]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/wireless/reg.c
Merge tag 'edac/v4.3-1' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[mirror_ubuntu-zesty-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 *
8 * Permission to use, copy, modify, and/or distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21
22 /**
23 * DOC: Wireless regulatory infrastructure
24 *
25 * The usual implementation is for a driver to read a device EEPROM to
26 * determine which regulatory domain it should be operating under, then
27 * looking up the allowable channels in a driver-local table and finally
28 * registering those channels in the wiphy structure.
29 *
30 * Another set of compliance enforcement is for drivers to use their
31 * own compliance limits which can be stored on the EEPROM. The host
32 * driver or firmware may ensure these are used.
33 *
34 * In addition to all this we provide an extra layer of regulatory
35 * conformance. For drivers which do not have any regulatory
36 * information CRDA provides the complete regulatory solution.
37 * For others it provides a community effort on further restrictions
38 * to enhance compliance.
39 *
40 * Note: When number of rules --> infinity we will not be able to
41 * index on alpha2 any more, instead we'll probably have to
42 * rely on some SHA1 checksum of the regdomain for example.
43 *
44 */
45
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "rdev-ops.h"
60 #include "regdb.h"
61 #include "nl80211.h"
62
63 #ifdef CONFIG_CFG80211_REG_DEBUG
64 #define REG_DBG_PRINT(format, args...) \
65 printk(KERN_DEBUG pr_fmt(format), ##args)
66 #else
67 #define REG_DBG_PRINT(args...)
68 #endif
69
70 /*
71 * Grace period we give before making sure all current interfaces reside on
72 * channels allowed by the current regulatory domain.
73 */
74 #define REG_ENFORCE_GRACE_MS 60000
75
76 /**
77 * enum reg_request_treatment - regulatory request treatment
78 *
79 * @REG_REQ_OK: continue processing the regulatory request
80 * @REG_REQ_IGNORE: ignore the regulatory request
81 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
82 * be intersected with the current one.
83 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
84 * regulatory settings, and no further processing is required.
85 */
86 enum reg_request_treatment {
87 REG_REQ_OK,
88 REG_REQ_IGNORE,
89 REG_REQ_INTERSECT,
90 REG_REQ_ALREADY_SET,
91 };
92
93 static struct regulatory_request core_request_world = {
94 .initiator = NL80211_REGDOM_SET_BY_CORE,
95 .alpha2[0] = '0',
96 .alpha2[1] = '0',
97 .intersect = false,
98 .processed = true,
99 .country_ie_env = ENVIRON_ANY,
100 };
101
102 /*
103 * Receipt of information from last regulatory request,
104 * protected by RTNL (and can be accessed with RCU protection)
105 */
106 static struct regulatory_request __rcu *last_request =
107 (void __force __rcu *)&core_request_world;
108
109 /* To trigger userspace events */
110 static struct platform_device *reg_pdev;
111
112 /*
113 * Central wireless core regulatory domains, we only need two,
114 * the current one and a world regulatory domain in case we have no
115 * information to give us an alpha2.
116 * (protected by RTNL, can be read under RCU)
117 */
118 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
119
120 /*
121 * Number of devices that registered to the core
122 * that support cellular base station regulatory hints
123 * (protected by RTNL)
124 */
125 static int reg_num_devs_support_basehint;
126
127 /*
128 * State variable indicating if the platform on which the devices
129 * are attached is operating in an indoor environment. The state variable
130 * is relevant for all registered devices.
131 */
132 static bool reg_is_indoor;
133 static spinlock_t reg_indoor_lock;
134
135 /* Used to track the userspace process controlling the indoor setting */
136 static u32 reg_is_indoor_portid;
137
138 /* Max number of consecutive attempts to communicate with CRDA */
139 #define REG_MAX_CRDA_TIMEOUTS 10
140
141 static u32 reg_crda_timeouts;
142
143 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
144 {
145 return rtnl_dereference(cfg80211_regdomain);
146 }
147
148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149 {
150 return rtnl_dereference(wiphy->regd);
151 }
152
153 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
154 {
155 switch (dfs_region) {
156 case NL80211_DFS_UNSET:
157 return "unset";
158 case NL80211_DFS_FCC:
159 return "FCC";
160 case NL80211_DFS_ETSI:
161 return "ETSI";
162 case NL80211_DFS_JP:
163 return "JP";
164 }
165 return "Unknown";
166 }
167
168 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
169 {
170 const struct ieee80211_regdomain *regd = NULL;
171 const struct ieee80211_regdomain *wiphy_regd = NULL;
172
173 regd = get_cfg80211_regdom();
174 if (!wiphy)
175 goto out;
176
177 wiphy_regd = get_wiphy_regdom(wiphy);
178 if (!wiphy_regd)
179 goto out;
180
181 if (wiphy_regd->dfs_region == regd->dfs_region)
182 goto out;
183
184 REG_DBG_PRINT("%s: device specific dfs_region "
185 "(%s) disagrees with cfg80211's "
186 "central dfs_region (%s)\n",
187 dev_name(&wiphy->dev),
188 reg_dfs_region_str(wiphy_regd->dfs_region),
189 reg_dfs_region_str(regd->dfs_region));
190
191 out:
192 return regd->dfs_region;
193 }
194
195 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
196 {
197 if (!r)
198 return;
199 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
200 }
201
202 static struct regulatory_request *get_last_request(void)
203 {
204 return rcu_dereference_rtnl(last_request);
205 }
206
207 /* Used to queue up regulatory hints */
208 static LIST_HEAD(reg_requests_list);
209 static spinlock_t reg_requests_lock;
210
211 /* Used to queue up beacon hints for review */
212 static LIST_HEAD(reg_pending_beacons);
213 static spinlock_t reg_pending_beacons_lock;
214
215 /* Used to keep track of processed beacon hints */
216 static LIST_HEAD(reg_beacon_list);
217
218 struct reg_beacon {
219 struct list_head list;
220 struct ieee80211_channel chan;
221 };
222
223 static void reg_check_chans_work(struct work_struct *work);
224 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
225
226 static void reg_todo(struct work_struct *work);
227 static DECLARE_WORK(reg_work, reg_todo);
228
229 static void reg_timeout_work(struct work_struct *work);
230 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
231
232 /* We keep a static world regulatory domain in case of the absence of CRDA */
233 static const struct ieee80211_regdomain world_regdom = {
234 .n_reg_rules = 8,
235 .alpha2 = "00",
236 .reg_rules = {
237 /* IEEE 802.11b/g, channels 1..11 */
238 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
239 /* IEEE 802.11b/g, channels 12..13. */
240 REG_RULE(2467-10, 2472+10, 40, 6, 20,
241 NL80211_RRF_NO_IR),
242 /* IEEE 802.11 channel 14 - Only JP enables
243 * this and for 802.11b only */
244 REG_RULE(2484-10, 2484+10, 20, 6, 20,
245 NL80211_RRF_NO_IR |
246 NL80211_RRF_NO_OFDM),
247 /* IEEE 802.11a, channel 36..48 */
248 REG_RULE(5180-10, 5240+10, 160, 6, 20,
249 NL80211_RRF_NO_IR),
250
251 /* IEEE 802.11a, channel 52..64 - DFS required */
252 REG_RULE(5260-10, 5320+10, 160, 6, 20,
253 NL80211_RRF_NO_IR |
254 NL80211_RRF_DFS),
255
256 /* IEEE 802.11a, channel 100..144 - DFS required */
257 REG_RULE(5500-10, 5720+10, 160, 6, 20,
258 NL80211_RRF_NO_IR |
259 NL80211_RRF_DFS),
260
261 /* IEEE 802.11a, channel 149..165 */
262 REG_RULE(5745-10, 5825+10, 80, 6, 20,
263 NL80211_RRF_NO_IR),
264
265 /* IEEE 802.11ad (60gHz), channels 1..3 */
266 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
267 }
268 };
269
270 /* protected by RTNL */
271 static const struct ieee80211_regdomain *cfg80211_world_regdom =
272 &world_regdom;
273
274 static char *ieee80211_regdom = "00";
275 static char user_alpha2[2];
276
277 module_param(ieee80211_regdom, charp, 0444);
278 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
279
280 static void reg_free_request(struct regulatory_request *request)
281 {
282 if (request != get_last_request())
283 kfree(request);
284 }
285
286 static void reg_free_last_request(void)
287 {
288 struct regulatory_request *lr = get_last_request();
289
290 if (lr != &core_request_world && lr)
291 kfree_rcu(lr, rcu_head);
292 }
293
294 static void reg_update_last_request(struct regulatory_request *request)
295 {
296 struct regulatory_request *lr;
297
298 lr = get_last_request();
299 if (lr == request)
300 return;
301
302 reg_free_last_request();
303 rcu_assign_pointer(last_request, request);
304 }
305
306 static void reset_regdomains(bool full_reset,
307 const struct ieee80211_regdomain *new_regdom)
308 {
309 const struct ieee80211_regdomain *r;
310
311 ASSERT_RTNL();
312
313 r = get_cfg80211_regdom();
314
315 /* avoid freeing static information or freeing something twice */
316 if (r == cfg80211_world_regdom)
317 r = NULL;
318 if (cfg80211_world_regdom == &world_regdom)
319 cfg80211_world_regdom = NULL;
320 if (r == &world_regdom)
321 r = NULL;
322
323 rcu_free_regdom(r);
324 rcu_free_regdom(cfg80211_world_regdom);
325
326 cfg80211_world_regdom = &world_regdom;
327 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
328
329 if (!full_reset)
330 return;
331
332 reg_update_last_request(&core_request_world);
333 }
334
335 /*
336 * Dynamic world regulatory domain requested by the wireless
337 * core upon initialization
338 */
339 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
340 {
341 struct regulatory_request *lr;
342
343 lr = get_last_request();
344
345 WARN_ON(!lr);
346
347 reset_regdomains(false, rd);
348
349 cfg80211_world_regdom = rd;
350 }
351
352 bool is_world_regdom(const char *alpha2)
353 {
354 if (!alpha2)
355 return false;
356 return alpha2[0] == '0' && alpha2[1] == '0';
357 }
358
359 static bool is_alpha2_set(const char *alpha2)
360 {
361 if (!alpha2)
362 return false;
363 return alpha2[0] && alpha2[1];
364 }
365
366 static bool is_unknown_alpha2(const char *alpha2)
367 {
368 if (!alpha2)
369 return false;
370 /*
371 * Special case where regulatory domain was built by driver
372 * but a specific alpha2 cannot be determined
373 */
374 return alpha2[0] == '9' && alpha2[1] == '9';
375 }
376
377 static bool is_intersected_alpha2(const char *alpha2)
378 {
379 if (!alpha2)
380 return false;
381 /*
382 * Special case where regulatory domain is the
383 * result of an intersection between two regulatory domain
384 * structures
385 */
386 return alpha2[0] == '9' && alpha2[1] == '8';
387 }
388
389 static bool is_an_alpha2(const char *alpha2)
390 {
391 if (!alpha2)
392 return false;
393 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
394 }
395
396 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
397 {
398 if (!alpha2_x || !alpha2_y)
399 return false;
400 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
401 }
402
403 static bool regdom_changes(const char *alpha2)
404 {
405 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
406
407 if (!r)
408 return true;
409 return !alpha2_equal(r->alpha2, alpha2);
410 }
411
412 /*
413 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
414 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
415 * has ever been issued.
416 */
417 static bool is_user_regdom_saved(void)
418 {
419 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
420 return false;
421
422 /* This would indicate a mistake on the design */
423 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
424 "Unexpected user alpha2: %c%c\n",
425 user_alpha2[0], user_alpha2[1]))
426 return false;
427
428 return true;
429 }
430
431 static const struct ieee80211_regdomain *
432 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
433 {
434 struct ieee80211_regdomain *regd;
435 int size_of_regd;
436 unsigned int i;
437
438 size_of_regd =
439 sizeof(struct ieee80211_regdomain) +
440 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
441
442 regd = kzalloc(size_of_regd, GFP_KERNEL);
443 if (!regd)
444 return ERR_PTR(-ENOMEM);
445
446 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
447
448 for (i = 0; i < src_regd->n_reg_rules; i++)
449 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
450 sizeof(struct ieee80211_reg_rule));
451
452 return regd;
453 }
454
455 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
456 struct reg_regdb_search_request {
457 char alpha2[2];
458 struct list_head list;
459 };
460
461 static LIST_HEAD(reg_regdb_search_list);
462 static DEFINE_MUTEX(reg_regdb_search_mutex);
463
464 static void reg_regdb_search(struct work_struct *work)
465 {
466 struct reg_regdb_search_request *request;
467 const struct ieee80211_regdomain *curdom, *regdom = NULL;
468 int i;
469
470 rtnl_lock();
471
472 mutex_lock(&reg_regdb_search_mutex);
473 while (!list_empty(&reg_regdb_search_list)) {
474 request = list_first_entry(&reg_regdb_search_list,
475 struct reg_regdb_search_request,
476 list);
477 list_del(&request->list);
478
479 for (i = 0; i < reg_regdb_size; i++) {
480 curdom = reg_regdb[i];
481
482 if (alpha2_equal(request->alpha2, curdom->alpha2)) {
483 regdom = reg_copy_regd(curdom);
484 break;
485 }
486 }
487
488 kfree(request);
489 }
490 mutex_unlock(&reg_regdb_search_mutex);
491
492 if (!IS_ERR_OR_NULL(regdom))
493 set_regdom(regdom, REGD_SOURCE_INTERNAL_DB);
494
495 rtnl_unlock();
496 }
497
498 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
499
500 static void reg_regdb_query(const char *alpha2)
501 {
502 struct reg_regdb_search_request *request;
503
504 if (!alpha2)
505 return;
506
507 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
508 if (!request)
509 return;
510
511 memcpy(request->alpha2, alpha2, 2);
512
513 mutex_lock(&reg_regdb_search_mutex);
514 list_add_tail(&request->list, &reg_regdb_search_list);
515 mutex_unlock(&reg_regdb_search_mutex);
516
517 schedule_work(&reg_regdb_work);
518 }
519
520 /* Feel free to add any other sanity checks here */
521 static void reg_regdb_size_check(void)
522 {
523 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
524 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
525 }
526 #else
527 static inline void reg_regdb_size_check(void) {}
528 static inline void reg_regdb_query(const char *alpha2) {}
529 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
530
531 /*
532 * This lets us keep regulatory code which is updated on a regulatory
533 * basis in userspace.
534 */
535 static int call_crda(const char *alpha2)
536 {
537 char country[12];
538 char *env[] = { country, NULL };
539
540 snprintf(country, sizeof(country), "COUNTRY=%c%c",
541 alpha2[0], alpha2[1]);
542
543 /* query internal regulatory database (if it exists) */
544 reg_regdb_query(alpha2);
545
546 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
547 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
548 return -EINVAL;
549 }
550
551 if (!is_world_regdom((char *) alpha2))
552 pr_debug("Calling CRDA for country: %c%c\n",
553 alpha2[0], alpha2[1]);
554 else
555 pr_debug("Calling CRDA to update world regulatory domain\n");
556
557 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
558 }
559
560 static enum reg_request_treatment
561 reg_call_crda(struct regulatory_request *request)
562 {
563 if (call_crda(request->alpha2))
564 return REG_REQ_IGNORE;
565
566 queue_delayed_work(system_power_efficient_wq,
567 &reg_timeout, msecs_to_jiffies(3142));
568 return REG_REQ_OK;
569 }
570
571 bool reg_is_valid_request(const char *alpha2)
572 {
573 struct regulatory_request *lr = get_last_request();
574
575 if (!lr || lr->processed)
576 return false;
577
578 return alpha2_equal(lr->alpha2, alpha2);
579 }
580
581 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
582 {
583 struct regulatory_request *lr = get_last_request();
584
585 /*
586 * Follow the driver's regulatory domain, if present, unless a country
587 * IE has been processed or a user wants to help complaince further
588 */
589 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
590 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
591 wiphy->regd)
592 return get_wiphy_regdom(wiphy);
593
594 return get_cfg80211_regdom();
595 }
596
597 static unsigned int
598 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
599 const struct ieee80211_reg_rule *rule)
600 {
601 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
602 const struct ieee80211_freq_range *freq_range_tmp;
603 const struct ieee80211_reg_rule *tmp;
604 u32 start_freq, end_freq, idx, no;
605
606 for (idx = 0; idx < rd->n_reg_rules; idx++)
607 if (rule == &rd->reg_rules[idx])
608 break;
609
610 if (idx == rd->n_reg_rules)
611 return 0;
612
613 /* get start_freq */
614 no = idx;
615
616 while (no) {
617 tmp = &rd->reg_rules[--no];
618 freq_range_tmp = &tmp->freq_range;
619
620 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
621 break;
622
623 freq_range = freq_range_tmp;
624 }
625
626 start_freq = freq_range->start_freq_khz;
627
628 /* get end_freq */
629 freq_range = &rule->freq_range;
630 no = idx;
631
632 while (no < rd->n_reg_rules - 1) {
633 tmp = &rd->reg_rules[++no];
634 freq_range_tmp = &tmp->freq_range;
635
636 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
637 break;
638
639 freq_range = freq_range_tmp;
640 }
641
642 end_freq = freq_range->end_freq_khz;
643
644 return end_freq - start_freq;
645 }
646
647 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
648 const struct ieee80211_reg_rule *rule)
649 {
650 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
651
652 if (rule->flags & NL80211_RRF_NO_160MHZ)
653 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
654 if (rule->flags & NL80211_RRF_NO_80MHZ)
655 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
656
657 /*
658 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
659 * are not allowed.
660 */
661 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
662 rule->flags & NL80211_RRF_NO_HT40PLUS)
663 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
664
665 return bw;
666 }
667
668 /* Sanity check on a regulatory rule */
669 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
670 {
671 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
672 u32 freq_diff;
673
674 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
675 return false;
676
677 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
678 return false;
679
680 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
681
682 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
683 freq_range->max_bandwidth_khz > freq_diff)
684 return false;
685
686 return true;
687 }
688
689 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
690 {
691 const struct ieee80211_reg_rule *reg_rule = NULL;
692 unsigned int i;
693
694 if (!rd->n_reg_rules)
695 return false;
696
697 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
698 return false;
699
700 for (i = 0; i < rd->n_reg_rules; i++) {
701 reg_rule = &rd->reg_rules[i];
702 if (!is_valid_reg_rule(reg_rule))
703 return false;
704 }
705
706 return true;
707 }
708
709 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
710 u32 center_freq_khz, u32 bw_khz)
711 {
712 u32 start_freq_khz, end_freq_khz;
713
714 start_freq_khz = center_freq_khz - (bw_khz/2);
715 end_freq_khz = center_freq_khz + (bw_khz/2);
716
717 if (start_freq_khz >= freq_range->start_freq_khz &&
718 end_freq_khz <= freq_range->end_freq_khz)
719 return true;
720
721 return false;
722 }
723
724 /**
725 * freq_in_rule_band - tells us if a frequency is in a frequency band
726 * @freq_range: frequency rule we want to query
727 * @freq_khz: frequency we are inquiring about
728 *
729 * This lets us know if a specific frequency rule is or is not relevant to
730 * a specific frequency's band. Bands are device specific and artificial
731 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
732 * however it is safe for now to assume that a frequency rule should not be
733 * part of a frequency's band if the start freq or end freq are off by more
734 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
735 * 60 GHz band.
736 * This resolution can be lowered and should be considered as we add
737 * regulatory rule support for other "bands".
738 **/
739 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
740 u32 freq_khz)
741 {
742 #define ONE_GHZ_IN_KHZ 1000000
743 /*
744 * From 802.11ad: directional multi-gigabit (DMG):
745 * Pertaining to operation in a frequency band containing a channel
746 * with the Channel starting frequency above 45 GHz.
747 */
748 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
749 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
750 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
751 return true;
752 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
753 return true;
754 return false;
755 #undef ONE_GHZ_IN_KHZ
756 }
757
758 /*
759 * Later on we can perhaps use the more restrictive DFS
760 * region but we don't have information for that yet so
761 * for now simply disallow conflicts.
762 */
763 static enum nl80211_dfs_regions
764 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
765 const enum nl80211_dfs_regions dfs_region2)
766 {
767 if (dfs_region1 != dfs_region2)
768 return NL80211_DFS_UNSET;
769 return dfs_region1;
770 }
771
772 /*
773 * Helper for regdom_intersect(), this does the real
774 * mathematical intersection fun
775 */
776 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
777 const struct ieee80211_regdomain *rd2,
778 const struct ieee80211_reg_rule *rule1,
779 const struct ieee80211_reg_rule *rule2,
780 struct ieee80211_reg_rule *intersected_rule)
781 {
782 const struct ieee80211_freq_range *freq_range1, *freq_range2;
783 struct ieee80211_freq_range *freq_range;
784 const struct ieee80211_power_rule *power_rule1, *power_rule2;
785 struct ieee80211_power_rule *power_rule;
786 u32 freq_diff, max_bandwidth1, max_bandwidth2;
787
788 freq_range1 = &rule1->freq_range;
789 freq_range2 = &rule2->freq_range;
790 freq_range = &intersected_rule->freq_range;
791
792 power_rule1 = &rule1->power_rule;
793 power_rule2 = &rule2->power_rule;
794 power_rule = &intersected_rule->power_rule;
795
796 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
797 freq_range2->start_freq_khz);
798 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
799 freq_range2->end_freq_khz);
800
801 max_bandwidth1 = freq_range1->max_bandwidth_khz;
802 max_bandwidth2 = freq_range2->max_bandwidth_khz;
803
804 if (rule1->flags & NL80211_RRF_AUTO_BW)
805 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
806 if (rule2->flags & NL80211_RRF_AUTO_BW)
807 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
808
809 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
810
811 intersected_rule->flags = rule1->flags | rule2->flags;
812
813 /*
814 * In case NL80211_RRF_AUTO_BW requested for both rules
815 * set AUTO_BW in intersected rule also. Next we will
816 * calculate BW correctly in handle_channel function.
817 * In other case remove AUTO_BW flag while we calculate
818 * maximum bandwidth correctly and auto calculation is
819 * not required.
820 */
821 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
822 (rule2->flags & NL80211_RRF_AUTO_BW))
823 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
824 else
825 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
826
827 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
828 if (freq_range->max_bandwidth_khz > freq_diff)
829 freq_range->max_bandwidth_khz = freq_diff;
830
831 power_rule->max_eirp = min(power_rule1->max_eirp,
832 power_rule2->max_eirp);
833 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
834 power_rule2->max_antenna_gain);
835
836 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
837 rule2->dfs_cac_ms);
838
839 if (!is_valid_reg_rule(intersected_rule))
840 return -EINVAL;
841
842 return 0;
843 }
844
845 /* check whether old rule contains new rule */
846 static bool rule_contains(struct ieee80211_reg_rule *r1,
847 struct ieee80211_reg_rule *r2)
848 {
849 /* for simplicity, currently consider only same flags */
850 if (r1->flags != r2->flags)
851 return false;
852
853 /* verify r1 is more restrictive */
854 if ((r1->power_rule.max_antenna_gain >
855 r2->power_rule.max_antenna_gain) ||
856 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
857 return false;
858
859 /* make sure r2's range is contained within r1 */
860 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
861 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
862 return false;
863
864 /* and finally verify that r1.max_bw >= r2.max_bw */
865 if (r1->freq_range.max_bandwidth_khz <
866 r2->freq_range.max_bandwidth_khz)
867 return false;
868
869 return true;
870 }
871
872 /* add or extend current rules. do nothing if rule is already contained */
873 static void add_rule(struct ieee80211_reg_rule *rule,
874 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
875 {
876 struct ieee80211_reg_rule *tmp_rule;
877 int i;
878
879 for (i = 0; i < *n_rules; i++) {
880 tmp_rule = &reg_rules[i];
881 /* rule is already contained - do nothing */
882 if (rule_contains(tmp_rule, rule))
883 return;
884
885 /* extend rule if possible */
886 if (rule_contains(rule, tmp_rule)) {
887 memcpy(tmp_rule, rule, sizeof(*rule));
888 return;
889 }
890 }
891
892 memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
893 (*n_rules)++;
894 }
895
896 /**
897 * regdom_intersect - do the intersection between two regulatory domains
898 * @rd1: first regulatory domain
899 * @rd2: second regulatory domain
900 *
901 * Use this function to get the intersection between two regulatory domains.
902 * Once completed we will mark the alpha2 for the rd as intersected, "98",
903 * as no one single alpha2 can represent this regulatory domain.
904 *
905 * Returns a pointer to the regulatory domain structure which will hold the
906 * resulting intersection of rules between rd1 and rd2. We will
907 * kzalloc() this structure for you.
908 */
909 static struct ieee80211_regdomain *
910 regdom_intersect(const struct ieee80211_regdomain *rd1,
911 const struct ieee80211_regdomain *rd2)
912 {
913 int r, size_of_regd;
914 unsigned int x, y;
915 unsigned int num_rules = 0;
916 const struct ieee80211_reg_rule *rule1, *rule2;
917 struct ieee80211_reg_rule intersected_rule;
918 struct ieee80211_regdomain *rd;
919
920 if (!rd1 || !rd2)
921 return NULL;
922
923 /*
924 * First we get a count of the rules we'll need, then we actually
925 * build them. This is to so we can malloc() and free() a
926 * regdomain once. The reason we use reg_rules_intersect() here
927 * is it will return -EINVAL if the rule computed makes no sense.
928 * All rules that do check out OK are valid.
929 */
930
931 for (x = 0; x < rd1->n_reg_rules; x++) {
932 rule1 = &rd1->reg_rules[x];
933 for (y = 0; y < rd2->n_reg_rules; y++) {
934 rule2 = &rd2->reg_rules[y];
935 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
936 &intersected_rule))
937 num_rules++;
938 }
939 }
940
941 if (!num_rules)
942 return NULL;
943
944 size_of_regd = sizeof(struct ieee80211_regdomain) +
945 num_rules * sizeof(struct ieee80211_reg_rule);
946
947 rd = kzalloc(size_of_regd, GFP_KERNEL);
948 if (!rd)
949 return NULL;
950
951 for (x = 0; x < rd1->n_reg_rules; x++) {
952 rule1 = &rd1->reg_rules[x];
953 for (y = 0; y < rd2->n_reg_rules; y++) {
954 rule2 = &rd2->reg_rules[y];
955 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
956 &intersected_rule);
957 /*
958 * No need to memset here the intersected rule here as
959 * we're not using the stack anymore
960 */
961 if (r)
962 continue;
963
964 add_rule(&intersected_rule, rd->reg_rules,
965 &rd->n_reg_rules);
966 }
967 }
968
969 rd->alpha2[0] = '9';
970 rd->alpha2[1] = '8';
971 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
972 rd2->dfs_region);
973
974 return rd;
975 }
976
977 /*
978 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
979 * want to just have the channel structure use these
980 */
981 static u32 map_regdom_flags(u32 rd_flags)
982 {
983 u32 channel_flags = 0;
984 if (rd_flags & NL80211_RRF_NO_IR_ALL)
985 channel_flags |= IEEE80211_CHAN_NO_IR;
986 if (rd_flags & NL80211_RRF_DFS)
987 channel_flags |= IEEE80211_CHAN_RADAR;
988 if (rd_flags & NL80211_RRF_NO_OFDM)
989 channel_flags |= IEEE80211_CHAN_NO_OFDM;
990 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
991 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
992 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
993 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
994 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
995 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
996 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
997 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
998 if (rd_flags & NL80211_RRF_NO_80MHZ)
999 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1000 if (rd_flags & NL80211_RRF_NO_160MHZ)
1001 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1002 return channel_flags;
1003 }
1004
1005 static const struct ieee80211_reg_rule *
1006 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
1007 const struct ieee80211_regdomain *regd, u32 bw)
1008 {
1009 int i;
1010 bool band_rule_found = false;
1011 bool bw_fits = false;
1012
1013 if (!regd)
1014 return ERR_PTR(-EINVAL);
1015
1016 for (i = 0; i < regd->n_reg_rules; i++) {
1017 const struct ieee80211_reg_rule *rr;
1018 const struct ieee80211_freq_range *fr = NULL;
1019
1020 rr = &regd->reg_rules[i];
1021 fr = &rr->freq_range;
1022
1023 /*
1024 * We only need to know if one frequency rule was
1025 * was in center_freq's band, that's enough, so lets
1026 * not overwrite it once found
1027 */
1028 if (!band_rule_found)
1029 band_rule_found = freq_in_rule_band(fr, center_freq);
1030
1031 bw_fits = reg_does_bw_fit(fr, center_freq, bw);
1032
1033 if (band_rule_found && bw_fits)
1034 return rr;
1035 }
1036
1037 if (!band_rule_found)
1038 return ERR_PTR(-ERANGE);
1039
1040 return ERR_PTR(-EINVAL);
1041 }
1042
1043 const struct ieee80211_reg_rule *__freq_reg_info(struct wiphy *wiphy,
1044 u32 center_freq, u32 min_bw)
1045 {
1046 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1047 const struct ieee80211_reg_rule *reg_rule = NULL;
1048 u32 bw;
1049
1050 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1051 reg_rule = freq_reg_info_regd(wiphy, center_freq, regd, bw);
1052 if (!IS_ERR(reg_rule))
1053 return reg_rule;
1054 }
1055
1056 return reg_rule;
1057 }
1058
1059 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1060 u32 center_freq)
1061 {
1062 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1063 }
1064 EXPORT_SYMBOL(freq_reg_info);
1065
1066 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1067 {
1068 switch (initiator) {
1069 case NL80211_REGDOM_SET_BY_CORE:
1070 return "core";
1071 case NL80211_REGDOM_SET_BY_USER:
1072 return "user";
1073 case NL80211_REGDOM_SET_BY_DRIVER:
1074 return "driver";
1075 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1076 return "country IE";
1077 default:
1078 WARN_ON(1);
1079 return "bug";
1080 }
1081 }
1082 EXPORT_SYMBOL(reg_initiator_name);
1083
1084 #ifdef CONFIG_CFG80211_REG_DEBUG
1085 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1086 struct ieee80211_channel *chan,
1087 const struct ieee80211_reg_rule *reg_rule)
1088 {
1089 const struct ieee80211_power_rule *power_rule;
1090 const struct ieee80211_freq_range *freq_range;
1091 char max_antenna_gain[32], bw[32];
1092
1093 power_rule = &reg_rule->power_rule;
1094 freq_range = &reg_rule->freq_range;
1095
1096 if (!power_rule->max_antenna_gain)
1097 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1098 else
1099 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
1100 power_rule->max_antenna_gain);
1101
1102 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1103 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1104 freq_range->max_bandwidth_khz,
1105 reg_get_max_bandwidth(regd, reg_rule));
1106 else
1107 snprintf(bw, sizeof(bw), "%d KHz",
1108 freq_range->max_bandwidth_khz);
1109
1110 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1111 chan->center_freq);
1112
1113 REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
1114 freq_range->start_freq_khz, freq_range->end_freq_khz,
1115 bw, max_antenna_gain,
1116 power_rule->max_eirp);
1117 }
1118 #else
1119 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1120 struct ieee80211_channel *chan,
1121 const struct ieee80211_reg_rule *reg_rule)
1122 {
1123 return;
1124 }
1125 #endif
1126
1127 /*
1128 * Note that right now we assume the desired channel bandwidth
1129 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1130 * per channel, the primary and the extension channel).
1131 */
1132 static void handle_channel(struct wiphy *wiphy,
1133 enum nl80211_reg_initiator initiator,
1134 struct ieee80211_channel *chan)
1135 {
1136 u32 flags, bw_flags = 0;
1137 const struct ieee80211_reg_rule *reg_rule = NULL;
1138 const struct ieee80211_power_rule *power_rule = NULL;
1139 const struct ieee80211_freq_range *freq_range = NULL;
1140 struct wiphy *request_wiphy = NULL;
1141 struct regulatory_request *lr = get_last_request();
1142 const struct ieee80211_regdomain *regd;
1143 u32 max_bandwidth_khz;
1144
1145 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1146
1147 flags = chan->orig_flags;
1148
1149 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1150 if (IS_ERR(reg_rule)) {
1151 /*
1152 * We will disable all channels that do not match our
1153 * received regulatory rule unless the hint is coming
1154 * from a Country IE and the Country IE had no information
1155 * about a band. The IEEE 802.11 spec allows for an AP
1156 * to send only a subset of the regulatory rules allowed,
1157 * so an AP in the US that only supports 2.4 GHz may only send
1158 * a country IE with information for the 2.4 GHz band
1159 * while 5 GHz is still supported.
1160 */
1161 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1162 PTR_ERR(reg_rule) == -ERANGE)
1163 return;
1164
1165 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1166 request_wiphy && request_wiphy == wiphy &&
1167 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1168 REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1169 chan->center_freq);
1170 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1171 chan->flags = chan->orig_flags;
1172 } else {
1173 REG_DBG_PRINT("Disabling freq %d MHz\n",
1174 chan->center_freq);
1175 chan->flags |= IEEE80211_CHAN_DISABLED;
1176 }
1177 return;
1178 }
1179
1180 regd = reg_get_regdomain(wiphy);
1181 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1182
1183 power_rule = &reg_rule->power_rule;
1184 freq_range = &reg_rule->freq_range;
1185
1186 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1187 /* Check if auto calculation requested */
1188 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1189 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1190
1191 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1192 if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1193 MHZ_TO_KHZ(10)))
1194 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1195 if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1196 MHZ_TO_KHZ(20)))
1197 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1198
1199 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1200 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1201 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1202 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1203 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1204 bw_flags |= IEEE80211_CHAN_NO_HT40;
1205 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1206 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1207 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1208 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1209
1210 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1211 request_wiphy && request_wiphy == wiphy &&
1212 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1213 /*
1214 * This guarantees the driver's requested regulatory domain
1215 * will always be used as a base for further regulatory
1216 * settings
1217 */
1218 chan->flags = chan->orig_flags =
1219 map_regdom_flags(reg_rule->flags) | bw_flags;
1220 chan->max_antenna_gain = chan->orig_mag =
1221 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1222 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1223 (int) MBM_TO_DBM(power_rule->max_eirp);
1224
1225 if (chan->flags & IEEE80211_CHAN_RADAR) {
1226 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1227 if (reg_rule->dfs_cac_ms)
1228 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1229 }
1230
1231 return;
1232 }
1233
1234 chan->dfs_state = NL80211_DFS_USABLE;
1235 chan->dfs_state_entered = jiffies;
1236
1237 chan->beacon_found = false;
1238 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1239 chan->max_antenna_gain =
1240 min_t(int, chan->orig_mag,
1241 MBI_TO_DBI(power_rule->max_antenna_gain));
1242 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1243
1244 if (chan->flags & IEEE80211_CHAN_RADAR) {
1245 if (reg_rule->dfs_cac_ms)
1246 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1247 else
1248 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1249 }
1250
1251 if (chan->orig_mpwr) {
1252 /*
1253 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1254 * will always follow the passed country IE power settings.
1255 */
1256 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1257 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1258 chan->max_power = chan->max_reg_power;
1259 else
1260 chan->max_power = min(chan->orig_mpwr,
1261 chan->max_reg_power);
1262 } else
1263 chan->max_power = chan->max_reg_power;
1264 }
1265
1266 static void handle_band(struct wiphy *wiphy,
1267 enum nl80211_reg_initiator initiator,
1268 struct ieee80211_supported_band *sband)
1269 {
1270 unsigned int i;
1271
1272 if (!sband)
1273 return;
1274
1275 for (i = 0; i < sband->n_channels; i++)
1276 handle_channel(wiphy, initiator, &sband->channels[i]);
1277 }
1278
1279 static bool reg_request_cell_base(struct regulatory_request *request)
1280 {
1281 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1282 return false;
1283 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1284 }
1285
1286 bool reg_last_request_cell_base(void)
1287 {
1288 return reg_request_cell_base(get_last_request());
1289 }
1290
1291 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1292 /* Core specific check */
1293 static enum reg_request_treatment
1294 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1295 {
1296 struct regulatory_request *lr = get_last_request();
1297
1298 if (!reg_num_devs_support_basehint)
1299 return REG_REQ_IGNORE;
1300
1301 if (reg_request_cell_base(lr) &&
1302 !regdom_changes(pending_request->alpha2))
1303 return REG_REQ_ALREADY_SET;
1304
1305 return REG_REQ_OK;
1306 }
1307
1308 /* Device specific check */
1309 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1310 {
1311 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1312 }
1313 #else
1314 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1315 {
1316 return REG_REQ_IGNORE;
1317 }
1318
1319 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1320 {
1321 return true;
1322 }
1323 #endif
1324
1325 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1326 {
1327 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1328 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1329 return true;
1330 return false;
1331 }
1332
1333 static bool ignore_reg_update(struct wiphy *wiphy,
1334 enum nl80211_reg_initiator initiator)
1335 {
1336 struct regulatory_request *lr = get_last_request();
1337
1338 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1339 return true;
1340
1341 if (!lr) {
1342 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1343 "since last_request is not set\n",
1344 reg_initiator_name(initiator));
1345 return true;
1346 }
1347
1348 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1349 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1350 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1351 "since the driver uses its own custom "
1352 "regulatory domain\n",
1353 reg_initiator_name(initiator));
1354 return true;
1355 }
1356
1357 /*
1358 * wiphy->regd will be set once the device has its own
1359 * desired regulatory domain set
1360 */
1361 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1362 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1363 !is_world_regdom(lr->alpha2)) {
1364 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1365 "since the driver requires its own regulatory "
1366 "domain to be set first\n",
1367 reg_initiator_name(initiator));
1368 return true;
1369 }
1370
1371 if (reg_request_cell_base(lr))
1372 return reg_dev_ignore_cell_hint(wiphy);
1373
1374 return false;
1375 }
1376
1377 static bool reg_is_world_roaming(struct wiphy *wiphy)
1378 {
1379 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1380 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1381 struct regulatory_request *lr = get_last_request();
1382
1383 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1384 return true;
1385
1386 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1387 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1388 return true;
1389
1390 return false;
1391 }
1392
1393 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1394 struct reg_beacon *reg_beacon)
1395 {
1396 struct ieee80211_supported_band *sband;
1397 struct ieee80211_channel *chan;
1398 bool channel_changed = false;
1399 struct ieee80211_channel chan_before;
1400
1401 sband = wiphy->bands[reg_beacon->chan.band];
1402 chan = &sband->channels[chan_idx];
1403
1404 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1405 return;
1406
1407 if (chan->beacon_found)
1408 return;
1409
1410 chan->beacon_found = true;
1411
1412 if (!reg_is_world_roaming(wiphy))
1413 return;
1414
1415 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1416 return;
1417
1418 chan_before.center_freq = chan->center_freq;
1419 chan_before.flags = chan->flags;
1420
1421 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1422 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1423 channel_changed = true;
1424 }
1425
1426 if (channel_changed)
1427 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1428 }
1429
1430 /*
1431 * Called when a scan on a wiphy finds a beacon on
1432 * new channel
1433 */
1434 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1435 struct reg_beacon *reg_beacon)
1436 {
1437 unsigned int i;
1438 struct ieee80211_supported_band *sband;
1439
1440 if (!wiphy->bands[reg_beacon->chan.band])
1441 return;
1442
1443 sband = wiphy->bands[reg_beacon->chan.band];
1444
1445 for (i = 0; i < sband->n_channels; i++)
1446 handle_reg_beacon(wiphy, i, reg_beacon);
1447 }
1448
1449 /*
1450 * Called upon reg changes or a new wiphy is added
1451 */
1452 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1453 {
1454 unsigned int i;
1455 struct ieee80211_supported_band *sband;
1456 struct reg_beacon *reg_beacon;
1457
1458 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1459 if (!wiphy->bands[reg_beacon->chan.band])
1460 continue;
1461 sband = wiphy->bands[reg_beacon->chan.band];
1462 for (i = 0; i < sband->n_channels; i++)
1463 handle_reg_beacon(wiphy, i, reg_beacon);
1464 }
1465 }
1466
1467 /* Reap the advantages of previously found beacons */
1468 static void reg_process_beacons(struct wiphy *wiphy)
1469 {
1470 /*
1471 * Means we are just firing up cfg80211, so no beacons would
1472 * have been processed yet.
1473 */
1474 if (!last_request)
1475 return;
1476 wiphy_update_beacon_reg(wiphy);
1477 }
1478
1479 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1480 {
1481 if (!chan)
1482 return false;
1483 if (chan->flags & IEEE80211_CHAN_DISABLED)
1484 return false;
1485 /* This would happen when regulatory rules disallow HT40 completely */
1486 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1487 return false;
1488 return true;
1489 }
1490
1491 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1492 struct ieee80211_channel *channel)
1493 {
1494 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1495 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1496 unsigned int i;
1497
1498 if (!is_ht40_allowed(channel)) {
1499 channel->flags |= IEEE80211_CHAN_NO_HT40;
1500 return;
1501 }
1502
1503 /*
1504 * We need to ensure the extension channels exist to
1505 * be able to use HT40- or HT40+, this finds them (or not)
1506 */
1507 for (i = 0; i < sband->n_channels; i++) {
1508 struct ieee80211_channel *c = &sband->channels[i];
1509
1510 if (c->center_freq == (channel->center_freq - 20))
1511 channel_before = c;
1512 if (c->center_freq == (channel->center_freq + 20))
1513 channel_after = c;
1514 }
1515
1516 /*
1517 * Please note that this assumes target bandwidth is 20 MHz,
1518 * if that ever changes we also need to change the below logic
1519 * to include that as well.
1520 */
1521 if (!is_ht40_allowed(channel_before))
1522 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1523 else
1524 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1525
1526 if (!is_ht40_allowed(channel_after))
1527 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1528 else
1529 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1530 }
1531
1532 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1533 struct ieee80211_supported_band *sband)
1534 {
1535 unsigned int i;
1536
1537 if (!sband)
1538 return;
1539
1540 for (i = 0; i < sband->n_channels; i++)
1541 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1542 }
1543
1544 static void reg_process_ht_flags(struct wiphy *wiphy)
1545 {
1546 enum ieee80211_band band;
1547
1548 if (!wiphy)
1549 return;
1550
1551 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1552 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1553 }
1554
1555 static void reg_call_notifier(struct wiphy *wiphy,
1556 struct regulatory_request *request)
1557 {
1558 if (wiphy->reg_notifier)
1559 wiphy->reg_notifier(wiphy, request);
1560 }
1561
1562 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1563 {
1564 struct cfg80211_chan_def chandef;
1565 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1566 enum nl80211_iftype iftype;
1567
1568 wdev_lock(wdev);
1569 iftype = wdev->iftype;
1570
1571 /* make sure the interface is active */
1572 if (!wdev->netdev || !netif_running(wdev->netdev))
1573 goto wdev_inactive_unlock;
1574
1575 switch (iftype) {
1576 case NL80211_IFTYPE_AP:
1577 case NL80211_IFTYPE_P2P_GO:
1578 if (!wdev->beacon_interval)
1579 goto wdev_inactive_unlock;
1580 chandef = wdev->chandef;
1581 break;
1582 case NL80211_IFTYPE_ADHOC:
1583 if (!wdev->ssid_len)
1584 goto wdev_inactive_unlock;
1585 chandef = wdev->chandef;
1586 break;
1587 case NL80211_IFTYPE_STATION:
1588 case NL80211_IFTYPE_P2P_CLIENT:
1589 if (!wdev->current_bss ||
1590 !wdev->current_bss->pub.channel)
1591 goto wdev_inactive_unlock;
1592
1593 if (!rdev->ops->get_channel ||
1594 rdev_get_channel(rdev, wdev, &chandef))
1595 cfg80211_chandef_create(&chandef,
1596 wdev->current_bss->pub.channel,
1597 NL80211_CHAN_NO_HT);
1598 break;
1599 case NL80211_IFTYPE_MONITOR:
1600 case NL80211_IFTYPE_AP_VLAN:
1601 case NL80211_IFTYPE_P2P_DEVICE:
1602 /* no enforcement required */
1603 break;
1604 default:
1605 /* others not implemented for now */
1606 WARN_ON(1);
1607 break;
1608 }
1609
1610 wdev_unlock(wdev);
1611
1612 switch (iftype) {
1613 case NL80211_IFTYPE_AP:
1614 case NL80211_IFTYPE_P2P_GO:
1615 case NL80211_IFTYPE_ADHOC:
1616 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
1617 case NL80211_IFTYPE_STATION:
1618 case NL80211_IFTYPE_P2P_CLIENT:
1619 return cfg80211_chandef_usable(wiphy, &chandef,
1620 IEEE80211_CHAN_DISABLED);
1621 default:
1622 break;
1623 }
1624
1625 return true;
1626
1627 wdev_inactive_unlock:
1628 wdev_unlock(wdev);
1629 return true;
1630 }
1631
1632 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1633 {
1634 struct wireless_dev *wdev;
1635 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1636
1637 ASSERT_RTNL();
1638
1639 list_for_each_entry(wdev, &rdev->wdev_list, list)
1640 if (!reg_wdev_chan_valid(wiphy, wdev))
1641 cfg80211_leave(rdev, wdev);
1642 }
1643
1644 static void reg_check_chans_work(struct work_struct *work)
1645 {
1646 struct cfg80211_registered_device *rdev;
1647
1648 REG_DBG_PRINT("Verifying active interfaces after reg change\n");
1649 rtnl_lock();
1650
1651 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1652 if (!(rdev->wiphy.regulatory_flags &
1653 REGULATORY_IGNORE_STALE_KICKOFF))
1654 reg_leave_invalid_chans(&rdev->wiphy);
1655
1656 rtnl_unlock();
1657 }
1658
1659 static void reg_check_channels(void)
1660 {
1661 /*
1662 * Give usermode a chance to do something nicer (move to another
1663 * channel, orderly disconnection), before forcing a disconnection.
1664 */
1665 mod_delayed_work(system_power_efficient_wq,
1666 &reg_check_chans,
1667 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1668 }
1669
1670 static void wiphy_update_regulatory(struct wiphy *wiphy,
1671 enum nl80211_reg_initiator initiator)
1672 {
1673 enum ieee80211_band band;
1674 struct regulatory_request *lr = get_last_request();
1675
1676 if (ignore_reg_update(wiphy, initiator)) {
1677 /*
1678 * Regulatory updates set by CORE are ignored for custom
1679 * regulatory cards. Let us notify the changes to the driver,
1680 * as some drivers used this to restore its orig_* reg domain.
1681 */
1682 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1683 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1684 reg_call_notifier(wiphy, lr);
1685 return;
1686 }
1687
1688 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1689
1690 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1691 handle_band(wiphy, initiator, wiphy->bands[band]);
1692
1693 reg_process_beacons(wiphy);
1694 reg_process_ht_flags(wiphy);
1695 reg_call_notifier(wiphy, lr);
1696 }
1697
1698 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1699 {
1700 struct cfg80211_registered_device *rdev;
1701 struct wiphy *wiphy;
1702
1703 ASSERT_RTNL();
1704
1705 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1706 wiphy = &rdev->wiphy;
1707 wiphy_update_regulatory(wiphy, initiator);
1708 }
1709
1710 reg_check_channels();
1711 }
1712
1713 static void handle_channel_custom(struct wiphy *wiphy,
1714 struct ieee80211_channel *chan,
1715 const struct ieee80211_regdomain *regd)
1716 {
1717 u32 bw_flags = 0;
1718 const struct ieee80211_reg_rule *reg_rule = NULL;
1719 const struct ieee80211_power_rule *power_rule = NULL;
1720 const struct ieee80211_freq_range *freq_range = NULL;
1721 u32 max_bandwidth_khz;
1722 u32 bw;
1723
1724 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
1725 reg_rule = freq_reg_info_regd(wiphy,
1726 MHZ_TO_KHZ(chan->center_freq),
1727 regd, bw);
1728 if (!IS_ERR(reg_rule))
1729 break;
1730 }
1731
1732 if (IS_ERR(reg_rule)) {
1733 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1734 chan->center_freq);
1735 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1736 chan->flags |= IEEE80211_CHAN_DISABLED;
1737 } else {
1738 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1739 chan->flags = chan->orig_flags;
1740 }
1741 return;
1742 }
1743
1744 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1745
1746 power_rule = &reg_rule->power_rule;
1747 freq_range = &reg_rule->freq_range;
1748
1749 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1750 /* Check if auto calculation requested */
1751 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1752 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1753
1754 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1755 if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1756 MHZ_TO_KHZ(10)))
1757 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1758 if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1759 MHZ_TO_KHZ(20)))
1760 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1761
1762 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1763 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1764 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1765 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1766 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1767 bw_flags |= IEEE80211_CHAN_NO_HT40;
1768 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1769 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1770 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1771 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1772
1773 chan->dfs_state_entered = jiffies;
1774 chan->dfs_state = NL80211_DFS_USABLE;
1775
1776 chan->beacon_found = false;
1777
1778 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1779 chan->flags = chan->orig_flags | bw_flags |
1780 map_regdom_flags(reg_rule->flags);
1781 else
1782 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1783
1784 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1785 chan->max_reg_power = chan->max_power =
1786 (int) MBM_TO_DBM(power_rule->max_eirp);
1787
1788 if (chan->flags & IEEE80211_CHAN_RADAR) {
1789 if (reg_rule->dfs_cac_ms)
1790 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1791 else
1792 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1793 }
1794
1795 chan->max_power = chan->max_reg_power;
1796 }
1797
1798 static void handle_band_custom(struct wiphy *wiphy,
1799 struct ieee80211_supported_band *sband,
1800 const struct ieee80211_regdomain *regd)
1801 {
1802 unsigned int i;
1803
1804 if (!sband)
1805 return;
1806
1807 for (i = 0; i < sband->n_channels; i++)
1808 handle_channel_custom(wiphy, &sband->channels[i], regd);
1809 }
1810
1811 /* Used by drivers prior to wiphy registration */
1812 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1813 const struct ieee80211_regdomain *regd)
1814 {
1815 enum ieee80211_band band;
1816 unsigned int bands_set = 0;
1817
1818 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1819 "wiphy should have REGULATORY_CUSTOM_REG\n");
1820 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1821
1822 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1823 if (!wiphy->bands[band])
1824 continue;
1825 handle_band_custom(wiphy, wiphy->bands[band], regd);
1826 bands_set++;
1827 }
1828
1829 /*
1830 * no point in calling this if it won't have any effect
1831 * on your device's supported bands.
1832 */
1833 WARN_ON(!bands_set);
1834 }
1835 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1836
1837 static void reg_set_request_processed(void)
1838 {
1839 bool need_more_processing = false;
1840 struct regulatory_request *lr = get_last_request();
1841
1842 lr->processed = true;
1843
1844 spin_lock(&reg_requests_lock);
1845 if (!list_empty(&reg_requests_list))
1846 need_more_processing = true;
1847 spin_unlock(&reg_requests_lock);
1848
1849 cancel_delayed_work(&reg_timeout);
1850
1851 if (need_more_processing)
1852 schedule_work(&reg_work);
1853 }
1854
1855 /**
1856 * reg_process_hint_core - process core regulatory requests
1857 * @pending_request: a pending core regulatory request
1858 *
1859 * The wireless subsystem can use this function to process
1860 * a regulatory request issued by the regulatory core.
1861 *
1862 * Returns one of the different reg request treatment values.
1863 */
1864 static enum reg_request_treatment
1865 reg_process_hint_core(struct regulatory_request *core_request)
1866 {
1867
1868 core_request->intersect = false;
1869 core_request->processed = false;
1870
1871 reg_update_last_request(core_request);
1872
1873 return reg_call_crda(core_request);
1874 }
1875
1876 static enum reg_request_treatment
1877 __reg_process_hint_user(struct regulatory_request *user_request)
1878 {
1879 struct regulatory_request *lr = get_last_request();
1880
1881 if (reg_request_cell_base(user_request))
1882 return reg_ignore_cell_hint(user_request);
1883
1884 if (reg_request_cell_base(lr))
1885 return REG_REQ_IGNORE;
1886
1887 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1888 return REG_REQ_INTERSECT;
1889 /*
1890 * If the user knows better the user should set the regdom
1891 * to their country before the IE is picked up
1892 */
1893 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1894 lr->intersect)
1895 return REG_REQ_IGNORE;
1896 /*
1897 * Process user requests only after previous user/driver/core
1898 * requests have been processed
1899 */
1900 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1901 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1902 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1903 regdom_changes(lr->alpha2))
1904 return REG_REQ_IGNORE;
1905
1906 if (!regdom_changes(user_request->alpha2))
1907 return REG_REQ_ALREADY_SET;
1908
1909 return REG_REQ_OK;
1910 }
1911
1912 /**
1913 * reg_process_hint_user - process user regulatory requests
1914 * @user_request: a pending user regulatory request
1915 *
1916 * The wireless subsystem can use this function to process
1917 * a regulatory request initiated by userspace.
1918 *
1919 * Returns one of the different reg request treatment values.
1920 */
1921 static enum reg_request_treatment
1922 reg_process_hint_user(struct regulatory_request *user_request)
1923 {
1924 enum reg_request_treatment treatment;
1925
1926 treatment = __reg_process_hint_user(user_request);
1927 if (treatment == REG_REQ_IGNORE ||
1928 treatment == REG_REQ_ALREADY_SET) {
1929 reg_free_request(user_request);
1930 return treatment;
1931 }
1932
1933 user_request->intersect = treatment == REG_REQ_INTERSECT;
1934 user_request->processed = false;
1935
1936 reg_update_last_request(user_request);
1937
1938 user_alpha2[0] = user_request->alpha2[0];
1939 user_alpha2[1] = user_request->alpha2[1];
1940
1941 return reg_call_crda(user_request);
1942 }
1943
1944 static enum reg_request_treatment
1945 __reg_process_hint_driver(struct regulatory_request *driver_request)
1946 {
1947 struct regulatory_request *lr = get_last_request();
1948
1949 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1950 if (regdom_changes(driver_request->alpha2))
1951 return REG_REQ_OK;
1952 return REG_REQ_ALREADY_SET;
1953 }
1954
1955 /*
1956 * This would happen if you unplug and plug your card
1957 * back in or if you add a new device for which the previously
1958 * loaded card also agrees on the regulatory domain.
1959 */
1960 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1961 !regdom_changes(driver_request->alpha2))
1962 return REG_REQ_ALREADY_SET;
1963
1964 return REG_REQ_INTERSECT;
1965 }
1966
1967 /**
1968 * reg_process_hint_driver - process driver regulatory requests
1969 * @driver_request: a pending driver regulatory request
1970 *
1971 * The wireless subsystem can use this function to process
1972 * a regulatory request issued by an 802.11 driver.
1973 *
1974 * Returns one of the different reg request treatment values.
1975 */
1976 static enum reg_request_treatment
1977 reg_process_hint_driver(struct wiphy *wiphy,
1978 struct regulatory_request *driver_request)
1979 {
1980 const struct ieee80211_regdomain *regd, *tmp;
1981 enum reg_request_treatment treatment;
1982
1983 treatment = __reg_process_hint_driver(driver_request);
1984
1985 switch (treatment) {
1986 case REG_REQ_OK:
1987 break;
1988 case REG_REQ_IGNORE:
1989 reg_free_request(driver_request);
1990 return treatment;
1991 case REG_REQ_INTERSECT:
1992 /* fall through */
1993 case REG_REQ_ALREADY_SET:
1994 regd = reg_copy_regd(get_cfg80211_regdom());
1995 if (IS_ERR(regd)) {
1996 reg_free_request(driver_request);
1997 return REG_REQ_IGNORE;
1998 }
1999
2000 tmp = get_wiphy_regdom(wiphy);
2001 rcu_assign_pointer(wiphy->regd, regd);
2002 rcu_free_regdom(tmp);
2003 }
2004
2005
2006 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2007 driver_request->processed = false;
2008
2009 reg_update_last_request(driver_request);
2010
2011 /*
2012 * Since CRDA will not be called in this case as we already
2013 * have applied the requested regulatory domain before we just
2014 * inform userspace we have processed the request
2015 */
2016 if (treatment == REG_REQ_ALREADY_SET) {
2017 nl80211_send_reg_change_event(driver_request);
2018 reg_set_request_processed();
2019 return treatment;
2020 }
2021
2022 return reg_call_crda(driver_request);
2023 }
2024
2025 static enum reg_request_treatment
2026 __reg_process_hint_country_ie(struct wiphy *wiphy,
2027 struct regulatory_request *country_ie_request)
2028 {
2029 struct wiphy *last_wiphy = NULL;
2030 struct regulatory_request *lr = get_last_request();
2031
2032 if (reg_request_cell_base(lr)) {
2033 /* Trust a Cell base station over the AP's country IE */
2034 if (regdom_changes(country_ie_request->alpha2))
2035 return REG_REQ_IGNORE;
2036 return REG_REQ_ALREADY_SET;
2037 } else {
2038 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2039 return REG_REQ_IGNORE;
2040 }
2041
2042 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2043 return -EINVAL;
2044
2045 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2046 return REG_REQ_OK;
2047
2048 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2049
2050 if (last_wiphy != wiphy) {
2051 /*
2052 * Two cards with two APs claiming different
2053 * Country IE alpha2s. We could
2054 * intersect them, but that seems unlikely
2055 * to be correct. Reject second one for now.
2056 */
2057 if (regdom_changes(country_ie_request->alpha2))
2058 return REG_REQ_IGNORE;
2059 return REG_REQ_ALREADY_SET;
2060 }
2061
2062 if (regdom_changes(country_ie_request->alpha2))
2063 return REG_REQ_OK;
2064 return REG_REQ_ALREADY_SET;
2065 }
2066
2067 /**
2068 * reg_process_hint_country_ie - process regulatory requests from country IEs
2069 * @country_ie_request: a regulatory request from a country IE
2070 *
2071 * The wireless subsystem can use this function to process
2072 * a regulatory request issued by a country Information Element.
2073 *
2074 * Returns one of the different reg request treatment values.
2075 */
2076 static enum reg_request_treatment
2077 reg_process_hint_country_ie(struct wiphy *wiphy,
2078 struct regulatory_request *country_ie_request)
2079 {
2080 enum reg_request_treatment treatment;
2081
2082 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2083
2084 switch (treatment) {
2085 case REG_REQ_OK:
2086 break;
2087 case REG_REQ_IGNORE:
2088 /* fall through */
2089 case REG_REQ_ALREADY_SET:
2090 reg_free_request(country_ie_request);
2091 return treatment;
2092 case REG_REQ_INTERSECT:
2093 reg_free_request(country_ie_request);
2094 /*
2095 * This doesn't happen yet, not sure we
2096 * ever want to support it for this case.
2097 */
2098 WARN_ONCE(1, "Unexpected intersection for country IEs");
2099 return REG_REQ_IGNORE;
2100 }
2101
2102 country_ie_request->intersect = false;
2103 country_ie_request->processed = false;
2104
2105 reg_update_last_request(country_ie_request);
2106
2107 return reg_call_crda(country_ie_request);
2108 }
2109
2110 /* This processes *all* regulatory hints */
2111 static void reg_process_hint(struct regulatory_request *reg_request)
2112 {
2113 struct wiphy *wiphy = NULL;
2114 enum reg_request_treatment treatment;
2115
2116 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2117 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2118
2119 switch (reg_request->initiator) {
2120 case NL80211_REGDOM_SET_BY_CORE:
2121 reg_process_hint_core(reg_request);
2122 return;
2123 case NL80211_REGDOM_SET_BY_USER:
2124 reg_process_hint_user(reg_request);
2125 return;
2126 case NL80211_REGDOM_SET_BY_DRIVER:
2127 if (!wiphy)
2128 goto out_free;
2129 treatment = reg_process_hint_driver(wiphy, reg_request);
2130 break;
2131 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2132 if (!wiphy)
2133 goto out_free;
2134 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2135 break;
2136 default:
2137 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2138 goto out_free;
2139 }
2140
2141 /* This is required so that the orig_* parameters are saved.
2142 * NOTE: treatment must be set for any case that reaches here!
2143 */
2144 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2145 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2146 wiphy_update_regulatory(wiphy, reg_request->initiator);
2147 reg_check_channels();
2148 }
2149
2150 return;
2151
2152 out_free:
2153 reg_free_request(reg_request);
2154 }
2155
2156 static bool reg_only_self_managed_wiphys(void)
2157 {
2158 struct cfg80211_registered_device *rdev;
2159 struct wiphy *wiphy;
2160 bool self_managed_found = false;
2161
2162 ASSERT_RTNL();
2163
2164 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2165 wiphy = &rdev->wiphy;
2166 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2167 self_managed_found = true;
2168 else
2169 return false;
2170 }
2171
2172 /* make sure at least one self-managed wiphy exists */
2173 return self_managed_found;
2174 }
2175
2176 /*
2177 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2178 * Regulatory hints come on a first come first serve basis and we
2179 * must process each one atomically.
2180 */
2181 static void reg_process_pending_hints(void)
2182 {
2183 struct regulatory_request *reg_request, *lr;
2184
2185 lr = get_last_request();
2186
2187 /* When last_request->processed becomes true this will be rescheduled */
2188 if (lr && !lr->processed) {
2189 reg_process_hint(lr);
2190 return;
2191 }
2192
2193 spin_lock(&reg_requests_lock);
2194
2195 if (list_empty(&reg_requests_list)) {
2196 spin_unlock(&reg_requests_lock);
2197 return;
2198 }
2199
2200 reg_request = list_first_entry(&reg_requests_list,
2201 struct regulatory_request,
2202 list);
2203 list_del_init(&reg_request->list);
2204
2205 spin_unlock(&reg_requests_lock);
2206
2207 if (reg_only_self_managed_wiphys()) {
2208 reg_free_request(reg_request);
2209 return;
2210 }
2211
2212 reg_process_hint(reg_request);
2213
2214 lr = get_last_request();
2215
2216 spin_lock(&reg_requests_lock);
2217 if (!list_empty(&reg_requests_list) && lr && lr->processed)
2218 schedule_work(&reg_work);
2219 spin_unlock(&reg_requests_lock);
2220 }
2221
2222 /* Processes beacon hints -- this has nothing to do with country IEs */
2223 static void reg_process_pending_beacon_hints(void)
2224 {
2225 struct cfg80211_registered_device *rdev;
2226 struct reg_beacon *pending_beacon, *tmp;
2227
2228 /* This goes through the _pending_ beacon list */
2229 spin_lock_bh(&reg_pending_beacons_lock);
2230
2231 list_for_each_entry_safe(pending_beacon, tmp,
2232 &reg_pending_beacons, list) {
2233 list_del_init(&pending_beacon->list);
2234
2235 /* Applies the beacon hint to current wiphys */
2236 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2237 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2238
2239 /* Remembers the beacon hint for new wiphys or reg changes */
2240 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2241 }
2242
2243 spin_unlock_bh(&reg_pending_beacons_lock);
2244 }
2245
2246 static void reg_process_self_managed_hints(void)
2247 {
2248 struct cfg80211_registered_device *rdev;
2249 struct wiphy *wiphy;
2250 const struct ieee80211_regdomain *tmp;
2251 const struct ieee80211_regdomain *regd;
2252 enum ieee80211_band band;
2253 struct regulatory_request request = {};
2254
2255 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2256 wiphy = &rdev->wiphy;
2257
2258 spin_lock(&reg_requests_lock);
2259 regd = rdev->requested_regd;
2260 rdev->requested_regd = NULL;
2261 spin_unlock(&reg_requests_lock);
2262
2263 if (regd == NULL)
2264 continue;
2265
2266 tmp = get_wiphy_regdom(wiphy);
2267 rcu_assign_pointer(wiphy->regd, regd);
2268 rcu_free_regdom(tmp);
2269
2270 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
2271 handle_band_custom(wiphy, wiphy->bands[band], regd);
2272
2273 reg_process_ht_flags(wiphy);
2274
2275 request.wiphy_idx = get_wiphy_idx(wiphy);
2276 request.alpha2[0] = regd->alpha2[0];
2277 request.alpha2[1] = regd->alpha2[1];
2278 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2279
2280 nl80211_send_wiphy_reg_change_event(&request);
2281 }
2282
2283 reg_check_channels();
2284 }
2285
2286 static void reg_todo(struct work_struct *work)
2287 {
2288 rtnl_lock();
2289 reg_process_pending_hints();
2290 reg_process_pending_beacon_hints();
2291 reg_process_self_managed_hints();
2292 rtnl_unlock();
2293 }
2294
2295 static void queue_regulatory_request(struct regulatory_request *request)
2296 {
2297 request->alpha2[0] = toupper(request->alpha2[0]);
2298 request->alpha2[1] = toupper(request->alpha2[1]);
2299
2300 spin_lock(&reg_requests_lock);
2301 list_add_tail(&request->list, &reg_requests_list);
2302 spin_unlock(&reg_requests_lock);
2303
2304 schedule_work(&reg_work);
2305 }
2306
2307 /*
2308 * Core regulatory hint -- happens during cfg80211_init()
2309 * and when we restore regulatory settings.
2310 */
2311 static int regulatory_hint_core(const char *alpha2)
2312 {
2313 struct regulatory_request *request;
2314
2315 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2316 if (!request)
2317 return -ENOMEM;
2318
2319 request->alpha2[0] = alpha2[0];
2320 request->alpha2[1] = alpha2[1];
2321 request->initiator = NL80211_REGDOM_SET_BY_CORE;
2322
2323 queue_regulatory_request(request);
2324
2325 return 0;
2326 }
2327
2328 /* User hints */
2329 int regulatory_hint_user(const char *alpha2,
2330 enum nl80211_user_reg_hint_type user_reg_hint_type)
2331 {
2332 struct regulatory_request *request;
2333
2334 if (WARN_ON(!alpha2))
2335 return -EINVAL;
2336
2337 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2338 if (!request)
2339 return -ENOMEM;
2340
2341 request->wiphy_idx = WIPHY_IDX_INVALID;
2342 request->alpha2[0] = alpha2[0];
2343 request->alpha2[1] = alpha2[1];
2344 request->initiator = NL80211_REGDOM_SET_BY_USER;
2345 request->user_reg_hint_type = user_reg_hint_type;
2346
2347 /* Allow calling CRDA again */
2348 reg_crda_timeouts = 0;
2349
2350 queue_regulatory_request(request);
2351
2352 return 0;
2353 }
2354
2355 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2356 {
2357 spin_lock(&reg_indoor_lock);
2358
2359 /* It is possible that more than one user space process is trying to
2360 * configure the indoor setting. To handle such cases, clear the indoor
2361 * setting in case that some process does not think that the device
2362 * is operating in an indoor environment. In addition, if a user space
2363 * process indicates that it is controlling the indoor setting, save its
2364 * portid, i.e., make it the owner.
2365 */
2366 reg_is_indoor = is_indoor;
2367 if (reg_is_indoor) {
2368 if (!reg_is_indoor_portid)
2369 reg_is_indoor_portid = portid;
2370 } else {
2371 reg_is_indoor_portid = 0;
2372 }
2373
2374 spin_unlock(&reg_indoor_lock);
2375
2376 if (!is_indoor)
2377 reg_check_channels();
2378
2379 return 0;
2380 }
2381
2382 void regulatory_netlink_notify(u32 portid)
2383 {
2384 spin_lock(&reg_indoor_lock);
2385
2386 if (reg_is_indoor_portid != portid) {
2387 spin_unlock(&reg_indoor_lock);
2388 return;
2389 }
2390
2391 reg_is_indoor = false;
2392 reg_is_indoor_portid = 0;
2393
2394 spin_unlock(&reg_indoor_lock);
2395
2396 reg_check_channels();
2397 }
2398
2399 /* Driver hints */
2400 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2401 {
2402 struct regulatory_request *request;
2403
2404 if (WARN_ON(!alpha2 || !wiphy))
2405 return -EINVAL;
2406
2407 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2408
2409 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2410 if (!request)
2411 return -ENOMEM;
2412
2413 request->wiphy_idx = get_wiphy_idx(wiphy);
2414
2415 request->alpha2[0] = alpha2[0];
2416 request->alpha2[1] = alpha2[1];
2417 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2418
2419 /* Allow calling CRDA again */
2420 reg_crda_timeouts = 0;
2421
2422 queue_regulatory_request(request);
2423
2424 return 0;
2425 }
2426 EXPORT_SYMBOL(regulatory_hint);
2427
2428 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2429 const u8 *country_ie, u8 country_ie_len)
2430 {
2431 char alpha2[2];
2432 enum environment_cap env = ENVIRON_ANY;
2433 struct regulatory_request *request = NULL, *lr;
2434
2435 /* IE len must be evenly divisible by 2 */
2436 if (country_ie_len & 0x01)
2437 return;
2438
2439 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2440 return;
2441
2442 request = kzalloc(sizeof(*request), GFP_KERNEL);
2443 if (!request)
2444 return;
2445
2446 alpha2[0] = country_ie[0];
2447 alpha2[1] = country_ie[1];
2448
2449 if (country_ie[2] == 'I')
2450 env = ENVIRON_INDOOR;
2451 else if (country_ie[2] == 'O')
2452 env = ENVIRON_OUTDOOR;
2453
2454 rcu_read_lock();
2455 lr = get_last_request();
2456
2457 if (unlikely(!lr))
2458 goto out;
2459
2460 /*
2461 * We will run this only upon a successful connection on cfg80211.
2462 * We leave conflict resolution to the workqueue, where can hold
2463 * the RTNL.
2464 */
2465 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2466 lr->wiphy_idx != WIPHY_IDX_INVALID)
2467 goto out;
2468
2469 request->wiphy_idx = get_wiphy_idx(wiphy);
2470 request->alpha2[0] = alpha2[0];
2471 request->alpha2[1] = alpha2[1];
2472 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2473 request->country_ie_env = env;
2474
2475 /* Allow calling CRDA again */
2476 reg_crda_timeouts = 0;
2477
2478 queue_regulatory_request(request);
2479 request = NULL;
2480 out:
2481 kfree(request);
2482 rcu_read_unlock();
2483 }
2484
2485 static void restore_alpha2(char *alpha2, bool reset_user)
2486 {
2487 /* indicates there is no alpha2 to consider for restoration */
2488 alpha2[0] = '9';
2489 alpha2[1] = '7';
2490
2491 /* The user setting has precedence over the module parameter */
2492 if (is_user_regdom_saved()) {
2493 /* Unless we're asked to ignore it and reset it */
2494 if (reset_user) {
2495 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2496 user_alpha2[0] = '9';
2497 user_alpha2[1] = '7';
2498
2499 /*
2500 * If we're ignoring user settings, we still need to
2501 * check the module parameter to ensure we put things
2502 * back as they were for a full restore.
2503 */
2504 if (!is_world_regdom(ieee80211_regdom)) {
2505 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2506 ieee80211_regdom[0], ieee80211_regdom[1]);
2507 alpha2[0] = ieee80211_regdom[0];
2508 alpha2[1] = ieee80211_regdom[1];
2509 }
2510 } else {
2511 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2512 user_alpha2[0], user_alpha2[1]);
2513 alpha2[0] = user_alpha2[0];
2514 alpha2[1] = user_alpha2[1];
2515 }
2516 } else if (!is_world_regdom(ieee80211_regdom)) {
2517 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2518 ieee80211_regdom[0], ieee80211_regdom[1]);
2519 alpha2[0] = ieee80211_regdom[0];
2520 alpha2[1] = ieee80211_regdom[1];
2521 } else
2522 REG_DBG_PRINT("Restoring regulatory settings\n");
2523 }
2524
2525 static void restore_custom_reg_settings(struct wiphy *wiphy)
2526 {
2527 struct ieee80211_supported_band *sband;
2528 enum ieee80211_band band;
2529 struct ieee80211_channel *chan;
2530 int i;
2531
2532 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2533 sband = wiphy->bands[band];
2534 if (!sband)
2535 continue;
2536 for (i = 0; i < sband->n_channels; i++) {
2537 chan = &sband->channels[i];
2538 chan->flags = chan->orig_flags;
2539 chan->max_antenna_gain = chan->orig_mag;
2540 chan->max_power = chan->orig_mpwr;
2541 chan->beacon_found = false;
2542 }
2543 }
2544 }
2545
2546 /*
2547 * Restoring regulatory settings involves ingoring any
2548 * possibly stale country IE information and user regulatory
2549 * settings if so desired, this includes any beacon hints
2550 * learned as we could have traveled outside to another country
2551 * after disconnection. To restore regulatory settings we do
2552 * exactly what we did at bootup:
2553 *
2554 * - send a core regulatory hint
2555 * - send a user regulatory hint if applicable
2556 *
2557 * Device drivers that send a regulatory hint for a specific country
2558 * keep their own regulatory domain on wiphy->regd so that does does
2559 * not need to be remembered.
2560 */
2561 static void restore_regulatory_settings(bool reset_user)
2562 {
2563 char alpha2[2];
2564 char world_alpha2[2];
2565 struct reg_beacon *reg_beacon, *btmp;
2566 LIST_HEAD(tmp_reg_req_list);
2567 struct cfg80211_registered_device *rdev;
2568
2569 ASSERT_RTNL();
2570
2571 /*
2572 * Clear the indoor setting in case that it is not controlled by user
2573 * space, as otherwise there is no guarantee that the device is still
2574 * operating in an indoor environment.
2575 */
2576 spin_lock(&reg_indoor_lock);
2577 if (reg_is_indoor && !reg_is_indoor_portid) {
2578 reg_is_indoor = false;
2579 reg_check_channels();
2580 }
2581 spin_unlock(&reg_indoor_lock);
2582
2583 reset_regdomains(true, &world_regdom);
2584 restore_alpha2(alpha2, reset_user);
2585
2586 /*
2587 * If there's any pending requests we simply
2588 * stash them to a temporary pending queue and
2589 * add then after we've restored regulatory
2590 * settings.
2591 */
2592 spin_lock(&reg_requests_lock);
2593 list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
2594 spin_unlock(&reg_requests_lock);
2595
2596 /* Clear beacon hints */
2597 spin_lock_bh(&reg_pending_beacons_lock);
2598 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2599 list_del(&reg_beacon->list);
2600 kfree(reg_beacon);
2601 }
2602 spin_unlock_bh(&reg_pending_beacons_lock);
2603
2604 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2605 list_del(&reg_beacon->list);
2606 kfree(reg_beacon);
2607 }
2608
2609 /* First restore to the basic regulatory settings */
2610 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2611 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2612
2613 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2614 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2615 continue;
2616 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2617 restore_custom_reg_settings(&rdev->wiphy);
2618 }
2619
2620 regulatory_hint_core(world_alpha2);
2621
2622 /*
2623 * This restores the ieee80211_regdom module parameter
2624 * preference or the last user requested regulatory
2625 * settings, user regulatory settings takes precedence.
2626 */
2627 if (is_an_alpha2(alpha2))
2628 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
2629
2630 spin_lock(&reg_requests_lock);
2631 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2632 spin_unlock(&reg_requests_lock);
2633
2634 REG_DBG_PRINT("Kicking the queue\n");
2635
2636 schedule_work(&reg_work);
2637 }
2638
2639 void regulatory_hint_disconnect(void)
2640 {
2641 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2642 restore_regulatory_settings(false);
2643 }
2644
2645 static bool freq_is_chan_12_13_14(u16 freq)
2646 {
2647 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2648 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2649 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2650 return true;
2651 return false;
2652 }
2653
2654 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2655 {
2656 struct reg_beacon *pending_beacon;
2657
2658 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2659 if (beacon_chan->center_freq ==
2660 pending_beacon->chan.center_freq)
2661 return true;
2662 return false;
2663 }
2664
2665 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2666 struct ieee80211_channel *beacon_chan,
2667 gfp_t gfp)
2668 {
2669 struct reg_beacon *reg_beacon;
2670 bool processing;
2671
2672 if (beacon_chan->beacon_found ||
2673 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2674 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2675 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2676 return 0;
2677
2678 spin_lock_bh(&reg_pending_beacons_lock);
2679 processing = pending_reg_beacon(beacon_chan);
2680 spin_unlock_bh(&reg_pending_beacons_lock);
2681
2682 if (processing)
2683 return 0;
2684
2685 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2686 if (!reg_beacon)
2687 return -ENOMEM;
2688
2689 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2690 beacon_chan->center_freq,
2691 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2692 wiphy_name(wiphy));
2693
2694 memcpy(&reg_beacon->chan, beacon_chan,
2695 sizeof(struct ieee80211_channel));
2696
2697 /*
2698 * Since we can be called from BH or and non-BH context
2699 * we must use spin_lock_bh()
2700 */
2701 spin_lock_bh(&reg_pending_beacons_lock);
2702 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2703 spin_unlock_bh(&reg_pending_beacons_lock);
2704
2705 schedule_work(&reg_work);
2706
2707 return 0;
2708 }
2709
2710 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2711 {
2712 unsigned int i;
2713 const struct ieee80211_reg_rule *reg_rule = NULL;
2714 const struct ieee80211_freq_range *freq_range = NULL;
2715 const struct ieee80211_power_rule *power_rule = NULL;
2716 char bw[32], cac_time[32];
2717
2718 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2719
2720 for (i = 0; i < rd->n_reg_rules; i++) {
2721 reg_rule = &rd->reg_rules[i];
2722 freq_range = &reg_rule->freq_range;
2723 power_rule = &reg_rule->power_rule;
2724
2725 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2726 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2727 freq_range->max_bandwidth_khz,
2728 reg_get_max_bandwidth(rd, reg_rule));
2729 else
2730 snprintf(bw, sizeof(bw), "%d KHz",
2731 freq_range->max_bandwidth_khz);
2732
2733 if (reg_rule->flags & NL80211_RRF_DFS)
2734 scnprintf(cac_time, sizeof(cac_time), "%u s",
2735 reg_rule->dfs_cac_ms/1000);
2736 else
2737 scnprintf(cac_time, sizeof(cac_time), "N/A");
2738
2739
2740 /*
2741 * There may not be documentation for max antenna gain
2742 * in certain regions
2743 */
2744 if (power_rule->max_antenna_gain)
2745 pr_info(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2746 freq_range->start_freq_khz,
2747 freq_range->end_freq_khz,
2748 bw,
2749 power_rule->max_antenna_gain,
2750 power_rule->max_eirp,
2751 cac_time);
2752 else
2753 pr_info(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2754 freq_range->start_freq_khz,
2755 freq_range->end_freq_khz,
2756 bw,
2757 power_rule->max_eirp,
2758 cac_time);
2759 }
2760 }
2761
2762 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2763 {
2764 switch (dfs_region) {
2765 case NL80211_DFS_UNSET:
2766 case NL80211_DFS_FCC:
2767 case NL80211_DFS_ETSI:
2768 case NL80211_DFS_JP:
2769 return true;
2770 default:
2771 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2772 dfs_region);
2773 return false;
2774 }
2775 }
2776
2777 static void print_regdomain(const struct ieee80211_regdomain *rd)
2778 {
2779 struct regulatory_request *lr = get_last_request();
2780
2781 if (is_intersected_alpha2(rd->alpha2)) {
2782 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2783 struct cfg80211_registered_device *rdev;
2784 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2785 if (rdev) {
2786 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2787 rdev->country_ie_alpha2[0],
2788 rdev->country_ie_alpha2[1]);
2789 } else
2790 pr_info("Current regulatory domain intersected:\n");
2791 } else
2792 pr_info("Current regulatory domain intersected:\n");
2793 } else if (is_world_regdom(rd->alpha2)) {
2794 pr_info("World regulatory domain updated:\n");
2795 } else {
2796 if (is_unknown_alpha2(rd->alpha2))
2797 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2798 else {
2799 if (reg_request_cell_base(lr))
2800 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2801 rd->alpha2[0], rd->alpha2[1]);
2802 else
2803 pr_info("Regulatory domain changed to country: %c%c\n",
2804 rd->alpha2[0], rd->alpha2[1]);
2805 }
2806 }
2807
2808 pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2809 print_rd_rules(rd);
2810 }
2811
2812 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2813 {
2814 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2815 print_rd_rules(rd);
2816 }
2817
2818 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2819 {
2820 if (!is_world_regdom(rd->alpha2))
2821 return -EINVAL;
2822 update_world_regdomain(rd);
2823 return 0;
2824 }
2825
2826 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2827 struct regulatory_request *user_request)
2828 {
2829 const struct ieee80211_regdomain *intersected_rd = NULL;
2830
2831 if (!regdom_changes(rd->alpha2))
2832 return -EALREADY;
2833
2834 if (!is_valid_rd(rd)) {
2835 pr_err("Invalid regulatory domain detected:\n");
2836 print_regdomain_info(rd);
2837 return -EINVAL;
2838 }
2839
2840 if (!user_request->intersect) {
2841 reset_regdomains(false, rd);
2842 return 0;
2843 }
2844
2845 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2846 if (!intersected_rd)
2847 return -EINVAL;
2848
2849 kfree(rd);
2850 rd = NULL;
2851 reset_regdomains(false, intersected_rd);
2852
2853 return 0;
2854 }
2855
2856 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2857 struct regulatory_request *driver_request)
2858 {
2859 const struct ieee80211_regdomain *regd;
2860 const struct ieee80211_regdomain *intersected_rd = NULL;
2861 const struct ieee80211_regdomain *tmp;
2862 struct wiphy *request_wiphy;
2863
2864 if (is_world_regdom(rd->alpha2))
2865 return -EINVAL;
2866
2867 if (!regdom_changes(rd->alpha2))
2868 return -EALREADY;
2869
2870 if (!is_valid_rd(rd)) {
2871 pr_err("Invalid regulatory domain detected:\n");
2872 print_regdomain_info(rd);
2873 return -EINVAL;
2874 }
2875
2876 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2877 if (!request_wiphy) {
2878 queue_delayed_work(system_power_efficient_wq,
2879 &reg_timeout, 0);
2880 return -ENODEV;
2881 }
2882
2883 if (!driver_request->intersect) {
2884 if (request_wiphy->regd)
2885 return -EALREADY;
2886
2887 regd = reg_copy_regd(rd);
2888 if (IS_ERR(regd))
2889 return PTR_ERR(regd);
2890
2891 rcu_assign_pointer(request_wiphy->regd, regd);
2892 reset_regdomains(false, rd);
2893 return 0;
2894 }
2895
2896 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2897 if (!intersected_rd)
2898 return -EINVAL;
2899
2900 /*
2901 * We can trash what CRDA provided now.
2902 * However if a driver requested this specific regulatory
2903 * domain we keep it for its private use
2904 */
2905 tmp = get_wiphy_regdom(request_wiphy);
2906 rcu_assign_pointer(request_wiphy->regd, rd);
2907 rcu_free_regdom(tmp);
2908
2909 rd = NULL;
2910
2911 reset_regdomains(false, intersected_rd);
2912
2913 return 0;
2914 }
2915
2916 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2917 struct regulatory_request *country_ie_request)
2918 {
2919 struct wiphy *request_wiphy;
2920
2921 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2922 !is_unknown_alpha2(rd->alpha2))
2923 return -EINVAL;
2924
2925 /*
2926 * Lets only bother proceeding on the same alpha2 if the current
2927 * rd is non static (it means CRDA was present and was used last)
2928 * and the pending request came in from a country IE
2929 */
2930
2931 if (!is_valid_rd(rd)) {
2932 pr_err("Invalid regulatory domain detected:\n");
2933 print_regdomain_info(rd);
2934 return -EINVAL;
2935 }
2936
2937 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2938 if (!request_wiphy) {
2939 queue_delayed_work(system_power_efficient_wq,
2940 &reg_timeout, 0);
2941 return -ENODEV;
2942 }
2943
2944 if (country_ie_request->intersect)
2945 return -EINVAL;
2946
2947 reset_regdomains(false, rd);
2948 return 0;
2949 }
2950
2951 /*
2952 * Use this call to set the current regulatory domain. Conflicts with
2953 * multiple drivers can be ironed out later. Caller must've already
2954 * kmalloc'd the rd structure.
2955 */
2956 int set_regdom(const struct ieee80211_regdomain *rd,
2957 enum ieee80211_regd_source regd_src)
2958 {
2959 struct regulatory_request *lr;
2960 bool user_reset = false;
2961 int r;
2962
2963 if (!reg_is_valid_request(rd->alpha2)) {
2964 kfree(rd);
2965 return -EINVAL;
2966 }
2967
2968 if (regd_src == REGD_SOURCE_CRDA)
2969 reg_crda_timeouts = 0;
2970
2971 lr = get_last_request();
2972
2973 /* Note that this doesn't update the wiphys, this is done below */
2974 switch (lr->initiator) {
2975 case NL80211_REGDOM_SET_BY_CORE:
2976 r = reg_set_rd_core(rd);
2977 break;
2978 case NL80211_REGDOM_SET_BY_USER:
2979 r = reg_set_rd_user(rd, lr);
2980 user_reset = true;
2981 break;
2982 case NL80211_REGDOM_SET_BY_DRIVER:
2983 r = reg_set_rd_driver(rd, lr);
2984 break;
2985 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2986 r = reg_set_rd_country_ie(rd, lr);
2987 break;
2988 default:
2989 WARN(1, "invalid initiator %d\n", lr->initiator);
2990 return -EINVAL;
2991 }
2992
2993 if (r) {
2994 switch (r) {
2995 case -EALREADY:
2996 reg_set_request_processed();
2997 break;
2998 default:
2999 /* Back to world regulatory in case of errors */
3000 restore_regulatory_settings(user_reset);
3001 }
3002
3003 kfree(rd);
3004 return r;
3005 }
3006
3007 /* This would make this whole thing pointless */
3008 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3009 return -EINVAL;
3010
3011 /* update all wiphys now with the new established regulatory domain */
3012 update_all_wiphy_regulatory(lr->initiator);
3013
3014 print_regdomain(get_cfg80211_regdom());
3015
3016 nl80211_send_reg_change_event(lr);
3017
3018 reg_set_request_processed();
3019
3020 return 0;
3021 }
3022
3023 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3024 struct ieee80211_regdomain *rd)
3025 {
3026 const struct ieee80211_regdomain *regd;
3027 const struct ieee80211_regdomain *prev_regd;
3028 struct cfg80211_registered_device *rdev;
3029
3030 if (WARN_ON(!wiphy || !rd))
3031 return -EINVAL;
3032
3033 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3034 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3035 return -EPERM;
3036
3037 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3038 print_regdomain_info(rd);
3039 return -EINVAL;
3040 }
3041
3042 regd = reg_copy_regd(rd);
3043 if (IS_ERR(regd))
3044 return PTR_ERR(regd);
3045
3046 rdev = wiphy_to_rdev(wiphy);
3047
3048 spin_lock(&reg_requests_lock);
3049 prev_regd = rdev->requested_regd;
3050 rdev->requested_regd = regd;
3051 spin_unlock(&reg_requests_lock);
3052
3053 kfree(prev_regd);
3054 return 0;
3055 }
3056
3057 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3058 struct ieee80211_regdomain *rd)
3059 {
3060 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3061
3062 if (ret)
3063 return ret;
3064
3065 schedule_work(&reg_work);
3066 return 0;
3067 }
3068 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3069
3070 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3071 struct ieee80211_regdomain *rd)
3072 {
3073 int ret;
3074
3075 ASSERT_RTNL();
3076
3077 ret = __regulatory_set_wiphy_regd(wiphy, rd);
3078 if (ret)
3079 return ret;
3080
3081 /* process the request immediately */
3082 reg_process_self_managed_hints();
3083 return 0;
3084 }
3085 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3086
3087 void wiphy_regulatory_register(struct wiphy *wiphy)
3088 {
3089 struct regulatory_request *lr;
3090
3091 /* self-managed devices ignore external hints */
3092 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3093 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3094 REGULATORY_COUNTRY_IE_IGNORE;
3095
3096 if (!reg_dev_ignore_cell_hint(wiphy))
3097 reg_num_devs_support_basehint++;
3098
3099 lr = get_last_request();
3100 wiphy_update_regulatory(wiphy, lr->initiator);
3101 }
3102
3103 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3104 {
3105 struct wiphy *request_wiphy = NULL;
3106 struct regulatory_request *lr;
3107
3108 lr = get_last_request();
3109
3110 if (!reg_dev_ignore_cell_hint(wiphy))
3111 reg_num_devs_support_basehint--;
3112
3113 rcu_free_regdom(get_wiphy_regdom(wiphy));
3114 RCU_INIT_POINTER(wiphy->regd, NULL);
3115
3116 if (lr)
3117 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3118
3119 if (!request_wiphy || request_wiphy != wiphy)
3120 return;
3121
3122 lr->wiphy_idx = WIPHY_IDX_INVALID;
3123 lr->country_ie_env = ENVIRON_ANY;
3124 }
3125
3126 static void reg_timeout_work(struct work_struct *work)
3127 {
3128 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
3129 rtnl_lock();
3130 reg_crda_timeouts++;
3131 restore_regulatory_settings(true);
3132 rtnl_unlock();
3133 }
3134
3135 /*
3136 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3137 * UNII band definitions
3138 */
3139 int cfg80211_get_unii(int freq)
3140 {
3141 /* UNII-1 */
3142 if (freq >= 5150 && freq <= 5250)
3143 return 0;
3144
3145 /* UNII-2A */
3146 if (freq > 5250 && freq <= 5350)
3147 return 1;
3148
3149 /* UNII-2B */
3150 if (freq > 5350 && freq <= 5470)
3151 return 2;
3152
3153 /* UNII-2C */
3154 if (freq > 5470 && freq <= 5725)
3155 return 3;
3156
3157 /* UNII-3 */
3158 if (freq > 5725 && freq <= 5825)
3159 return 4;
3160
3161 return -EINVAL;
3162 }
3163
3164 bool regulatory_indoor_allowed(void)
3165 {
3166 return reg_is_indoor;
3167 }
3168
3169 int __init regulatory_init(void)
3170 {
3171 int err = 0;
3172
3173 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3174 if (IS_ERR(reg_pdev))
3175 return PTR_ERR(reg_pdev);
3176
3177 spin_lock_init(&reg_requests_lock);
3178 spin_lock_init(&reg_pending_beacons_lock);
3179 spin_lock_init(&reg_indoor_lock);
3180
3181 reg_regdb_size_check();
3182
3183 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3184
3185 user_alpha2[0] = '9';
3186 user_alpha2[1] = '7';
3187
3188 /* We always try to get an update for the static regdomain */
3189 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3190 if (err) {
3191 if (err == -ENOMEM)
3192 return err;
3193 /*
3194 * N.B. kobject_uevent_env() can fail mainly for when we're out
3195 * memory which is handled and propagated appropriately above
3196 * but it can also fail during a netlink_broadcast() or during
3197 * early boot for call_usermodehelper(). For now treat these
3198 * errors as non-fatal.
3199 */
3200 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3201 }
3202
3203 /*
3204 * Finally, if the user set the module parameter treat it
3205 * as a user hint.
3206 */
3207 if (!is_world_regdom(ieee80211_regdom))
3208 regulatory_hint_user(ieee80211_regdom,
3209 NL80211_USER_REG_HINT_USER);
3210
3211 return 0;
3212 }
3213
3214 void regulatory_exit(void)
3215 {
3216 struct regulatory_request *reg_request, *tmp;
3217 struct reg_beacon *reg_beacon, *btmp;
3218
3219 cancel_work_sync(&reg_work);
3220 cancel_delayed_work_sync(&reg_timeout);
3221 cancel_delayed_work_sync(&reg_check_chans);
3222
3223 /* Lock to suppress warnings */
3224 rtnl_lock();
3225 reset_regdomains(true, NULL);
3226 rtnl_unlock();
3227
3228 dev_set_uevent_suppress(&reg_pdev->dev, true);
3229
3230 platform_device_unregister(reg_pdev);
3231
3232 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3233 list_del(&reg_beacon->list);
3234 kfree(reg_beacon);
3235 }
3236
3237 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3238 list_del(&reg_beacon->list);
3239 kfree(reg_beacon);
3240 }
3241
3242 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3243 list_del(&reg_request->list);
3244 kfree(reg_request);
3245 }
3246 }