]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/wireless/reg.c
mac80211: Add RRM support to assoc request
[mirror_ubuntu-bionic-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 *
8 * Permission to use, copy, modify, and/or distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21
22 /**
23 * DOC: Wireless regulatory infrastructure
24 *
25 * The usual implementation is for a driver to read a device EEPROM to
26 * determine which regulatory domain it should be operating under, then
27 * looking up the allowable channels in a driver-local table and finally
28 * registering those channels in the wiphy structure.
29 *
30 * Another set of compliance enforcement is for drivers to use their
31 * own compliance limits which can be stored on the EEPROM. The host
32 * driver or firmware may ensure these are used.
33 *
34 * In addition to all this we provide an extra layer of regulatory
35 * conformance. For drivers which do not have any regulatory
36 * information CRDA provides the complete regulatory solution.
37 * For others it provides a community effort on further restrictions
38 * to enhance compliance.
39 *
40 * Note: When number of rules --> infinity we will not be able to
41 * index on alpha2 any more, instead we'll probably have to
42 * rely on some SHA1 checksum of the regdomain for example.
43 *
44 */
45
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "regdb.h"
60 #include "nl80211.h"
61
62 #ifdef CONFIG_CFG80211_REG_DEBUG
63 #define REG_DBG_PRINT(format, args...) \
64 printk(KERN_DEBUG pr_fmt(format), ##args)
65 #else
66 #define REG_DBG_PRINT(args...)
67 #endif
68
69 /**
70 * enum reg_request_treatment - regulatory request treatment
71 *
72 * @REG_REQ_OK: continue processing the regulatory request
73 * @REG_REQ_IGNORE: ignore the regulatory request
74 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
75 * be intersected with the current one.
76 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
77 * regulatory settings, and no further processing is required.
78 * @REG_REQ_USER_HINT_HANDLED: a non alpha2 user hint was handled and no
79 * further processing is required, i.e., not need to update last_request
80 * etc. This should be used for user hints that do not provide an alpha2
81 * but some other type of regulatory hint, i.e., indoor operation.
82 */
83 enum reg_request_treatment {
84 REG_REQ_OK,
85 REG_REQ_IGNORE,
86 REG_REQ_INTERSECT,
87 REG_REQ_ALREADY_SET,
88 REG_REQ_USER_HINT_HANDLED,
89 };
90
91 static struct regulatory_request core_request_world = {
92 .initiator = NL80211_REGDOM_SET_BY_CORE,
93 .alpha2[0] = '0',
94 .alpha2[1] = '0',
95 .intersect = false,
96 .processed = true,
97 .country_ie_env = ENVIRON_ANY,
98 };
99
100 /*
101 * Receipt of information from last regulatory request,
102 * protected by RTNL (and can be accessed with RCU protection)
103 */
104 static struct regulatory_request __rcu *last_request =
105 (void __rcu *)&core_request_world;
106
107 /* To trigger userspace events */
108 static struct platform_device *reg_pdev;
109
110 /*
111 * Central wireless core regulatory domains, we only need two,
112 * the current one and a world regulatory domain in case we have no
113 * information to give us an alpha2.
114 * (protected by RTNL, can be read under RCU)
115 */
116 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
117
118 /*
119 * Number of devices that registered to the core
120 * that support cellular base station regulatory hints
121 * (protected by RTNL)
122 */
123 static int reg_num_devs_support_basehint;
124
125 /*
126 * State variable indicating if the platform on which the devices
127 * are attached is operating in an indoor environment. The state variable
128 * is relevant for all registered devices.
129 * (protected by RTNL)
130 */
131 static bool reg_is_indoor;
132
133 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
134 {
135 return rtnl_dereference(cfg80211_regdomain);
136 }
137
138 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
139 {
140 return rtnl_dereference(wiphy->regd);
141 }
142
143 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
144 {
145 switch (dfs_region) {
146 case NL80211_DFS_UNSET:
147 return "unset";
148 case NL80211_DFS_FCC:
149 return "FCC";
150 case NL80211_DFS_ETSI:
151 return "ETSI";
152 case NL80211_DFS_JP:
153 return "JP";
154 }
155 return "Unknown";
156 }
157
158 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
159 {
160 const struct ieee80211_regdomain *regd = NULL;
161 const struct ieee80211_regdomain *wiphy_regd = NULL;
162
163 regd = get_cfg80211_regdom();
164 if (!wiphy)
165 goto out;
166
167 wiphy_regd = get_wiphy_regdom(wiphy);
168 if (!wiphy_regd)
169 goto out;
170
171 if (wiphy_regd->dfs_region == regd->dfs_region)
172 goto out;
173
174 REG_DBG_PRINT("%s: device specific dfs_region "
175 "(%s) disagrees with cfg80211's "
176 "central dfs_region (%s)\n",
177 dev_name(&wiphy->dev),
178 reg_dfs_region_str(wiphy_regd->dfs_region),
179 reg_dfs_region_str(regd->dfs_region));
180
181 out:
182 return regd->dfs_region;
183 }
184
185 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
186 {
187 if (!r)
188 return;
189 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
190 }
191
192 static struct regulatory_request *get_last_request(void)
193 {
194 return rcu_dereference_rtnl(last_request);
195 }
196
197 /* Used to queue up regulatory hints */
198 static LIST_HEAD(reg_requests_list);
199 static spinlock_t reg_requests_lock;
200
201 /* Used to queue up beacon hints for review */
202 static LIST_HEAD(reg_pending_beacons);
203 static spinlock_t reg_pending_beacons_lock;
204
205 /* Used to keep track of processed beacon hints */
206 static LIST_HEAD(reg_beacon_list);
207
208 struct reg_beacon {
209 struct list_head list;
210 struct ieee80211_channel chan;
211 };
212
213 static void reg_todo(struct work_struct *work);
214 static DECLARE_WORK(reg_work, reg_todo);
215
216 static void reg_timeout_work(struct work_struct *work);
217 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
218
219 /* We keep a static world regulatory domain in case of the absence of CRDA */
220 static const struct ieee80211_regdomain world_regdom = {
221 .n_reg_rules = 6,
222 .alpha2 = "00",
223 .reg_rules = {
224 /* IEEE 802.11b/g, channels 1..11 */
225 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
226 /* IEEE 802.11b/g, channels 12..13. */
227 REG_RULE(2467-10, 2472+10, 40, 6, 20,
228 NL80211_RRF_NO_IR),
229 /* IEEE 802.11 channel 14 - Only JP enables
230 * this and for 802.11b only */
231 REG_RULE(2484-10, 2484+10, 20, 6, 20,
232 NL80211_RRF_NO_IR |
233 NL80211_RRF_NO_OFDM),
234 /* IEEE 802.11a, channel 36..48 */
235 REG_RULE(5180-10, 5240+10, 160, 6, 20,
236 NL80211_RRF_NO_IR),
237
238 /* IEEE 802.11a, channel 52..64 - DFS required */
239 REG_RULE(5260-10, 5320+10, 160, 6, 20,
240 NL80211_RRF_NO_IR |
241 NL80211_RRF_DFS),
242
243 /* IEEE 802.11a, channel 100..144 - DFS required */
244 REG_RULE(5500-10, 5720+10, 160, 6, 20,
245 NL80211_RRF_NO_IR |
246 NL80211_RRF_DFS),
247
248 /* IEEE 802.11a, channel 149..165 */
249 REG_RULE(5745-10, 5825+10, 80, 6, 20,
250 NL80211_RRF_NO_IR),
251
252 /* IEEE 802.11ad (60gHz), channels 1..3 */
253 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
254 }
255 };
256
257 /* protected by RTNL */
258 static const struct ieee80211_regdomain *cfg80211_world_regdom =
259 &world_regdom;
260
261 static char *ieee80211_regdom = "00";
262 static char user_alpha2[2];
263
264 module_param(ieee80211_regdom, charp, 0444);
265 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
266
267 static void reg_free_request(struct regulatory_request *request)
268 {
269 if (request != get_last_request())
270 kfree(request);
271 }
272
273 static void reg_free_last_request(void)
274 {
275 struct regulatory_request *lr = get_last_request();
276
277 if (lr != &core_request_world && lr)
278 kfree_rcu(lr, rcu_head);
279 }
280
281 static void reg_update_last_request(struct regulatory_request *request)
282 {
283 struct regulatory_request *lr;
284
285 lr = get_last_request();
286 if (lr == request)
287 return;
288
289 reg_free_last_request();
290 rcu_assign_pointer(last_request, request);
291 }
292
293 static void reset_regdomains(bool full_reset,
294 const struct ieee80211_regdomain *new_regdom)
295 {
296 const struct ieee80211_regdomain *r;
297
298 ASSERT_RTNL();
299
300 r = get_cfg80211_regdom();
301
302 /* avoid freeing static information or freeing something twice */
303 if (r == cfg80211_world_regdom)
304 r = NULL;
305 if (cfg80211_world_regdom == &world_regdom)
306 cfg80211_world_regdom = NULL;
307 if (r == &world_regdom)
308 r = NULL;
309
310 rcu_free_regdom(r);
311 rcu_free_regdom(cfg80211_world_regdom);
312
313 cfg80211_world_regdom = &world_regdom;
314 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
315
316 if (!full_reset)
317 return;
318
319 reg_update_last_request(&core_request_world);
320 }
321
322 /*
323 * Dynamic world regulatory domain requested by the wireless
324 * core upon initialization
325 */
326 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
327 {
328 struct regulatory_request *lr;
329
330 lr = get_last_request();
331
332 WARN_ON(!lr);
333
334 reset_regdomains(false, rd);
335
336 cfg80211_world_regdom = rd;
337 }
338
339 bool is_world_regdom(const char *alpha2)
340 {
341 if (!alpha2)
342 return false;
343 return alpha2[0] == '0' && alpha2[1] == '0';
344 }
345
346 static bool is_alpha2_set(const char *alpha2)
347 {
348 if (!alpha2)
349 return false;
350 return alpha2[0] && alpha2[1];
351 }
352
353 static bool is_unknown_alpha2(const char *alpha2)
354 {
355 if (!alpha2)
356 return false;
357 /*
358 * Special case where regulatory domain was built by driver
359 * but a specific alpha2 cannot be determined
360 */
361 return alpha2[0] == '9' && alpha2[1] == '9';
362 }
363
364 static bool is_intersected_alpha2(const char *alpha2)
365 {
366 if (!alpha2)
367 return false;
368 /*
369 * Special case where regulatory domain is the
370 * result of an intersection between two regulatory domain
371 * structures
372 */
373 return alpha2[0] == '9' && alpha2[1] == '8';
374 }
375
376 static bool is_an_alpha2(const char *alpha2)
377 {
378 if (!alpha2)
379 return false;
380 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
381 }
382
383 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
384 {
385 if (!alpha2_x || !alpha2_y)
386 return false;
387 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
388 }
389
390 static bool regdom_changes(const char *alpha2)
391 {
392 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
393
394 if (!r)
395 return true;
396 return !alpha2_equal(r->alpha2, alpha2);
397 }
398
399 /*
400 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
401 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
402 * has ever been issued.
403 */
404 static bool is_user_regdom_saved(void)
405 {
406 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
407 return false;
408
409 /* This would indicate a mistake on the design */
410 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
411 "Unexpected user alpha2: %c%c\n",
412 user_alpha2[0], user_alpha2[1]))
413 return false;
414
415 return true;
416 }
417
418 static const struct ieee80211_regdomain *
419 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
420 {
421 struct ieee80211_regdomain *regd;
422 int size_of_regd;
423 unsigned int i;
424
425 size_of_regd =
426 sizeof(struct ieee80211_regdomain) +
427 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
428
429 regd = kzalloc(size_of_regd, GFP_KERNEL);
430 if (!regd)
431 return ERR_PTR(-ENOMEM);
432
433 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
434
435 for (i = 0; i < src_regd->n_reg_rules; i++)
436 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
437 sizeof(struct ieee80211_reg_rule));
438
439 return regd;
440 }
441
442 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
443 struct reg_regdb_search_request {
444 char alpha2[2];
445 struct list_head list;
446 };
447
448 static LIST_HEAD(reg_regdb_search_list);
449 static DEFINE_MUTEX(reg_regdb_search_mutex);
450
451 static void reg_regdb_search(struct work_struct *work)
452 {
453 struct reg_regdb_search_request *request;
454 const struct ieee80211_regdomain *curdom, *regdom = NULL;
455 int i;
456
457 rtnl_lock();
458
459 mutex_lock(&reg_regdb_search_mutex);
460 while (!list_empty(&reg_regdb_search_list)) {
461 request = list_first_entry(&reg_regdb_search_list,
462 struct reg_regdb_search_request,
463 list);
464 list_del(&request->list);
465
466 for (i = 0; i < reg_regdb_size; i++) {
467 curdom = reg_regdb[i];
468
469 if (alpha2_equal(request->alpha2, curdom->alpha2)) {
470 regdom = reg_copy_regd(curdom);
471 break;
472 }
473 }
474
475 kfree(request);
476 }
477 mutex_unlock(&reg_regdb_search_mutex);
478
479 if (!IS_ERR_OR_NULL(regdom))
480 set_regdom(regdom);
481
482 rtnl_unlock();
483 }
484
485 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
486
487 static void reg_regdb_query(const char *alpha2)
488 {
489 struct reg_regdb_search_request *request;
490
491 if (!alpha2)
492 return;
493
494 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
495 if (!request)
496 return;
497
498 memcpy(request->alpha2, alpha2, 2);
499
500 mutex_lock(&reg_regdb_search_mutex);
501 list_add_tail(&request->list, &reg_regdb_search_list);
502 mutex_unlock(&reg_regdb_search_mutex);
503
504 schedule_work(&reg_regdb_work);
505 }
506
507 /* Feel free to add any other sanity checks here */
508 static void reg_regdb_size_check(void)
509 {
510 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
511 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
512 }
513 #else
514 static inline void reg_regdb_size_check(void) {}
515 static inline void reg_regdb_query(const char *alpha2) {}
516 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
517
518 /*
519 * This lets us keep regulatory code which is updated on a regulatory
520 * basis in userspace.
521 */
522 static int call_crda(const char *alpha2)
523 {
524 char country[12];
525 char *env[] = { country, NULL };
526
527 snprintf(country, sizeof(country), "COUNTRY=%c%c",
528 alpha2[0], alpha2[1]);
529
530 if (!is_world_regdom((char *) alpha2))
531 pr_info("Calling CRDA for country: %c%c\n",
532 alpha2[0], alpha2[1]);
533 else
534 pr_info("Calling CRDA to update world regulatory domain\n");
535
536 /* query internal regulatory database (if it exists) */
537 reg_regdb_query(alpha2);
538
539 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
540 }
541
542 static enum reg_request_treatment
543 reg_call_crda(struct regulatory_request *request)
544 {
545 if (call_crda(request->alpha2))
546 return REG_REQ_IGNORE;
547 return REG_REQ_OK;
548 }
549
550 bool reg_is_valid_request(const char *alpha2)
551 {
552 struct regulatory_request *lr = get_last_request();
553
554 if (!lr || lr->processed)
555 return false;
556
557 return alpha2_equal(lr->alpha2, alpha2);
558 }
559
560 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
561 {
562 struct regulatory_request *lr = get_last_request();
563
564 /*
565 * Follow the driver's regulatory domain, if present, unless a country
566 * IE has been processed or a user wants to help complaince further
567 */
568 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
569 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
570 wiphy->regd)
571 return get_wiphy_regdom(wiphy);
572
573 return get_cfg80211_regdom();
574 }
575
576 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
577 const struct ieee80211_reg_rule *rule)
578 {
579 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
580 const struct ieee80211_freq_range *freq_range_tmp;
581 const struct ieee80211_reg_rule *tmp;
582 u32 start_freq, end_freq, idx, no;
583
584 for (idx = 0; idx < rd->n_reg_rules; idx++)
585 if (rule == &rd->reg_rules[idx])
586 break;
587
588 if (idx == rd->n_reg_rules)
589 return 0;
590
591 /* get start_freq */
592 no = idx;
593
594 while (no) {
595 tmp = &rd->reg_rules[--no];
596 freq_range_tmp = &tmp->freq_range;
597
598 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
599 break;
600
601 freq_range = freq_range_tmp;
602 }
603
604 start_freq = freq_range->start_freq_khz;
605
606 /* get end_freq */
607 freq_range = &rule->freq_range;
608 no = idx;
609
610 while (no < rd->n_reg_rules - 1) {
611 tmp = &rd->reg_rules[++no];
612 freq_range_tmp = &tmp->freq_range;
613
614 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
615 break;
616
617 freq_range = freq_range_tmp;
618 }
619
620 end_freq = freq_range->end_freq_khz;
621
622 return end_freq - start_freq;
623 }
624
625 /* Sanity check on a regulatory rule */
626 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
627 {
628 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
629 u32 freq_diff;
630
631 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
632 return false;
633
634 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
635 return false;
636
637 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
638
639 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
640 freq_range->max_bandwidth_khz > freq_diff)
641 return false;
642
643 return true;
644 }
645
646 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
647 {
648 const struct ieee80211_reg_rule *reg_rule = NULL;
649 unsigned int i;
650
651 if (!rd->n_reg_rules)
652 return false;
653
654 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
655 return false;
656
657 for (i = 0; i < rd->n_reg_rules; i++) {
658 reg_rule = &rd->reg_rules[i];
659 if (!is_valid_reg_rule(reg_rule))
660 return false;
661 }
662
663 return true;
664 }
665
666 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
667 u32 center_freq_khz, u32 bw_khz)
668 {
669 u32 start_freq_khz, end_freq_khz;
670
671 start_freq_khz = center_freq_khz - (bw_khz/2);
672 end_freq_khz = center_freq_khz + (bw_khz/2);
673
674 if (start_freq_khz >= freq_range->start_freq_khz &&
675 end_freq_khz <= freq_range->end_freq_khz)
676 return true;
677
678 return false;
679 }
680
681 /**
682 * freq_in_rule_band - tells us if a frequency is in a frequency band
683 * @freq_range: frequency rule we want to query
684 * @freq_khz: frequency we are inquiring about
685 *
686 * This lets us know if a specific frequency rule is or is not relevant to
687 * a specific frequency's band. Bands are device specific and artificial
688 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
689 * however it is safe for now to assume that a frequency rule should not be
690 * part of a frequency's band if the start freq or end freq are off by more
691 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
692 * 60 GHz band.
693 * This resolution can be lowered and should be considered as we add
694 * regulatory rule support for other "bands".
695 **/
696 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
697 u32 freq_khz)
698 {
699 #define ONE_GHZ_IN_KHZ 1000000
700 /*
701 * From 802.11ad: directional multi-gigabit (DMG):
702 * Pertaining to operation in a frequency band containing a channel
703 * with the Channel starting frequency above 45 GHz.
704 */
705 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
706 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
707 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
708 return true;
709 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
710 return true;
711 return false;
712 #undef ONE_GHZ_IN_KHZ
713 }
714
715 /*
716 * Later on we can perhaps use the more restrictive DFS
717 * region but we don't have information for that yet so
718 * for now simply disallow conflicts.
719 */
720 static enum nl80211_dfs_regions
721 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
722 const enum nl80211_dfs_regions dfs_region2)
723 {
724 if (dfs_region1 != dfs_region2)
725 return NL80211_DFS_UNSET;
726 return dfs_region1;
727 }
728
729 /*
730 * Helper for regdom_intersect(), this does the real
731 * mathematical intersection fun
732 */
733 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
734 const struct ieee80211_regdomain *rd2,
735 const struct ieee80211_reg_rule *rule1,
736 const struct ieee80211_reg_rule *rule2,
737 struct ieee80211_reg_rule *intersected_rule)
738 {
739 const struct ieee80211_freq_range *freq_range1, *freq_range2;
740 struct ieee80211_freq_range *freq_range;
741 const struct ieee80211_power_rule *power_rule1, *power_rule2;
742 struct ieee80211_power_rule *power_rule;
743 u32 freq_diff, max_bandwidth1, max_bandwidth2;
744
745 freq_range1 = &rule1->freq_range;
746 freq_range2 = &rule2->freq_range;
747 freq_range = &intersected_rule->freq_range;
748
749 power_rule1 = &rule1->power_rule;
750 power_rule2 = &rule2->power_rule;
751 power_rule = &intersected_rule->power_rule;
752
753 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
754 freq_range2->start_freq_khz);
755 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
756 freq_range2->end_freq_khz);
757
758 max_bandwidth1 = freq_range1->max_bandwidth_khz;
759 max_bandwidth2 = freq_range2->max_bandwidth_khz;
760
761 if (rule1->flags & NL80211_RRF_AUTO_BW)
762 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
763 if (rule2->flags & NL80211_RRF_AUTO_BW)
764 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
765
766 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
767
768 intersected_rule->flags = rule1->flags | rule2->flags;
769
770 /*
771 * In case NL80211_RRF_AUTO_BW requested for both rules
772 * set AUTO_BW in intersected rule also. Next we will
773 * calculate BW correctly in handle_channel function.
774 * In other case remove AUTO_BW flag while we calculate
775 * maximum bandwidth correctly and auto calculation is
776 * not required.
777 */
778 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
779 (rule2->flags & NL80211_RRF_AUTO_BW))
780 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
781 else
782 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
783
784 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
785 if (freq_range->max_bandwidth_khz > freq_diff)
786 freq_range->max_bandwidth_khz = freq_diff;
787
788 power_rule->max_eirp = min(power_rule1->max_eirp,
789 power_rule2->max_eirp);
790 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
791 power_rule2->max_antenna_gain);
792
793 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
794 rule2->dfs_cac_ms);
795
796 if (!is_valid_reg_rule(intersected_rule))
797 return -EINVAL;
798
799 return 0;
800 }
801
802 /**
803 * regdom_intersect - do the intersection between two regulatory domains
804 * @rd1: first regulatory domain
805 * @rd2: second regulatory domain
806 *
807 * Use this function to get the intersection between two regulatory domains.
808 * Once completed we will mark the alpha2 for the rd as intersected, "98",
809 * as no one single alpha2 can represent this regulatory domain.
810 *
811 * Returns a pointer to the regulatory domain structure which will hold the
812 * resulting intersection of rules between rd1 and rd2. We will
813 * kzalloc() this structure for you.
814 */
815 static struct ieee80211_regdomain *
816 regdom_intersect(const struct ieee80211_regdomain *rd1,
817 const struct ieee80211_regdomain *rd2)
818 {
819 int r, size_of_regd;
820 unsigned int x, y;
821 unsigned int num_rules = 0, rule_idx = 0;
822 const struct ieee80211_reg_rule *rule1, *rule2;
823 struct ieee80211_reg_rule *intersected_rule;
824 struct ieee80211_regdomain *rd;
825 /* This is just a dummy holder to help us count */
826 struct ieee80211_reg_rule dummy_rule;
827
828 if (!rd1 || !rd2)
829 return NULL;
830
831 /*
832 * First we get a count of the rules we'll need, then we actually
833 * build them. This is to so we can malloc() and free() a
834 * regdomain once. The reason we use reg_rules_intersect() here
835 * is it will return -EINVAL if the rule computed makes no sense.
836 * All rules that do check out OK are valid.
837 */
838
839 for (x = 0; x < rd1->n_reg_rules; x++) {
840 rule1 = &rd1->reg_rules[x];
841 for (y = 0; y < rd2->n_reg_rules; y++) {
842 rule2 = &rd2->reg_rules[y];
843 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
844 &dummy_rule))
845 num_rules++;
846 }
847 }
848
849 if (!num_rules)
850 return NULL;
851
852 size_of_regd = sizeof(struct ieee80211_regdomain) +
853 num_rules * sizeof(struct ieee80211_reg_rule);
854
855 rd = kzalloc(size_of_regd, GFP_KERNEL);
856 if (!rd)
857 return NULL;
858
859 for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
860 rule1 = &rd1->reg_rules[x];
861 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
862 rule2 = &rd2->reg_rules[y];
863 /*
864 * This time around instead of using the stack lets
865 * write to the target rule directly saving ourselves
866 * a memcpy()
867 */
868 intersected_rule = &rd->reg_rules[rule_idx];
869 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
870 intersected_rule);
871 /*
872 * No need to memset here the intersected rule here as
873 * we're not using the stack anymore
874 */
875 if (r)
876 continue;
877 rule_idx++;
878 }
879 }
880
881 if (rule_idx != num_rules) {
882 kfree(rd);
883 return NULL;
884 }
885
886 rd->n_reg_rules = num_rules;
887 rd->alpha2[0] = '9';
888 rd->alpha2[1] = '8';
889 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
890 rd2->dfs_region);
891
892 return rd;
893 }
894
895 /*
896 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
897 * want to just have the channel structure use these
898 */
899 static u32 map_regdom_flags(u32 rd_flags)
900 {
901 u32 channel_flags = 0;
902 if (rd_flags & NL80211_RRF_NO_IR_ALL)
903 channel_flags |= IEEE80211_CHAN_NO_IR;
904 if (rd_flags & NL80211_RRF_DFS)
905 channel_flags |= IEEE80211_CHAN_RADAR;
906 if (rd_flags & NL80211_RRF_NO_OFDM)
907 channel_flags |= IEEE80211_CHAN_NO_OFDM;
908 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
909 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
910 return channel_flags;
911 }
912
913 static const struct ieee80211_reg_rule *
914 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
915 const struct ieee80211_regdomain *regd)
916 {
917 int i;
918 bool band_rule_found = false;
919 bool bw_fits = false;
920
921 if (!regd)
922 return ERR_PTR(-EINVAL);
923
924 for (i = 0; i < regd->n_reg_rules; i++) {
925 const struct ieee80211_reg_rule *rr;
926 const struct ieee80211_freq_range *fr = NULL;
927
928 rr = &regd->reg_rules[i];
929 fr = &rr->freq_range;
930
931 /*
932 * We only need to know if one frequency rule was
933 * was in center_freq's band, that's enough, so lets
934 * not overwrite it once found
935 */
936 if (!band_rule_found)
937 band_rule_found = freq_in_rule_band(fr, center_freq);
938
939 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
940
941 if (band_rule_found && bw_fits)
942 return rr;
943 }
944
945 if (!band_rule_found)
946 return ERR_PTR(-ERANGE);
947
948 return ERR_PTR(-EINVAL);
949 }
950
951 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
952 u32 center_freq)
953 {
954 const struct ieee80211_regdomain *regd;
955
956 regd = reg_get_regdomain(wiphy);
957
958 return freq_reg_info_regd(wiphy, center_freq, regd);
959 }
960 EXPORT_SYMBOL(freq_reg_info);
961
962 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
963 {
964 switch (initiator) {
965 case NL80211_REGDOM_SET_BY_CORE:
966 return "core";
967 case NL80211_REGDOM_SET_BY_USER:
968 return "user";
969 case NL80211_REGDOM_SET_BY_DRIVER:
970 return "driver";
971 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
972 return "country IE";
973 default:
974 WARN_ON(1);
975 return "bug";
976 }
977 }
978 EXPORT_SYMBOL(reg_initiator_name);
979
980 #ifdef CONFIG_CFG80211_REG_DEBUG
981 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
982 struct ieee80211_channel *chan,
983 const struct ieee80211_reg_rule *reg_rule)
984 {
985 const struct ieee80211_power_rule *power_rule;
986 const struct ieee80211_freq_range *freq_range;
987 char max_antenna_gain[32], bw[32];
988
989 power_rule = &reg_rule->power_rule;
990 freq_range = &reg_rule->freq_range;
991
992 if (!power_rule->max_antenna_gain)
993 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
994 else
995 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
996 power_rule->max_antenna_gain);
997
998 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
999 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1000 freq_range->max_bandwidth_khz,
1001 reg_get_max_bandwidth(regd, reg_rule));
1002 else
1003 snprintf(bw, sizeof(bw), "%d KHz",
1004 freq_range->max_bandwidth_khz);
1005
1006 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1007 chan->center_freq);
1008
1009 REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
1010 freq_range->start_freq_khz, freq_range->end_freq_khz,
1011 bw, max_antenna_gain,
1012 power_rule->max_eirp);
1013 }
1014 #else
1015 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1016 struct ieee80211_channel *chan,
1017 const struct ieee80211_reg_rule *reg_rule)
1018 {
1019 return;
1020 }
1021 #endif
1022
1023 /*
1024 * Note that right now we assume the desired channel bandwidth
1025 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1026 * per channel, the primary and the extension channel).
1027 */
1028 static void handle_channel(struct wiphy *wiphy,
1029 enum nl80211_reg_initiator initiator,
1030 struct ieee80211_channel *chan)
1031 {
1032 u32 flags, bw_flags = 0;
1033 const struct ieee80211_reg_rule *reg_rule = NULL;
1034 const struct ieee80211_power_rule *power_rule = NULL;
1035 const struct ieee80211_freq_range *freq_range = NULL;
1036 struct wiphy *request_wiphy = NULL;
1037 struct regulatory_request *lr = get_last_request();
1038 const struct ieee80211_regdomain *regd;
1039 u32 max_bandwidth_khz;
1040
1041 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1042
1043 flags = chan->orig_flags;
1044
1045 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1046 if (IS_ERR(reg_rule)) {
1047 /*
1048 * We will disable all channels that do not match our
1049 * received regulatory rule unless the hint is coming
1050 * from a Country IE and the Country IE had no information
1051 * about a band. The IEEE 802.11 spec allows for an AP
1052 * to send only a subset of the regulatory rules allowed,
1053 * so an AP in the US that only supports 2.4 GHz may only send
1054 * a country IE with information for the 2.4 GHz band
1055 * while 5 GHz is still supported.
1056 */
1057 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1058 PTR_ERR(reg_rule) == -ERANGE)
1059 return;
1060
1061 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1062 request_wiphy && request_wiphy == wiphy &&
1063 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1064 REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1065 chan->center_freq);
1066 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1067 chan->flags = chan->orig_flags;
1068 } else {
1069 REG_DBG_PRINT("Disabling freq %d MHz\n",
1070 chan->center_freq);
1071 chan->flags |= IEEE80211_CHAN_DISABLED;
1072 }
1073 return;
1074 }
1075
1076 regd = reg_get_regdomain(wiphy);
1077 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1078
1079 power_rule = &reg_rule->power_rule;
1080 freq_range = &reg_rule->freq_range;
1081
1082 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1083 /* Check if auto calculation requested */
1084 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1085 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1086
1087 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1088 bw_flags = IEEE80211_CHAN_NO_HT40;
1089 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1090 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1091 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1092 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1093
1094 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1095 request_wiphy && request_wiphy == wiphy &&
1096 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1097 /*
1098 * This guarantees the driver's requested regulatory domain
1099 * will always be used as a base for further regulatory
1100 * settings
1101 */
1102 chan->flags = chan->orig_flags =
1103 map_regdom_flags(reg_rule->flags) | bw_flags;
1104 chan->max_antenna_gain = chan->orig_mag =
1105 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1106 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1107 (int) MBM_TO_DBM(power_rule->max_eirp);
1108
1109 if (chan->flags & IEEE80211_CHAN_RADAR) {
1110 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1111 if (reg_rule->dfs_cac_ms)
1112 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1113 }
1114
1115 return;
1116 }
1117
1118 chan->dfs_state = NL80211_DFS_USABLE;
1119 chan->dfs_state_entered = jiffies;
1120
1121 chan->beacon_found = false;
1122 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1123 chan->max_antenna_gain =
1124 min_t(int, chan->orig_mag,
1125 MBI_TO_DBI(power_rule->max_antenna_gain));
1126 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1127
1128 if (chan->flags & IEEE80211_CHAN_RADAR) {
1129 if (reg_rule->dfs_cac_ms)
1130 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1131 else
1132 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1133 }
1134
1135 if (chan->orig_mpwr) {
1136 /*
1137 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1138 * will always follow the passed country IE power settings.
1139 */
1140 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1141 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1142 chan->max_power = chan->max_reg_power;
1143 else
1144 chan->max_power = min(chan->orig_mpwr,
1145 chan->max_reg_power);
1146 } else
1147 chan->max_power = chan->max_reg_power;
1148 }
1149
1150 static void handle_band(struct wiphy *wiphy,
1151 enum nl80211_reg_initiator initiator,
1152 struct ieee80211_supported_band *sband)
1153 {
1154 unsigned int i;
1155
1156 if (!sband)
1157 return;
1158
1159 for (i = 0; i < sband->n_channels; i++)
1160 handle_channel(wiphy, initiator, &sband->channels[i]);
1161 }
1162
1163 static bool reg_request_cell_base(struct regulatory_request *request)
1164 {
1165 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1166 return false;
1167 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1168 }
1169
1170 static bool reg_request_indoor(struct regulatory_request *request)
1171 {
1172 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1173 return false;
1174 return request->user_reg_hint_type == NL80211_USER_REG_HINT_INDOOR;
1175 }
1176
1177 bool reg_last_request_cell_base(void)
1178 {
1179 return reg_request_cell_base(get_last_request());
1180 }
1181
1182 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1183 /* Core specific check */
1184 static enum reg_request_treatment
1185 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1186 {
1187 struct regulatory_request *lr = get_last_request();
1188
1189 if (!reg_num_devs_support_basehint)
1190 return REG_REQ_IGNORE;
1191
1192 if (reg_request_cell_base(lr) &&
1193 !regdom_changes(pending_request->alpha2))
1194 return REG_REQ_ALREADY_SET;
1195
1196 return REG_REQ_OK;
1197 }
1198
1199 /* Device specific check */
1200 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1201 {
1202 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1203 }
1204 #else
1205 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1206 {
1207 return REG_REQ_IGNORE;
1208 }
1209
1210 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1211 {
1212 return true;
1213 }
1214 #endif
1215
1216 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1217 {
1218 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1219 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1220 return true;
1221 return false;
1222 }
1223
1224 static bool ignore_reg_update(struct wiphy *wiphy,
1225 enum nl80211_reg_initiator initiator)
1226 {
1227 struct regulatory_request *lr = get_last_request();
1228
1229 if (!lr) {
1230 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1231 "since last_request is not set\n",
1232 reg_initiator_name(initiator));
1233 return true;
1234 }
1235
1236 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1237 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1238 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1239 "since the driver uses its own custom "
1240 "regulatory domain\n",
1241 reg_initiator_name(initiator));
1242 return true;
1243 }
1244
1245 /*
1246 * wiphy->regd will be set once the device has its own
1247 * desired regulatory domain set
1248 */
1249 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1250 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1251 !is_world_regdom(lr->alpha2)) {
1252 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1253 "since the driver requires its own regulatory "
1254 "domain to be set first\n",
1255 reg_initiator_name(initiator));
1256 return true;
1257 }
1258
1259 if (reg_request_cell_base(lr))
1260 return reg_dev_ignore_cell_hint(wiphy);
1261
1262 return false;
1263 }
1264
1265 static bool reg_is_world_roaming(struct wiphy *wiphy)
1266 {
1267 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1268 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1269 struct regulatory_request *lr = get_last_request();
1270
1271 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1272 return true;
1273
1274 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1275 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1276 return true;
1277
1278 return false;
1279 }
1280
1281 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1282 struct reg_beacon *reg_beacon)
1283 {
1284 struct ieee80211_supported_band *sband;
1285 struct ieee80211_channel *chan;
1286 bool channel_changed = false;
1287 struct ieee80211_channel chan_before;
1288
1289 sband = wiphy->bands[reg_beacon->chan.band];
1290 chan = &sband->channels[chan_idx];
1291
1292 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1293 return;
1294
1295 if (chan->beacon_found)
1296 return;
1297
1298 chan->beacon_found = true;
1299
1300 if (!reg_is_world_roaming(wiphy))
1301 return;
1302
1303 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1304 return;
1305
1306 chan_before.center_freq = chan->center_freq;
1307 chan_before.flags = chan->flags;
1308
1309 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1310 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1311 channel_changed = true;
1312 }
1313
1314 if (channel_changed)
1315 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1316 }
1317
1318 /*
1319 * Called when a scan on a wiphy finds a beacon on
1320 * new channel
1321 */
1322 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1323 struct reg_beacon *reg_beacon)
1324 {
1325 unsigned int i;
1326 struct ieee80211_supported_band *sband;
1327
1328 if (!wiphy->bands[reg_beacon->chan.band])
1329 return;
1330
1331 sband = wiphy->bands[reg_beacon->chan.band];
1332
1333 for (i = 0; i < sband->n_channels; i++)
1334 handle_reg_beacon(wiphy, i, reg_beacon);
1335 }
1336
1337 /*
1338 * Called upon reg changes or a new wiphy is added
1339 */
1340 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1341 {
1342 unsigned int i;
1343 struct ieee80211_supported_band *sband;
1344 struct reg_beacon *reg_beacon;
1345
1346 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1347 if (!wiphy->bands[reg_beacon->chan.band])
1348 continue;
1349 sband = wiphy->bands[reg_beacon->chan.band];
1350 for (i = 0; i < sband->n_channels; i++)
1351 handle_reg_beacon(wiphy, i, reg_beacon);
1352 }
1353 }
1354
1355 /* Reap the advantages of previously found beacons */
1356 static void reg_process_beacons(struct wiphy *wiphy)
1357 {
1358 /*
1359 * Means we are just firing up cfg80211, so no beacons would
1360 * have been processed yet.
1361 */
1362 if (!last_request)
1363 return;
1364 wiphy_update_beacon_reg(wiphy);
1365 }
1366
1367 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1368 {
1369 if (!chan)
1370 return false;
1371 if (chan->flags & IEEE80211_CHAN_DISABLED)
1372 return false;
1373 /* This would happen when regulatory rules disallow HT40 completely */
1374 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1375 return false;
1376 return true;
1377 }
1378
1379 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1380 struct ieee80211_channel *channel)
1381 {
1382 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1383 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1384 unsigned int i;
1385
1386 if (!is_ht40_allowed(channel)) {
1387 channel->flags |= IEEE80211_CHAN_NO_HT40;
1388 return;
1389 }
1390
1391 /*
1392 * We need to ensure the extension channels exist to
1393 * be able to use HT40- or HT40+, this finds them (or not)
1394 */
1395 for (i = 0; i < sband->n_channels; i++) {
1396 struct ieee80211_channel *c = &sband->channels[i];
1397
1398 if (c->center_freq == (channel->center_freq - 20))
1399 channel_before = c;
1400 if (c->center_freq == (channel->center_freq + 20))
1401 channel_after = c;
1402 }
1403
1404 /*
1405 * Please note that this assumes target bandwidth is 20 MHz,
1406 * if that ever changes we also need to change the below logic
1407 * to include that as well.
1408 */
1409 if (!is_ht40_allowed(channel_before))
1410 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1411 else
1412 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1413
1414 if (!is_ht40_allowed(channel_after))
1415 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1416 else
1417 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1418 }
1419
1420 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1421 struct ieee80211_supported_band *sband)
1422 {
1423 unsigned int i;
1424
1425 if (!sband)
1426 return;
1427
1428 for (i = 0; i < sband->n_channels; i++)
1429 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1430 }
1431
1432 static void reg_process_ht_flags(struct wiphy *wiphy)
1433 {
1434 enum ieee80211_band band;
1435
1436 if (!wiphy)
1437 return;
1438
1439 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1440 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1441 }
1442
1443 static void reg_call_notifier(struct wiphy *wiphy,
1444 struct regulatory_request *request)
1445 {
1446 if (wiphy->reg_notifier)
1447 wiphy->reg_notifier(wiphy, request);
1448 }
1449
1450 static void wiphy_update_regulatory(struct wiphy *wiphy,
1451 enum nl80211_reg_initiator initiator)
1452 {
1453 enum ieee80211_band band;
1454 struct regulatory_request *lr = get_last_request();
1455
1456 if (ignore_reg_update(wiphy, initiator)) {
1457 /*
1458 * Regulatory updates set by CORE are ignored for custom
1459 * regulatory cards. Let us notify the changes to the driver,
1460 * as some drivers used this to restore its orig_* reg domain.
1461 */
1462 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1463 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1464 reg_call_notifier(wiphy, lr);
1465 return;
1466 }
1467
1468 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1469
1470 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1471 handle_band(wiphy, initiator, wiphy->bands[band]);
1472
1473 reg_process_beacons(wiphy);
1474 reg_process_ht_flags(wiphy);
1475 reg_call_notifier(wiphy, lr);
1476 }
1477
1478 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1479 {
1480 struct cfg80211_registered_device *rdev;
1481 struct wiphy *wiphy;
1482
1483 ASSERT_RTNL();
1484
1485 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1486 wiphy = &rdev->wiphy;
1487 wiphy_update_regulatory(wiphy, initiator);
1488 }
1489 }
1490
1491 static void handle_channel_custom(struct wiphy *wiphy,
1492 struct ieee80211_channel *chan,
1493 const struct ieee80211_regdomain *regd)
1494 {
1495 u32 bw_flags = 0;
1496 const struct ieee80211_reg_rule *reg_rule = NULL;
1497 const struct ieee80211_power_rule *power_rule = NULL;
1498 const struct ieee80211_freq_range *freq_range = NULL;
1499 u32 max_bandwidth_khz;
1500
1501 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1502 regd);
1503
1504 if (IS_ERR(reg_rule)) {
1505 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1506 chan->center_freq);
1507 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1508 chan->flags = chan->orig_flags;
1509 return;
1510 }
1511
1512 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1513
1514 power_rule = &reg_rule->power_rule;
1515 freq_range = &reg_rule->freq_range;
1516
1517 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1518 /* Check if auto calculation requested */
1519 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1520 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1521
1522 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1523 bw_flags = IEEE80211_CHAN_NO_HT40;
1524 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1525 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1526 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1527 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1528
1529 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1530 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1531 chan->max_reg_power = chan->max_power =
1532 (int) MBM_TO_DBM(power_rule->max_eirp);
1533 }
1534
1535 static void handle_band_custom(struct wiphy *wiphy,
1536 struct ieee80211_supported_band *sband,
1537 const struct ieee80211_regdomain *regd)
1538 {
1539 unsigned int i;
1540
1541 if (!sband)
1542 return;
1543
1544 for (i = 0; i < sband->n_channels; i++)
1545 handle_channel_custom(wiphy, &sband->channels[i], regd);
1546 }
1547
1548 /* Used by drivers prior to wiphy registration */
1549 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1550 const struct ieee80211_regdomain *regd)
1551 {
1552 enum ieee80211_band band;
1553 unsigned int bands_set = 0;
1554
1555 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1556 "wiphy should have REGULATORY_CUSTOM_REG\n");
1557 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1558
1559 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1560 if (!wiphy->bands[band])
1561 continue;
1562 handle_band_custom(wiphy, wiphy->bands[band], regd);
1563 bands_set++;
1564 }
1565
1566 /*
1567 * no point in calling this if it won't have any effect
1568 * on your device's supported bands.
1569 */
1570 WARN_ON(!bands_set);
1571 }
1572 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1573
1574 static void reg_set_request_processed(void)
1575 {
1576 bool need_more_processing = false;
1577 struct regulatory_request *lr = get_last_request();
1578
1579 lr->processed = true;
1580
1581 spin_lock(&reg_requests_lock);
1582 if (!list_empty(&reg_requests_list))
1583 need_more_processing = true;
1584 spin_unlock(&reg_requests_lock);
1585
1586 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1587 cancel_delayed_work(&reg_timeout);
1588
1589 if (need_more_processing)
1590 schedule_work(&reg_work);
1591 }
1592
1593 /**
1594 * reg_process_hint_core - process core regulatory requests
1595 * @pending_request: a pending core regulatory request
1596 *
1597 * The wireless subsystem can use this function to process
1598 * a regulatory request issued by the regulatory core.
1599 *
1600 * Returns one of the different reg request treatment values.
1601 */
1602 static enum reg_request_treatment
1603 reg_process_hint_core(struct regulatory_request *core_request)
1604 {
1605
1606 core_request->intersect = false;
1607 core_request->processed = false;
1608
1609 reg_update_last_request(core_request);
1610
1611 return reg_call_crda(core_request);
1612 }
1613
1614 static enum reg_request_treatment
1615 __reg_process_hint_user(struct regulatory_request *user_request)
1616 {
1617 struct regulatory_request *lr = get_last_request();
1618
1619 if (reg_request_indoor(user_request)) {
1620 reg_is_indoor = true;
1621 return REG_REQ_USER_HINT_HANDLED;
1622 }
1623
1624 if (reg_request_cell_base(user_request))
1625 return reg_ignore_cell_hint(user_request);
1626
1627 if (reg_request_cell_base(lr))
1628 return REG_REQ_IGNORE;
1629
1630 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1631 return REG_REQ_INTERSECT;
1632 /*
1633 * If the user knows better the user should set the regdom
1634 * to their country before the IE is picked up
1635 */
1636 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1637 lr->intersect)
1638 return REG_REQ_IGNORE;
1639 /*
1640 * Process user requests only after previous user/driver/core
1641 * requests have been processed
1642 */
1643 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1644 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1645 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1646 regdom_changes(lr->alpha2))
1647 return REG_REQ_IGNORE;
1648
1649 if (!regdom_changes(user_request->alpha2))
1650 return REG_REQ_ALREADY_SET;
1651
1652 return REG_REQ_OK;
1653 }
1654
1655 /**
1656 * reg_process_hint_user - process user regulatory requests
1657 * @user_request: a pending user regulatory request
1658 *
1659 * The wireless subsystem can use this function to process
1660 * a regulatory request initiated by userspace.
1661 *
1662 * Returns one of the different reg request treatment values.
1663 */
1664 static enum reg_request_treatment
1665 reg_process_hint_user(struct regulatory_request *user_request)
1666 {
1667 enum reg_request_treatment treatment;
1668
1669 treatment = __reg_process_hint_user(user_request);
1670 if (treatment == REG_REQ_IGNORE ||
1671 treatment == REG_REQ_ALREADY_SET ||
1672 treatment == REG_REQ_USER_HINT_HANDLED) {
1673 reg_free_request(user_request);
1674 return treatment;
1675 }
1676
1677 user_request->intersect = treatment == REG_REQ_INTERSECT;
1678 user_request->processed = false;
1679
1680 reg_update_last_request(user_request);
1681
1682 user_alpha2[0] = user_request->alpha2[0];
1683 user_alpha2[1] = user_request->alpha2[1];
1684
1685 return reg_call_crda(user_request);
1686 }
1687
1688 static enum reg_request_treatment
1689 __reg_process_hint_driver(struct regulatory_request *driver_request)
1690 {
1691 struct regulatory_request *lr = get_last_request();
1692
1693 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1694 if (regdom_changes(driver_request->alpha2))
1695 return REG_REQ_OK;
1696 return REG_REQ_ALREADY_SET;
1697 }
1698
1699 /*
1700 * This would happen if you unplug and plug your card
1701 * back in or if you add a new device for which the previously
1702 * loaded card also agrees on the regulatory domain.
1703 */
1704 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1705 !regdom_changes(driver_request->alpha2))
1706 return REG_REQ_ALREADY_SET;
1707
1708 return REG_REQ_INTERSECT;
1709 }
1710
1711 /**
1712 * reg_process_hint_driver - process driver regulatory requests
1713 * @driver_request: a pending driver regulatory request
1714 *
1715 * The wireless subsystem can use this function to process
1716 * a regulatory request issued by an 802.11 driver.
1717 *
1718 * Returns one of the different reg request treatment values.
1719 */
1720 static enum reg_request_treatment
1721 reg_process_hint_driver(struct wiphy *wiphy,
1722 struct regulatory_request *driver_request)
1723 {
1724 const struct ieee80211_regdomain *regd;
1725 enum reg_request_treatment treatment;
1726
1727 treatment = __reg_process_hint_driver(driver_request);
1728
1729 switch (treatment) {
1730 case REG_REQ_OK:
1731 break;
1732 case REG_REQ_IGNORE:
1733 case REG_REQ_USER_HINT_HANDLED:
1734 reg_free_request(driver_request);
1735 return treatment;
1736 case REG_REQ_INTERSECT:
1737 /* fall through */
1738 case REG_REQ_ALREADY_SET:
1739 regd = reg_copy_regd(get_cfg80211_regdom());
1740 if (IS_ERR(regd)) {
1741 reg_free_request(driver_request);
1742 return REG_REQ_IGNORE;
1743 }
1744 rcu_assign_pointer(wiphy->regd, regd);
1745 }
1746
1747
1748 driver_request->intersect = treatment == REG_REQ_INTERSECT;
1749 driver_request->processed = false;
1750
1751 reg_update_last_request(driver_request);
1752
1753 /*
1754 * Since CRDA will not be called in this case as we already
1755 * have applied the requested regulatory domain before we just
1756 * inform userspace we have processed the request
1757 */
1758 if (treatment == REG_REQ_ALREADY_SET) {
1759 nl80211_send_reg_change_event(driver_request);
1760 reg_set_request_processed();
1761 return treatment;
1762 }
1763
1764 return reg_call_crda(driver_request);
1765 }
1766
1767 static enum reg_request_treatment
1768 __reg_process_hint_country_ie(struct wiphy *wiphy,
1769 struct regulatory_request *country_ie_request)
1770 {
1771 struct wiphy *last_wiphy = NULL;
1772 struct regulatory_request *lr = get_last_request();
1773
1774 if (reg_request_cell_base(lr)) {
1775 /* Trust a Cell base station over the AP's country IE */
1776 if (regdom_changes(country_ie_request->alpha2))
1777 return REG_REQ_IGNORE;
1778 return REG_REQ_ALREADY_SET;
1779 } else {
1780 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1781 return REG_REQ_IGNORE;
1782 }
1783
1784 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
1785 return -EINVAL;
1786
1787 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
1788 return REG_REQ_OK;
1789
1790 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1791
1792 if (last_wiphy != wiphy) {
1793 /*
1794 * Two cards with two APs claiming different
1795 * Country IE alpha2s. We could
1796 * intersect them, but that seems unlikely
1797 * to be correct. Reject second one for now.
1798 */
1799 if (regdom_changes(country_ie_request->alpha2))
1800 return REG_REQ_IGNORE;
1801 return REG_REQ_ALREADY_SET;
1802 }
1803 /*
1804 * Two consecutive Country IE hints on the same wiphy.
1805 * This should be picked up early by the driver/stack
1806 */
1807 if (WARN_ON(regdom_changes(country_ie_request->alpha2)))
1808 return REG_REQ_OK;
1809 return REG_REQ_ALREADY_SET;
1810 }
1811
1812 /**
1813 * reg_process_hint_country_ie - process regulatory requests from country IEs
1814 * @country_ie_request: a regulatory request from a country IE
1815 *
1816 * The wireless subsystem can use this function to process
1817 * a regulatory request issued by a country Information Element.
1818 *
1819 * Returns one of the different reg request treatment values.
1820 */
1821 static enum reg_request_treatment
1822 reg_process_hint_country_ie(struct wiphy *wiphy,
1823 struct regulatory_request *country_ie_request)
1824 {
1825 enum reg_request_treatment treatment;
1826
1827 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
1828
1829 switch (treatment) {
1830 case REG_REQ_OK:
1831 break;
1832 case REG_REQ_IGNORE:
1833 case REG_REQ_USER_HINT_HANDLED:
1834 /* fall through */
1835 case REG_REQ_ALREADY_SET:
1836 reg_free_request(country_ie_request);
1837 return treatment;
1838 case REG_REQ_INTERSECT:
1839 reg_free_request(country_ie_request);
1840 /*
1841 * This doesn't happen yet, not sure we
1842 * ever want to support it for this case.
1843 */
1844 WARN_ONCE(1, "Unexpected intersection for country IEs");
1845 return REG_REQ_IGNORE;
1846 }
1847
1848 country_ie_request->intersect = false;
1849 country_ie_request->processed = false;
1850
1851 reg_update_last_request(country_ie_request);
1852
1853 return reg_call_crda(country_ie_request);
1854 }
1855
1856 /* This processes *all* regulatory hints */
1857 static void reg_process_hint(struct regulatory_request *reg_request)
1858 {
1859 struct wiphy *wiphy = NULL;
1860 enum reg_request_treatment treatment;
1861
1862 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1863 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1864
1865 switch (reg_request->initiator) {
1866 case NL80211_REGDOM_SET_BY_CORE:
1867 reg_process_hint_core(reg_request);
1868 return;
1869 case NL80211_REGDOM_SET_BY_USER:
1870 treatment = reg_process_hint_user(reg_request);
1871 if (treatment == REG_REQ_IGNORE ||
1872 treatment == REG_REQ_ALREADY_SET ||
1873 treatment == REG_REQ_USER_HINT_HANDLED)
1874 return;
1875 queue_delayed_work(system_power_efficient_wq,
1876 &reg_timeout, msecs_to_jiffies(3142));
1877 return;
1878 case NL80211_REGDOM_SET_BY_DRIVER:
1879 if (!wiphy)
1880 goto out_free;
1881 treatment = reg_process_hint_driver(wiphy, reg_request);
1882 break;
1883 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1884 if (!wiphy)
1885 goto out_free;
1886 treatment = reg_process_hint_country_ie(wiphy, reg_request);
1887 break;
1888 default:
1889 WARN(1, "invalid initiator %d\n", reg_request->initiator);
1890 goto out_free;
1891 }
1892
1893 /* This is required so that the orig_* parameters are saved */
1894 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
1895 wiphy->regulatory_flags & REGULATORY_STRICT_REG)
1896 wiphy_update_regulatory(wiphy, reg_request->initiator);
1897
1898 return;
1899
1900 out_free:
1901 reg_free_request(reg_request);
1902 }
1903
1904 /*
1905 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1906 * Regulatory hints come on a first come first serve basis and we
1907 * must process each one atomically.
1908 */
1909 static void reg_process_pending_hints(void)
1910 {
1911 struct regulatory_request *reg_request, *lr;
1912
1913 lr = get_last_request();
1914
1915 /* When last_request->processed becomes true this will be rescheduled */
1916 if (lr && !lr->processed) {
1917 reg_process_hint(lr);
1918 return;
1919 }
1920
1921 spin_lock(&reg_requests_lock);
1922
1923 if (list_empty(&reg_requests_list)) {
1924 spin_unlock(&reg_requests_lock);
1925 return;
1926 }
1927
1928 reg_request = list_first_entry(&reg_requests_list,
1929 struct regulatory_request,
1930 list);
1931 list_del_init(&reg_request->list);
1932
1933 spin_unlock(&reg_requests_lock);
1934
1935 reg_process_hint(reg_request);
1936 }
1937
1938 /* Processes beacon hints -- this has nothing to do with country IEs */
1939 static void reg_process_pending_beacon_hints(void)
1940 {
1941 struct cfg80211_registered_device *rdev;
1942 struct reg_beacon *pending_beacon, *tmp;
1943
1944 /* This goes through the _pending_ beacon list */
1945 spin_lock_bh(&reg_pending_beacons_lock);
1946
1947 list_for_each_entry_safe(pending_beacon, tmp,
1948 &reg_pending_beacons, list) {
1949 list_del_init(&pending_beacon->list);
1950
1951 /* Applies the beacon hint to current wiphys */
1952 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1953 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1954
1955 /* Remembers the beacon hint for new wiphys or reg changes */
1956 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1957 }
1958
1959 spin_unlock_bh(&reg_pending_beacons_lock);
1960 }
1961
1962 static void reg_todo(struct work_struct *work)
1963 {
1964 rtnl_lock();
1965 reg_process_pending_hints();
1966 reg_process_pending_beacon_hints();
1967 rtnl_unlock();
1968 }
1969
1970 static void queue_regulatory_request(struct regulatory_request *request)
1971 {
1972 request->alpha2[0] = toupper(request->alpha2[0]);
1973 request->alpha2[1] = toupper(request->alpha2[1]);
1974
1975 spin_lock(&reg_requests_lock);
1976 list_add_tail(&request->list, &reg_requests_list);
1977 spin_unlock(&reg_requests_lock);
1978
1979 schedule_work(&reg_work);
1980 }
1981
1982 /*
1983 * Core regulatory hint -- happens during cfg80211_init()
1984 * and when we restore regulatory settings.
1985 */
1986 static int regulatory_hint_core(const char *alpha2)
1987 {
1988 struct regulatory_request *request;
1989
1990 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1991 if (!request)
1992 return -ENOMEM;
1993
1994 request->alpha2[0] = alpha2[0];
1995 request->alpha2[1] = alpha2[1];
1996 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1997
1998 queue_regulatory_request(request);
1999
2000 return 0;
2001 }
2002
2003 /* User hints */
2004 int regulatory_hint_user(const char *alpha2,
2005 enum nl80211_user_reg_hint_type user_reg_hint_type)
2006 {
2007 struct regulatory_request *request;
2008
2009 if (WARN_ON(!alpha2))
2010 return -EINVAL;
2011
2012 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2013 if (!request)
2014 return -ENOMEM;
2015
2016 request->wiphy_idx = WIPHY_IDX_INVALID;
2017 request->alpha2[0] = alpha2[0];
2018 request->alpha2[1] = alpha2[1];
2019 request->initiator = NL80211_REGDOM_SET_BY_USER;
2020 request->user_reg_hint_type = user_reg_hint_type;
2021
2022 queue_regulatory_request(request);
2023
2024 return 0;
2025 }
2026
2027 int regulatory_hint_indoor_user(void)
2028 {
2029 struct regulatory_request *request;
2030
2031 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2032 if (!request)
2033 return -ENOMEM;
2034
2035 request->wiphy_idx = WIPHY_IDX_INVALID;
2036 request->initiator = NL80211_REGDOM_SET_BY_USER;
2037 request->user_reg_hint_type = NL80211_USER_REG_HINT_INDOOR;
2038 queue_regulatory_request(request);
2039
2040 return 0;
2041 }
2042
2043 /* Driver hints */
2044 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2045 {
2046 struct regulatory_request *request;
2047
2048 if (WARN_ON(!alpha2 || !wiphy))
2049 return -EINVAL;
2050
2051 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2052
2053 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2054 if (!request)
2055 return -ENOMEM;
2056
2057 request->wiphy_idx = get_wiphy_idx(wiphy);
2058
2059 request->alpha2[0] = alpha2[0];
2060 request->alpha2[1] = alpha2[1];
2061 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2062
2063 queue_regulatory_request(request);
2064
2065 return 0;
2066 }
2067 EXPORT_SYMBOL(regulatory_hint);
2068
2069 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2070 const u8 *country_ie, u8 country_ie_len)
2071 {
2072 char alpha2[2];
2073 enum environment_cap env = ENVIRON_ANY;
2074 struct regulatory_request *request = NULL, *lr;
2075
2076 /* IE len must be evenly divisible by 2 */
2077 if (country_ie_len & 0x01)
2078 return;
2079
2080 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2081 return;
2082
2083 request = kzalloc(sizeof(*request), GFP_KERNEL);
2084 if (!request)
2085 return;
2086
2087 alpha2[0] = country_ie[0];
2088 alpha2[1] = country_ie[1];
2089
2090 if (country_ie[2] == 'I')
2091 env = ENVIRON_INDOOR;
2092 else if (country_ie[2] == 'O')
2093 env = ENVIRON_OUTDOOR;
2094
2095 rcu_read_lock();
2096 lr = get_last_request();
2097
2098 if (unlikely(!lr))
2099 goto out;
2100
2101 /*
2102 * We will run this only upon a successful connection on cfg80211.
2103 * We leave conflict resolution to the workqueue, where can hold
2104 * the RTNL.
2105 */
2106 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2107 lr->wiphy_idx != WIPHY_IDX_INVALID)
2108 goto out;
2109
2110 request->wiphy_idx = get_wiphy_idx(wiphy);
2111 request->alpha2[0] = alpha2[0];
2112 request->alpha2[1] = alpha2[1];
2113 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2114 request->country_ie_env = env;
2115
2116 queue_regulatory_request(request);
2117 request = NULL;
2118 out:
2119 kfree(request);
2120 rcu_read_unlock();
2121 }
2122
2123 static void restore_alpha2(char *alpha2, bool reset_user)
2124 {
2125 /* indicates there is no alpha2 to consider for restoration */
2126 alpha2[0] = '9';
2127 alpha2[1] = '7';
2128
2129 /* The user setting has precedence over the module parameter */
2130 if (is_user_regdom_saved()) {
2131 /* Unless we're asked to ignore it and reset it */
2132 if (reset_user) {
2133 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2134 user_alpha2[0] = '9';
2135 user_alpha2[1] = '7';
2136
2137 /*
2138 * If we're ignoring user settings, we still need to
2139 * check the module parameter to ensure we put things
2140 * back as they were for a full restore.
2141 */
2142 if (!is_world_regdom(ieee80211_regdom)) {
2143 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2144 ieee80211_regdom[0], ieee80211_regdom[1]);
2145 alpha2[0] = ieee80211_regdom[0];
2146 alpha2[1] = ieee80211_regdom[1];
2147 }
2148 } else {
2149 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2150 user_alpha2[0], user_alpha2[1]);
2151 alpha2[0] = user_alpha2[0];
2152 alpha2[1] = user_alpha2[1];
2153 }
2154 } else if (!is_world_regdom(ieee80211_regdom)) {
2155 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2156 ieee80211_regdom[0], ieee80211_regdom[1]);
2157 alpha2[0] = ieee80211_regdom[0];
2158 alpha2[1] = ieee80211_regdom[1];
2159 } else
2160 REG_DBG_PRINT("Restoring regulatory settings\n");
2161 }
2162
2163 static void restore_custom_reg_settings(struct wiphy *wiphy)
2164 {
2165 struct ieee80211_supported_band *sband;
2166 enum ieee80211_band band;
2167 struct ieee80211_channel *chan;
2168 int i;
2169
2170 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2171 sband = wiphy->bands[band];
2172 if (!sband)
2173 continue;
2174 for (i = 0; i < sband->n_channels; i++) {
2175 chan = &sband->channels[i];
2176 chan->flags = chan->orig_flags;
2177 chan->max_antenna_gain = chan->orig_mag;
2178 chan->max_power = chan->orig_mpwr;
2179 chan->beacon_found = false;
2180 }
2181 }
2182 }
2183
2184 /*
2185 * Restoring regulatory settings involves ingoring any
2186 * possibly stale country IE information and user regulatory
2187 * settings if so desired, this includes any beacon hints
2188 * learned as we could have traveled outside to another country
2189 * after disconnection. To restore regulatory settings we do
2190 * exactly what we did at bootup:
2191 *
2192 * - send a core regulatory hint
2193 * - send a user regulatory hint if applicable
2194 *
2195 * Device drivers that send a regulatory hint for a specific country
2196 * keep their own regulatory domain on wiphy->regd so that does does
2197 * not need to be remembered.
2198 */
2199 static void restore_regulatory_settings(bool reset_user)
2200 {
2201 char alpha2[2];
2202 char world_alpha2[2];
2203 struct reg_beacon *reg_beacon, *btmp;
2204 struct regulatory_request *reg_request, *tmp;
2205 LIST_HEAD(tmp_reg_req_list);
2206 struct cfg80211_registered_device *rdev;
2207
2208 ASSERT_RTNL();
2209
2210 reg_is_indoor = false;
2211
2212 reset_regdomains(true, &world_regdom);
2213 restore_alpha2(alpha2, reset_user);
2214
2215 /*
2216 * If there's any pending requests we simply
2217 * stash them to a temporary pending queue and
2218 * add then after we've restored regulatory
2219 * settings.
2220 */
2221 spin_lock(&reg_requests_lock);
2222 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2223 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
2224 continue;
2225 list_move_tail(&reg_request->list, &tmp_reg_req_list);
2226 }
2227 spin_unlock(&reg_requests_lock);
2228
2229 /* Clear beacon hints */
2230 spin_lock_bh(&reg_pending_beacons_lock);
2231 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2232 list_del(&reg_beacon->list);
2233 kfree(reg_beacon);
2234 }
2235 spin_unlock_bh(&reg_pending_beacons_lock);
2236
2237 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2238 list_del(&reg_beacon->list);
2239 kfree(reg_beacon);
2240 }
2241
2242 /* First restore to the basic regulatory settings */
2243 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2244 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2245
2246 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2247 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2248 restore_custom_reg_settings(&rdev->wiphy);
2249 }
2250
2251 regulatory_hint_core(world_alpha2);
2252
2253 /*
2254 * This restores the ieee80211_regdom module parameter
2255 * preference or the last user requested regulatory
2256 * settings, user regulatory settings takes precedence.
2257 */
2258 if (is_an_alpha2(alpha2))
2259 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2260
2261 spin_lock(&reg_requests_lock);
2262 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2263 spin_unlock(&reg_requests_lock);
2264
2265 REG_DBG_PRINT("Kicking the queue\n");
2266
2267 schedule_work(&reg_work);
2268 }
2269
2270 void regulatory_hint_disconnect(void)
2271 {
2272 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2273 restore_regulatory_settings(false);
2274 }
2275
2276 static bool freq_is_chan_12_13_14(u16 freq)
2277 {
2278 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2279 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2280 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2281 return true;
2282 return false;
2283 }
2284
2285 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2286 {
2287 struct reg_beacon *pending_beacon;
2288
2289 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2290 if (beacon_chan->center_freq ==
2291 pending_beacon->chan.center_freq)
2292 return true;
2293 return false;
2294 }
2295
2296 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2297 struct ieee80211_channel *beacon_chan,
2298 gfp_t gfp)
2299 {
2300 struct reg_beacon *reg_beacon;
2301 bool processing;
2302
2303 if (beacon_chan->beacon_found ||
2304 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2305 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2306 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2307 return 0;
2308
2309 spin_lock_bh(&reg_pending_beacons_lock);
2310 processing = pending_reg_beacon(beacon_chan);
2311 spin_unlock_bh(&reg_pending_beacons_lock);
2312
2313 if (processing)
2314 return 0;
2315
2316 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2317 if (!reg_beacon)
2318 return -ENOMEM;
2319
2320 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2321 beacon_chan->center_freq,
2322 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2323 wiphy_name(wiphy));
2324
2325 memcpy(&reg_beacon->chan, beacon_chan,
2326 sizeof(struct ieee80211_channel));
2327
2328 /*
2329 * Since we can be called from BH or and non-BH context
2330 * we must use spin_lock_bh()
2331 */
2332 spin_lock_bh(&reg_pending_beacons_lock);
2333 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2334 spin_unlock_bh(&reg_pending_beacons_lock);
2335
2336 schedule_work(&reg_work);
2337
2338 return 0;
2339 }
2340
2341 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2342 {
2343 unsigned int i;
2344 const struct ieee80211_reg_rule *reg_rule = NULL;
2345 const struct ieee80211_freq_range *freq_range = NULL;
2346 const struct ieee80211_power_rule *power_rule = NULL;
2347 char bw[32], cac_time[32];
2348
2349 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2350
2351 for (i = 0; i < rd->n_reg_rules; i++) {
2352 reg_rule = &rd->reg_rules[i];
2353 freq_range = &reg_rule->freq_range;
2354 power_rule = &reg_rule->power_rule;
2355
2356 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2357 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2358 freq_range->max_bandwidth_khz,
2359 reg_get_max_bandwidth(rd, reg_rule));
2360 else
2361 snprintf(bw, sizeof(bw), "%d KHz",
2362 freq_range->max_bandwidth_khz);
2363
2364 if (reg_rule->flags & NL80211_RRF_DFS)
2365 scnprintf(cac_time, sizeof(cac_time), "%u s",
2366 reg_rule->dfs_cac_ms/1000);
2367 else
2368 scnprintf(cac_time, sizeof(cac_time), "N/A");
2369
2370
2371 /*
2372 * There may not be documentation for max antenna gain
2373 * in certain regions
2374 */
2375 if (power_rule->max_antenna_gain)
2376 pr_info(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2377 freq_range->start_freq_khz,
2378 freq_range->end_freq_khz,
2379 bw,
2380 power_rule->max_antenna_gain,
2381 power_rule->max_eirp,
2382 cac_time);
2383 else
2384 pr_info(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2385 freq_range->start_freq_khz,
2386 freq_range->end_freq_khz,
2387 bw,
2388 power_rule->max_eirp,
2389 cac_time);
2390 }
2391 }
2392
2393 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2394 {
2395 switch (dfs_region) {
2396 case NL80211_DFS_UNSET:
2397 case NL80211_DFS_FCC:
2398 case NL80211_DFS_ETSI:
2399 case NL80211_DFS_JP:
2400 return true;
2401 default:
2402 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2403 dfs_region);
2404 return false;
2405 }
2406 }
2407
2408 static void print_regdomain(const struct ieee80211_regdomain *rd)
2409 {
2410 struct regulatory_request *lr = get_last_request();
2411
2412 if (is_intersected_alpha2(rd->alpha2)) {
2413 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2414 struct cfg80211_registered_device *rdev;
2415 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2416 if (rdev) {
2417 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2418 rdev->country_ie_alpha2[0],
2419 rdev->country_ie_alpha2[1]);
2420 } else
2421 pr_info("Current regulatory domain intersected:\n");
2422 } else
2423 pr_info("Current regulatory domain intersected:\n");
2424 } else if (is_world_regdom(rd->alpha2)) {
2425 pr_info("World regulatory domain updated:\n");
2426 } else {
2427 if (is_unknown_alpha2(rd->alpha2))
2428 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2429 else {
2430 if (reg_request_cell_base(lr))
2431 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2432 rd->alpha2[0], rd->alpha2[1]);
2433 else
2434 pr_info("Regulatory domain changed to country: %c%c\n",
2435 rd->alpha2[0], rd->alpha2[1]);
2436 }
2437 }
2438
2439 pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2440 print_rd_rules(rd);
2441 }
2442
2443 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2444 {
2445 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2446 print_rd_rules(rd);
2447 }
2448
2449 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2450 {
2451 if (!is_world_regdom(rd->alpha2))
2452 return -EINVAL;
2453 update_world_regdomain(rd);
2454 return 0;
2455 }
2456
2457 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2458 struct regulatory_request *user_request)
2459 {
2460 const struct ieee80211_regdomain *intersected_rd = NULL;
2461
2462 if (!regdom_changes(rd->alpha2))
2463 return -EALREADY;
2464
2465 if (!is_valid_rd(rd)) {
2466 pr_err("Invalid regulatory domain detected:\n");
2467 print_regdomain_info(rd);
2468 return -EINVAL;
2469 }
2470
2471 if (!user_request->intersect) {
2472 reset_regdomains(false, rd);
2473 return 0;
2474 }
2475
2476 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2477 if (!intersected_rd)
2478 return -EINVAL;
2479
2480 kfree(rd);
2481 rd = NULL;
2482 reset_regdomains(false, intersected_rd);
2483
2484 return 0;
2485 }
2486
2487 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2488 struct regulatory_request *driver_request)
2489 {
2490 const struct ieee80211_regdomain *regd;
2491 const struct ieee80211_regdomain *intersected_rd = NULL;
2492 const struct ieee80211_regdomain *tmp;
2493 struct wiphy *request_wiphy;
2494
2495 if (is_world_regdom(rd->alpha2))
2496 return -EINVAL;
2497
2498 if (!regdom_changes(rd->alpha2))
2499 return -EALREADY;
2500
2501 if (!is_valid_rd(rd)) {
2502 pr_err("Invalid regulatory domain detected:\n");
2503 print_regdomain_info(rd);
2504 return -EINVAL;
2505 }
2506
2507 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2508 if (!request_wiphy) {
2509 queue_delayed_work(system_power_efficient_wq,
2510 &reg_timeout, 0);
2511 return -ENODEV;
2512 }
2513
2514 if (!driver_request->intersect) {
2515 if (request_wiphy->regd)
2516 return -EALREADY;
2517
2518 regd = reg_copy_regd(rd);
2519 if (IS_ERR(regd))
2520 return PTR_ERR(regd);
2521
2522 rcu_assign_pointer(request_wiphy->regd, regd);
2523 reset_regdomains(false, rd);
2524 return 0;
2525 }
2526
2527 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2528 if (!intersected_rd)
2529 return -EINVAL;
2530
2531 /*
2532 * We can trash what CRDA provided now.
2533 * However if a driver requested this specific regulatory
2534 * domain we keep it for its private use
2535 */
2536 tmp = get_wiphy_regdom(request_wiphy);
2537 rcu_assign_pointer(request_wiphy->regd, rd);
2538 rcu_free_regdom(tmp);
2539
2540 rd = NULL;
2541
2542 reset_regdomains(false, intersected_rd);
2543
2544 return 0;
2545 }
2546
2547 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2548 struct regulatory_request *country_ie_request)
2549 {
2550 struct wiphy *request_wiphy;
2551
2552 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2553 !is_unknown_alpha2(rd->alpha2))
2554 return -EINVAL;
2555
2556 /*
2557 * Lets only bother proceeding on the same alpha2 if the current
2558 * rd is non static (it means CRDA was present and was used last)
2559 * and the pending request came in from a country IE
2560 */
2561
2562 if (!is_valid_rd(rd)) {
2563 pr_err("Invalid regulatory domain detected:\n");
2564 print_regdomain_info(rd);
2565 return -EINVAL;
2566 }
2567
2568 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2569 if (!request_wiphy) {
2570 queue_delayed_work(system_power_efficient_wq,
2571 &reg_timeout, 0);
2572 return -ENODEV;
2573 }
2574
2575 if (country_ie_request->intersect)
2576 return -EINVAL;
2577
2578 reset_regdomains(false, rd);
2579 return 0;
2580 }
2581
2582 /*
2583 * Use this call to set the current regulatory domain. Conflicts with
2584 * multiple drivers can be ironed out later. Caller must've already
2585 * kmalloc'd the rd structure.
2586 */
2587 int set_regdom(const struct ieee80211_regdomain *rd)
2588 {
2589 struct regulatory_request *lr;
2590 bool user_reset = false;
2591 int r;
2592
2593 if (!reg_is_valid_request(rd->alpha2)) {
2594 kfree(rd);
2595 return -EINVAL;
2596 }
2597
2598 lr = get_last_request();
2599
2600 /* Note that this doesn't update the wiphys, this is done below */
2601 switch (lr->initiator) {
2602 case NL80211_REGDOM_SET_BY_CORE:
2603 r = reg_set_rd_core(rd);
2604 break;
2605 case NL80211_REGDOM_SET_BY_USER:
2606 r = reg_set_rd_user(rd, lr);
2607 user_reset = true;
2608 break;
2609 case NL80211_REGDOM_SET_BY_DRIVER:
2610 r = reg_set_rd_driver(rd, lr);
2611 break;
2612 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2613 r = reg_set_rd_country_ie(rd, lr);
2614 break;
2615 default:
2616 WARN(1, "invalid initiator %d\n", lr->initiator);
2617 return -EINVAL;
2618 }
2619
2620 if (r) {
2621 switch (r) {
2622 case -EALREADY:
2623 reg_set_request_processed();
2624 break;
2625 default:
2626 /* Back to world regulatory in case of errors */
2627 restore_regulatory_settings(user_reset);
2628 }
2629
2630 kfree(rd);
2631 return r;
2632 }
2633
2634 /* This would make this whole thing pointless */
2635 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2636 return -EINVAL;
2637
2638 /* update all wiphys now with the new established regulatory domain */
2639 update_all_wiphy_regulatory(lr->initiator);
2640
2641 print_regdomain(get_cfg80211_regdom());
2642
2643 nl80211_send_reg_change_event(lr);
2644
2645 reg_set_request_processed();
2646
2647 return 0;
2648 }
2649
2650 void wiphy_regulatory_register(struct wiphy *wiphy)
2651 {
2652 struct regulatory_request *lr;
2653
2654 if (!reg_dev_ignore_cell_hint(wiphy))
2655 reg_num_devs_support_basehint++;
2656
2657 lr = get_last_request();
2658 wiphy_update_regulatory(wiphy, lr->initiator);
2659 }
2660
2661 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2662 {
2663 struct wiphy *request_wiphy = NULL;
2664 struct regulatory_request *lr;
2665
2666 lr = get_last_request();
2667
2668 if (!reg_dev_ignore_cell_hint(wiphy))
2669 reg_num_devs_support_basehint--;
2670
2671 rcu_free_regdom(get_wiphy_regdom(wiphy));
2672 RCU_INIT_POINTER(wiphy->regd, NULL);
2673
2674 if (lr)
2675 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2676
2677 if (!request_wiphy || request_wiphy != wiphy)
2678 return;
2679
2680 lr->wiphy_idx = WIPHY_IDX_INVALID;
2681 lr->country_ie_env = ENVIRON_ANY;
2682 }
2683
2684 static void reg_timeout_work(struct work_struct *work)
2685 {
2686 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2687 rtnl_lock();
2688 restore_regulatory_settings(true);
2689 rtnl_unlock();
2690 }
2691
2692 /*
2693 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
2694 * UNII band definitions
2695 */
2696 int cfg80211_get_unii(int freq)
2697 {
2698 /* UNII-1 */
2699 if (freq >= 5150 && freq <= 5250)
2700 return 0;
2701
2702 /* UNII-2A */
2703 if (freq > 5250 && freq <= 5350)
2704 return 1;
2705
2706 /* UNII-2B */
2707 if (freq > 5350 && freq <= 5470)
2708 return 2;
2709
2710 /* UNII-2C */
2711 if (freq > 5470 && freq <= 5725)
2712 return 3;
2713
2714 /* UNII-3 */
2715 if (freq > 5725 && freq <= 5825)
2716 return 4;
2717
2718 return -EINVAL;
2719 }
2720
2721 bool regulatory_indoor_allowed(void)
2722 {
2723 return reg_is_indoor;
2724 }
2725
2726 int __init regulatory_init(void)
2727 {
2728 int err = 0;
2729
2730 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2731 if (IS_ERR(reg_pdev))
2732 return PTR_ERR(reg_pdev);
2733
2734 spin_lock_init(&reg_requests_lock);
2735 spin_lock_init(&reg_pending_beacons_lock);
2736
2737 reg_regdb_size_check();
2738
2739 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2740
2741 user_alpha2[0] = '9';
2742 user_alpha2[1] = '7';
2743
2744 /* We always try to get an update for the static regdomain */
2745 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2746 if (err) {
2747 if (err == -ENOMEM)
2748 return err;
2749 /*
2750 * N.B. kobject_uevent_env() can fail mainly for when we're out
2751 * memory which is handled and propagated appropriately above
2752 * but it can also fail during a netlink_broadcast() or during
2753 * early boot for call_usermodehelper(). For now treat these
2754 * errors as non-fatal.
2755 */
2756 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2757 }
2758
2759 /*
2760 * Finally, if the user set the module parameter treat it
2761 * as a user hint.
2762 */
2763 if (!is_world_regdom(ieee80211_regdom))
2764 regulatory_hint_user(ieee80211_regdom,
2765 NL80211_USER_REG_HINT_USER);
2766
2767 return 0;
2768 }
2769
2770 void regulatory_exit(void)
2771 {
2772 struct regulatory_request *reg_request, *tmp;
2773 struct reg_beacon *reg_beacon, *btmp;
2774
2775 cancel_work_sync(&reg_work);
2776 cancel_delayed_work_sync(&reg_timeout);
2777
2778 /* Lock to suppress warnings */
2779 rtnl_lock();
2780 reset_regdomains(true, NULL);
2781 rtnl_unlock();
2782
2783 dev_set_uevent_suppress(&reg_pdev->dev, true);
2784
2785 platform_device_unregister(reg_pdev);
2786
2787 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2788 list_del(&reg_beacon->list);
2789 kfree(reg_beacon);
2790 }
2791
2792 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2793 list_del(&reg_beacon->list);
2794 kfree(reg_beacon);
2795 }
2796
2797 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2798 list_del(&reg_request->list);
2799 kfree(reg_request);
2800 }
2801 }