441
442 return regd;
443 }
444
445 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
446 struct reg_regdb_apply_request {
447 struct list_head list;
448 const struct ieee80211_regdomain *regdom;
449 };
450
451 static LIST_HEAD(reg_regdb_apply_list);
452 static DEFINE_MUTEX(reg_regdb_apply_mutex);
453
454 static void reg_regdb_apply(struct work_struct *work)
455 {
456 struct reg_regdb_apply_request *request;
457
458 rtnl_lock();
459
460 mutex_lock(&reg_regdb_apply_mutex);
461 while (!list_empty(&reg_regdb_apply_list)) {
462 request = list_first_entry(&reg_regdb_apply_list,
463 struct reg_regdb_apply_request,
464 list);
465 list_del(&request->list);
466
467 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
468 kfree(request);
469 }
470 mutex_unlock(&reg_regdb_apply_mutex);
471
472 rtnl_unlock();
473 }
474
475 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
476
477 static int reg_query_builtin(const char *alpha2)
478 {
479 const struct ieee80211_regdomain *regdom = NULL;
480 struct reg_regdb_apply_request *request;
481 unsigned int i;
482
483 for (i = 0; i < reg_regdb_size; i++) {
484 if (alpha2_equal(alpha2, reg_regdb[i]->alpha2)) {
485 regdom = reg_regdb[i];
486 break;
487 }
488 }
489
490 if (!regdom)
491 return -ENODATA;
492
493 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
494 if (!request)
495 return -ENOMEM;
496
497 request->regdom = reg_copy_regd(regdom);
498 if (IS_ERR_OR_NULL(request->regdom)) {
499 kfree(request);
500 return -ENOMEM;
501 }
502
503 mutex_lock(&reg_regdb_apply_mutex);
504 list_add_tail(&request->list, &reg_regdb_apply_list);
505 mutex_unlock(&reg_regdb_apply_mutex);
506
507 schedule_work(&reg_regdb_work);
508
509 return 0;
510 }
511
512 /* Feel free to add any other sanity checks here */
513 static void reg_regdb_size_check(void)
514 {
515 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
516 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
517 }
518 #else
519 static inline void reg_regdb_size_check(void) {}
520 static inline int reg_query_builtin(const char *alpha2)
521 {
522 return -ENODATA;
523 }
524 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
525
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA */
528 #define REG_MAX_CRDA_TIMEOUTS 10
529
530 static u32 reg_crda_timeouts;
531
532 static void crda_timeout_work(struct work_struct *work);
533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534
535 static void crda_timeout_work(struct work_struct *work)
536 {
537 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538 rtnl_lock();
539 reg_crda_timeouts++;
540 restore_regulatory_settings(true);
541 rtnl_unlock();
542 }
543
544 static void cancel_crda_timeout(void)
545 {
546 cancel_delayed_work(&crda_timeout);
547 }
548
549 static void cancel_crda_timeout_sync(void)
550 {
551 cancel_delayed_work_sync(&crda_timeout);
552 }
553
554 static void reset_crda_timeouts(void)
555 {
556 reg_crda_timeouts = 0;
557 }
558
559 /*
560 * This lets us keep regulatory code which is updated on a regulatory
561 * basis in userspace.
562 */
563 static int call_crda(const char *alpha2)
564 {
565 char country[12];
566 char *env[] = { country, NULL };
567 int ret;
568
569 snprintf(country, sizeof(country), "COUNTRY=%c%c",
570 alpha2[0], alpha2[1]);
571
572 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574 return -EINVAL;
575 }
576
577 if (!is_world_regdom((char *) alpha2))
578 pr_debug("Calling CRDA for country: %c%c\n",
579 alpha2[0], alpha2[1]);
580 else
581 pr_debug("Calling CRDA to update world regulatory domain\n");
582
583 ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
584 if (ret)
585 return ret;
586
587 queue_delayed_work(system_power_efficient_wq,
588 &crda_timeout, msecs_to_jiffies(3142));
589 return 0;
590 }
591 #else
592 static inline void cancel_crda_timeout(void) {}
593 static inline void cancel_crda_timeout_sync(void) {}
594 static inline void reset_crda_timeouts(void) {}
595 static inline int call_crda(const char *alpha2)
596 {
597 return -ENODATA;
598 }
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600
601 static bool reg_query_database(struct regulatory_request *request)
602 {
603 /* query internal regulatory database (if it exists) */
604 if (reg_query_builtin(request->alpha2) == 0)
605 return true;
606
607 if (call_crda(request->alpha2) == 0)
608 return true;
609
610 return false;
611 }
612
613 bool reg_is_valid_request(const char *alpha2)
614 {
615 struct regulatory_request *lr = get_last_request();
616
617 if (!lr || lr->processed)
618 return false;
619
620 return alpha2_equal(lr->alpha2, alpha2);
621 }
622
623 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
624 {
625 struct regulatory_request *lr = get_last_request();
626
627 /*
628 * Follow the driver's regulatory domain, if present, unless a country
629 * IE has been processed or a user wants to help complaince further
630 */
631 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
632 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
633 wiphy->regd)
634 return get_wiphy_regdom(wiphy);
635
636 return get_cfg80211_regdom();
637 }
638
639 static unsigned int
640 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
641 const struct ieee80211_reg_rule *rule)
642 {
643 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
644 const struct ieee80211_freq_range *freq_range_tmp;
645 const struct ieee80211_reg_rule *tmp;
646 u32 start_freq, end_freq, idx, no;
647
648 for (idx = 0; idx < rd->n_reg_rules; idx++)
649 if (rule == &rd->reg_rules[idx])
650 break;
651
652 if (idx == rd->n_reg_rules)
653 return 0;
654
655 /* get start_freq */
656 no = idx;
657
658 while (no) {
659 tmp = &rd->reg_rules[--no];
660 freq_range_tmp = &tmp->freq_range;
661
662 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
663 break;
664
665 freq_range = freq_range_tmp;
666 }
667
668 start_freq = freq_range->start_freq_khz;
669
670 /* get end_freq */
671 freq_range = &rule->freq_range;
672 no = idx;
673
674 while (no < rd->n_reg_rules - 1) {
675 tmp = &rd->reg_rules[++no];
676 freq_range_tmp = &tmp->freq_range;
677
678 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
679 break;
680
681 freq_range = freq_range_tmp;
682 }
683
684 end_freq = freq_range->end_freq_khz;
685
686 return end_freq - start_freq;
687 }
688
689 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
690 const struct ieee80211_reg_rule *rule)
691 {
692 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
693
694 if (rule->flags & NL80211_RRF_NO_160MHZ)
695 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
696 if (rule->flags & NL80211_RRF_NO_80MHZ)
697 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
698
699 /*
700 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
701 * are not allowed.
702 */
703 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
704 rule->flags & NL80211_RRF_NO_HT40PLUS)
705 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
706
707 return bw;
708 }
709
710 /* Sanity check on a regulatory rule */
711 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
712 {
713 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
714 u32 freq_diff;
715
716 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
717 return false;
718
719 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
720 return false;
721
722 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
723
724 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
725 freq_range->max_bandwidth_khz > freq_diff)
726 return false;
727
728 return true;
729 }
730
731 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
732 {
733 const struct ieee80211_reg_rule *reg_rule = NULL;
734 unsigned int i;
735
736 if (!rd->n_reg_rules)
737 return false;
738
739 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
740 return false;
741
742 for (i = 0; i < rd->n_reg_rules; i++) {
743 reg_rule = &rd->reg_rules[i];
744 if (!is_valid_reg_rule(reg_rule))
745 return false;
746 }
747
748 return true;
749 }
750
751 /**
752 * freq_in_rule_band - tells us if a frequency is in a frequency band
753 * @freq_range: frequency rule we want to query
754 * @freq_khz: frequency we are inquiring about
755 *
756 * This lets us know if a specific frequency rule is or is not relevant to
757 * a specific frequency's band. Bands are device specific and artificial
758 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
759 * however it is safe for now to assume that a frequency rule should not be
760 * part of a frequency's band if the start freq or end freq are off by more
761 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
762 * 60 GHz band.
763 * This resolution can be lowered and should be considered as we add
764 * regulatory rule support for other "bands".
765 **/
766 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
767 u32 freq_khz)
768 {
769 #define ONE_GHZ_IN_KHZ 1000000
770 /*
771 * From 802.11ad: directional multi-gigabit (DMG):
772 * Pertaining to operation in a frequency band containing a channel
773 * with the Channel starting frequency above 45 GHz.
774 */
775 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
776 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
777 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
778 return true;
779 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
780 return true;
781 return false;
782 #undef ONE_GHZ_IN_KHZ
783 }
784
785 /*
786 * Later on we can perhaps use the more restrictive DFS
787 * region but we don't have information for that yet so
788 * for now simply disallow conflicts.
789 */
790 static enum nl80211_dfs_regions
791 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
792 const enum nl80211_dfs_regions dfs_region2)
793 {
794 if (dfs_region1 != dfs_region2)
795 return NL80211_DFS_UNSET;
796 return dfs_region1;
797 }
798
799 /*
800 * Helper for regdom_intersect(), this does the real
801 * mathematical intersection fun
802 */
803 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
804 const struct ieee80211_regdomain *rd2,
805 const struct ieee80211_reg_rule *rule1,
806 const struct ieee80211_reg_rule *rule2,
807 struct ieee80211_reg_rule *intersected_rule)
808 {
809 const struct ieee80211_freq_range *freq_range1, *freq_range2;
810 struct ieee80211_freq_range *freq_range;
811 const struct ieee80211_power_rule *power_rule1, *power_rule2;
812 struct ieee80211_power_rule *power_rule;
813 u32 freq_diff, max_bandwidth1, max_bandwidth2;
814
815 freq_range1 = &rule1->freq_range;
816 freq_range2 = &rule2->freq_range;
817 freq_range = &intersected_rule->freq_range;
818
819 power_rule1 = &rule1->power_rule;
820 power_rule2 = &rule2->power_rule;
821 power_rule = &intersected_rule->power_rule;
822
823 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
824 freq_range2->start_freq_khz);
825 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
826 freq_range2->end_freq_khz);
827
828 max_bandwidth1 = freq_range1->max_bandwidth_khz;
829 max_bandwidth2 = freq_range2->max_bandwidth_khz;
830
831 if (rule1->flags & NL80211_RRF_AUTO_BW)
832 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
833 if (rule2->flags & NL80211_RRF_AUTO_BW)
834 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
835
836 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
837
838 intersected_rule->flags = rule1->flags | rule2->flags;
839
840 /*
841 * In case NL80211_RRF_AUTO_BW requested for both rules
842 * set AUTO_BW in intersected rule also. Next we will
843 * calculate BW correctly in handle_channel function.
844 * In other case remove AUTO_BW flag while we calculate
845 * maximum bandwidth correctly and auto calculation is
846 * not required.
847 */
848 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
849 (rule2->flags & NL80211_RRF_AUTO_BW))
850 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
851 else
852 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
853
854 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
855 if (freq_range->max_bandwidth_khz > freq_diff)
856 freq_range->max_bandwidth_khz = freq_diff;
857
858 power_rule->max_eirp = min(power_rule1->max_eirp,
859 power_rule2->max_eirp);
860 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
861 power_rule2->max_antenna_gain);
862
863 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
864 rule2->dfs_cac_ms);
865
866 if (!is_valid_reg_rule(intersected_rule))
867 return -EINVAL;
868
869 return 0;
870 }
871
872 /* check whether old rule contains new rule */
873 static bool rule_contains(struct ieee80211_reg_rule *r1,
874 struct ieee80211_reg_rule *r2)
875 {
876 /* for simplicity, currently consider only same flags */
877 if (r1->flags != r2->flags)
878 return false;
879
880 /* verify r1 is more restrictive */
881 if ((r1->power_rule.max_antenna_gain >
882 r2->power_rule.max_antenna_gain) ||
883 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
884 return false;
885
886 /* make sure r2's range is contained within r1 */
887 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
888 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
889 return false;
890
891 /* and finally verify that r1.max_bw >= r2.max_bw */
892 if (r1->freq_range.max_bandwidth_khz <
893 r2->freq_range.max_bandwidth_khz)
894 return false;
895
896 return true;
897 }
898
899 /* add or extend current rules. do nothing if rule is already contained */
900 static void add_rule(struct ieee80211_reg_rule *rule,
901 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
902 {
903 struct ieee80211_reg_rule *tmp_rule;
904 int i;
905
906 for (i = 0; i < *n_rules; i++) {
907 tmp_rule = &reg_rules[i];
908 /* rule is already contained - do nothing */
909 if (rule_contains(tmp_rule, rule))
910 return;
911
912 /* extend rule if possible */
913 if (rule_contains(rule, tmp_rule)) {
914 memcpy(tmp_rule, rule, sizeof(*rule));
915 return;
916 }
917 }
918
919 memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
920 (*n_rules)++;
921 }
922
923 /**
924 * regdom_intersect - do the intersection between two regulatory domains
925 * @rd1: first regulatory domain
926 * @rd2: second regulatory domain
927 *
928 * Use this function to get the intersection between two regulatory domains.
929 * Once completed we will mark the alpha2 for the rd as intersected, "98",
930 * as no one single alpha2 can represent this regulatory domain.
931 *
932 * Returns a pointer to the regulatory domain structure which will hold the
933 * resulting intersection of rules between rd1 and rd2. We will
934 * kzalloc() this structure for you.
935 */
936 static struct ieee80211_regdomain *
937 regdom_intersect(const struct ieee80211_regdomain *rd1,
938 const struct ieee80211_regdomain *rd2)
939 {
940 int r, size_of_regd;
941 unsigned int x, y;
942 unsigned int num_rules = 0;
943 const struct ieee80211_reg_rule *rule1, *rule2;
944 struct ieee80211_reg_rule intersected_rule;
945 struct ieee80211_regdomain *rd;
946
947 if (!rd1 || !rd2)
948 return NULL;
949
950 /*
951 * First we get a count of the rules we'll need, then we actually
952 * build them. This is to so we can malloc() and free() a
953 * regdomain once. The reason we use reg_rules_intersect() here
954 * is it will return -EINVAL if the rule computed makes no sense.
955 * All rules that do check out OK are valid.
956 */
957
958 for (x = 0; x < rd1->n_reg_rules; x++) {
959 rule1 = &rd1->reg_rules[x];
960 for (y = 0; y < rd2->n_reg_rules; y++) {
961 rule2 = &rd2->reg_rules[y];
962 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
963 &intersected_rule))
964 num_rules++;
965 }
966 }
967
968 if (!num_rules)
969 return NULL;
970
971 size_of_regd = sizeof(struct ieee80211_regdomain) +
972 num_rules * sizeof(struct ieee80211_reg_rule);
973
974 rd = kzalloc(size_of_regd, GFP_KERNEL);
975 if (!rd)
976 return NULL;
977
978 for (x = 0; x < rd1->n_reg_rules; x++) {
979 rule1 = &rd1->reg_rules[x];
980 for (y = 0; y < rd2->n_reg_rules; y++) {
981 rule2 = &rd2->reg_rules[y];
982 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
983 &intersected_rule);
984 /*
985 * No need to memset here the intersected rule here as
986 * we're not using the stack anymore
987 */
988 if (r)
989 continue;
990
991 add_rule(&intersected_rule, rd->reg_rules,
992 &rd->n_reg_rules);
993 }
994 }
995
996 rd->alpha2[0] = '9';
997 rd->alpha2[1] = '8';
998 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
999 rd2->dfs_region);
1000
1001 return rd;
1002 }
1003
1004 /*
1005 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1006 * want to just have the channel structure use these
1007 */
1008 static u32 map_regdom_flags(u32 rd_flags)
1009 {
1010 u32 channel_flags = 0;
1011 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1012 channel_flags |= IEEE80211_CHAN_NO_IR;
1013 if (rd_flags & NL80211_RRF_DFS)
1014 channel_flags |= IEEE80211_CHAN_RADAR;
1015 if (rd_flags & NL80211_RRF_NO_OFDM)
1016 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1017 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1018 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1019 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1020 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1021 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1022 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1023 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1024 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1025 if (rd_flags & NL80211_RRF_NO_80MHZ)
1026 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1027 if (rd_flags & NL80211_RRF_NO_160MHZ)
1028 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1029 return channel_flags;
1030 }
1031
1032 static const struct ieee80211_reg_rule *
1033 freq_reg_info_regd(u32 center_freq,
1034 const struct ieee80211_regdomain *regd, u32 bw)
1035 {
1036 int i;
1037 bool band_rule_found = false;
1038 bool bw_fits = false;
1039
1040 if (!regd)
1041 return ERR_PTR(-EINVAL);
1042
1043 for (i = 0; i < regd->n_reg_rules; i++) {
1044 const struct ieee80211_reg_rule *rr;
1045 const struct ieee80211_freq_range *fr = NULL;
1046
1047 rr = &regd->reg_rules[i];
1048 fr = &rr->freq_range;
1049
1050 /*
1051 * We only need to know if one frequency rule was
1052 * was in center_freq's band, that's enough, so lets
1053 * not overwrite it once found
1054 */
1055 if (!band_rule_found)
1056 band_rule_found = freq_in_rule_band(fr, center_freq);
1057
1058 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1059
1060 if (band_rule_found && bw_fits)
1061 return rr;
1062 }
1063
1064 if (!band_rule_found)
1065 return ERR_PTR(-ERANGE);
1066
1067 return ERR_PTR(-EINVAL);
1068 }
1069
1070 static const struct ieee80211_reg_rule *
1071 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1072 {
1073 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1074 const struct ieee80211_reg_rule *reg_rule = NULL;
1075 u32 bw;
1076
1077 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1078 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1079 if (!IS_ERR(reg_rule))
1080 return reg_rule;
1081 }
1082
1083 return reg_rule;
1084 }
1085
1086 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1087 u32 center_freq)
1088 {
1089 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1090 }
1091 EXPORT_SYMBOL(freq_reg_info);
1092
1093 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1094 {
1095 switch (initiator) {
1096 case NL80211_REGDOM_SET_BY_CORE:
1097 return "core";
1098 case NL80211_REGDOM_SET_BY_USER:
1099 return "user";
1100 case NL80211_REGDOM_SET_BY_DRIVER:
1101 return "driver";
1102 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1103 return "country IE";
1104 default:
1105 WARN_ON(1);
1106 return "bug";
1107 }
1108 }
1109 EXPORT_SYMBOL(reg_initiator_name);
1110
1111 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1112 const struct ieee80211_reg_rule *reg_rule,
1113 const struct ieee80211_channel *chan)
1114 {
1115 const struct ieee80211_freq_range *freq_range = NULL;
1116 u32 max_bandwidth_khz, bw_flags = 0;
1117
1118 freq_range = &reg_rule->freq_range;
1119
1120 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1121 /* Check if auto calculation requested */
1122 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1123 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1124
1125 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1126 if (!cfg80211_does_bw_fit_range(freq_range,
1127 MHZ_TO_KHZ(chan->center_freq),
1128 MHZ_TO_KHZ(10)))
1129 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1130 if (!cfg80211_does_bw_fit_range(freq_range,
1131 MHZ_TO_KHZ(chan->center_freq),
1132 MHZ_TO_KHZ(20)))
1133 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1134
1135 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1136 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1137 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1138 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1139 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1140 bw_flags |= IEEE80211_CHAN_NO_HT40;
1141 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1142 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1143 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1144 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1145 return bw_flags;
1146 }
1147
1148 /*
1149 * Note that right now we assume the desired channel bandwidth
1150 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1151 * per channel, the primary and the extension channel).
1152 */
1153 static void handle_channel(struct wiphy *wiphy,
1154 enum nl80211_reg_initiator initiator,
1155 struct ieee80211_channel *chan)
1156 {
1157 u32 flags, bw_flags = 0;
1158 const struct ieee80211_reg_rule *reg_rule = NULL;
1159 const struct ieee80211_power_rule *power_rule = NULL;
1160 struct wiphy *request_wiphy = NULL;
1161 struct regulatory_request *lr = get_last_request();
1162 const struct ieee80211_regdomain *regd;
1163
1164 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1165
1166 flags = chan->orig_flags;
1167
1168 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1169 if (IS_ERR(reg_rule)) {
1170 /*
1171 * We will disable all channels that do not match our
1172 * received regulatory rule unless the hint is coming
1173 * from a Country IE and the Country IE had no information
1174 * about a band. The IEEE 802.11 spec allows for an AP
1175 * to send only a subset of the regulatory rules allowed,
1176 * so an AP in the US that only supports 2.4 GHz may only send
1177 * a country IE with information for the 2.4 GHz band
1178 * while 5 GHz is still supported.
1179 */
1180 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1181 PTR_ERR(reg_rule) == -ERANGE)
1182 return;
1183
1184 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1185 request_wiphy && request_wiphy == wiphy &&
1186 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1187 pr_debug("Disabling freq %d MHz for good\n",
1188 chan->center_freq);
1189 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1190 chan->flags = chan->orig_flags;
1191 } else {
1192 pr_debug("Disabling freq %d MHz\n",
1193 chan->center_freq);
1194 chan->flags |= IEEE80211_CHAN_DISABLED;
1195 }
1196 return;
1197 }
1198
1199 regd = reg_get_regdomain(wiphy);
1200
1201 power_rule = &reg_rule->power_rule;
1202 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1203
1204 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1205 request_wiphy && request_wiphy == wiphy &&
1206 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1207 /*
1208 * This guarantees the driver's requested regulatory domain
1209 * will always be used as a base for further regulatory
1210 * settings
1211 */
1212 chan->flags = chan->orig_flags =
1213 map_regdom_flags(reg_rule->flags) | bw_flags;
1214 chan->max_antenna_gain = chan->orig_mag =
1215 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1216 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1217 (int) MBM_TO_DBM(power_rule->max_eirp);
1218
1219 if (chan->flags & IEEE80211_CHAN_RADAR) {
1220 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1221 if (reg_rule->dfs_cac_ms)
1222 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1223 }
1224
1225 return;
1226 }
1227
1228 chan->dfs_state = NL80211_DFS_USABLE;
1229 chan->dfs_state_entered = jiffies;
1230
1231 chan->beacon_found = false;
1232 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1233 chan->max_antenna_gain =
1234 min_t(int, chan->orig_mag,
1235 MBI_TO_DBI(power_rule->max_antenna_gain));
1236 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1237
1238 if (chan->flags & IEEE80211_CHAN_RADAR) {
1239 if (reg_rule->dfs_cac_ms)
1240 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1241 else
1242 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1243 }
1244
1245 if (chan->orig_mpwr) {
1246 /*
1247 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1248 * will always follow the passed country IE power settings.
1249 */
1250 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1251 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1252 chan->max_power = chan->max_reg_power;
1253 else
1254 chan->max_power = min(chan->orig_mpwr,
1255 chan->max_reg_power);
1256 } else
1257 chan->max_power = chan->max_reg_power;
1258 }
1259
1260 static void handle_band(struct wiphy *wiphy,
1261 enum nl80211_reg_initiator initiator,
1262 struct ieee80211_supported_band *sband)
1263 {
1264 unsigned int i;
1265
1266 if (!sband)
1267 return;
1268
1269 for (i = 0; i < sband->n_channels; i++)
1270 handle_channel(wiphy, initiator, &sband->channels[i]);
1271 }
1272
1273 static bool reg_request_cell_base(struct regulatory_request *request)
1274 {
1275 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1276 return false;
1277 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1278 }
1279
1280 bool reg_last_request_cell_base(void)
1281 {
1282 return reg_request_cell_base(get_last_request());
1283 }
1284
1285 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1286 /* Core specific check */
1287 static enum reg_request_treatment
1288 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1289 {
1290 struct regulatory_request *lr = get_last_request();
1291
1292 if (!reg_num_devs_support_basehint)
1293 return REG_REQ_IGNORE;
1294
1295 if (reg_request_cell_base(lr) &&
1296 !regdom_changes(pending_request->alpha2))
1297 return REG_REQ_ALREADY_SET;
1298
1299 return REG_REQ_OK;
1300 }
1301
1302 /* Device specific check */
1303 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1304 {
1305 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1306 }
1307 #else
1308 static enum reg_request_treatment
1309 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1310 {
1311 return REG_REQ_IGNORE;
1312 }
1313
1314 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1315 {
1316 return true;
1317 }
1318 #endif
1319
1320 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1321 {
1322 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1323 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1324 return true;
1325 return false;
1326 }
1327
1328 static bool ignore_reg_update(struct wiphy *wiphy,
1329 enum nl80211_reg_initiator initiator)
1330 {
1331 struct regulatory_request *lr = get_last_request();
1332
1333 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1334 return true;
1335
1336 if (!lr) {
1337 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1338 reg_initiator_name(initiator));
1339 return true;
1340 }
1341
1342 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1343 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1344 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1345 reg_initiator_name(initiator));
1346 return true;
1347 }
1348
1349 /*
1350 * wiphy->regd will be set once the device has its own
1351 * desired regulatory domain set
1352 */
1353 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1354 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1355 !is_world_regdom(lr->alpha2)) {
1356 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1357 reg_initiator_name(initiator));
1358 return true;
1359 }
1360
1361 if (reg_request_cell_base(lr))
1362 return reg_dev_ignore_cell_hint(wiphy);
1363
1364 return false;
1365 }
1366
1367 static bool reg_is_world_roaming(struct wiphy *wiphy)
1368 {
1369 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1370 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1371 struct regulatory_request *lr = get_last_request();
1372
1373 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1374 return true;
1375
1376 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1377 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1378 return true;
1379
1380 return false;
1381 }
1382
1383 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1384 struct reg_beacon *reg_beacon)
1385 {
1386 struct ieee80211_supported_band *sband;
1387 struct ieee80211_channel *chan;
1388 bool channel_changed = false;
1389 struct ieee80211_channel chan_before;
1390
1391 sband = wiphy->bands[reg_beacon->chan.band];
1392 chan = &sband->channels[chan_idx];
1393
1394 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1395 return;
1396
1397 if (chan->beacon_found)
1398 return;
1399
1400 chan->beacon_found = true;
1401
1402 if (!reg_is_world_roaming(wiphy))
1403 return;
1404
1405 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1406 return;
1407
1408 chan_before.center_freq = chan->center_freq;
1409 chan_before.flags = chan->flags;
1410
1411 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1412 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1413 channel_changed = true;
1414 }
1415
1416 if (channel_changed)
1417 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1418 }
1419
1420 /*
1421 * Called when a scan on a wiphy finds a beacon on
1422 * new channel
1423 */
1424 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1425 struct reg_beacon *reg_beacon)
1426 {
1427 unsigned int i;
1428 struct ieee80211_supported_band *sband;
1429
1430 if (!wiphy->bands[reg_beacon->chan.band])
1431 return;
1432
1433 sband = wiphy->bands[reg_beacon->chan.band];
1434
1435 for (i = 0; i < sband->n_channels; i++)
1436 handle_reg_beacon(wiphy, i, reg_beacon);
1437 }
1438
1439 /*
1440 * Called upon reg changes or a new wiphy is added
1441 */
1442 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1443 {
1444 unsigned int i;
1445 struct ieee80211_supported_band *sband;
1446 struct reg_beacon *reg_beacon;
1447
1448 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1449 if (!wiphy->bands[reg_beacon->chan.band])
1450 continue;
1451 sband = wiphy->bands[reg_beacon->chan.band];
1452 for (i = 0; i < sband->n_channels; i++)
1453 handle_reg_beacon(wiphy, i, reg_beacon);
1454 }
1455 }
1456
1457 /* Reap the advantages of previously found beacons */
1458 static void reg_process_beacons(struct wiphy *wiphy)
1459 {
1460 /*
1461 * Means we are just firing up cfg80211, so no beacons would
1462 * have been processed yet.
1463 */
1464 if (!last_request)
1465 return;
1466 wiphy_update_beacon_reg(wiphy);
1467 }
1468
1469 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1470 {
1471 if (!chan)
1472 return false;
1473 if (chan->flags & IEEE80211_CHAN_DISABLED)
1474 return false;
1475 /* This would happen when regulatory rules disallow HT40 completely */
1476 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1477 return false;
1478 return true;
1479 }
1480
1481 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1482 struct ieee80211_channel *channel)
1483 {
1484 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1485 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1486 unsigned int i;
1487
1488 if (!is_ht40_allowed(channel)) {
1489 channel->flags |= IEEE80211_CHAN_NO_HT40;
1490 return;
1491 }
1492
1493 /*
1494 * We need to ensure the extension channels exist to
1495 * be able to use HT40- or HT40+, this finds them (or not)
1496 */
1497 for (i = 0; i < sband->n_channels; i++) {
1498 struct ieee80211_channel *c = &sband->channels[i];
1499
1500 if (c->center_freq == (channel->center_freq - 20))
1501 channel_before = c;
1502 if (c->center_freq == (channel->center_freq + 20))
1503 channel_after = c;
1504 }
1505
1506 /*
1507 * Please note that this assumes target bandwidth is 20 MHz,
1508 * if that ever changes we also need to change the below logic
1509 * to include that as well.
1510 */
1511 if (!is_ht40_allowed(channel_before))
1512 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1513 else
1514 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1515
1516 if (!is_ht40_allowed(channel_after))
1517 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1518 else
1519 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1520 }
1521
1522 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1523 struct ieee80211_supported_band *sband)
1524 {
1525 unsigned int i;
1526
1527 if (!sband)
1528 return;
1529
1530 for (i = 0; i < sband->n_channels; i++)
1531 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1532 }
1533
1534 static void reg_process_ht_flags(struct wiphy *wiphy)
1535 {
1536 enum nl80211_band band;
1537
1538 if (!wiphy)
1539 return;
1540
1541 for (band = 0; band < NUM_NL80211_BANDS; band++)
1542 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1543 }
1544
1545 static void reg_call_notifier(struct wiphy *wiphy,
1546 struct regulatory_request *request)
1547 {
1548 if (wiphy->reg_notifier)
1549 wiphy->reg_notifier(wiphy, request);
1550 }
1551
1552 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1553 {
1554 struct cfg80211_chan_def chandef;
1555 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1556 enum nl80211_iftype iftype;
1557
1558 wdev_lock(wdev);
1559 iftype = wdev->iftype;
1560
1561 /* make sure the interface is active */
1562 if (!wdev->netdev || !netif_running(wdev->netdev))
1563 goto wdev_inactive_unlock;
1564
1565 switch (iftype) {
1566 case NL80211_IFTYPE_AP:
1567 case NL80211_IFTYPE_P2P_GO:
1568 if (!wdev->beacon_interval)
1569 goto wdev_inactive_unlock;
1570 chandef = wdev->chandef;
1571 break;
1572 case NL80211_IFTYPE_ADHOC:
1573 if (!wdev->ssid_len)
1574 goto wdev_inactive_unlock;
1575 chandef = wdev->chandef;
1576 break;
1577 case NL80211_IFTYPE_STATION:
1578 case NL80211_IFTYPE_P2P_CLIENT:
1579 if (!wdev->current_bss ||
1580 !wdev->current_bss->pub.channel)
1581 goto wdev_inactive_unlock;
1582
1583 if (!rdev->ops->get_channel ||
1584 rdev_get_channel(rdev, wdev, &chandef))
1585 cfg80211_chandef_create(&chandef,
1586 wdev->current_bss->pub.channel,
1587 NL80211_CHAN_NO_HT);
1588 break;
1589 case NL80211_IFTYPE_MONITOR:
1590 case NL80211_IFTYPE_AP_VLAN:
1591 case NL80211_IFTYPE_P2P_DEVICE:
1592 /* no enforcement required */
1593 break;
1594 default:
1595 /* others not implemented for now */
1596 WARN_ON(1);
1597 break;
1598 }
1599
1600 wdev_unlock(wdev);
1601
1602 switch (iftype) {
1603 case NL80211_IFTYPE_AP:
1604 case NL80211_IFTYPE_P2P_GO:
1605 case NL80211_IFTYPE_ADHOC:
1606 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
1607 case NL80211_IFTYPE_STATION:
1608 case NL80211_IFTYPE_P2P_CLIENT:
1609 return cfg80211_chandef_usable(wiphy, &chandef,
1610 IEEE80211_CHAN_DISABLED);
1611 default:
1612 break;
1613 }
1614
1615 return true;
1616
1617 wdev_inactive_unlock:
1618 wdev_unlock(wdev);
1619 return true;
1620 }
1621
1622 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1623 {
1624 struct wireless_dev *wdev;
1625 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1626
1627 ASSERT_RTNL();
1628
1629 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1630 if (!reg_wdev_chan_valid(wiphy, wdev))
1631 cfg80211_leave(rdev, wdev);
1632 }
1633
1634 static void reg_check_chans_work(struct work_struct *work)
1635 {
1636 struct cfg80211_registered_device *rdev;
1637
1638 pr_debug("Verifying active interfaces after reg change\n");
1639 rtnl_lock();
1640
1641 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1642 if (!(rdev->wiphy.regulatory_flags &
1643 REGULATORY_IGNORE_STALE_KICKOFF))
1644 reg_leave_invalid_chans(&rdev->wiphy);
1645
1646 rtnl_unlock();
1647 }
1648
1649 static void reg_check_channels(void)
1650 {
1651 /*
1652 * Give usermode a chance to do something nicer (move to another
1653 * channel, orderly disconnection), before forcing a disconnection.
1654 */
1655 mod_delayed_work(system_power_efficient_wq,
1656 &reg_check_chans,
1657 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1658 }
1659
1660 static void wiphy_update_regulatory(struct wiphy *wiphy,
1661 enum nl80211_reg_initiator initiator)
1662 {
1663 enum nl80211_band band;
1664 struct regulatory_request *lr = get_last_request();
1665
1666 if (ignore_reg_update(wiphy, initiator)) {
1667 /*
1668 * Regulatory updates set by CORE are ignored for custom
1669 * regulatory cards. Let us notify the changes to the driver,
1670 * as some drivers used this to restore its orig_* reg domain.
1671 */
1672 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1673 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1674 reg_call_notifier(wiphy, lr);
1675 return;
1676 }
1677
1678 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1679
1680 for (band = 0; band < NUM_NL80211_BANDS; band++)
1681 handle_band(wiphy, initiator, wiphy->bands[band]);
1682
1683 reg_process_beacons(wiphy);
1684 reg_process_ht_flags(wiphy);
1685 reg_call_notifier(wiphy, lr);
1686 }
1687
1688 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1689 {
1690 struct cfg80211_registered_device *rdev;
1691 struct wiphy *wiphy;
1692
1693 ASSERT_RTNL();
1694
1695 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1696 wiphy = &rdev->wiphy;
1697 wiphy_update_regulatory(wiphy, initiator);
1698 }
1699
1700 reg_check_channels();
1701 }
1702
1703 static void handle_channel_custom(struct wiphy *wiphy,
1704 struct ieee80211_channel *chan,
1705 const struct ieee80211_regdomain *regd)
1706 {
1707 u32 bw_flags = 0;
1708 const struct ieee80211_reg_rule *reg_rule = NULL;
1709 const struct ieee80211_power_rule *power_rule = NULL;
1710 u32 bw;
1711
1712 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
1713 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
1714 regd, bw);
1715 if (!IS_ERR(reg_rule))
1716 break;
1717 }
1718
1719 if (IS_ERR(reg_rule)) {
1720 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1721 chan->center_freq);
1722 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1723 chan->flags |= IEEE80211_CHAN_DISABLED;
1724 } else {
1725 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1726 chan->flags = chan->orig_flags;
1727 }
1728 return;
1729 }
1730
1731 power_rule = &reg_rule->power_rule;
1732 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1733
1734 chan->dfs_state_entered = jiffies;
1735 chan->dfs_state = NL80211_DFS_USABLE;
1736
1737 chan->beacon_found = false;
1738
1739 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1740 chan->flags = chan->orig_flags | bw_flags |
1741 map_regdom_flags(reg_rule->flags);
1742 else
1743 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1744
1745 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1746 chan->max_reg_power = chan->max_power =
1747 (int) MBM_TO_DBM(power_rule->max_eirp);
1748
1749 if (chan->flags & IEEE80211_CHAN_RADAR) {
1750 if (reg_rule->dfs_cac_ms)
1751 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1752 else
1753 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1754 }
1755
1756 chan->max_power = chan->max_reg_power;
1757 }
1758
1759 static void handle_band_custom(struct wiphy *wiphy,
1760 struct ieee80211_supported_band *sband,
1761 const struct ieee80211_regdomain *regd)
1762 {
1763 unsigned int i;
1764
1765 if (!sband)
1766 return;
1767
1768 for (i = 0; i < sband->n_channels; i++)
1769 handle_channel_custom(wiphy, &sband->channels[i], regd);
1770 }
1771
1772 /* Used by drivers prior to wiphy registration */
1773 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1774 const struct ieee80211_regdomain *regd)
1775 {
1776 enum nl80211_band band;
1777 unsigned int bands_set = 0;
1778
1779 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1780 "wiphy should have REGULATORY_CUSTOM_REG\n");
1781 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1782
1783 for (band = 0; band < NUM_NL80211_BANDS; band++) {
1784 if (!wiphy->bands[band])
1785 continue;
1786 handle_band_custom(wiphy, wiphy->bands[band], regd);
1787 bands_set++;
1788 }
1789
1790 /*
1791 * no point in calling this if it won't have any effect
1792 * on your device's supported bands.
1793 */
1794 WARN_ON(!bands_set);
1795 }
1796 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1797
1798 static void reg_set_request_processed(void)
1799 {
1800 bool need_more_processing = false;
1801 struct regulatory_request *lr = get_last_request();
1802
1803 lr->processed = true;
1804
1805 spin_lock(&reg_requests_lock);
1806 if (!list_empty(&reg_requests_list))
1807 need_more_processing = true;
1808 spin_unlock(&reg_requests_lock);
1809
1810 cancel_crda_timeout();
1811
1812 if (need_more_processing)
1813 schedule_work(&reg_work);
1814 }
1815
1816 /**
1817 * reg_process_hint_core - process core regulatory requests
1818 * @pending_request: a pending core regulatory request
1819 *
1820 * The wireless subsystem can use this function to process
1821 * a regulatory request issued by the regulatory core.
1822 */
1823 static enum reg_request_treatment
1824 reg_process_hint_core(struct regulatory_request *core_request)
1825 {
1826 if (reg_query_database(core_request)) {
1827 core_request->intersect = false;
1828 core_request->processed = false;
1829 reg_update_last_request(core_request);
1830 return REG_REQ_OK;
1831 }
1832
1833 return REG_REQ_IGNORE;
1834 }
1835
1836 static enum reg_request_treatment
1837 __reg_process_hint_user(struct regulatory_request *user_request)
1838 {
1839 struct regulatory_request *lr = get_last_request();
1840
1841 if (reg_request_cell_base(user_request))
1842 return reg_ignore_cell_hint(user_request);
1843
1844 if (reg_request_cell_base(lr))
1845 return REG_REQ_IGNORE;
1846
1847 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1848 return REG_REQ_INTERSECT;
1849 /*
1850 * If the user knows better the user should set the regdom
1851 * to their country before the IE is picked up
1852 */
1853 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1854 lr->intersect)
1855 return REG_REQ_IGNORE;
1856 /*
1857 * Process user requests only after previous user/driver/core
1858 * requests have been processed
1859 */
1860 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1861 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1862 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1863 regdom_changes(lr->alpha2))
1864 return REG_REQ_IGNORE;
1865
1866 if (!regdom_changes(user_request->alpha2))
1867 return REG_REQ_ALREADY_SET;
1868
1869 return REG_REQ_OK;
1870 }
1871
1872 /**
1873 * reg_process_hint_user - process user regulatory requests
1874 * @user_request: a pending user regulatory request
1875 *
1876 * The wireless subsystem can use this function to process
1877 * a regulatory request initiated by userspace.
1878 */
1879 static enum reg_request_treatment
1880 reg_process_hint_user(struct regulatory_request *user_request)
1881 {
1882 enum reg_request_treatment treatment;
1883
1884 treatment = __reg_process_hint_user(user_request);
1885 if (treatment == REG_REQ_IGNORE ||
1886 treatment == REG_REQ_ALREADY_SET)
1887 return REG_REQ_IGNORE;
1888
1889 user_request->intersect = treatment == REG_REQ_INTERSECT;
1890 user_request->processed = false;
1891
1892 if (reg_query_database(user_request)) {
1893 reg_update_last_request(user_request);
1894 user_alpha2[0] = user_request->alpha2[0];
1895 user_alpha2[1] = user_request->alpha2[1];
1896 return REG_REQ_OK;
1897 }
1898
1899 return REG_REQ_IGNORE;
1900 }
1901
1902 static enum reg_request_treatment
1903 __reg_process_hint_driver(struct regulatory_request *driver_request)
1904 {
1905 struct regulatory_request *lr = get_last_request();
1906
1907 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1908 if (regdom_changes(driver_request->alpha2))
1909 return REG_REQ_OK;
1910 return REG_REQ_ALREADY_SET;
1911 }
1912
1913 /*
1914 * This would happen if you unplug and plug your card
1915 * back in or if you add a new device for which the previously
1916 * loaded card also agrees on the regulatory domain.
1917 */
1918 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1919 !regdom_changes(driver_request->alpha2))
1920 return REG_REQ_ALREADY_SET;
1921
1922 return REG_REQ_INTERSECT;
1923 }
1924
1925 /**
1926 * reg_process_hint_driver - process driver regulatory requests
1927 * @driver_request: a pending driver regulatory request
1928 *
1929 * The wireless subsystem can use this function to process
1930 * a regulatory request issued by an 802.11 driver.
1931 *
1932 * Returns one of the different reg request treatment values.
1933 */
1934 static enum reg_request_treatment
1935 reg_process_hint_driver(struct wiphy *wiphy,
1936 struct regulatory_request *driver_request)
1937 {
1938 const struct ieee80211_regdomain *regd, *tmp;
1939 enum reg_request_treatment treatment;
1940
1941 treatment = __reg_process_hint_driver(driver_request);
1942
1943 switch (treatment) {
1944 case REG_REQ_OK:
1945 break;
1946 case REG_REQ_IGNORE:
1947 return REG_REQ_IGNORE;
1948 case REG_REQ_INTERSECT:
1949 case REG_REQ_ALREADY_SET:
1950 regd = reg_copy_regd(get_cfg80211_regdom());
1951 if (IS_ERR(regd))
1952 return REG_REQ_IGNORE;
1953
1954 tmp = get_wiphy_regdom(wiphy);
1955 rcu_assign_pointer(wiphy->regd, regd);
1956 rcu_free_regdom(tmp);
1957 }
1958
1959
1960 driver_request->intersect = treatment == REG_REQ_INTERSECT;
1961 driver_request->processed = false;
1962
1963 /*
1964 * Since CRDA will not be called in this case as we already
1965 * have applied the requested regulatory domain before we just
1966 * inform userspace we have processed the request
1967 */
1968 if (treatment == REG_REQ_ALREADY_SET) {
1969 nl80211_send_reg_change_event(driver_request);
1970 reg_update_last_request(driver_request);
1971 reg_set_request_processed();
1972 return REG_REQ_ALREADY_SET;
1973 }
1974
1975 if (reg_query_database(driver_request)) {
1976 reg_update_last_request(driver_request);
1977 return REG_REQ_OK;
1978 }
1979
1980 return REG_REQ_IGNORE;
1981 }
1982
1983 static enum reg_request_treatment
1984 __reg_process_hint_country_ie(struct wiphy *wiphy,
1985 struct regulatory_request *country_ie_request)
1986 {
1987 struct wiphy *last_wiphy = NULL;
1988 struct regulatory_request *lr = get_last_request();
1989
1990 if (reg_request_cell_base(lr)) {
1991 /* Trust a Cell base station over the AP's country IE */
1992 if (regdom_changes(country_ie_request->alpha2))
1993 return REG_REQ_IGNORE;
1994 return REG_REQ_ALREADY_SET;
1995 } else {
1996 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1997 return REG_REQ_IGNORE;
1998 }
1999
2000 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2001 return -EINVAL;
2002
2003 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2004 return REG_REQ_OK;
2005
2006 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2007
2008 if (last_wiphy != wiphy) {
2009 /*
2010 * Two cards with two APs claiming different
2011 * Country IE alpha2s. We could
2012 * intersect them, but that seems unlikely
2013 * to be correct. Reject second one for now.
2014 */
2015 if (regdom_changes(country_ie_request->alpha2))
2016 return REG_REQ_IGNORE;
2017 return REG_REQ_ALREADY_SET;
2018 }
2019
2020 if (regdom_changes(country_ie_request->alpha2))
2021 return REG_REQ_OK;
2022 return REG_REQ_ALREADY_SET;
2023 }
2024
2025 /**
2026 * reg_process_hint_country_ie - process regulatory requests from country IEs
2027 * @country_ie_request: a regulatory request from a country IE
2028 *
2029 * The wireless subsystem can use this function to process
2030 * a regulatory request issued by a country Information Element.
2031 *
2032 * Returns one of the different reg request treatment values.
2033 */
2034 static enum reg_request_treatment
2035 reg_process_hint_country_ie(struct wiphy *wiphy,
2036 struct regulatory_request *country_ie_request)
2037 {
2038 enum reg_request_treatment treatment;
2039
2040 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2041
2042 switch (treatment) {
2043 case REG_REQ_OK:
2044 break;
2045 case REG_REQ_IGNORE:
2046 return REG_REQ_IGNORE;
2047 case REG_REQ_ALREADY_SET:
2048 reg_free_request(country_ie_request);
2049 return REG_REQ_ALREADY_SET;
2050 case REG_REQ_INTERSECT:
2051 /*
2052 * This doesn't happen yet, not sure we
2053 * ever want to support it for this case.
2054 */
2055 WARN_ONCE(1, "Unexpected intersection for country IEs");
2056 return REG_REQ_IGNORE;
2057 }
2058
2059 country_ie_request->intersect = false;
2060 country_ie_request->processed = false;
2061
2062 if (reg_query_database(country_ie_request)) {
2063 reg_update_last_request(country_ie_request);
2064 return REG_REQ_OK;
2065 }
2066
2067 return REG_REQ_IGNORE;
2068 }
2069
2070 /* This processes *all* regulatory hints */
2071 static void reg_process_hint(struct regulatory_request *reg_request)
2072 {
2073 struct wiphy *wiphy = NULL;
2074 enum reg_request_treatment treatment;
2075
2076 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2077 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2078
2079 switch (reg_request->initiator) {
2080 case NL80211_REGDOM_SET_BY_CORE:
2081 treatment = reg_process_hint_core(reg_request);
2082 break;
2083 case NL80211_REGDOM_SET_BY_USER:
2084 treatment = reg_process_hint_user(reg_request);
2085 break;
2086 case NL80211_REGDOM_SET_BY_DRIVER:
2087 if (!wiphy)
2088 goto out_free;
2089 treatment = reg_process_hint_driver(wiphy, reg_request);
2090 break;
2091 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2092 if (!wiphy)
2093 goto out_free;
2094 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2095 break;
2096 default:
2097 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2098 goto out_free;
2099 }
2100
2101 if (treatment == REG_REQ_IGNORE)
2102 goto out_free;
2103
2104 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2105 "unexpected treatment value %d\n", treatment);
2106
2107 /* This is required so that the orig_* parameters are saved.
2108 * NOTE: treatment must be set for any case that reaches here!
2109 */
2110 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2111 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2112 wiphy_update_regulatory(wiphy, reg_request->initiator);
2113 reg_check_channels();
2114 }
2115
2116 return;
2117
2118 out_free:
2119 reg_free_request(reg_request);
2120 }
2121
2122 static bool reg_only_self_managed_wiphys(void)
2123 {
2124 struct cfg80211_registered_device *rdev;
2125 struct wiphy *wiphy;
2126 bool self_managed_found = false;
2127
2128 ASSERT_RTNL();
2129
2130 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2131 wiphy = &rdev->wiphy;
2132 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2133 self_managed_found = true;
2134 else
2135 return false;
2136 }
2137
2138 /* make sure at least one self-managed wiphy exists */
2139 return self_managed_found;
2140 }
2141
2142 /*
2143 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2144 * Regulatory hints come on a first come first serve basis and we
2145 * must process each one atomically.
2146 */
2147 static void reg_process_pending_hints(void)
2148 {
2149 struct regulatory_request *reg_request, *lr;
2150
2151 lr = get_last_request();
2152
2153 /* When last_request->processed becomes true this will be rescheduled */
2154 if (lr && !lr->processed) {
2155 reg_process_hint(lr);
2156 return;
2157 }
2158
2159 spin_lock(&reg_requests_lock);
2160
2161 if (list_empty(&reg_requests_list)) {
2162 spin_unlock(&reg_requests_lock);
2163 return;
2164 }
2165
2166 reg_request = list_first_entry(&reg_requests_list,
2167 struct regulatory_request,
2168 list);
2169 list_del_init(&reg_request->list);
2170
2171 spin_unlock(&reg_requests_lock);
2172
2173 if (reg_only_self_managed_wiphys()) {
2174 reg_free_request(reg_request);
2175 return;
2176 }
2177
2178 reg_process_hint(reg_request);
2179
2180 lr = get_last_request();
2181
2182 spin_lock(&reg_requests_lock);
2183 if (!list_empty(&reg_requests_list) && lr && lr->processed)
2184 schedule_work(&reg_work);
2185 spin_unlock(&reg_requests_lock);
2186 }
2187
2188 /* Processes beacon hints -- this has nothing to do with country IEs */
2189 static void reg_process_pending_beacon_hints(void)
2190 {
2191 struct cfg80211_registered_device *rdev;
2192 struct reg_beacon *pending_beacon, *tmp;
2193
2194 /* This goes through the _pending_ beacon list */
2195 spin_lock_bh(&reg_pending_beacons_lock);
2196
2197 list_for_each_entry_safe(pending_beacon, tmp,
2198 &reg_pending_beacons, list) {
2199 list_del_init(&pending_beacon->list);
2200
2201 /* Applies the beacon hint to current wiphys */
2202 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2203 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2204
2205 /* Remembers the beacon hint for new wiphys or reg changes */
2206 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2207 }
2208
2209 spin_unlock_bh(&reg_pending_beacons_lock);
2210 }
2211
2212 static void reg_process_self_managed_hints(void)
2213 {
2214 struct cfg80211_registered_device *rdev;
2215 struct wiphy *wiphy;
2216 const struct ieee80211_regdomain *tmp;
2217 const struct ieee80211_regdomain *regd;
2218 enum nl80211_band band;
2219 struct regulatory_request request = {};
2220
2221 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2222 wiphy = &rdev->wiphy;
2223
2224 spin_lock(&reg_requests_lock);
2225 regd = rdev->requested_regd;
2226 rdev->requested_regd = NULL;
2227 spin_unlock(&reg_requests_lock);
2228
2229 if (regd == NULL)
2230 continue;
2231
2232 tmp = get_wiphy_regdom(wiphy);
2233 rcu_assign_pointer(wiphy->regd, regd);
2234 rcu_free_regdom(tmp);
2235
2236 for (band = 0; band < NUM_NL80211_BANDS; band++)
2237 handle_band_custom(wiphy, wiphy->bands[band], regd);
2238
2239 reg_process_ht_flags(wiphy);
2240
2241 request.wiphy_idx = get_wiphy_idx(wiphy);
2242 request.alpha2[0] = regd->alpha2[0];
2243 request.alpha2[1] = regd->alpha2[1];
2244 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2245
2246 nl80211_send_wiphy_reg_change_event(&request);
2247 }
2248
2249 reg_check_channels();
2250 }
2251
2252 static void reg_todo(struct work_struct *work)
2253 {
2254 rtnl_lock();
2255 reg_process_pending_hints();
2256 reg_process_pending_beacon_hints();
2257 reg_process_self_managed_hints();
2258 rtnl_unlock();
2259 }
2260
2261 static void queue_regulatory_request(struct regulatory_request *request)
2262 {
2263 request->alpha2[0] = toupper(request->alpha2[0]);
2264 request->alpha2[1] = toupper(request->alpha2[1]);
2265
2266 spin_lock(&reg_requests_lock);
2267 list_add_tail(&request->list, &reg_requests_list);
2268 spin_unlock(&reg_requests_lock);
2269
2270 schedule_work(&reg_work);
2271 }
2272
2273 /*
2274 * Core regulatory hint -- happens during cfg80211_init()
2275 * and when we restore regulatory settings.
2276 */
2277 static int regulatory_hint_core(const char *alpha2)
2278 {
2279 struct regulatory_request *request;
2280
2281 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2282 if (!request)
2283 return -ENOMEM;
2284
2285 request->alpha2[0] = alpha2[0];
2286 request->alpha2[1] = alpha2[1];
2287 request->initiator = NL80211_REGDOM_SET_BY_CORE;
2288
2289 queue_regulatory_request(request);
2290
2291 return 0;
2292 }
2293
2294 /* User hints */
2295 int regulatory_hint_user(const char *alpha2,
2296 enum nl80211_user_reg_hint_type user_reg_hint_type)
2297 {
2298 struct regulatory_request *request;
2299
2300 if (WARN_ON(!alpha2))
2301 return -EINVAL;
2302
2303 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2304 if (!request)
2305 return -ENOMEM;
2306
2307 request->wiphy_idx = WIPHY_IDX_INVALID;
2308 request->alpha2[0] = alpha2[0];
2309 request->alpha2[1] = alpha2[1];
2310 request->initiator = NL80211_REGDOM_SET_BY_USER;
2311 request->user_reg_hint_type = user_reg_hint_type;
2312
2313 /* Allow calling CRDA again */
2314 reset_crda_timeouts();
2315
2316 queue_regulatory_request(request);
2317
2318 return 0;
2319 }
2320
2321 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2322 {
2323 spin_lock(&reg_indoor_lock);
2324
2325 /* It is possible that more than one user space process is trying to
2326 * configure the indoor setting. To handle such cases, clear the indoor
2327 * setting in case that some process does not think that the device
2328 * is operating in an indoor environment. In addition, if a user space
2329 * process indicates that it is controlling the indoor setting, save its
2330 * portid, i.e., make it the owner.
2331 */
2332 reg_is_indoor = is_indoor;
2333 if (reg_is_indoor) {
2334 if (!reg_is_indoor_portid)
2335 reg_is_indoor_portid = portid;
2336 } else {
2337 reg_is_indoor_portid = 0;
2338 }
2339
2340 spin_unlock(&reg_indoor_lock);
2341
2342 if (!is_indoor)
2343 reg_check_channels();
2344
2345 return 0;
2346 }
2347
2348 void regulatory_netlink_notify(u32 portid)
2349 {
2350 spin_lock(&reg_indoor_lock);
2351
2352 if (reg_is_indoor_portid != portid) {
2353 spin_unlock(&reg_indoor_lock);
2354 return;
2355 }
2356
2357 reg_is_indoor = false;
2358 reg_is_indoor_portid = 0;
2359
2360 spin_unlock(&reg_indoor_lock);
2361
2362 reg_check_channels();
2363 }
2364
2365 /* Driver hints */
2366 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2367 {
2368 struct regulatory_request *request;
2369
2370 if (WARN_ON(!alpha2 || !wiphy))
2371 return -EINVAL;
2372
2373 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2374
2375 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2376 if (!request)
2377 return -ENOMEM;
2378
2379 request->wiphy_idx = get_wiphy_idx(wiphy);
2380
2381 request->alpha2[0] = alpha2[0];
2382 request->alpha2[1] = alpha2[1];
2383 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2384
2385 /* Allow calling CRDA again */
2386 reset_crda_timeouts();
2387
2388 queue_regulatory_request(request);
2389
2390 return 0;
2391 }
2392 EXPORT_SYMBOL(regulatory_hint);
2393
2394 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
2395 const u8 *country_ie, u8 country_ie_len)
2396 {
2397 char alpha2[2];
2398 enum environment_cap env = ENVIRON_ANY;
2399 struct regulatory_request *request = NULL, *lr;
2400
2401 /* IE len must be evenly divisible by 2 */
2402 if (country_ie_len & 0x01)
2403 return;
2404
2405 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2406 return;
2407
2408 request = kzalloc(sizeof(*request), GFP_KERNEL);
2409 if (!request)
2410 return;
2411
2412 alpha2[0] = country_ie[0];
2413 alpha2[1] = country_ie[1];
2414
2415 if (country_ie[2] == 'I')
2416 env = ENVIRON_INDOOR;
2417 else if (country_ie[2] == 'O')
2418 env = ENVIRON_OUTDOOR;
2419
2420 rcu_read_lock();
2421 lr = get_last_request();
2422
2423 if (unlikely(!lr))
2424 goto out;
2425
2426 /*
2427 * We will run this only upon a successful connection on cfg80211.
2428 * We leave conflict resolution to the workqueue, where can hold
2429 * the RTNL.
2430 */
2431 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2432 lr->wiphy_idx != WIPHY_IDX_INVALID)
2433 goto out;
2434
2435 request->wiphy_idx = get_wiphy_idx(wiphy);
2436 request->alpha2[0] = alpha2[0];
2437 request->alpha2[1] = alpha2[1];
2438 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2439 request->country_ie_env = env;
2440
2441 /* Allow calling CRDA again */
2442 reset_crda_timeouts();
2443
2444 queue_regulatory_request(request);
2445 request = NULL;
2446 out:
2447 kfree(request);
2448 rcu_read_unlock();
2449 }
2450
2451 static void restore_alpha2(char *alpha2, bool reset_user)
2452 {
2453 /* indicates there is no alpha2 to consider for restoration */
2454 alpha2[0] = '9';
2455 alpha2[1] = '7';
2456
2457 /* The user setting has precedence over the module parameter */
2458 if (is_user_regdom_saved()) {
2459 /* Unless we're asked to ignore it and reset it */
2460 if (reset_user) {
2461 pr_debug("Restoring regulatory settings including user preference\n");
2462 user_alpha2[0] = '9';
2463 user_alpha2[1] = '7';
2464
2465 /*
2466 * If we're ignoring user settings, we still need to
2467 * check the module parameter to ensure we put things
2468 * back as they were for a full restore.
2469 */
2470 if (!is_world_regdom(ieee80211_regdom)) {
2471 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2472 ieee80211_regdom[0], ieee80211_regdom[1]);
2473 alpha2[0] = ieee80211_regdom[0];
2474 alpha2[1] = ieee80211_regdom[1];
2475 }
2476 } else {
2477 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
2478 user_alpha2[0], user_alpha2[1]);
2479 alpha2[0] = user_alpha2[0];
2480 alpha2[1] = user_alpha2[1];
2481 }
2482 } else if (!is_world_regdom(ieee80211_regdom)) {
2483 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2484 ieee80211_regdom[0], ieee80211_regdom[1]);
2485 alpha2[0] = ieee80211_regdom[0];
2486 alpha2[1] = ieee80211_regdom[1];
2487 } else
2488 pr_debug("Restoring regulatory settings\n");
2489 }
2490
2491 static void restore_custom_reg_settings(struct wiphy *wiphy)
2492 {
2493 struct ieee80211_supported_band *sband;
2494 enum nl80211_band band;
2495 struct ieee80211_channel *chan;
2496 int i;
2497
2498 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2499 sband = wiphy->bands[band];
2500 if (!sband)
2501 continue;
2502 for (i = 0; i < sband->n_channels; i++) {
2503 chan = &sband->channels[i];
2504 chan->flags = chan->orig_flags;
2505 chan->max_antenna_gain = chan->orig_mag;
2506 chan->max_power = chan->orig_mpwr;
2507 chan->beacon_found = false;
2508 }
2509 }
2510 }
2511
2512 /*
2513 * Restoring regulatory settings involves ingoring any
2514 * possibly stale country IE information and user regulatory
2515 * settings if so desired, this includes any beacon hints
2516 * learned as we could have traveled outside to another country
2517 * after disconnection. To restore regulatory settings we do
2518 * exactly what we did at bootup:
2519 *
2520 * - send a core regulatory hint
2521 * - send a user regulatory hint if applicable
2522 *
2523 * Device drivers that send a regulatory hint for a specific country
2524 * keep their own regulatory domain on wiphy->regd so that does does
2525 * not need to be remembered.
2526 */
2527 static void restore_regulatory_settings(bool reset_user)
2528 {
2529 char alpha2[2];
2530 char world_alpha2[2];
2531 struct reg_beacon *reg_beacon, *btmp;
2532 LIST_HEAD(tmp_reg_req_list);
2533 struct cfg80211_registered_device *rdev;
2534
2535 ASSERT_RTNL();
2536
2537 /*
2538 * Clear the indoor setting in case that it is not controlled by user
2539 * space, as otherwise there is no guarantee that the device is still
2540 * operating in an indoor environment.
2541 */
2542 spin_lock(&reg_indoor_lock);
2543 if (reg_is_indoor && !reg_is_indoor_portid) {
2544 reg_is_indoor = false;
2545 reg_check_channels();
2546 }
2547 spin_unlock(&reg_indoor_lock);
2548
2549 reset_regdomains(true, &world_regdom);
2550 restore_alpha2(alpha2, reset_user);
2551
2552 /*
2553 * If there's any pending requests we simply
2554 * stash them to a temporary pending queue and
2555 * add then after we've restored regulatory
2556 * settings.
2557 */
2558 spin_lock(&reg_requests_lock);
2559 list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
2560 spin_unlock(&reg_requests_lock);
2561
2562 /* Clear beacon hints */
2563 spin_lock_bh(&reg_pending_beacons_lock);
2564 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2565 list_del(&reg_beacon->list);
2566 kfree(reg_beacon);
2567 }
2568 spin_unlock_bh(&reg_pending_beacons_lock);
2569
2570 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2571 list_del(&reg_beacon->list);
2572 kfree(reg_beacon);
2573 }
2574
2575 /* First restore to the basic regulatory settings */
2576 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2577 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2578
2579 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2580 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2581 continue;
2582 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2583 restore_custom_reg_settings(&rdev->wiphy);
2584 }
2585
2586 regulatory_hint_core(world_alpha2);
2587
2588 /*
2589 * This restores the ieee80211_regdom module parameter
2590 * preference or the last user requested regulatory
2591 * settings, user regulatory settings takes precedence.
2592 */
2593 if (is_an_alpha2(alpha2))
2594 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
2595
2596 spin_lock(&reg_requests_lock);
2597 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2598 spin_unlock(&reg_requests_lock);
2599
2600 pr_debug("Kicking the queue\n");
2601
2602 schedule_work(&reg_work);
2603 }
2604
2605 void regulatory_hint_disconnect(void)
2606 {
2607 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
2608 restore_regulatory_settings(false);
2609 }
2610
2611 static bool freq_is_chan_12_13_14(u16 freq)
2612 {
2613 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
2614 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
2615 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
2616 return true;
2617 return false;
2618 }
2619
2620 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2621 {
2622 struct reg_beacon *pending_beacon;
2623
2624 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2625 if (beacon_chan->center_freq ==
2626 pending_beacon->chan.center_freq)
2627 return true;
2628 return false;
2629 }
2630
2631 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2632 struct ieee80211_channel *beacon_chan,
2633 gfp_t gfp)
2634 {
2635 struct reg_beacon *reg_beacon;
2636 bool processing;
2637
2638 if (beacon_chan->beacon_found ||
2639 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2640 (beacon_chan->band == NL80211_BAND_2GHZ &&
2641 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2642 return 0;
2643
2644 spin_lock_bh(&reg_pending_beacons_lock);
2645 processing = pending_reg_beacon(beacon_chan);
2646 spin_unlock_bh(&reg_pending_beacons_lock);
2647
2648 if (processing)
2649 return 0;
2650
2651 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2652 if (!reg_beacon)
2653 return -ENOMEM;
2654
2655 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2656 beacon_chan->center_freq,
2657 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2658 wiphy_name(wiphy));
2659
2660 memcpy(&reg_beacon->chan, beacon_chan,
2661 sizeof(struct ieee80211_channel));
2662
2663 /*
2664 * Since we can be called from BH or and non-BH context
2665 * we must use spin_lock_bh()
2666 */
2667 spin_lock_bh(&reg_pending_beacons_lock);
2668 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2669 spin_unlock_bh(&reg_pending_beacons_lock);
2670
2671 schedule_work(&reg_work);
2672
2673 return 0;
2674 }
2675
2676 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2677 {
2678 unsigned int i;
2679 const struct ieee80211_reg_rule *reg_rule = NULL;
2680 const struct ieee80211_freq_range *freq_range = NULL;
2681 const struct ieee80211_power_rule *power_rule = NULL;
2682 char bw[32], cac_time[32];
2683
2684 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2685
2686 for (i = 0; i < rd->n_reg_rules; i++) {
2687 reg_rule = &rd->reg_rules[i];
2688 freq_range = &reg_rule->freq_range;
2689 power_rule = &reg_rule->power_rule;
2690
2691 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2692 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2693 freq_range->max_bandwidth_khz,
2694 reg_get_max_bandwidth(rd, reg_rule));
2695 else
2696 snprintf(bw, sizeof(bw), "%d KHz",
2697 freq_range->max_bandwidth_khz);
2698
2699 if (reg_rule->flags & NL80211_RRF_DFS)
2700 scnprintf(cac_time, sizeof(cac_time), "%u s",
2701 reg_rule->dfs_cac_ms/1000);
2702 else
2703 scnprintf(cac_time, sizeof(cac_time), "N/A");
2704
2705
2706 /*
2707 * There may not be documentation for max antenna gain
2708 * in certain regions
2709 */
2710 if (power_rule->max_antenna_gain)
2711 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2712 freq_range->start_freq_khz,
2713 freq_range->end_freq_khz,
2714 bw,
2715 power_rule->max_antenna_gain,
2716 power_rule->max_eirp,
2717 cac_time);
2718 else
2719 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2720 freq_range->start_freq_khz,
2721 freq_range->end_freq_khz,
2722 bw,
2723 power_rule->max_eirp,
2724 cac_time);
2725 }
2726 }
2727
2728 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2729 {
2730 switch (dfs_region) {
2731 case NL80211_DFS_UNSET:
2732 case NL80211_DFS_FCC:
2733 case NL80211_DFS_ETSI:
2734 case NL80211_DFS_JP:
2735 return true;
2736 default:
2737 pr_debug("Ignoring uknown DFS master region: %d\n", dfs_region);
2738 return false;
2739 }
2740 }
2741
2742 static void print_regdomain(const struct ieee80211_regdomain *rd)
2743 {
2744 struct regulatory_request *lr = get_last_request();
2745
2746 if (is_intersected_alpha2(rd->alpha2)) {
2747 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2748 struct cfg80211_registered_device *rdev;
2749 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2750 if (rdev) {
2751 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
2752 rdev->country_ie_alpha2[0],
2753 rdev->country_ie_alpha2[1]);
2754 } else
2755 pr_debug("Current regulatory domain intersected:\n");
2756 } else
2757 pr_debug("Current regulatory domain intersected:\n");
2758 } else if (is_world_regdom(rd->alpha2)) {
2759 pr_debug("World regulatory domain updated:\n");
2760 } else {
2761 if (is_unknown_alpha2(rd->alpha2))
2762 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
2763 else {
2764 if (reg_request_cell_base(lr))
2765 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
2766 rd->alpha2[0], rd->alpha2[1]);
2767 else
2768 pr_debug("Regulatory domain changed to country: %c%c\n",
2769 rd->alpha2[0], rd->alpha2[1]);
2770 }
2771 }
2772
2773 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2774 print_rd_rules(rd);
2775 }
2776
2777 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2778 {
2779 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2780 print_rd_rules(rd);
2781 }
2782
2783 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2784 {
2785 if (!is_world_regdom(rd->alpha2))
2786 return -EINVAL;
2787 update_world_regdomain(rd);
2788 return 0;
2789 }
2790
2791 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2792 struct regulatory_request *user_request)
2793 {
2794 const struct ieee80211_regdomain *intersected_rd = NULL;
2795
2796 if (!regdom_changes(rd->alpha2))
2797 return -EALREADY;
2798
2799 if (!is_valid_rd(rd)) {
2800 pr_err("Invalid regulatory domain detected: %c%c\n",
2801 rd->alpha2[0], rd->alpha2[1]);
2802 print_regdomain_info(rd);
2803 return -EINVAL;
2804 }
2805
2806 if (!user_request->intersect) {
2807 reset_regdomains(false, rd);
2808 return 0;
2809 }
2810
2811 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2812 if (!intersected_rd)
2813 return -EINVAL;
2814
2815 kfree(rd);
2816 rd = NULL;
2817 reset_regdomains(false, intersected_rd);
2818
2819 return 0;
2820 }
2821
2822 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2823 struct regulatory_request *driver_request)
2824 {
2825 const struct ieee80211_regdomain *regd;
2826 const struct ieee80211_regdomain *intersected_rd = NULL;
2827 const struct ieee80211_regdomain *tmp;
2828 struct wiphy *request_wiphy;
2829
2830 if (is_world_regdom(rd->alpha2))
2831 return -EINVAL;
2832
2833 if (!regdom_changes(rd->alpha2))
2834 return -EALREADY;
2835
2836 if (!is_valid_rd(rd)) {
2837 pr_err("Invalid regulatory domain detected: %c%c\n",
2838 rd->alpha2[0], rd->alpha2[1]);
2839 print_regdomain_info(rd);
2840 return -EINVAL;
2841 }
2842
2843 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2844 if (!request_wiphy)
2845 return -ENODEV;
2846
2847 if (!driver_request->intersect) {
2848 if (request_wiphy->regd)
2849 return -EALREADY;
2850
2851 regd = reg_copy_regd(rd);
2852 if (IS_ERR(regd))
2853 return PTR_ERR(regd);
2854
2855 rcu_assign_pointer(request_wiphy->regd, regd);
2856 reset_regdomains(false, rd);
2857 return 0;
2858 }
2859
2860 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2861 if (!intersected_rd)
2862 return -EINVAL;
2863
2864 /*
2865 * We can trash what CRDA provided now.
2866 * However if a driver requested this specific regulatory
2867 * domain we keep it for its private use
2868 */
2869 tmp = get_wiphy_regdom(request_wiphy);
2870 rcu_assign_pointer(request_wiphy->regd, rd);
2871 rcu_free_regdom(tmp);
2872
2873 rd = NULL;
2874
2875 reset_regdomains(false, intersected_rd);
2876
2877 return 0;
2878 }
2879
2880 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2881 struct regulatory_request *country_ie_request)
2882 {
2883 struct wiphy *request_wiphy;
2884
2885 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2886 !is_unknown_alpha2(rd->alpha2))
2887 return -EINVAL;
2888
2889 /*
2890 * Lets only bother proceeding on the same alpha2 if the current
2891 * rd is non static (it means CRDA was present and was used last)
2892 * and the pending request came in from a country IE
2893 */
2894
2895 if (!is_valid_rd(rd)) {
2896 pr_err("Invalid regulatory domain detected: %c%c\n",
2897 rd->alpha2[0], rd->alpha2[1]);
2898 print_regdomain_info(rd);
2899 return -EINVAL;
2900 }
2901
2902 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2903 if (!request_wiphy)
2904 return -ENODEV;
2905
2906 if (country_ie_request->intersect)
2907 return -EINVAL;
2908
2909 reset_regdomains(false, rd);
2910 return 0;
2911 }
2912
2913 /*
2914 * Use this call to set the current regulatory domain. Conflicts with
2915 * multiple drivers can be ironed out later. Caller must've already
2916 * kmalloc'd the rd structure.
2917 */
2918 int set_regdom(const struct ieee80211_regdomain *rd,
2919 enum ieee80211_regd_source regd_src)
2920 {
2921 struct regulatory_request *lr;
2922 bool user_reset = false;
2923 int r;
2924
2925 if (!reg_is_valid_request(rd->alpha2)) {
2926 kfree(rd);
2927 return -EINVAL;
2928 }
2929
2930 if (regd_src == REGD_SOURCE_CRDA)
2931 reset_crda_timeouts();
2932
2933 lr = get_last_request();
2934
2935 /* Note that this doesn't update the wiphys, this is done below */
2936 switch (lr->initiator) {
2937 case NL80211_REGDOM_SET_BY_CORE:
2938 r = reg_set_rd_core(rd);
2939 break;
2940 case NL80211_REGDOM_SET_BY_USER:
2941 r = reg_set_rd_user(rd, lr);
2942 user_reset = true;
2943 break;
2944 case NL80211_REGDOM_SET_BY_DRIVER:
2945 r = reg_set_rd_driver(rd, lr);
2946 break;
2947 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2948 r = reg_set_rd_country_ie(rd, lr);
2949 break;
2950 default:
2951 WARN(1, "invalid initiator %d\n", lr->initiator);
2952 kfree(rd);
2953 return -EINVAL;
2954 }
2955
2956 if (r) {
2957 switch (r) {
2958 case -EALREADY:
2959 reg_set_request_processed();
2960 break;
2961 default:
2962 /* Back to world regulatory in case of errors */
2963 restore_regulatory_settings(user_reset);
2964 }
2965
2966 kfree(rd);
2967 return r;
2968 }
2969
2970 /* This would make this whole thing pointless */
2971 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2972 return -EINVAL;
2973
2974 /* update all wiphys now with the new established regulatory domain */
2975 update_all_wiphy_regulatory(lr->initiator);
2976
2977 print_regdomain(get_cfg80211_regdom());
2978
2979 nl80211_send_reg_change_event(lr);
2980
2981 reg_set_request_processed();
2982
2983 return 0;
2984 }
2985
2986 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
2987 struct ieee80211_regdomain *rd)
2988 {
2989 const struct ieee80211_regdomain *regd;
2990 const struct ieee80211_regdomain *prev_regd;
2991 struct cfg80211_registered_device *rdev;
2992
2993 if (WARN_ON(!wiphy || !rd))
2994 return -EINVAL;
2995
2996 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
2997 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
2998 return -EPERM;
2999
3000 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3001 print_regdomain_info(rd);
3002 return -EINVAL;
3003 }
3004
3005 regd = reg_copy_regd(rd);
3006 if (IS_ERR(regd))
3007 return PTR_ERR(regd);
3008
3009 rdev = wiphy_to_rdev(wiphy);
3010
3011 spin_lock(&reg_requests_lock);
3012 prev_regd = rdev->requested_regd;
3013 rdev->requested_regd = regd;
3014 spin_unlock(&reg_requests_lock);
3015
3016 kfree(prev_regd);
3017 return 0;
3018 }
3019
3020 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3021 struct ieee80211_regdomain *rd)
3022 {
3023 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3024
3025 if (ret)
3026 return ret;
3027
3028 schedule_work(&reg_work);
3029 return 0;
3030 }
3031 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3032
3033 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3034 struct ieee80211_regdomain *rd)
3035 {
3036 int ret;
3037
3038 ASSERT_RTNL();
3039
3040 ret = __regulatory_set_wiphy_regd(wiphy, rd);
3041 if (ret)
3042 return ret;
3043
3044 /* process the request immediately */
3045 reg_process_self_managed_hints();
3046 return 0;
3047 }
3048 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3049
3050 void wiphy_regulatory_register(struct wiphy *wiphy)
3051 {
3052 struct regulatory_request *lr;
3053
3054 /* self-managed devices ignore external hints */
3055 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3056 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3057 REGULATORY_COUNTRY_IE_IGNORE;
3058
3059 if (!reg_dev_ignore_cell_hint(wiphy))
3060 reg_num_devs_support_basehint++;
3061
3062 lr = get_last_request();
3063 wiphy_update_regulatory(wiphy, lr->initiator);
3064 }
3065
3066 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3067 {
3068 struct wiphy *request_wiphy = NULL;
3069 struct regulatory_request *lr;
3070
3071 lr = get_last_request();
3072
3073 if (!reg_dev_ignore_cell_hint(wiphy))
3074 reg_num_devs_support_basehint--;
3075
3076 rcu_free_regdom(get_wiphy_regdom(wiphy));
3077 RCU_INIT_POINTER(wiphy->regd, NULL);
3078
3079 if (lr)
3080 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3081
3082 if (!request_wiphy || request_wiphy != wiphy)
3083 return;
3084
3085 lr->wiphy_idx = WIPHY_IDX_INVALID;
3086 lr->country_ie_env = ENVIRON_ANY;
3087 }
3088
3089 /*
3090 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3091 * UNII band definitions
3092 */
3093 int cfg80211_get_unii(int freq)
3094 {
3095 /* UNII-1 */
3096 if (freq >= 5150 && freq <= 5250)
3097 return 0;
3098
3099 /* UNII-2A */
3100 if (freq > 5250 && freq <= 5350)
3101 return 1;
3102
3103 /* UNII-2B */
3104 if (freq > 5350 && freq <= 5470)
3105 return 2;
3106
3107 /* UNII-2C */
3108 if (freq > 5470 && freq <= 5725)
3109 return 3;
3110
3111 /* UNII-3 */
3112 if (freq > 5725 && freq <= 5825)
3113 return 4;
3114
3115 return -EINVAL;
3116 }
3117
3118 bool regulatory_indoor_allowed(void)
3119 {
3120 return reg_is_indoor;
3121 }
3122
3123 int __init regulatory_init(void)
3124 {
3125 int err = 0;
3126
3127 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3128 if (IS_ERR(reg_pdev))
3129 return PTR_ERR(reg_pdev);
3130
3131 spin_lock_init(&reg_requests_lock);
3132 spin_lock_init(&reg_pending_beacons_lock);
3133 spin_lock_init(&reg_indoor_lock);
3134
3135 reg_regdb_size_check();
3136
3137 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3138
3139 user_alpha2[0] = '9';
3140 user_alpha2[1] = '7';
3141
3142 /* We always try to get an update for the static regdomain */
3143 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3144 if (err) {
3145 if (err == -ENOMEM) {
3146 platform_device_unregister(reg_pdev);
3147 return err;
3148 }
3149 /*
3150 * N.B. kobject_uevent_env() can fail mainly for when we're out
3151 * memory which is handled and propagated appropriately above
3152 * but it can also fail during a netlink_broadcast() or during
3153 * early boot for call_usermodehelper(). For now treat these
3154 * errors as non-fatal.
3155 */
3156 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3157 }
3158
3159 /*
3160 * Finally, if the user set the module parameter treat it
3161 * as a user hint.
3162 */
3163 if (!is_world_regdom(ieee80211_regdom))
3164 regulatory_hint_user(ieee80211_regdom,
3165 NL80211_USER_REG_HINT_USER);
3166
3167 return 0;
3168 }
3169
3170 void regulatory_exit(void)
3171 {
3172 struct regulatory_request *reg_request, *tmp;
3173 struct reg_beacon *reg_beacon, *btmp;
3174
3175 cancel_work_sync(&reg_work);
3176 cancel_crda_timeout_sync();
3177 cancel_delayed_work_sync(&reg_check_chans);
3178
3179 /* Lock to suppress warnings */
3180 rtnl_lock();
3181 reset_regdomains(true, NULL);
3182 rtnl_unlock();
3183
3184 dev_set_uevent_suppress(&reg_pdev->dev, true);
3185
3186 platform_device_unregister(reg_pdev);
3187
3188 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3189 list_del(&reg_beacon->list);
3190 kfree(reg_beacon);
3191 }
3192
3193 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3194 list_del(&reg_beacon->list);
3195 kfree(reg_beacon);
3196 }
3197
3198 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3199 list_del(&reg_request->list);
3200 kfree(reg_request);
3201 }
3202 }