]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/wireless/reg.c
cfg80211: reg: rename reg_call_crda to reg_query_database
[mirror_ubuntu-bionic-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 *
8 * Permission to use, copy, modify, and/or distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21
22 /**
23 * DOC: Wireless regulatory infrastructure
24 *
25 * The usual implementation is for a driver to read a device EEPROM to
26 * determine which regulatory domain it should be operating under, then
27 * looking up the allowable channels in a driver-local table and finally
28 * registering those channels in the wiphy structure.
29 *
30 * Another set of compliance enforcement is for drivers to use their
31 * own compliance limits which can be stored on the EEPROM. The host
32 * driver or firmware may ensure these are used.
33 *
34 * In addition to all this we provide an extra layer of regulatory
35 * conformance. For drivers which do not have any regulatory
36 * information CRDA provides the complete regulatory solution.
37 * For others it provides a community effort on further restrictions
38 * to enhance compliance.
39 *
40 * Note: When number of rules --> infinity we will not be able to
41 * index on alpha2 any more, instead we'll probably have to
42 * rely on some SHA1 checksum of the regdomain for example.
43 *
44 */
45
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "rdev-ops.h"
60 #include "regdb.h"
61 #include "nl80211.h"
62
63 #ifdef CONFIG_CFG80211_REG_DEBUG
64 #define REG_DBG_PRINT(format, args...) \
65 printk(KERN_DEBUG pr_fmt(format), ##args)
66 #else
67 #define REG_DBG_PRINT(args...)
68 #endif
69
70 /*
71 * Grace period we give before making sure all current interfaces reside on
72 * channels allowed by the current regulatory domain.
73 */
74 #define REG_ENFORCE_GRACE_MS 60000
75
76 /**
77 * enum reg_request_treatment - regulatory request treatment
78 *
79 * @REG_REQ_OK: continue processing the regulatory request
80 * @REG_REQ_IGNORE: ignore the regulatory request
81 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
82 * be intersected with the current one.
83 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
84 * regulatory settings, and no further processing is required.
85 */
86 enum reg_request_treatment {
87 REG_REQ_OK,
88 REG_REQ_IGNORE,
89 REG_REQ_INTERSECT,
90 REG_REQ_ALREADY_SET,
91 };
92
93 static struct regulatory_request core_request_world = {
94 .initiator = NL80211_REGDOM_SET_BY_CORE,
95 .alpha2[0] = '0',
96 .alpha2[1] = '0',
97 .intersect = false,
98 .processed = true,
99 .country_ie_env = ENVIRON_ANY,
100 };
101
102 /*
103 * Receipt of information from last regulatory request,
104 * protected by RTNL (and can be accessed with RCU protection)
105 */
106 static struct regulatory_request __rcu *last_request =
107 (void __force __rcu *)&core_request_world;
108
109 /* To trigger userspace events */
110 static struct platform_device *reg_pdev;
111
112 /*
113 * Central wireless core regulatory domains, we only need two,
114 * the current one and a world regulatory domain in case we have no
115 * information to give us an alpha2.
116 * (protected by RTNL, can be read under RCU)
117 */
118 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
119
120 /*
121 * Number of devices that registered to the core
122 * that support cellular base station regulatory hints
123 * (protected by RTNL)
124 */
125 static int reg_num_devs_support_basehint;
126
127 /*
128 * State variable indicating if the platform on which the devices
129 * are attached is operating in an indoor environment. The state variable
130 * is relevant for all registered devices.
131 */
132 static bool reg_is_indoor;
133 static spinlock_t reg_indoor_lock;
134
135 /* Used to track the userspace process controlling the indoor setting */
136 static u32 reg_is_indoor_portid;
137
138 /* Max number of consecutive attempts to communicate with CRDA */
139 #define REG_MAX_CRDA_TIMEOUTS 10
140
141 static u32 reg_crda_timeouts;
142
143 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
144 {
145 return rtnl_dereference(cfg80211_regdomain);
146 }
147
148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149 {
150 return rtnl_dereference(wiphy->regd);
151 }
152
153 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
154 {
155 switch (dfs_region) {
156 case NL80211_DFS_UNSET:
157 return "unset";
158 case NL80211_DFS_FCC:
159 return "FCC";
160 case NL80211_DFS_ETSI:
161 return "ETSI";
162 case NL80211_DFS_JP:
163 return "JP";
164 }
165 return "Unknown";
166 }
167
168 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
169 {
170 const struct ieee80211_regdomain *regd = NULL;
171 const struct ieee80211_regdomain *wiphy_regd = NULL;
172
173 regd = get_cfg80211_regdom();
174 if (!wiphy)
175 goto out;
176
177 wiphy_regd = get_wiphy_regdom(wiphy);
178 if (!wiphy_regd)
179 goto out;
180
181 if (wiphy_regd->dfs_region == regd->dfs_region)
182 goto out;
183
184 REG_DBG_PRINT("%s: device specific dfs_region "
185 "(%s) disagrees with cfg80211's "
186 "central dfs_region (%s)\n",
187 dev_name(&wiphy->dev),
188 reg_dfs_region_str(wiphy_regd->dfs_region),
189 reg_dfs_region_str(regd->dfs_region));
190
191 out:
192 return regd->dfs_region;
193 }
194
195 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
196 {
197 if (!r)
198 return;
199 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
200 }
201
202 static struct regulatory_request *get_last_request(void)
203 {
204 return rcu_dereference_rtnl(last_request);
205 }
206
207 /* Used to queue up regulatory hints */
208 static LIST_HEAD(reg_requests_list);
209 static spinlock_t reg_requests_lock;
210
211 /* Used to queue up beacon hints for review */
212 static LIST_HEAD(reg_pending_beacons);
213 static spinlock_t reg_pending_beacons_lock;
214
215 /* Used to keep track of processed beacon hints */
216 static LIST_HEAD(reg_beacon_list);
217
218 struct reg_beacon {
219 struct list_head list;
220 struct ieee80211_channel chan;
221 };
222
223 static void reg_check_chans_work(struct work_struct *work);
224 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
225
226 static void reg_todo(struct work_struct *work);
227 static DECLARE_WORK(reg_work, reg_todo);
228
229 static void reg_timeout_work(struct work_struct *work);
230 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
231
232 /* We keep a static world regulatory domain in case of the absence of CRDA */
233 static const struct ieee80211_regdomain world_regdom = {
234 .n_reg_rules = 8,
235 .alpha2 = "00",
236 .reg_rules = {
237 /* IEEE 802.11b/g, channels 1..11 */
238 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
239 /* IEEE 802.11b/g, channels 12..13. */
240 REG_RULE(2467-10, 2472+10, 40, 6, 20,
241 NL80211_RRF_NO_IR),
242 /* IEEE 802.11 channel 14 - Only JP enables
243 * this and for 802.11b only */
244 REG_RULE(2484-10, 2484+10, 20, 6, 20,
245 NL80211_RRF_NO_IR |
246 NL80211_RRF_NO_OFDM),
247 /* IEEE 802.11a, channel 36..48 */
248 REG_RULE(5180-10, 5240+10, 160, 6, 20,
249 NL80211_RRF_NO_IR),
250
251 /* IEEE 802.11a, channel 52..64 - DFS required */
252 REG_RULE(5260-10, 5320+10, 160, 6, 20,
253 NL80211_RRF_NO_IR |
254 NL80211_RRF_DFS),
255
256 /* IEEE 802.11a, channel 100..144 - DFS required */
257 REG_RULE(5500-10, 5720+10, 160, 6, 20,
258 NL80211_RRF_NO_IR |
259 NL80211_RRF_DFS),
260
261 /* IEEE 802.11a, channel 149..165 */
262 REG_RULE(5745-10, 5825+10, 80, 6, 20,
263 NL80211_RRF_NO_IR),
264
265 /* IEEE 802.11ad (60GHz), channels 1..3 */
266 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
267 }
268 };
269
270 /* protected by RTNL */
271 static const struct ieee80211_regdomain *cfg80211_world_regdom =
272 &world_regdom;
273
274 static char *ieee80211_regdom = "00";
275 static char user_alpha2[2];
276
277 module_param(ieee80211_regdom, charp, 0444);
278 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
279
280 static void reg_free_request(struct regulatory_request *request)
281 {
282 if (request != get_last_request())
283 kfree(request);
284 }
285
286 static void reg_free_last_request(void)
287 {
288 struct regulatory_request *lr = get_last_request();
289
290 if (lr != &core_request_world && lr)
291 kfree_rcu(lr, rcu_head);
292 }
293
294 static void reg_update_last_request(struct regulatory_request *request)
295 {
296 struct regulatory_request *lr;
297
298 lr = get_last_request();
299 if (lr == request)
300 return;
301
302 reg_free_last_request();
303 rcu_assign_pointer(last_request, request);
304 }
305
306 static void reset_regdomains(bool full_reset,
307 const struct ieee80211_regdomain *new_regdom)
308 {
309 const struct ieee80211_regdomain *r;
310
311 ASSERT_RTNL();
312
313 r = get_cfg80211_regdom();
314
315 /* avoid freeing static information or freeing something twice */
316 if (r == cfg80211_world_regdom)
317 r = NULL;
318 if (cfg80211_world_regdom == &world_regdom)
319 cfg80211_world_regdom = NULL;
320 if (r == &world_regdom)
321 r = NULL;
322
323 rcu_free_regdom(r);
324 rcu_free_regdom(cfg80211_world_regdom);
325
326 cfg80211_world_regdom = &world_regdom;
327 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
328
329 if (!full_reset)
330 return;
331
332 reg_update_last_request(&core_request_world);
333 }
334
335 /*
336 * Dynamic world regulatory domain requested by the wireless
337 * core upon initialization
338 */
339 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
340 {
341 struct regulatory_request *lr;
342
343 lr = get_last_request();
344
345 WARN_ON(!lr);
346
347 reset_regdomains(false, rd);
348
349 cfg80211_world_regdom = rd;
350 }
351
352 bool is_world_regdom(const char *alpha2)
353 {
354 if (!alpha2)
355 return false;
356 return alpha2[0] == '0' && alpha2[1] == '0';
357 }
358
359 static bool is_alpha2_set(const char *alpha2)
360 {
361 if (!alpha2)
362 return false;
363 return alpha2[0] && alpha2[1];
364 }
365
366 static bool is_unknown_alpha2(const char *alpha2)
367 {
368 if (!alpha2)
369 return false;
370 /*
371 * Special case where regulatory domain was built by driver
372 * but a specific alpha2 cannot be determined
373 */
374 return alpha2[0] == '9' && alpha2[1] == '9';
375 }
376
377 static bool is_intersected_alpha2(const char *alpha2)
378 {
379 if (!alpha2)
380 return false;
381 /*
382 * Special case where regulatory domain is the
383 * result of an intersection between two regulatory domain
384 * structures
385 */
386 return alpha2[0] == '9' && alpha2[1] == '8';
387 }
388
389 static bool is_an_alpha2(const char *alpha2)
390 {
391 if (!alpha2)
392 return false;
393 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
394 }
395
396 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
397 {
398 if (!alpha2_x || !alpha2_y)
399 return false;
400 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
401 }
402
403 static bool regdom_changes(const char *alpha2)
404 {
405 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
406
407 if (!r)
408 return true;
409 return !alpha2_equal(r->alpha2, alpha2);
410 }
411
412 /*
413 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
414 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
415 * has ever been issued.
416 */
417 static bool is_user_regdom_saved(void)
418 {
419 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
420 return false;
421
422 /* This would indicate a mistake on the design */
423 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
424 "Unexpected user alpha2: %c%c\n",
425 user_alpha2[0], user_alpha2[1]))
426 return false;
427
428 return true;
429 }
430
431 static const struct ieee80211_regdomain *
432 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
433 {
434 struct ieee80211_regdomain *regd;
435 int size_of_regd;
436 unsigned int i;
437
438 size_of_regd =
439 sizeof(struct ieee80211_regdomain) +
440 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
441
442 regd = kzalloc(size_of_regd, GFP_KERNEL);
443 if (!regd)
444 return ERR_PTR(-ENOMEM);
445
446 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
447
448 for (i = 0; i < src_regd->n_reg_rules; i++)
449 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
450 sizeof(struct ieee80211_reg_rule));
451
452 return regd;
453 }
454
455 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
456 struct reg_regdb_search_request {
457 char alpha2[2];
458 struct list_head list;
459 };
460
461 static LIST_HEAD(reg_regdb_search_list);
462 static DEFINE_MUTEX(reg_regdb_search_mutex);
463
464 static void reg_regdb_search(struct work_struct *work)
465 {
466 struct reg_regdb_search_request *request;
467 const struct ieee80211_regdomain *curdom, *regdom = NULL;
468 int i;
469
470 rtnl_lock();
471
472 mutex_lock(&reg_regdb_search_mutex);
473 while (!list_empty(&reg_regdb_search_list)) {
474 request = list_first_entry(&reg_regdb_search_list,
475 struct reg_regdb_search_request,
476 list);
477 list_del(&request->list);
478
479 for (i = 0; i < reg_regdb_size; i++) {
480 curdom = reg_regdb[i];
481
482 if (alpha2_equal(request->alpha2, curdom->alpha2)) {
483 regdom = reg_copy_regd(curdom);
484 break;
485 }
486 }
487
488 kfree(request);
489 }
490 mutex_unlock(&reg_regdb_search_mutex);
491
492 if (!IS_ERR_OR_NULL(regdom))
493 set_regdom(regdom, REGD_SOURCE_INTERNAL_DB);
494
495 rtnl_unlock();
496 }
497
498 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
499
500 static void reg_regdb_query(const char *alpha2)
501 {
502 struct reg_regdb_search_request *request;
503
504 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
505 if (!request)
506 return;
507
508 memcpy(request->alpha2, alpha2, 2);
509
510 mutex_lock(&reg_regdb_search_mutex);
511 list_add_tail(&request->list, &reg_regdb_search_list);
512 mutex_unlock(&reg_regdb_search_mutex);
513
514 schedule_work(&reg_regdb_work);
515 }
516
517 /* Feel free to add any other sanity checks here */
518 static void reg_regdb_size_check(void)
519 {
520 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
521 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
522 }
523 #else
524 static inline void reg_regdb_size_check(void) {}
525 static inline void reg_regdb_query(const char *alpha2) {}
526 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
527
528 /*
529 * This lets us keep regulatory code which is updated on a regulatory
530 * basis in userspace.
531 */
532 static int call_crda(const char *alpha2)
533 {
534 char country[12];
535 char *env[] = { country, NULL };
536
537 snprintf(country, sizeof(country), "COUNTRY=%c%c",
538 alpha2[0], alpha2[1]);
539
540 /* query internal regulatory database (if it exists) */
541 reg_regdb_query(alpha2);
542
543 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
544 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
545 return -EINVAL;
546 }
547
548 if (!is_world_regdom((char *) alpha2))
549 pr_debug("Calling CRDA for country: %c%c\n",
550 alpha2[0], alpha2[1]);
551 else
552 pr_debug("Calling CRDA to update world regulatory domain\n");
553
554 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
555 }
556
557 static bool reg_query_database(struct regulatory_request *request)
558 {
559 if (call_crda(request->alpha2))
560 return false;
561
562 queue_delayed_work(system_power_efficient_wq,
563 &reg_timeout, msecs_to_jiffies(3142));
564 return true;
565 }
566
567 bool reg_is_valid_request(const char *alpha2)
568 {
569 struct regulatory_request *lr = get_last_request();
570
571 if (!lr || lr->processed)
572 return false;
573
574 return alpha2_equal(lr->alpha2, alpha2);
575 }
576
577 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
578 {
579 struct regulatory_request *lr = get_last_request();
580
581 /*
582 * Follow the driver's regulatory domain, if present, unless a country
583 * IE has been processed or a user wants to help complaince further
584 */
585 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
586 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
587 wiphy->regd)
588 return get_wiphy_regdom(wiphy);
589
590 return get_cfg80211_regdom();
591 }
592
593 static unsigned int
594 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
595 const struct ieee80211_reg_rule *rule)
596 {
597 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
598 const struct ieee80211_freq_range *freq_range_tmp;
599 const struct ieee80211_reg_rule *tmp;
600 u32 start_freq, end_freq, idx, no;
601
602 for (idx = 0; idx < rd->n_reg_rules; idx++)
603 if (rule == &rd->reg_rules[idx])
604 break;
605
606 if (idx == rd->n_reg_rules)
607 return 0;
608
609 /* get start_freq */
610 no = idx;
611
612 while (no) {
613 tmp = &rd->reg_rules[--no];
614 freq_range_tmp = &tmp->freq_range;
615
616 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
617 break;
618
619 freq_range = freq_range_tmp;
620 }
621
622 start_freq = freq_range->start_freq_khz;
623
624 /* get end_freq */
625 freq_range = &rule->freq_range;
626 no = idx;
627
628 while (no < rd->n_reg_rules - 1) {
629 tmp = &rd->reg_rules[++no];
630 freq_range_tmp = &tmp->freq_range;
631
632 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
633 break;
634
635 freq_range = freq_range_tmp;
636 }
637
638 end_freq = freq_range->end_freq_khz;
639
640 return end_freq - start_freq;
641 }
642
643 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
644 const struct ieee80211_reg_rule *rule)
645 {
646 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
647
648 if (rule->flags & NL80211_RRF_NO_160MHZ)
649 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
650 if (rule->flags & NL80211_RRF_NO_80MHZ)
651 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
652
653 /*
654 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
655 * are not allowed.
656 */
657 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
658 rule->flags & NL80211_RRF_NO_HT40PLUS)
659 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
660
661 return bw;
662 }
663
664 /* Sanity check on a regulatory rule */
665 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
666 {
667 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
668 u32 freq_diff;
669
670 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
671 return false;
672
673 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
674 return false;
675
676 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
677
678 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
679 freq_range->max_bandwidth_khz > freq_diff)
680 return false;
681
682 return true;
683 }
684
685 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
686 {
687 const struct ieee80211_reg_rule *reg_rule = NULL;
688 unsigned int i;
689
690 if (!rd->n_reg_rules)
691 return false;
692
693 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
694 return false;
695
696 for (i = 0; i < rd->n_reg_rules; i++) {
697 reg_rule = &rd->reg_rules[i];
698 if (!is_valid_reg_rule(reg_rule))
699 return false;
700 }
701
702 return true;
703 }
704
705 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
706 u32 center_freq_khz, u32 bw_khz)
707 {
708 u32 start_freq_khz, end_freq_khz;
709
710 start_freq_khz = center_freq_khz - (bw_khz/2);
711 end_freq_khz = center_freq_khz + (bw_khz/2);
712
713 if (start_freq_khz >= freq_range->start_freq_khz &&
714 end_freq_khz <= freq_range->end_freq_khz)
715 return true;
716
717 return false;
718 }
719
720 /**
721 * freq_in_rule_band - tells us if a frequency is in a frequency band
722 * @freq_range: frequency rule we want to query
723 * @freq_khz: frequency we are inquiring about
724 *
725 * This lets us know if a specific frequency rule is or is not relevant to
726 * a specific frequency's band. Bands are device specific and artificial
727 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
728 * however it is safe for now to assume that a frequency rule should not be
729 * part of a frequency's band if the start freq or end freq are off by more
730 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
731 * 60 GHz band.
732 * This resolution can be lowered and should be considered as we add
733 * regulatory rule support for other "bands".
734 **/
735 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
736 u32 freq_khz)
737 {
738 #define ONE_GHZ_IN_KHZ 1000000
739 /*
740 * From 802.11ad: directional multi-gigabit (DMG):
741 * Pertaining to operation in a frequency band containing a channel
742 * with the Channel starting frequency above 45 GHz.
743 */
744 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
745 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
746 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
747 return true;
748 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
749 return true;
750 return false;
751 #undef ONE_GHZ_IN_KHZ
752 }
753
754 /*
755 * Later on we can perhaps use the more restrictive DFS
756 * region but we don't have information for that yet so
757 * for now simply disallow conflicts.
758 */
759 static enum nl80211_dfs_regions
760 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
761 const enum nl80211_dfs_regions dfs_region2)
762 {
763 if (dfs_region1 != dfs_region2)
764 return NL80211_DFS_UNSET;
765 return dfs_region1;
766 }
767
768 /*
769 * Helper for regdom_intersect(), this does the real
770 * mathematical intersection fun
771 */
772 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
773 const struct ieee80211_regdomain *rd2,
774 const struct ieee80211_reg_rule *rule1,
775 const struct ieee80211_reg_rule *rule2,
776 struct ieee80211_reg_rule *intersected_rule)
777 {
778 const struct ieee80211_freq_range *freq_range1, *freq_range2;
779 struct ieee80211_freq_range *freq_range;
780 const struct ieee80211_power_rule *power_rule1, *power_rule2;
781 struct ieee80211_power_rule *power_rule;
782 u32 freq_diff, max_bandwidth1, max_bandwidth2;
783
784 freq_range1 = &rule1->freq_range;
785 freq_range2 = &rule2->freq_range;
786 freq_range = &intersected_rule->freq_range;
787
788 power_rule1 = &rule1->power_rule;
789 power_rule2 = &rule2->power_rule;
790 power_rule = &intersected_rule->power_rule;
791
792 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
793 freq_range2->start_freq_khz);
794 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
795 freq_range2->end_freq_khz);
796
797 max_bandwidth1 = freq_range1->max_bandwidth_khz;
798 max_bandwidth2 = freq_range2->max_bandwidth_khz;
799
800 if (rule1->flags & NL80211_RRF_AUTO_BW)
801 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
802 if (rule2->flags & NL80211_RRF_AUTO_BW)
803 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
804
805 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
806
807 intersected_rule->flags = rule1->flags | rule2->flags;
808
809 /*
810 * In case NL80211_RRF_AUTO_BW requested for both rules
811 * set AUTO_BW in intersected rule also. Next we will
812 * calculate BW correctly in handle_channel function.
813 * In other case remove AUTO_BW flag while we calculate
814 * maximum bandwidth correctly and auto calculation is
815 * not required.
816 */
817 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
818 (rule2->flags & NL80211_RRF_AUTO_BW))
819 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
820 else
821 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
822
823 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
824 if (freq_range->max_bandwidth_khz > freq_diff)
825 freq_range->max_bandwidth_khz = freq_diff;
826
827 power_rule->max_eirp = min(power_rule1->max_eirp,
828 power_rule2->max_eirp);
829 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
830 power_rule2->max_antenna_gain);
831
832 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
833 rule2->dfs_cac_ms);
834
835 if (!is_valid_reg_rule(intersected_rule))
836 return -EINVAL;
837
838 return 0;
839 }
840
841 /* check whether old rule contains new rule */
842 static bool rule_contains(struct ieee80211_reg_rule *r1,
843 struct ieee80211_reg_rule *r2)
844 {
845 /* for simplicity, currently consider only same flags */
846 if (r1->flags != r2->flags)
847 return false;
848
849 /* verify r1 is more restrictive */
850 if ((r1->power_rule.max_antenna_gain >
851 r2->power_rule.max_antenna_gain) ||
852 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
853 return false;
854
855 /* make sure r2's range is contained within r1 */
856 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
857 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
858 return false;
859
860 /* and finally verify that r1.max_bw >= r2.max_bw */
861 if (r1->freq_range.max_bandwidth_khz <
862 r2->freq_range.max_bandwidth_khz)
863 return false;
864
865 return true;
866 }
867
868 /* add or extend current rules. do nothing if rule is already contained */
869 static void add_rule(struct ieee80211_reg_rule *rule,
870 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
871 {
872 struct ieee80211_reg_rule *tmp_rule;
873 int i;
874
875 for (i = 0; i < *n_rules; i++) {
876 tmp_rule = &reg_rules[i];
877 /* rule is already contained - do nothing */
878 if (rule_contains(tmp_rule, rule))
879 return;
880
881 /* extend rule if possible */
882 if (rule_contains(rule, tmp_rule)) {
883 memcpy(tmp_rule, rule, sizeof(*rule));
884 return;
885 }
886 }
887
888 memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
889 (*n_rules)++;
890 }
891
892 /**
893 * regdom_intersect - do the intersection between two regulatory domains
894 * @rd1: first regulatory domain
895 * @rd2: second regulatory domain
896 *
897 * Use this function to get the intersection between two regulatory domains.
898 * Once completed we will mark the alpha2 for the rd as intersected, "98",
899 * as no one single alpha2 can represent this regulatory domain.
900 *
901 * Returns a pointer to the regulatory domain structure which will hold the
902 * resulting intersection of rules between rd1 and rd2. We will
903 * kzalloc() this structure for you.
904 */
905 static struct ieee80211_regdomain *
906 regdom_intersect(const struct ieee80211_regdomain *rd1,
907 const struct ieee80211_regdomain *rd2)
908 {
909 int r, size_of_regd;
910 unsigned int x, y;
911 unsigned int num_rules = 0;
912 const struct ieee80211_reg_rule *rule1, *rule2;
913 struct ieee80211_reg_rule intersected_rule;
914 struct ieee80211_regdomain *rd;
915
916 if (!rd1 || !rd2)
917 return NULL;
918
919 /*
920 * First we get a count of the rules we'll need, then we actually
921 * build them. This is to so we can malloc() and free() a
922 * regdomain once. The reason we use reg_rules_intersect() here
923 * is it will return -EINVAL if the rule computed makes no sense.
924 * All rules that do check out OK are valid.
925 */
926
927 for (x = 0; x < rd1->n_reg_rules; x++) {
928 rule1 = &rd1->reg_rules[x];
929 for (y = 0; y < rd2->n_reg_rules; y++) {
930 rule2 = &rd2->reg_rules[y];
931 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
932 &intersected_rule))
933 num_rules++;
934 }
935 }
936
937 if (!num_rules)
938 return NULL;
939
940 size_of_regd = sizeof(struct ieee80211_regdomain) +
941 num_rules * sizeof(struct ieee80211_reg_rule);
942
943 rd = kzalloc(size_of_regd, GFP_KERNEL);
944 if (!rd)
945 return NULL;
946
947 for (x = 0; x < rd1->n_reg_rules; x++) {
948 rule1 = &rd1->reg_rules[x];
949 for (y = 0; y < rd2->n_reg_rules; y++) {
950 rule2 = &rd2->reg_rules[y];
951 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
952 &intersected_rule);
953 /*
954 * No need to memset here the intersected rule here as
955 * we're not using the stack anymore
956 */
957 if (r)
958 continue;
959
960 add_rule(&intersected_rule, rd->reg_rules,
961 &rd->n_reg_rules);
962 }
963 }
964
965 rd->alpha2[0] = '9';
966 rd->alpha2[1] = '8';
967 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
968 rd2->dfs_region);
969
970 return rd;
971 }
972
973 /*
974 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
975 * want to just have the channel structure use these
976 */
977 static u32 map_regdom_flags(u32 rd_flags)
978 {
979 u32 channel_flags = 0;
980 if (rd_flags & NL80211_RRF_NO_IR_ALL)
981 channel_flags |= IEEE80211_CHAN_NO_IR;
982 if (rd_flags & NL80211_RRF_DFS)
983 channel_flags |= IEEE80211_CHAN_RADAR;
984 if (rd_flags & NL80211_RRF_NO_OFDM)
985 channel_flags |= IEEE80211_CHAN_NO_OFDM;
986 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
987 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
988 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
989 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
990 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
991 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
992 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
993 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
994 if (rd_flags & NL80211_RRF_NO_80MHZ)
995 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
996 if (rd_flags & NL80211_RRF_NO_160MHZ)
997 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
998 return channel_flags;
999 }
1000
1001 static const struct ieee80211_reg_rule *
1002 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
1003 const struct ieee80211_regdomain *regd, u32 bw)
1004 {
1005 int i;
1006 bool band_rule_found = false;
1007 bool bw_fits = false;
1008
1009 if (!regd)
1010 return ERR_PTR(-EINVAL);
1011
1012 for (i = 0; i < regd->n_reg_rules; i++) {
1013 const struct ieee80211_reg_rule *rr;
1014 const struct ieee80211_freq_range *fr = NULL;
1015
1016 rr = &regd->reg_rules[i];
1017 fr = &rr->freq_range;
1018
1019 /*
1020 * We only need to know if one frequency rule was
1021 * was in center_freq's band, that's enough, so lets
1022 * not overwrite it once found
1023 */
1024 if (!band_rule_found)
1025 band_rule_found = freq_in_rule_band(fr, center_freq);
1026
1027 bw_fits = reg_does_bw_fit(fr, center_freq, bw);
1028
1029 if (band_rule_found && bw_fits)
1030 return rr;
1031 }
1032
1033 if (!band_rule_found)
1034 return ERR_PTR(-ERANGE);
1035
1036 return ERR_PTR(-EINVAL);
1037 }
1038
1039 static const struct ieee80211_reg_rule *
1040 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1041 {
1042 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1043 const struct ieee80211_reg_rule *reg_rule = NULL;
1044 u32 bw;
1045
1046 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1047 reg_rule = freq_reg_info_regd(wiphy, center_freq, regd, bw);
1048 if (!IS_ERR(reg_rule))
1049 return reg_rule;
1050 }
1051
1052 return reg_rule;
1053 }
1054
1055 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1056 u32 center_freq)
1057 {
1058 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1059 }
1060 EXPORT_SYMBOL(freq_reg_info);
1061
1062 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1063 {
1064 switch (initiator) {
1065 case NL80211_REGDOM_SET_BY_CORE:
1066 return "core";
1067 case NL80211_REGDOM_SET_BY_USER:
1068 return "user";
1069 case NL80211_REGDOM_SET_BY_DRIVER:
1070 return "driver";
1071 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1072 return "country IE";
1073 default:
1074 WARN_ON(1);
1075 return "bug";
1076 }
1077 }
1078 EXPORT_SYMBOL(reg_initiator_name);
1079
1080 #ifdef CONFIG_CFG80211_REG_DEBUG
1081 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1082 struct ieee80211_channel *chan,
1083 const struct ieee80211_reg_rule *reg_rule)
1084 {
1085 const struct ieee80211_power_rule *power_rule;
1086 const struct ieee80211_freq_range *freq_range;
1087 char max_antenna_gain[32], bw[32];
1088
1089 power_rule = &reg_rule->power_rule;
1090 freq_range = &reg_rule->freq_range;
1091
1092 if (!power_rule->max_antenna_gain)
1093 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1094 else
1095 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
1096 power_rule->max_antenna_gain);
1097
1098 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1099 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1100 freq_range->max_bandwidth_khz,
1101 reg_get_max_bandwidth(regd, reg_rule));
1102 else
1103 snprintf(bw, sizeof(bw), "%d KHz",
1104 freq_range->max_bandwidth_khz);
1105
1106 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1107 chan->center_freq);
1108
1109 REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
1110 freq_range->start_freq_khz, freq_range->end_freq_khz,
1111 bw, max_antenna_gain,
1112 power_rule->max_eirp);
1113 }
1114 #else
1115 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1116 struct ieee80211_channel *chan,
1117 const struct ieee80211_reg_rule *reg_rule)
1118 {
1119 return;
1120 }
1121 #endif
1122
1123 /*
1124 * Note that right now we assume the desired channel bandwidth
1125 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1126 * per channel, the primary and the extension channel).
1127 */
1128 static void handle_channel(struct wiphy *wiphy,
1129 enum nl80211_reg_initiator initiator,
1130 struct ieee80211_channel *chan)
1131 {
1132 u32 flags, bw_flags = 0;
1133 const struct ieee80211_reg_rule *reg_rule = NULL;
1134 const struct ieee80211_power_rule *power_rule = NULL;
1135 const struct ieee80211_freq_range *freq_range = NULL;
1136 struct wiphy *request_wiphy = NULL;
1137 struct regulatory_request *lr = get_last_request();
1138 const struct ieee80211_regdomain *regd;
1139 u32 max_bandwidth_khz;
1140
1141 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1142
1143 flags = chan->orig_flags;
1144
1145 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1146 if (IS_ERR(reg_rule)) {
1147 /*
1148 * We will disable all channels that do not match our
1149 * received regulatory rule unless the hint is coming
1150 * from a Country IE and the Country IE had no information
1151 * about a band. The IEEE 802.11 spec allows for an AP
1152 * to send only a subset of the regulatory rules allowed,
1153 * so an AP in the US that only supports 2.4 GHz may only send
1154 * a country IE with information for the 2.4 GHz band
1155 * while 5 GHz is still supported.
1156 */
1157 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1158 PTR_ERR(reg_rule) == -ERANGE)
1159 return;
1160
1161 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1162 request_wiphy && request_wiphy == wiphy &&
1163 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1164 REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1165 chan->center_freq);
1166 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1167 chan->flags = chan->orig_flags;
1168 } else {
1169 REG_DBG_PRINT("Disabling freq %d MHz\n",
1170 chan->center_freq);
1171 chan->flags |= IEEE80211_CHAN_DISABLED;
1172 }
1173 return;
1174 }
1175
1176 regd = reg_get_regdomain(wiphy);
1177 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1178
1179 power_rule = &reg_rule->power_rule;
1180 freq_range = &reg_rule->freq_range;
1181
1182 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1183 /* Check if auto calculation requested */
1184 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1185 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1186
1187 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1188 if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1189 MHZ_TO_KHZ(10)))
1190 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1191 if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1192 MHZ_TO_KHZ(20)))
1193 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1194
1195 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1196 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1197 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1198 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1199 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1200 bw_flags |= IEEE80211_CHAN_NO_HT40;
1201 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1202 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1203 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1204 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1205
1206 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1207 request_wiphy && request_wiphy == wiphy &&
1208 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1209 /*
1210 * This guarantees the driver's requested regulatory domain
1211 * will always be used as a base for further regulatory
1212 * settings
1213 */
1214 chan->flags = chan->orig_flags =
1215 map_regdom_flags(reg_rule->flags) | bw_flags;
1216 chan->max_antenna_gain = chan->orig_mag =
1217 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1218 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1219 (int) MBM_TO_DBM(power_rule->max_eirp);
1220
1221 if (chan->flags & IEEE80211_CHAN_RADAR) {
1222 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1223 if (reg_rule->dfs_cac_ms)
1224 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1225 }
1226
1227 return;
1228 }
1229
1230 chan->dfs_state = NL80211_DFS_USABLE;
1231 chan->dfs_state_entered = jiffies;
1232
1233 chan->beacon_found = false;
1234 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1235 chan->max_antenna_gain =
1236 min_t(int, chan->orig_mag,
1237 MBI_TO_DBI(power_rule->max_antenna_gain));
1238 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1239
1240 if (chan->flags & IEEE80211_CHAN_RADAR) {
1241 if (reg_rule->dfs_cac_ms)
1242 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1243 else
1244 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1245 }
1246
1247 if (chan->orig_mpwr) {
1248 /*
1249 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1250 * will always follow the passed country IE power settings.
1251 */
1252 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1253 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1254 chan->max_power = chan->max_reg_power;
1255 else
1256 chan->max_power = min(chan->orig_mpwr,
1257 chan->max_reg_power);
1258 } else
1259 chan->max_power = chan->max_reg_power;
1260 }
1261
1262 static void handle_band(struct wiphy *wiphy,
1263 enum nl80211_reg_initiator initiator,
1264 struct ieee80211_supported_band *sband)
1265 {
1266 unsigned int i;
1267
1268 if (!sband)
1269 return;
1270
1271 for (i = 0; i < sband->n_channels; i++)
1272 handle_channel(wiphy, initiator, &sband->channels[i]);
1273 }
1274
1275 static bool reg_request_cell_base(struct regulatory_request *request)
1276 {
1277 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1278 return false;
1279 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1280 }
1281
1282 bool reg_last_request_cell_base(void)
1283 {
1284 return reg_request_cell_base(get_last_request());
1285 }
1286
1287 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1288 /* Core specific check */
1289 static enum reg_request_treatment
1290 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1291 {
1292 struct regulatory_request *lr = get_last_request();
1293
1294 if (!reg_num_devs_support_basehint)
1295 return REG_REQ_IGNORE;
1296
1297 if (reg_request_cell_base(lr) &&
1298 !regdom_changes(pending_request->alpha2))
1299 return REG_REQ_ALREADY_SET;
1300
1301 return REG_REQ_OK;
1302 }
1303
1304 /* Device specific check */
1305 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1306 {
1307 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1308 }
1309 #else
1310 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1311 {
1312 return REG_REQ_IGNORE;
1313 }
1314
1315 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1316 {
1317 return true;
1318 }
1319 #endif
1320
1321 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1322 {
1323 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1324 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1325 return true;
1326 return false;
1327 }
1328
1329 static bool ignore_reg_update(struct wiphy *wiphy,
1330 enum nl80211_reg_initiator initiator)
1331 {
1332 struct regulatory_request *lr = get_last_request();
1333
1334 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1335 return true;
1336
1337 if (!lr) {
1338 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1339 "since last_request is not set\n",
1340 reg_initiator_name(initiator));
1341 return true;
1342 }
1343
1344 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1345 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1346 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1347 "since the driver uses its own custom "
1348 "regulatory domain\n",
1349 reg_initiator_name(initiator));
1350 return true;
1351 }
1352
1353 /*
1354 * wiphy->regd will be set once the device has its own
1355 * desired regulatory domain set
1356 */
1357 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1358 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1359 !is_world_regdom(lr->alpha2)) {
1360 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1361 "since the driver requires its own regulatory "
1362 "domain to be set first\n",
1363 reg_initiator_name(initiator));
1364 return true;
1365 }
1366
1367 if (reg_request_cell_base(lr))
1368 return reg_dev_ignore_cell_hint(wiphy);
1369
1370 return false;
1371 }
1372
1373 static bool reg_is_world_roaming(struct wiphy *wiphy)
1374 {
1375 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1376 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1377 struct regulatory_request *lr = get_last_request();
1378
1379 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1380 return true;
1381
1382 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1383 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1384 return true;
1385
1386 return false;
1387 }
1388
1389 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1390 struct reg_beacon *reg_beacon)
1391 {
1392 struct ieee80211_supported_band *sband;
1393 struct ieee80211_channel *chan;
1394 bool channel_changed = false;
1395 struct ieee80211_channel chan_before;
1396
1397 sband = wiphy->bands[reg_beacon->chan.band];
1398 chan = &sband->channels[chan_idx];
1399
1400 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1401 return;
1402
1403 if (chan->beacon_found)
1404 return;
1405
1406 chan->beacon_found = true;
1407
1408 if (!reg_is_world_roaming(wiphy))
1409 return;
1410
1411 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1412 return;
1413
1414 chan_before.center_freq = chan->center_freq;
1415 chan_before.flags = chan->flags;
1416
1417 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1418 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1419 channel_changed = true;
1420 }
1421
1422 if (channel_changed)
1423 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1424 }
1425
1426 /*
1427 * Called when a scan on a wiphy finds a beacon on
1428 * new channel
1429 */
1430 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1431 struct reg_beacon *reg_beacon)
1432 {
1433 unsigned int i;
1434 struct ieee80211_supported_band *sband;
1435
1436 if (!wiphy->bands[reg_beacon->chan.band])
1437 return;
1438
1439 sband = wiphy->bands[reg_beacon->chan.band];
1440
1441 for (i = 0; i < sband->n_channels; i++)
1442 handle_reg_beacon(wiphy, i, reg_beacon);
1443 }
1444
1445 /*
1446 * Called upon reg changes or a new wiphy is added
1447 */
1448 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1449 {
1450 unsigned int i;
1451 struct ieee80211_supported_band *sband;
1452 struct reg_beacon *reg_beacon;
1453
1454 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1455 if (!wiphy->bands[reg_beacon->chan.band])
1456 continue;
1457 sband = wiphy->bands[reg_beacon->chan.band];
1458 for (i = 0; i < sband->n_channels; i++)
1459 handle_reg_beacon(wiphy, i, reg_beacon);
1460 }
1461 }
1462
1463 /* Reap the advantages of previously found beacons */
1464 static void reg_process_beacons(struct wiphy *wiphy)
1465 {
1466 /*
1467 * Means we are just firing up cfg80211, so no beacons would
1468 * have been processed yet.
1469 */
1470 if (!last_request)
1471 return;
1472 wiphy_update_beacon_reg(wiphy);
1473 }
1474
1475 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1476 {
1477 if (!chan)
1478 return false;
1479 if (chan->flags & IEEE80211_CHAN_DISABLED)
1480 return false;
1481 /* This would happen when regulatory rules disallow HT40 completely */
1482 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1483 return false;
1484 return true;
1485 }
1486
1487 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1488 struct ieee80211_channel *channel)
1489 {
1490 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1491 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1492 unsigned int i;
1493
1494 if (!is_ht40_allowed(channel)) {
1495 channel->flags |= IEEE80211_CHAN_NO_HT40;
1496 return;
1497 }
1498
1499 /*
1500 * We need to ensure the extension channels exist to
1501 * be able to use HT40- or HT40+, this finds them (or not)
1502 */
1503 for (i = 0; i < sband->n_channels; i++) {
1504 struct ieee80211_channel *c = &sband->channels[i];
1505
1506 if (c->center_freq == (channel->center_freq - 20))
1507 channel_before = c;
1508 if (c->center_freq == (channel->center_freq + 20))
1509 channel_after = c;
1510 }
1511
1512 /*
1513 * Please note that this assumes target bandwidth is 20 MHz,
1514 * if that ever changes we also need to change the below logic
1515 * to include that as well.
1516 */
1517 if (!is_ht40_allowed(channel_before))
1518 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1519 else
1520 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1521
1522 if (!is_ht40_allowed(channel_after))
1523 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1524 else
1525 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1526 }
1527
1528 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1529 struct ieee80211_supported_band *sband)
1530 {
1531 unsigned int i;
1532
1533 if (!sband)
1534 return;
1535
1536 for (i = 0; i < sband->n_channels; i++)
1537 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1538 }
1539
1540 static void reg_process_ht_flags(struct wiphy *wiphy)
1541 {
1542 enum ieee80211_band band;
1543
1544 if (!wiphy)
1545 return;
1546
1547 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1548 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1549 }
1550
1551 static void reg_call_notifier(struct wiphy *wiphy,
1552 struct regulatory_request *request)
1553 {
1554 if (wiphy->reg_notifier)
1555 wiphy->reg_notifier(wiphy, request);
1556 }
1557
1558 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1559 {
1560 struct cfg80211_chan_def chandef;
1561 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1562 enum nl80211_iftype iftype;
1563
1564 wdev_lock(wdev);
1565 iftype = wdev->iftype;
1566
1567 /* make sure the interface is active */
1568 if (!wdev->netdev || !netif_running(wdev->netdev))
1569 goto wdev_inactive_unlock;
1570
1571 switch (iftype) {
1572 case NL80211_IFTYPE_AP:
1573 case NL80211_IFTYPE_P2P_GO:
1574 if (!wdev->beacon_interval)
1575 goto wdev_inactive_unlock;
1576 chandef = wdev->chandef;
1577 break;
1578 case NL80211_IFTYPE_ADHOC:
1579 if (!wdev->ssid_len)
1580 goto wdev_inactive_unlock;
1581 chandef = wdev->chandef;
1582 break;
1583 case NL80211_IFTYPE_STATION:
1584 case NL80211_IFTYPE_P2P_CLIENT:
1585 if (!wdev->current_bss ||
1586 !wdev->current_bss->pub.channel)
1587 goto wdev_inactive_unlock;
1588
1589 if (!rdev->ops->get_channel ||
1590 rdev_get_channel(rdev, wdev, &chandef))
1591 cfg80211_chandef_create(&chandef,
1592 wdev->current_bss->pub.channel,
1593 NL80211_CHAN_NO_HT);
1594 break;
1595 case NL80211_IFTYPE_MONITOR:
1596 case NL80211_IFTYPE_AP_VLAN:
1597 case NL80211_IFTYPE_P2P_DEVICE:
1598 /* no enforcement required */
1599 break;
1600 default:
1601 /* others not implemented for now */
1602 WARN_ON(1);
1603 break;
1604 }
1605
1606 wdev_unlock(wdev);
1607
1608 switch (iftype) {
1609 case NL80211_IFTYPE_AP:
1610 case NL80211_IFTYPE_P2P_GO:
1611 case NL80211_IFTYPE_ADHOC:
1612 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
1613 case NL80211_IFTYPE_STATION:
1614 case NL80211_IFTYPE_P2P_CLIENT:
1615 return cfg80211_chandef_usable(wiphy, &chandef,
1616 IEEE80211_CHAN_DISABLED);
1617 default:
1618 break;
1619 }
1620
1621 return true;
1622
1623 wdev_inactive_unlock:
1624 wdev_unlock(wdev);
1625 return true;
1626 }
1627
1628 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1629 {
1630 struct wireless_dev *wdev;
1631 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1632
1633 ASSERT_RTNL();
1634
1635 list_for_each_entry(wdev, &rdev->wdev_list, list)
1636 if (!reg_wdev_chan_valid(wiphy, wdev))
1637 cfg80211_leave(rdev, wdev);
1638 }
1639
1640 static void reg_check_chans_work(struct work_struct *work)
1641 {
1642 struct cfg80211_registered_device *rdev;
1643
1644 REG_DBG_PRINT("Verifying active interfaces after reg change\n");
1645 rtnl_lock();
1646
1647 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1648 if (!(rdev->wiphy.regulatory_flags &
1649 REGULATORY_IGNORE_STALE_KICKOFF))
1650 reg_leave_invalid_chans(&rdev->wiphy);
1651
1652 rtnl_unlock();
1653 }
1654
1655 static void reg_check_channels(void)
1656 {
1657 /*
1658 * Give usermode a chance to do something nicer (move to another
1659 * channel, orderly disconnection), before forcing a disconnection.
1660 */
1661 mod_delayed_work(system_power_efficient_wq,
1662 &reg_check_chans,
1663 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1664 }
1665
1666 static void wiphy_update_regulatory(struct wiphy *wiphy,
1667 enum nl80211_reg_initiator initiator)
1668 {
1669 enum ieee80211_band band;
1670 struct regulatory_request *lr = get_last_request();
1671
1672 if (ignore_reg_update(wiphy, initiator)) {
1673 /*
1674 * Regulatory updates set by CORE are ignored for custom
1675 * regulatory cards. Let us notify the changes to the driver,
1676 * as some drivers used this to restore its orig_* reg domain.
1677 */
1678 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1679 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1680 reg_call_notifier(wiphy, lr);
1681 return;
1682 }
1683
1684 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1685
1686 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1687 handle_band(wiphy, initiator, wiphy->bands[band]);
1688
1689 reg_process_beacons(wiphy);
1690 reg_process_ht_flags(wiphy);
1691 reg_call_notifier(wiphy, lr);
1692 }
1693
1694 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1695 {
1696 struct cfg80211_registered_device *rdev;
1697 struct wiphy *wiphy;
1698
1699 ASSERT_RTNL();
1700
1701 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1702 wiphy = &rdev->wiphy;
1703 wiphy_update_regulatory(wiphy, initiator);
1704 }
1705
1706 reg_check_channels();
1707 }
1708
1709 static void handle_channel_custom(struct wiphy *wiphy,
1710 struct ieee80211_channel *chan,
1711 const struct ieee80211_regdomain *regd)
1712 {
1713 u32 bw_flags = 0;
1714 const struct ieee80211_reg_rule *reg_rule = NULL;
1715 const struct ieee80211_power_rule *power_rule = NULL;
1716 const struct ieee80211_freq_range *freq_range = NULL;
1717 u32 max_bandwidth_khz;
1718 u32 bw;
1719
1720 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
1721 reg_rule = freq_reg_info_regd(wiphy,
1722 MHZ_TO_KHZ(chan->center_freq),
1723 regd, bw);
1724 if (!IS_ERR(reg_rule))
1725 break;
1726 }
1727
1728 if (IS_ERR(reg_rule)) {
1729 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1730 chan->center_freq);
1731 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1732 chan->flags |= IEEE80211_CHAN_DISABLED;
1733 } else {
1734 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1735 chan->flags = chan->orig_flags;
1736 }
1737 return;
1738 }
1739
1740 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1741
1742 power_rule = &reg_rule->power_rule;
1743 freq_range = &reg_rule->freq_range;
1744
1745 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1746 /* Check if auto calculation requested */
1747 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1748 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1749
1750 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1751 if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1752 MHZ_TO_KHZ(10)))
1753 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1754 if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1755 MHZ_TO_KHZ(20)))
1756 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1757
1758 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1759 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1760 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1761 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1762 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1763 bw_flags |= IEEE80211_CHAN_NO_HT40;
1764 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1765 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1766 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1767 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1768
1769 chan->dfs_state_entered = jiffies;
1770 chan->dfs_state = NL80211_DFS_USABLE;
1771
1772 chan->beacon_found = false;
1773
1774 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1775 chan->flags = chan->orig_flags | bw_flags |
1776 map_regdom_flags(reg_rule->flags);
1777 else
1778 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1779
1780 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1781 chan->max_reg_power = chan->max_power =
1782 (int) MBM_TO_DBM(power_rule->max_eirp);
1783
1784 if (chan->flags & IEEE80211_CHAN_RADAR) {
1785 if (reg_rule->dfs_cac_ms)
1786 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1787 else
1788 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1789 }
1790
1791 chan->max_power = chan->max_reg_power;
1792 }
1793
1794 static void handle_band_custom(struct wiphy *wiphy,
1795 struct ieee80211_supported_band *sband,
1796 const struct ieee80211_regdomain *regd)
1797 {
1798 unsigned int i;
1799
1800 if (!sband)
1801 return;
1802
1803 for (i = 0; i < sband->n_channels; i++)
1804 handle_channel_custom(wiphy, &sband->channels[i], regd);
1805 }
1806
1807 /* Used by drivers prior to wiphy registration */
1808 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1809 const struct ieee80211_regdomain *regd)
1810 {
1811 enum ieee80211_band band;
1812 unsigned int bands_set = 0;
1813
1814 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1815 "wiphy should have REGULATORY_CUSTOM_REG\n");
1816 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1817
1818 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1819 if (!wiphy->bands[band])
1820 continue;
1821 handle_band_custom(wiphy, wiphy->bands[band], regd);
1822 bands_set++;
1823 }
1824
1825 /*
1826 * no point in calling this if it won't have any effect
1827 * on your device's supported bands.
1828 */
1829 WARN_ON(!bands_set);
1830 }
1831 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1832
1833 static void reg_set_request_processed(void)
1834 {
1835 bool need_more_processing = false;
1836 struct regulatory_request *lr = get_last_request();
1837
1838 lr->processed = true;
1839
1840 spin_lock(&reg_requests_lock);
1841 if (!list_empty(&reg_requests_list))
1842 need_more_processing = true;
1843 spin_unlock(&reg_requests_lock);
1844
1845 cancel_delayed_work(&reg_timeout);
1846
1847 if (need_more_processing)
1848 schedule_work(&reg_work);
1849 }
1850
1851 /**
1852 * reg_process_hint_core - process core regulatory requests
1853 * @pending_request: a pending core regulatory request
1854 *
1855 * The wireless subsystem can use this function to process
1856 * a regulatory request issued by the regulatory core.
1857 */
1858 static void reg_process_hint_core(struct regulatory_request *core_request)
1859 {
1860 if (reg_query_database(core_request)) {
1861 core_request->intersect = false;
1862 core_request->processed = false;
1863 reg_update_last_request(core_request);
1864 }
1865 }
1866
1867 static enum reg_request_treatment
1868 __reg_process_hint_user(struct regulatory_request *user_request)
1869 {
1870 struct regulatory_request *lr = get_last_request();
1871
1872 if (reg_request_cell_base(user_request))
1873 return reg_ignore_cell_hint(user_request);
1874
1875 if (reg_request_cell_base(lr))
1876 return REG_REQ_IGNORE;
1877
1878 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1879 return REG_REQ_INTERSECT;
1880 /*
1881 * If the user knows better the user should set the regdom
1882 * to their country before the IE is picked up
1883 */
1884 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1885 lr->intersect)
1886 return REG_REQ_IGNORE;
1887 /*
1888 * Process user requests only after previous user/driver/core
1889 * requests have been processed
1890 */
1891 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1892 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1893 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1894 regdom_changes(lr->alpha2))
1895 return REG_REQ_IGNORE;
1896
1897 if (!regdom_changes(user_request->alpha2))
1898 return REG_REQ_ALREADY_SET;
1899
1900 return REG_REQ_OK;
1901 }
1902
1903 /**
1904 * reg_process_hint_user - process user regulatory requests
1905 * @user_request: a pending user regulatory request
1906 *
1907 * The wireless subsystem can use this function to process
1908 * a regulatory request initiated by userspace.
1909 */
1910 static void reg_process_hint_user(struct regulatory_request *user_request)
1911 {
1912 enum reg_request_treatment treatment;
1913
1914 treatment = __reg_process_hint_user(user_request);
1915 if (treatment == REG_REQ_IGNORE ||
1916 treatment == REG_REQ_ALREADY_SET) {
1917 reg_free_request(user_request);
1918 return;
1919 }
1920
1921 user_request->intersect = treatment == REG_REQ_INTERSECT;
1922 user_request->processed = false;
1923
1924 if (reg_query_database(user_request)) {
1925 reg_update_last_request(user_request);
1926 user_alpha2[0] = user_request->alpha2[0];
1927 user_alpha2[1] = user_request->alpha2[1];
1928 } else {
1929 reg_free_request(user_request);
1930 }
1931 }
1932
1933 static enum reg_request_treatment
1934 __reg_process_hint_driver(struct regulatory_request *driver_request)
1935 {
1936 struct regulatory_request *lr = get_last_request();
1937
1938 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1939 if (regdom_changes(driver_request->alpha2))
1940 return REG_REQ_OK;
1941 return REG_REQ_ALREADY_SET;
1942 }
1943
1944 /*
1945 * This would happen if you unplug and plug your card
1946 * back in or if you add a new device for which the previously
1947 * loaded card also agrees on the regulatory domain.
1948 */
1949 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1950 !regdom_changes(driver_request->alpha2))
1951 return REG_REQ_ALREADY_SET;
1952
1953 return REG_REQ_INTERSECT;
1954 }
1955
1956 /**
1957 * reg_process_hint_driver - process driver regulatory requests
1958 * @driver_request: a pending driver regulatory request
1959 *
1960 * The wireless subsystem can use this function to process
1961 * a regulatory request issued by an 802.11 driver.
1962 *
1963 * Returns one of the different reg request treatment values.
1964 */
1965 static enum reg_request_treatment
1966 reg_process_hint_driver(struct wiphy *wiphy,
1967 struct regulatory_request *driver_request)
1968 {
1969 const struct ieee80211_regdomain *regd, *tmp;
1970 enum reg_request_treatment treatment;
1971
1972 treatment = __reg_process_hint_driver(driver_request);
1973
1974 switch (treatment) {
1975 case REG_REQ_OK:
1976 break;
1977 case REG_REQ_IGNORE:
1978 reg_free_request(driver_request);
1979 return treatment;
1980 case REG_REQ_INTERSECT:
1981 /* fall through */
1982 case REG_REQ_ALREADY_SET:
1983 regd = reg_copy_regd(get_cfg80211_regdom());
1984 if (IS_ERR(regd)) {
1985 reg_free_request(driver_request);
1986 return REG_REQ_IGNORE;
1987 }
1988
1989 tmp = get_wiphy_regdom(wiphy);
1990 rcu_assign_pointer(wiphy->regd, regd);
1991 rcu_free_regdom(tmp);
1992 }
1993
1994
1995 driver_request->intersect = treatment == REG_REQ_INTERSECT;
1996 driver_request->processed = false;
1997
1998 /*
1999 * Since CRDA will not be called in this case as we already
2000 * have applied the requested regulatory domain before we just
2001 * inform userspace we have processed the request
2002 */
2003 if (treatment == REG_REQ_ALREADY_SET) {
2004 nl80211_send_reg_change_event(driver_request);
2005 reg_update_last_request(driver_request);
2006 reg_set_request_processed();
2007 return treatment;
2008 }
2009
2010 if (reg_query_database(driver_request))
2011 reg_update_last_request(driver_request);
2012 else
2013 reg_free_request(driver_request);
2014
2015 return REG_REQ_OK;
2016 }
2017
2018 static enum reg_request_treatment
2019 __reg_process_hint_country_ie(struct wiphy *wiphy,
2020 struct regulatory_request *country_ie_request)
2021 {
2022 struct wiphy *last_wiphy = NULL;
2023 struct regulatory_request *lr = get_last_request();
2024
2025 if (reg_request_cell_base(lr)) {
2026 /* Trust a Cell base station over the AP's country IE */
2027 if (regdom_changes(country_ie_request->alpha2))
2028 return REG_REQ_IGNORE;
2029 return REG_REQ_ALREADY_SET;
2030 } else {
2031 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2032 return REG_REQ_IGNORE;
2033 }
2034
2035 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2036 return -EINVAL;
2037
2038 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2039 return REG_REQ_OK;
2040
2041 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2042
2043 if (last_wiphy != wiphy) {
2044 /*
2045 * Two cards with two APs claiming different
2046 * Country IE alpha2s. We could
2047 * intersect them, but that seems unlikely
2048 * to be correct. Reject second one for now.
2049 */
2050 if (regdom_changes(country_ie_request->alpha2))
2051 return REG_REQ_IGNORE;
2052 return REG_REQ_ALREADY_SET;
2053 }
2054
2055 if (regdom_changes(country_ie_request->alpha2))
2056 return REG_REQ_OK;
2057 return REG_REQ_ALREADY_SET;
2058 }
2059
2060 /**
2061 * reg_process_hint_country_ie - process regulatory requests from country IEs
2062 * @country_ie_request: a regulatory request from a country IE
2063 *
2064 * The wireless subsystem can use this function to process
2065 * a regulatory request issued by a country Information Element.
2066 *
2067 * Returns one of the different reg request treatment values.
2068 */
2069 static enum reg_request_treatment
2070 reg_process_hint_country_ie(struct wiphy *wiphy,
2071 struct regulatory_request *country_ie_request)
2072 {
2073 enum reg_request_treatment treatment;
2074
2075 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2076
2077 switch (treatment) {
2078 case REG_REQ_OK:
2079 break;
2080 case REG_REQ_IGNORE:
2081 /* fall through */
2082 case REG_REQ_ALREADY_SET:
2083 reg_free_request(country_ie_request);
2084 return treatment;
2085 case REG_REQ_INTERSECT:
2086 reg_free_request(country_ie_request);
2087 /*
2088 * This doesn't happen yet, not sure we
2089 * ever want to support it for this case.
2090 */
2091 WARN_ONCE(1, "Unexpected intersection for country IEs");
2092 return REG_REQ_IGNORE;
2093 }
2094
2095 country_ie_request->intersect = false;
2096 country_ie_request->processed = false;
2097
2098 if (reg_query_database(country_ie_request))
2099 reg_update_last_request(country_ie_request);
2100 else
2101 reg_free_request(country_ie_request);
2102
2103 return REG_REQ_OK;
2104 }
2105
2106 /* This processes *all* regulatory hints */
2107 static void reg_process_hint(struct regulatory_request *reg_request)
2108 {
2109 struct wiphy *wiphy = NULL;
2110 enum reg_request_treatment treatment;
2111
2112 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2113 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2114
2115 switch (reg_request->initiator) {
2116 case NL80211_REGDOM_SET_BY_CORE:
2117 reg_process_hint_core(reg_request);
2118 return;
2119 case NL80211_REGDOM_SET_BY_USER:
2120 reg_process_hint_user(reg_request);
2121 return;
2122 case NL80211_REGDOM_SET_BY_DRIVER:
2123 if (!wiphy)
2124 goto out_free;
2125 treatment = reg_process_hint_driver(wiphy, reg_request);
2126 break;
2127 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2128 if (!wiphy)
2129 goto out_free;
2130 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2131 break;
2132 default:
2133 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2134 goto out_free;
2135 }
2136
2137 /* This is required so that the orig_* parameters are saved.
2138 * NOTE: treatment must be set for any case that reaches here!
2139 */
2140 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2141 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2142 wiphy_update_regulatory(wiphy, reg_request->initiator);
2143 reg_check_channels();
2144 }
2145
2146 return;
2147
2148 out_free:
2149 reg_free_request(reg_request);
2150 }
2151
2152 static bool reg_only_self_managed_wiphys(void)
2153 {
2154 struct cfg80211_registered_device *rdev;
2155 struct wiphy *wiphy;
2156 bool self_managed_found = false;
2157
2158 ASSERT_RTNL();
2159
2160 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2161 wiphy = &rdev->wiphy;
2162 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2163 self_managed_found = true;
2164 else
2165 return false;
2166 }
2167
2168 /* make sure at least one self-managed wiphy exists */
2169 return self_managed_found;
2170 }
2171
2172 /*
2173 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2174 * Regulatory hints come on a first come first serve basis and we
2175 * must process each one atomically.
2176 */
2177 static void reg_process_pending_hints(void)
2178 {
2179 struct regulatory_request *reg_request, *lr;
2180
2181 lr = get_last_request();
2182
2183 /* When last_request->processed becomes true this will be rescheduled */
2184 if (lr && !lr->processed) {
2185 reg_process_hint(lr);
2186 return;
2187 }
2188
2189 spin_lock(&reg_requests_lock);
2190
2191 if (list_empty(&reg_requests_list)) {
2192 spin_unlock(&reg_requests_lock);
2193 return;
2194 }
2195
2196 reg_request = list_first_entry(&reg_requests_list,
2197 struct regulatory_request,
2198 list);
2199 list_del_init(&reg_request->list);
2200
2201 spin_unlock(&reg_requests_lock);
2202
2203 if (reg_only_self_managed_wiphys()) {
2204 reg_free_request(reg_request);
2205 return;
2206 }
2207
2208 reg_process_hint(reg_request);
2209
2210 lr = get_last_request();
2211
2212 spin_lock(&reg_requests_lock);
2213 if (!list_empty(&reg_requests_list) && lr && lr->processed)
2214 schedule_work(&reg_work);
2215 spin_unlock(&reg_requests_lock);
2216 }
2217
2218 /* Processes beacon hints -- this has nothing to do with country IEs */
2219 static void reg_process_pending_beacon_hints(void)
2220 {
2221 struct cfg80211_registered_device *rdev;
2222 struct reg_beacon *pending_beacon, *tmp;
2223
2224 /* This goes through the _pending_ beacon list */
2225 spin_lock_bh(&reg_pending_beacons_lock);
2226
2227 list_for_each_entry_safe(pending_beacon, tmp,
2228 &reg_pending_beacons, list) {
2229 list_del_init(&pending_beacon->list);
2230
2231 /* Applies the beacon hint to current wiphys */
2232 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2233 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2234
2235 /* Remembers the beacon hint for new wiphys or reg changes */
2236 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2237 }
2238
2239 spin_unlock_bh(&reg_pending_beacons_lock);
2240 }
2241
2242 static void reg_process_self_managed_hints(void)
2243 {
2244 struct cfg80211_registered_device *rdev;
2245 struct wiphy *wiphy;
2246 const struct ieee80211_regdomain *tmp;
2247 const struct ieee80211_regdomain *regd;
2248 enum ieee80211_band band;
2249 struct regulatory_request request = {};
2250
2251 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2252 wiphy = &rdev->wiphy;
2253
2254 spin_lock(&reg_requests_lock);
2255 regd = rdev->requested_regd;
2256 rdev->requested_regd = NULL;
2257 spin_unlock(&reg_requests_lock);
2258
2259 if (regd == NULL)
2260 continue;
2261
2262 tmp = get_wiphy_regdom(wiphy);
2263 rcu_assign_pointer(wiphy->regd, regd);
2264 rcu_free_regdom(tmp);
2265
2266 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
2267 handle_band_custom(wiphy, wiphy->bands[band], regd);
2268
2269 reg_process_ht_flags(wiphy);
2270
2271 request.wiphy_idx = get_wiphy_idx(wiphy);
2272 request.alpha2[0] = regd->alpha2[0];
2273 request.alpha2[1] = regd->alpha2[1];
2274 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2275
2276 nl80211_send_wiphy_reg_change_event(&request);
2277 }
2278
2279 reg_check_channels();
2280 }
2281
2282 static void reg_todo(struct work_struct *work)
2283 {
2284 rtnl_lock();
2285 reg_process_pending_hints();
2286 reg_process_pending_beacon_hints();
2287 reg_process_self_managed_hints();
2288 rtnl_unlock();
2289 }
2290
2291 static void queue_regulatory_request(struct regulatory_request *request)
2292 {
2293 request->alpha2[0] = toupper(request->alpha2[0]);
2294 request->alpha2[1] = toupper(request->alpha2[1]);
2295
2296 spin_lock(&reg_requests_lock);
2297 list_add_tail(&request->list, &reg_requests_list);
2298 spin_unlock(&reg_requests_lock);
2299
2300 schedule_work(&reg_work);
2301 }
2302
2303 /*
2304 * Core regulatory hint -- happens during cfg80211_init()
2305 * and when we restore regulatory settings.
2306 */
2307 static int regulatory_hint_core(const char *alpha2)
2308 {
2309 struct regulatory_request *request;
2310
2311 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2312 if (!request)
2313 return -ENOMEM;
2314
2315 request->alpha2[0] = alpha2[0];
2316 request->alpha2[1] = alpha2[1];
2317 request->initiator = NL80211_REGDOM_SET_BY_CORE;
2318
2319 queue_regulatory_request(request);
2320
2321 return 0;
2322 }
2323
2324 /* User hints */
2325 int regulatory_hint_user(const char *alpha2,
2326 enum nl80211_user_reg_hint_type user_reg_hint_type)
2327 {
2328 struct regulatory_request *request;
2329
2330 if (WARN_ON(!alpha2))
2331 return -EINVAL;
2332
2333 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2334 if (!request)
2335 return -ENOMEM;
2336
2337 request->wiphy_idx = WIPHY_IDX_INVALID;
2338 request->alpha2[0] = alpha2[0];
2339 request->alpha2[1] = alpha2[1];
2340 request->initiator = NL80211_REGDOM_SET_BY_USER;
2341 request->user_reg_hint_type = user_reg_hint_type;
2342
2343 /* Allow calling CRDA again */
2344 reg_crda_timeouts = 0;
2345
2346 queue_regulatory_request(request);
2347
2348 return 0;
2349 }
2350
2351 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2352 {
2353 spin_lock(&reg_indoor_lock);
2354
2355 /* It is possible that more than one user space process is trying to
2356 * configure the indoor setting. To handle such cases, clear the indoor
2357 * setting in case that some process does not think that the device
2358 * is operating in an indoor environment. In addition, if a user space
2359 * process indicates that it is controlling the indoor setting, save its
2360 * portid, i.e., make it the owner.
2361 */
2362 reg_is_indoor = is_indoor;
2363 if (reg_is_indoor) {
2364 if (!reg_is_indoor_portid)
2365 reg_is_indoor_portid = portid;
2366 } else {
2367 reg_is_indoor_portid = 0;
2368 }
2369
2370 spin_unlock(&reg_indoor_lock);
2371
2372 if (!is_indoor)
2373 reg_check_channels();
2374
2375 return 0;
2376 }
2377
2378 void regulatory_netlink_notify(u32 portid)
2379 {
2380 spin_lock(&reg_indoor_lock);
2381
2382 if (reg_is_indoor_portid != portid) {
2383 spin_unlock(&reg_indoor_lock);
2384 return;
2385 }
2386
2387 reg_is_indoor = false;
2388 reg_is_indoor_portid = 0;
2389
2390 spin_unlock(&reg_indoor_lock);
2391
2392 reg_check_channels();
2393 }
2394
2395 /* Driver hints */
2396 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2397 {
2398 struct regulatory_request *request;
2399
2400 if (WARN_ON(!alpha2 || !wiphy))
2401 return -EINVAL;
2402
2403 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2404
2405 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2406 if (!request)
2407 return -ENOMEM;
2408
2409 request->wiphy_idx = get_wiphy_idx(wiphy);
2410
2411 request->alpha2[0] = alpha2[0];
2412 request->alpha2[1] = alpha2[1];
2413 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2414
2415 /* Allow calling CRDA again */
2416 reg_crda_timeouts = 0;
2417
2418 queue_regulatory_request(request);
2419
2420 return 0;
2421 }
2422 EXPORT_SYMBOL(regulatory_hint);
2423
2424 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2425 const u8 *country_ie, u8 country_ie_len)
2426 {
2427 char alpha2[2];
2428 enum environment_cap env = ENVIRON_ANY;
2429 struct regulatory_request *request = NULL, *lr;
2430
2431 /* IE len must be evenly divisible by 2 */
2432 if (country_ie_len & 0x01)
2433 return;
2434
2435 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2436 return;
2437
2438 request = kzalloc(sizeof(*request), GFP_KERNEL);
2439 if (!request)
2440 return;
2441
2442 alpha2[0] = country_ie[0];
2443 alpha2[1] = country_ie[1];
2444
2445 if (country_ie[2] == 'I')
2446 env = ENVIRON_INDOOR;
2447 else if (country_ie[2] == 'O')
2448 env = ENVIRON_OUTDOOR;
2449
2450 rcu_read_lock();
2451 lr = get_last_request();
2452
2453 if (unlikely(!lr))
2454 goto out;
2455
2456 /*
2457 * We will run this only upon a successful connection on cfg80211.
2458 * We leave conflict resolution to the workqueue, where can hold
2459 * the RTNL.
2460 */
2461 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2462 lr->wiphy_idx != WIPHY_IDX_INVALID)
2463 goto out;
2464
2465 request->wiphy_idx = get_wiphy_idx(wiphy);
2466 request->alpha2[0] = alpha2[0];
2467 request->alpha2[1] = alpha2[1];
2468 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2469 request->country_ie_env = env;
2470
2471 /* Allow calling CRDA again */
2472 reg_crda_timeouts = 0;
2473
2474 queue_regulatory_request(request);
2475 request = NULL;
2476 out:
2477 kfree(request);
2478 rcu_read_unlock();
2479 }
2480
2481 static void restore_alpha2(char *alpha2, bool reset_user)
2482 {
2483 /* indicates there is no alpha2 to consider for restoration */
2484 alpha2[0] = '9';
2485 alpha2[1] = '7';
2486
2487 /* The user setting has precedence over the module parameter */
2488 if (is_user_regdom_saved()) {
2489 /* Unless we're asked to ignore it and reset it */
2490 if (reset_user) {
2491 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2492 user_alpha2[0] = '9';
2493 user_alpha2[1] = '7';
2494
2495 /*
2496 * If we're ignoring user settings, we still need to
2497 * check the module parameter to ensure we put things
2498 * back as they were for a full restore.
2499 */
2500 if (!is_world_regdom(ieee80211_regdom)) {
2501 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2502 ieee80211_regdom[0], ieee80211_regdom[1]);
2503 alpha2[0] = ieee80211_regdom[0];
2504 alpha2[1] = ieee80211_regdom[1];
2505 }
2506 } else {
2507 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2508 user_alpha2[0], user_alpha2[1]);
2509 alpha2[0] = user_alpha2[0];
2510 alpha2[1] = user_alpha2[1];
2511 }
2512 } else if (!is_world_regdom(ieee80211_regdom)) {
2513 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2514 ieee80211_regdom[0], ieee80211_regdom[1]);
2515 alpha2[0] = ieee80211_regdom[0];
2516 alpha2[1] = ieee80211_regdom[1];
2517 } else
2518 REG_DBG_PRINT("Restoring regulatory settings\n");
2519 }
2520
2521 static void restore_custom_reg_settings(struct wiphy *wiphy)
2522 {
2523 struct ieee80211_supported_band *sband;
2524 enum ieee80211_band band;
2525 struct ieee80211_channel *chan;
2526 int i;
2527
2528 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2529 sband = wiphy->bands[band];
2530 if (!sband)
2531 continue;
2532 for (i = 0; i < sband->n_channels; i++) {
2533 chan = &sband->channels[i];
2534 chan->flags = chan->orig_flags;
2535 chan->max_antenna_gain = chan->orig_mag;
2536 chan->max_power = chan->orig_mpwr;
2537 chan->beacon_found = false;
2538 }
2539 }
2540 }
2541
2542 /*
2543 * Restoring regulatory settings involves ingoring any
2544 * possibly stale country IE information and user regulatory
2545 * settings if so desired, this includes any beacon hints
2546 * learned as we could have traveled outside to another country
2547 * after disconnection. To restore regulatory settings we do
2548 * exactly what we did at bootup:
2549 *
2550 * - send a core regulatory hint
2551 * - send a user regulatory hint if applicable
2552 *
2553 * Device drivers that send a regulatory hint for a specific country
2554 * keep their own regulatory domain on wiphy->regd so that does does
2555 * not need to be remembered.
2556 */
2557 static void restore_regulatory_settings(bool reset_user)
2558 {
2559 char alpha2[2];
2560 char world_alpha2[2];
2561 struct reg_beacon *reg_beacon, *btmp;
2562 LIST_HEAD(tmp_reg_req_list);
2563 struct cfg80211_registered_device *rdev;
2564
2565 ASSERT_RTNL();
2566
2567 /*
2568 * Clear the indoor setting in case that it is not controlled by user
2569 * space, as otherwise there is no guarantee that the device is still
2570 * operating in an indoor environment.
2571 */
2572 spin_lock(&reg_indoor_lock);
2573 if (reg_is_indoor && !reg_is_indoor_portid) {
2574 reg_is_indoor = false;
2575 reg_check_channels();
2576 }
2577 spin_unlock(&reg_indoor_lock);
2578
2579 reset_regdomains(true, &world_regdom);
2580 restore_alpha2(alpha2, reset_user);
2581
2582 /*
2583 * If there's any pending requests we simply
2584 * stash them to a temporary pending queue and
2585 * add then after we've restored regulatory
2586 * settings.
2587 */
2588 spin_lock(&reg_requests_lock);
2589 list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
2590 spin_unlock(&reg_requests_lock);
2591
2592 /* Clear beacon hints */
2593 spin_lock_bh(&reg_pending_beacons_lock);
2594 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2595 list_del(&reg_beacon->list);
2596 kfree(reg_beacon);
2597 }
2598 spin_unlock_bh(&reg_pending_beacons_lock);
2599
2600 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2601 list_del(&reg_beacon->list);
2602 kfree(reg_beacon);
2603 }
2604
2605 /* First restore to the basic regulatory settings */
2606 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2607 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2608
2609 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2610 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2611 continue;
2612 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2613 restore_custom_reg_settings(&rdev->wiphy);
2614 }
2615
2616 regulatory_hint_core(world_alpha2);
2617
2618 /*
2619 * This restores the ieee80211_regdom module parameter
2620 * preference or the last user requested regulatory
2621 * settings, user regulatory settings takes precedence.
2622 */
2623 if (is_an_alpha2(alpha2))
2624 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
2625
2626 spin_lock(&reg_requests_lock);
2627 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2628 spin_unlock(&reg_requests_lock);
2629
2630 REG_DBG_PRINT("Kicking the queue\n");
2631
2632 schedule_work(&reg_work);
2633 }
2634
2635 void regulatory_hint_disconnect(void)
2636 {
2637 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2638 restore_regulatory_settings(false);
2639 }
2640
2641 static bool freq_is_chan_12_13_14(u16 freq)
2642 {
2643 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2644 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2645 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2646 return true;
2647 return false;
2648 }
2649
2650 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2651 {
2652 struct reg_beacon *pending_beacon;
2653
2654 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2655 if (beacon_chan->center_freq ==
2656 pending_beacon->chan.center_freq)
2657 return true;
2658 return false;
2659 }
2660
2661 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2662 struct ieee80211_channel *beacon_chan,
2663 gfp_t gfp)
2664 {
2665 struct reg_beacon *reg_beacon;
2666 bool processing;
2667
2668 if (beacon_chan->beacon_found ||
2669 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2670 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2671 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2672 return 0;
2673
2674 spin_lock_bh(&reg_pending_beacons_lock);
2675 processing = pending_reg_beacon(beacon_chan);
2676 spin_unlock_bh(&reg_pending_beacons_lock);
2677
2678 if (processing)
2679 return 0;
2680
2681 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2682 if (!reg_beacon)
2683 return -ENOMEM;
2684
2685 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2686 beacon_chan->center_freq,
2687 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2688 wiphy_name(wiphy));
2689
2690 memcpy(&reg_beacon->chan, beacon_chan,
2691 sizeof(struct ieee80211_channel));
2692
2693 /*
2694 * Since we can be called from BH or and non-BH context
2695 * we must use spin_lock_bh()
2696 */
2697 spin_lock_bh(&reg_pending_beacons_lock);
2698 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2699 spin_unlock_bh(&reg_pending_beacons_lock);
2700
2701 schedule_work(&reg_work);
2702
2703 return 0;
2704 }
2705
2706 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2707 {
2708 unsigned int i;
2709 const struct ieee80211_reg_rule *reg_rule = NULL;
2710 const struct ieee80211_freq_range *freq_range = NULL;
2711 const struct ieee80211_power_rule *power_rule = NULL;
2712 char bw[32], cac_time[32];
2713
2714 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2715
2716 for (i = 0; i < rd->n_reg_rules; i++) {
2717 reg_rule = &rd->reg_rules[i];
2718 freq_range = &reg_rule->freq_range;
2719 power_rule = &reg_rule->power_rule;
2720
2721 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2722 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2723 freq_range->max_bandwidth_khz,
2724 reg_get_max_bandwidth(rd, reg_rule));
2725 else
2726 snprintf(bw, sizeof(bw), "%d KHz",
2727 freq_range->max_bandwidth_khz);
2728
2729 if (reg_rule->flags & NL80211_RRF_DFS)
2730 scnprintf(cac_time, sizeof(cac_time), "%u s",
2731 reg_rule->dfs_cac_ms/1000);
2732 else
2733 scnprintf(cac_time, sizeof(cac_time), "N/A");
2734
2735
2736 /*
2737 * There may not be documentation for max antenna gain
2738 * in certain regions
2739 */
2740 if (power_rule->max_antenna_gain)
2741 pr_info(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2742 freq_range->start_freq_khz,
2743 freq_range->end_freq_khz,
2744 bw,
2745 power_rule->max_antenna_gain,
2746 power_rule->max_eirp,
2747 cac_time);
2748 else
2749 pr_info(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2750 freq_range->start_freq_khz,
2751 freq_range->end_freq_khz,
2752 bw,
2753 power_rule->max_eirp,
2754 cac_time);
2755 }
2756 }
2757
2758 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2759 {
2760 switch (dfs_region) {
2761 case NL80211_DFS_UNSET:
2762 case NL80211_DFS_FCC:
2763 case NL80211_DFS_ETSI:
2764 case NL80211_DFS_JP:
2765 return true;
2766 default:
2767 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2768 dfs_region);
2769 return false;
2770 }
2771 }
2772
2773 static void print_regdomain(const struct ieee80211_regdomain *rd)
2774 {
2775 struct regulatory_request *lr = get_last_request();
2776
2777 if (is_intersected_alpha2(rd->alpha2)) {
2778 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2779 struct cfg80211_registered_device *rdev;
2780 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2781 if (rdev) {
2782 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2783 rdev->country_ie_alpha2[0],
2784 rdev->country_ie_alpha2[1]);
2785 } else
2786 pr_info("Current regulatory domain intersected:\n");
2787 } else
2788 pr_info("Current regulatory domain intersected:\n");
2789 } else if (is_world_regdom(rd->alpha2)) {
2790 pr_info("World regulatory domain updated:\n");
2791 } else {
2792 if (is_unknown_alpha2(rd->alpha2))
2793 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2794 else {
2795 if (reg_request_cell_base(lr))
2796 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2797 rd->alpha2[0], rd->alpha2[1]);
2798 else
2799 pr_info("Regulatory domain changed to country: %c%c\n",
2800 rd->alpha2[0], rd->alpha2[1]);
2801 }
2802 }
2803
2804 pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2805 print_rd_rules(rd);
2806 }
2807
2808 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2809 {
2810 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2811 print_rd_rules(rd);
2812 }
2813
2814 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2815 {
2816 if (!is_world_regdom(rd->alpha2))
2817 return -EINVAL;
2818 update_world_regdomain(rd);
2819 return 0;
2820 }
2821
2822 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2823 struct regulatory_request *user_request)
2824 {
2825 const struct ieee80211_regdomain *intersected_rd = NULL;
2826
2827 if (!regdom_changes(rd->alpha2))
2828 return -EALREADY;
2829
2830 if (!is_valid_rd(rd)) {
2831 pr_err("Invalid regulatory domain detected:\n");
2832 print_regdomain_info(rd);
2833 return -EINVAL;
2834 }
2835
2836 if (!user_request->intersect) {
2837 reset_regdomains(false, rd);
2838 return 0;
2839 }
2840
2841 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2842 if (!intersected_rd)
2843 return -EINVAL;
2844
2845 kfree(rd);
2846 rd = NULL;
2847 reset_regdomains(false, intersected_rd);
2848
2849 return 0;
2850 }
2851
2852 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2853 struct regulatory_request *driver_request)
2854 {
2855 const struct ieee80211_regdomain *regd;
2856 const struct ieee80211_regdomain *intersected_rd = NULL;
2857 const struct ieee80211_regdomain *tmp;
2858 struct wiphy *request_wiphy;
2859
2860 if (is_world_regdom(rd->alpha2))
2861 return -EINVAL;
2862
2863 if (!regdom_changes(rd->alpha2))
2864 return -EALREADY;
2865
2866 if (!is_valid_rd(rd)) {
2867 pr_err("Invalid regulatory domain detected:\n");
2868 print_regdomain_info(rd);
2869 return -EINVAL;
2870 }
2871
2872 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2873 if (!request_wiphy) {
2874 queue_delayed_work(system_power_efficient_wq,
2875 &reg_timeout, 0);
2876 return -ENODEV;
2877 }
2878
2879 if (!driver_request->intersect) {
2880 if (request_wiphy->regd)
2881 return -EALREADY;
2882
2883 regd = reg_copy_regd(rd);
2884 if (IS_ERR(regd))
2885 return PTR_ERR(regd);
2886
2887 rcu_assign_pointer(request_wiphy->regd, regd);
2888 reset_regdomains(false, rd);
2889 return 0;
2890 }
2891
2892 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2893 if (!intersected_rd)
2894 return -EINVAL;
2895
2896 /*
2897 * We can trash what CRDA provided now.
2898 * However if a driver requested this specific regulatory
2899 * domain we keep it for its private use
2900 */
2901 tmp = get_wiphy_regdom(request_wiphy);
2902 rcu_assign_pointer(request_wiphy->regd, rd);
2903 rcu_free_regdom(tmp);
2904
2905 rd = NULL;
2906
2907 reset_regdomains(false, intersected_rd);
2908
2909 return 0;
2910 }
2911
2912 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2913 struct regulatory_request *country_ie_request)
2914 {
2915 struct wiphy *request_wiphy;
2916
2917 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2918 !is_unknown_alpha2(rd->alpha2))
2919 return -EINVAL;
2920
2921 /*
2922 * Lets only bother proceeding on the same alpha2 if the current
2923 * rd is non static (it means CRDA was present and was used last)
2924 * and the pending request came in from a country IE
2925 */
2926
2927 if (!is_valid_rd(rd)) {
2928 pr_err("Invalid regulatory domain detected:\n");
2929 print_regdomain_info(rd);
2930 return -EINVAL;
2931 }
2932
2933 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2934 if (!request_wiphy) {
2935 queue_delayed_work(system_power_efficient_wq,
2936 &reg_timeout, 0);
2937 return -ENODEV;
2938 }
2939
2940 if (country_ie_request->intersect)
2941 return -EINVAL;
2942
2943 reset_regdomains(false, rd);
2944 return 0;
2945 }
2946
2947 /*
2948 * Use this call to set the current regulatory domain. Conflicts with
2949 * multiple drivers can be ironed out later. Caller must've already
2950 * kmalloc'd the rd structure.
2951 */
2952 int set_regdom(const struct ieee80211_regdomain *rd,
2953 enum ieee80211_regd_source regd_src)
2954 {
2955 struct regulatory_request *lr;
2956 bool user_reset = false;
2957 int r;
2958
2959 if (!reg_is_valid_request(rd->alpha2)) {
2960 kfree(rd);
2961 return -EINVAL;
2962 }
2963
2964 if (regd_src == REGD_SOURCE_CRDA)
2965 reg_crda_timeouts = 0;
2966
2967 lr = get_last_request();
2968
2969 /* Note that this doesn't update the wiphys, this is done below */
2970 switch (lr->initiator) {
2971 case NL80211_REGDOM_SET_BY_CORE:
2972 r = reg_set_rd_core(rd);
2973 break;
2974 case NL80211_REGDOM_SET_BY_USER:
2975 r = reg_set_rd_user(rd, lr);
2976 user_reset = true;
2977 break;
2978 case NL80211_REGDOM_SET_BY_DRIVER:
2979 r = reg_set_rd_driver(rd, lr);
2980 break;
2981 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2982 r = reg_set_rd_country_ie(rd, lr);
2983 break;
2984 default:
2985 WARN(1, "invalid initiator %d\n", lr->initiator);
2986 return -EINVAL;
2987 }
2988
2989 if (r) {
2990 switch (r) {
2991 case -EALREADY:
2992 reg_set_request_processed();
2993 break;
2994 default:
2995 /* Back to world regulatory in case of errors */
2996 restore_regulatory_settings(user_reset);
2997 }
2998
2999 kfree(rd);
3000 return r;
3001 }
3002
3003 /* This would make this whole thing pointless */
3004 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3005 return -EINVAL;
3006
3007 /* update all wiphys now with the new established regulatory domain */
3008 update_all_wiphy_regulatory(lr->initiator);
3009
3010 print_regdomain(get_cfg80211_regdom());
3011
3012 nl80211_send_reg_change_event(lr);
3013
3014 reg_set_request_processed();
3015
3016 return 0;
3017 }
3018
3019 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3020 struct ieee80211_regdomain *rd)
3021 {
3022 const struct ieee80211_regdomain *regd;
3023 const struct ieee80211_regdomain *prev_regd;
3024 struct cfg80211_registered_device *rdev;
3025
3026 if (WARN_ON(!wiphy || !rd))
3027 return -EINVAL;
3028
3029 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3030 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3031 return -EPERM;
3032
3033 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3034 print_regdomain_info(rd);
3035 return -EINVAL;
3036 }
3037
3038 regd = reg_copy_regd(rd);
3039 if (IS_ERR(regd))
3040 return PTR_ERR(regd);
3041
3042 rdev = wiphy_to_rdev(wiphy);
3043
3044 spin_lock(&reg_requests_lock);
3045 prev_regd = rdev->requested_regd;
3046 rdev->requested_regd = regd;
3047 spin_unlock(&reg_requests_lock);
3048
3049 kfree(prev_regd);
3050 return 0;
3051 }
3052
3053 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3054 struct ieee80211_regdomain *rd)
3055 {
3056 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3057
3058 if (ret)
3059 return ret;
3060
3061 schedule_work(&reg_work);
3062 return 0;
3063 }
3064 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3065
3066 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3067 struct ieee80211_regdomain *rd)
3068 {
3069 int ret;
3070
3071 ASSERT_RTNL();
3072
3073 ret = __regulatory_set_wiphy_regd(wiphy, rd);
3074 if (ret)
3075 return ret;
3076
3077 /* process the request immediately */
3078 reg_process_self_managed_hints();
3079 return 0;
3080 }
3081 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3082
3083 void wiphy_regulatory_register(struct wiphy *wiphy)
3084 {
3085 struct regulatory_request *lr;
3086
3087 /* self-managed devices ignore external hints */
3088 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3089 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3090 REGULATORY_COUNTRY_IE_IGNORE;
3091
3092 if (!reg_dev_ignore_cell_hint(wiphy))
3093 reg_num_devs_support_basehint++;
3094
3095 lr = get_last_request();
3096 wiphy_update_regulatory(wiphy, lr->initiator);
3097 }
3098
3099 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3100 {
3101 struct wiphy *request_wiphy = NULL;
3102 struct regulatory_request *lr;
3103
3104 lr = get_last_request();
3105
3106 if (!reg_dev_ignore_cell_hint(wiphy))
3107 reg_num_devs_support_basehint--;
3108
3109 rcu_free_regdom(get_wiphy_regdom(wiphy));
3110 RCU_INIT_POINTER(wiphy->regd, NULL);
3111
3112 if (lr)
3113 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3114
3115 if (!request_wiphy || request_wiphy != wiphy)
3116 return;
3117
3118 lr->wiphy_idx = WIPHY_IDX_INVALID;
3119 lr->country_ie_env = ENVIRON_ANY;
3120 }
3121
3122 static void reg_timeout_work(struct work_struct *work)
3123 {
3124 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
3125 rtnl_lock();
3126 reg_crda_timeouts++;
3127 restore_regulatory_settings(true);
3128 rtnl_unlock();
3129 }
3130
3131 /*
3132 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3133 * UNII band definitions
3134 */
3135 int cfg80211_get_unii(int freq)
3136 {
3137 /* UNII-1 */
3138 if (freq >= 5150 && freq <= 5250)
3139 return 0;
3140
3141 /* UNII-2A */
3142 if (freq > 5250 && freq <= 5350)
3143 return 1;
3144
3145 /* UNII-2B */
3146 if (freq > 5350 && freq <= 5470)
3147 return 2;
3148
3149 /* UNII-2C */
3150 if (freq > 5470 && freq <= 5725)
3151 return 3;
3152
3153 /* UNII-3 */
3154 if (freq > 5725 && freq <= 5825)
3155 return 4;
3156
3157 return -EINVAL;
3158 }
3159
3160 bool regulatory_indoor_allowed(void)
3161 {
3162 return reg_is_indoor;
3163 }
3164
3165 int __init regulatory_init(void)
3166 {
3167 int err = 0;
3168
3169 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3170 if (IS_ERR(reg_pdev))
3171 return PTR_ERR(reg_pdev);
3172
3173 spin_lock_init(&reg_requests_lock);
3174 spin_lock_init(&reg_pending_beacons_lock);
3175 spin_lock_init(&reg_indoor_lock);
3176
3177 reg_regdb_size_check();
3178
3179 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3180
3181 user_alpha2[0] = '9';
3182 user_alpha2[1] = '7';
3183
3184 /* We always try to get an update for the static regdomain */
3185 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3186 if (err) {
3187 if (err == -ENOMEM)
3188 return err;
3189 /*
3190 * N.B. kobject_uevent_env() can fail mainly for when we're out
3191 * memory which is handled and propagated appropriately above
3192 * but it can also fail during a netlink_broadcast() or during
3193 * early boot for call_usermodehelper(). For now treat these
3194 * errors as non-fatal.
3195 */
3196 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3197 }
3198
3199 /*
3200 * Finally, if the user set the module parameter treat it
3201 * as a user hint.
3202 */
3203 if (!is_world_regdom(ieee80211_regdom))
3204 regulatory_hint_user(ieee80211_regdom,
3205 NL80211_USER_REG_HINT_USER);
3206
3207 return 0;
3208 }
3209
3210 void regulatory_exit(void)
3211 {
3212 struct regulatory_request *reg_request, *tmp;
3213 struct reg_beacon *reg_beacon, *btmp;
3214
3215 cancel_work_sync(&reg_work);
3216 cancel_delayed_work_sync(&reg_timeout);
3217 cancel_delayed_work_sync(&reg_check_chans);
3218
3219 /* Lock to suppress warnings */
3220 rtnl_lock();
3221 reset_regdomains(true, NULL);
3222 rtnl_unlock();
3223
3224 dev_set_uevent_suppress(&reg_pdev->dev, true);
3225
3226 platform_device_unregister(reg_pdev);
3227
3228 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3229 list_del(&reg_beacon->list);
3230 kfree(reg_beacon);
3231 }
3232
3233 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3234 list_del(&reg_beacon->list);
3235 kfree(reg_beacon);
3236 }
3237
3238 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3239 list_del(&reg_request->list);
3240 kfree(reg_request);
3241 }
3242 }